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Abstract 

Herein, we have successfully synthesized BiVO4 photocatalysts via a simple chemical precipitation method followed by heat treat
ment at 400�C, 500�C, and 600�C. The samples were characterized by XRD combined with Rietveld refinement, Raman spectroscopy, 
SEM, and UV- vis DRS. XRD results showed that we obtained monoclinic scheelite phase (m-s BiVO4) with I112/b space group. The vis
ible–light photocatalytic activities of BiVO4 -400�C, 500�C, and 600�C for organic dye degradation (MB: methylene blue; MO: and 
methyl orange) were investigated, and the BiVO4 400�C showed the highest activity in the photodegradation of MB (95%) and MO 
(80%) after 150 min of visible illumination. The photocatalytic degradation mechanism was proposed based on radical trapping meas
urements and Mott–Schottky analysis.
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Introduction
Recent decades have seen rapid growth of urbanization of the 
global population and industrial development that led to water 
pollution and scarcity on every continent [1, 2]. This phenome
non is a consequence of the direct discharge of domestic and 
industrial wastes, including heavy metals, residual non- 
biodegradable dyes, pesticides, and bacteria [3–8]. These danger
ous substances have harmful impacts on the environment and 
the human health, while it was also reported that 80% of diseases 
and 50% of deaths can be linked to wastewater [9]. Therefore, 
various treatment technologies were utilized [10, 11], such as co
agulation [12], flocculation [13], ion exchange [14], chemical pre
cipitation [15], sedimentation [16], and chlorination [17]. Despite 
having been used for decades, the above methods proved to be 
expensive and partly ineffective as they cannot completely 
remove pollutants [5, 18, 19]. As an alternative approach, semi
conductor photocatalysis has attracted the attention of research
ers in the past decades [20]. This process is a promising 
environmental-friendly technology, which utilizes the sunlight 
as a renewable source for the generation of electron-hole pairs in 
semiconducting catalyst particles. The excited charge carriers 
lead to the production of reactive oxygen species (O• −

2 and •OH), 
which, in turn, participate in the chemical degradation of 

pollutants until their mineralization to CO2 and H2O [3, 5, 21–25]. 
In the past decades, titanium dioxide (TiO2) was commonly used 
as photocatalyst for the degradation of organic contaminants 
due to its high photocatalytic activity, robust chemical stability, 
wide commercial availability, affordability, and non-toxic nature 
[5, 26–28]. However, the use of TiO2 was limited because of its 
wide bandgap of 3.2eV, which makes it suitable only for the UV 
region [2, 29]. To overcome this, non-titania-based narrow 
bandgap semiconductors were developed with and an effective 
visible light response [30–32], like FeVO4 [33], Bi2WO6 [34, 35], 
Bi2O3 [36], BiVO4 [37], g-C3N4 [38], LaVO4 [39], CeVO4 [40], and 
YVO4 [41]. Bismuth-based oxides are promising candidates for 
photocatalytically degrading waste pollutants due to their suit
able band gap for visible light absorption [42], along with their 
low toxicity and high electric conductivity [43]. Taking Bi2O3 as 
an example, it has recently attracted more attention as a photo
catalyst for water purification due to its optical properties in 
the visible region with a narrow band gap of �2.8eV [44]. 
Unfortunately, its high electron-hole pair recombination rate 
limits the solar energy utilization, and thus, its photocatalytic ac
tivity [45]. Also, its photoinduced dissolution leads to a significant 
loss of bismuth, which reduces the pollutant degradation 
efficiency during Bi2O3 reuse as released Bi3þ will be one of 
the causes of secondary pollution [46]. Bi2O3 presents five 
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polymorphic crystal forms: two of them are stable electric con
ductors (α at low and δ at high temperature), while others are 
metastable (β, γ, and ω Bi2O3) [45]. Phase transitions are always 
associated with marked changes in the properties and stability of 
material, which can be undesirable in applications [47]. Large 
particles can be formed in the resulting phase having low surface 
area and reducing the photocatalytic activity of the material [48]. 
A further material that has attracted attention is graphitic car
bonitride (g-C3N4), a promising and sustainable photocatalyst for 
environmental remediation [38]. However, despite of its benefi
cial properties, it has a number of limitations just like Bi2O3, 
such as low surface area, a �2.7eV band gap energy, poor absorp
tion in the visible region, and high electron-hole recombination. 
All these factors reduce photoactivity under visible light irradia
tion [49, 50]. Among these photocatalysts, bismuth vanadate 
(BiVO4) has been extensively studied in organic pollutant photo
degradation under visible light illumination, as its narrow band 
gap, non-toxicity, excellent dispersibility, chemical stability, and 
high-performance make it an ideal candidate [5, 51–53]. 
Although BiVO4 has three crystal phases: (i) tetragonal scheelite, 
(ii) tetragonal zircon, and (iii) monoclinic scheelite [54], only the 
monoclinic scheelite BiVO4 (m–s) possess excellent photocata
lytic activity due to the combination of its narrow band gap 
(2.4eV) and high crystal distortion of BiO8 hybridization between 
the lone pair states of Bi-6s and the O-2p [54–56]. Various BiVO4 

synthesis methods have been reported in the literature, e.g. hy
drothermal [57], sol-gel [58], co-precipitation [37, 59], sonochemi
cal [60] etc., most of them use templates [61] or surfactants [62]. 
To avoid the latter, the researchers developed a green and sus
tainable synthesis without the assistance of any additives [63].

Herein, we synthesized monoclinic BiVO4 by a simple precipi
tation process without using any organic solvents. The as- 
prepared powder was then heated at 400�C, 500�C, and 600�C, 
respectively. The obtained samples were characterized by X-ray 
powder diffraction (XRD), Raman spectroscopy, scanning elec
tron microscopy (SEM), and UV-vis diffuse reflectance spectros
copy (DRS). Finally, the photodegradation activities were 
characterized by using the model organic pollutants of methy
lene blue (MB) and methyl orange (MO) under visible light illumi
nation. The re-usability of the catalysts was determined 
in recycling tests, and the photocatalytic mechanism was un
veiled by investigating the behavior of the photogenerated charge 
carriers.

Experimental
Materials
Bismuth nitrate pentahydrate (Bi(NO3)3�5H2O, 98%, Alfa Aesar), 
ammonium metavanadate (NH4VO3, 98%, ACROS Organics), ni
tric acid (HNO3 65%, Merck), and sodium hydroxide (NaOH, 99%, 
Fisher Scientific) were used as received without any further puri
fications. All solutions were prepared by using de-ionized water 
as solvent.

Synthesis of BiVO4

BiVO4 was synthesized via a simple chemical precipitation 
method. First, solution A was obtained after the dissolution of Bi 
(NO3)3�5H2O in diluted HNO3 (2M), and then solution B of NH4VO3 

dissolved in NaOH (2M) was added dropwise to the former under 
constant stirring (250 RPM). After 1 h stirring (250 RPM) the pH of 
the resulting yellow solution was adjusted to 5 by using NaOH 
(5M), and a yellow precipitate is formed under vigorous stirring 
(250 RPM) for 30 min. The final product was filtered and washed 

with the de-ionized water for several times, and dried at 80�C 

overnight [64]. The as-prepared BiVO4 samples were prepared at 

400�C, 500�C, and 600�C for 3 h under air [37].

Characterization of BiVO4

X-ray diffraction (XRD) was used to identify the crystal structure 

of the samples by employing Cu Kα radiation (λ¼1.5406 Å) in a 

Rigaku Miniflex II powder diffractometer at a scan speed of 4�

min−1 in the angular range from 2θ ¼ 10� to 60�. The crystalline 

structure determination was done by Rietveld refinement using 

the FullProf Suite software package. Raman spectra were 

recorded using 532 nm laser excitation at 0.25 mW power in a 

SENTERRA II Raman spectrometer. The morphology of the BiVO4 

powders was characterized by scanning electron microscopy 

(SEM, Thermo-Fisher Scientific Apreo C) with an accelerating 

voltage of 10 kV. UV-vis measurements were carried out with a 

miniature fiber optic-based spectrometer (high resolution 

HR4000 USB spectrometer HR4000CGUV–vis-NIR, Ocean Optics) 

in the wavelength region of 200–800 nm using a DH-2000-BAL 

(Ocean Optics) Deuterium Tungsten Halogen light source [65].

Photocatalytic degradation experiments
The photocatalytic activity of BiVO4 was examined by the re

moval of 5 ppm methylene blue (MB) and 5 ppm methyl orange 

(MO) in aqueous solution of pH¼ 5.4 and 5.8, respectively. First, 

the catalysts were stirred in the dye solutions in dark to reach 

the adsorption-desorption equilibrium, then the dispersions were 

irradiated in the visible light range by a 300 W Xenon lamp. At 

specified time periods, aliquots of 3 ml were taken and centri

fuged at 13400 rpm for UV-vis analysis in the 400–800 nm wave

length range using a Shimadzu UV 2600 spectrophotometer. 

Radical trapping tests were done by using ethylenediamine diso

dium tetra-acetate (EDTA), isopropanol (IPA), and L-ascorbic acid 

as scavengers for the active species hþ, •OH, and O• − ;
2 

respectively.

Determination of the point of zero charge (pzc)
The pHpzc of the BiVO4 surface was determined via the method 

reported by Al-Harahsheh [66]. A sample mass of 50 mg was 

weighted into six beakers each containing 50 ml of 0.1 M potas

sium nitrate (KNO3) solution. The zero-point charge measure

ments curve was obtained after setting the pHinitial of the beakers 

to 2.1, 4.0, 6.5, 8.7, 10.1, and 12.5 by adding either 0.1 M NaOH or 

0.1 M HNO3 solution dropwise.

Photoelectrochemical measurements
Photoelectrochemical studies were conducted using an Origalys 

ElectroChem electrochemical workstation in a three-electrode 

system, where working electrodes (WE) were obtained by drop- 

casting the samples onto indium tin oxide (ITO)/glass substrates. 

In a typical experiment, 10 mg photocatalyst powder was dis

persed into 2 ml of absolute ethanol by ultrasonication for 

15 min. After dropping 100 μl of the suspension onto 1 × 1 cm2 

ITO/glass, the electrode was dried at 100�C for 5 h. 

Measurements were carried out in a 0.1 M sodium sulfate 

(Na2SO4) aqueous solution, using Ag/AgCl and platinum foil as 

reference and counter electrode, respectively. Visible light irradi

ation was done by a 300 W Xe lamp equipped with a 420 nm cut- 

off filter (λ>420 nm). Transient photocurrent curves were 

recorded at a bias of 0.4 V, while Mott-Schottky measurements 

were carried out at a frequency of 200 Hz.
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Results and discussion
Structural analysis of BiVO4

Figure 1 shows the powder X-ray diffractograms of the BiVO4 

materials obtained through co-precipitation, then treated at 
400�C–600�C for 3 h. The diffraction profiles were first compared 
to the well referenced BiVO4 in the ICSD database. All character
istic peaks at 2θ¼ 18.7, 28.9, 30.6, 34.5, and 46.7� were indexed 
with a single-phase monoclinic scheelite BiVO4 structure (ICSD 
datasheet File Card N�96–901-3437). The sharp diffraction peaks 
in the XRD patterns indicate the formation of a well crystallized 
BiVO4. The average D crystallite size was calculated by the 
Scherrer formula: 

D ¼
kλ

βcos Θð Þ
(1) 

Where k is the Scherrer-constant set to k¼ 0.9, λ is the wave
length of the X-ray radiation (0.15406 nm), β refers to the full 
width at half maximum (FWHM) of each peak in radian deter
mined through Gaussian peak fitting, and θ is the Bragg position.

The crystallite size was found to be 20, 24, and 30 nm for sam
ples prepared at temperatures 400, 500, and 600�C, respectively, 
showing only a small variation with calcination temperature. 
This latter influences the crystal growth by welding primary par
ticles together resulting in the formation of bigger particles.

It is known that crystallite size has a significant effect on the 
photocatalytic performance of BiVO4 through surface area and 
the corresponding availability of active sites, the electron-hole 
recombination, and charge carrier behavior. The results indicate 
that crystallinity and the crystal size of BiVO4 increased with 
heat treatment temperature from 400�C to 500�C and 600�C, 
which is in accordance with growth theory, i.e. high temperature 
promotes the increase of grain size [67, 68]. As a consequence, 
small particles at low temperatures exhibited large specific sur
face area, which, in turn, provides higher active site density [69]. 
Furthermore, small particle size implies shorter diffusion length, 
which is beneficial for charge carrier transport as photogenerated 
electrons and holes can reach the surface to take part in redox 
reactions (photocatalytic degradation) before recombination [70].

The formation of the monoclinic scheelite structure with the 
I2/b space group was confirmed in all samples by the Rietveld re
finement of the XRD patterns (Table 1). The observed and the cal
culated XRD patterns of BiVO4 heated at 400�C, 500�C, and 600�C, 
along with the corresponding difference curves, are shown in 

Supplementary Fig. S2a–c. The figures of merit characterizing the 
quality of the structural refinement are listed in Supplementary 
Table S1, and the refined atomic positions are shown in 
Supplementary Table S2.

Vibrational analysis of BiVO4

Figure 2 shows the Raman spectra of the samples prepared at 
400�C, 500�C, and 600�C. The Raman shift at around 211.5, 325.5, 
369, 711, and 830.1 cm−1 correspond to the monoclinic BiVO4 

according to the literature [71, 72]. The most intense bands cen
tered at 827.7, 828.9, and 830.1 cm−1 referred to the symmetrical 
stretching mode of the V–O vibrations, while its anti-symmetric 
counterpart is located at 711 cm−1. The bands at 369 and 
325.5 cm−1 are the symmetric and asymmetric deformation 
modes of the VO3 −

4 tetrahedron. Besides, the bands located at 
211.5 and 129cm−1 are the external modes in BiVO4 involving ro
tation and translation. Therefore, results from Raman spectros
copy agree well with those from the previous XRD analysis [73, 
74]. These findings are summarized in Table 2, where we can ob
serve a red shift in the Raman bands positions with increasing 
calcination temperature. This behavior is due to the thermal ex
pansion, bond population, less agitation of particles [75, 76].

Morphological analysis of BiVO4

SEM images of BiVO4 synthesized via the co-precipitation process 
after heat treatment at 400–600�C for 3 h were shown in Fig. 3. 
The sample obtained at 400�C consists of uniform spherically 
shaped particles (Fig. 3a), whereas agglomerated smaller par
ticles are seen in the 500�C sample by assembling pseudospheri
cal grains with distinct edges and facets (Fig. 3b and d). The 
600�C heat treatment gave rise to more massive and dense as
semblies in Fig. 3c. Thus, increasing calcination temperature in 
BiVO4 led to an increase in particle size along with increasing Figure 1. XRD pattern of BiVO4 samples prepared at 400, 500, and 600�C.

Table 1. Crystal structure data of BiVO4 obtained at 400, 500, 
and 600�C.

Sample 400�C 500�C 600�C

Crystal system Monoclinic
Space group I112/b
Lattice parameters (Å) a¼ 5.1866 (3) a¼5.1912 (3) a¼5.1908 (6)

b¼ 5.0879 (4) b¼ 5.0881 (4) b¼ 5.0868 (5)
c¼11.6873 (3) c¼ 11.692 (3) c¼ 11.691 (2)

γ (�) 90.3865 (4) 90.369 (3) 90.377 (5)
Volume (Å3) 308.41 308.53 308.72

Figure 2. Raman spectra of BiVO4 prepared at 400, 500, and 600�C.
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degree of particle agglomeration. Moreover, pores are also ob

served in each sample, at lower temperatures, probably micropo

rosity due to surfaces defects and grain boundaries, followed by 

the formation of macroporosity by coalescence at 600�C.

UV-visible optical absorption of BiVO4

Diffuse reflectance UV-vis spectroscopy (DRS) was utilized at 

room temperature to determine the optical properties of the 

BiVO4 powders, and the optical spectra for BiVO4 prepared at 

400�C, 500�C, and 600�C are presented in Fig. 4a. The absorption 

onset wavelength of 480 nm corresponds to a band gap of 2.58 eV, 

which makes these catalysts suitable for visible light range 

application.
For a more precise band gap determination, the spectra were 

converted to the pseudo absorption function F(R) via the 

Kubelka–Munk relation (R) ¼ (1 − R)2/2R, where R is the absolute 

reflectance. The Tauc plots, i.e. (F(R) hυ)1/n versus the photon 

energy hυ, were plotted (Fig. 4b), and band gaps Eg were calcu
lated from the equation (F(R) hυ)1/n ¼ A (hv − Eg), where A is the 
proportionality constant, and n ¼ 1=2 or 2 is a coefficient for direct 
and indirect band gap, respectively. Previous theoretical studies 
on the electronic structure of BiVO4 found a direct band gap [77], 
i.e. the maximum of the valence band and the minimum of the 
conduction band are located at the same momentum. This 
allows the direct transition of excited electrons from the valence 
band to the conduction band as a result of photon absorption 
without any further assistance or change in the momentum [78– 
80]. In addition, band extrema are far from the center of the 
Brillouin zone, and the presence of Bi 6 s and O 2p causes an up
ward dispersion of the valence band at the zone boundary. 
Coupling V 3d, O 2p, and Bi 6p maintains a direct gap and lowers 
the conduction band minimum [81].

The band gap energies Eg were extracted from the linear fit of 
the Tauc plots of each sample [72], and Eg¼ 2.36, 2.38, and 

Table 2. Band identification in the Raman spectra of BiVO4 heated at 400, 500, and 600�C.

Calcination temperature (�C) Raman stretching frequency (cm−1) Vibrational modes assignment Refs

400 827.7
Vs(V–O) 
Symmetric stretching V–O 

[76–78]

500 828.9
600 830.1

400 711 Vas(V–O) 
Antisymmetric stretching V–O 

500 369 δs(VO3−
4 ) 

Symmetric deformation V–O in VO3
4

− 

600 325.5 δas(VO3−
4 ) 

Antisymmetric deformation V–O in VO3
4

− 

211.5
External modes (Rotation/Translation) [101]129

Figure 3. SEM micrographs of the BiVO4 obtained after calcination at (a) 400, (b) 500, and (c) 600�C. The 500�C sample at higher magnification where 
edges and facets are recognizable (d).
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2.37 eV were obtained for the 400�C, 500�C, and 600�C samples, 
respectively. These results are in good agreement with previous 
literature results [37].

Optical absorption below 500 nm varies with calcination tem
perature. Absorbance of the sample treated at 400�C (black 
curve) is fairly high, reflecting strong light absorption in this re
gion. Increasing the calcination temperature to 500�C (red curve), 
the absorbance drops, implying possible changes in the structure 
or morphology of the material, like reduction in defect density or 
change in grain size. Nevertheless, at 600�C (blue curve) the ab
sorbance increases again and exceeds that of the 500�C sample. 
This is possibly due to enhanced crystallinity or particle aggrega
tion that enhance the optical properties of the material.

Photocurrent analyses
The efficient charge carrier separation in the semiconductor is a 
prerequisite for a high photocatalytic performance, thus charge 
separation efficiency was investigated in transient photocurrent 
experiments (Fig. 5). The photocurrent response of BiVO4 

decreases with increasing calcination temperature, where the 
highest photocurrent density in BiVO4 400 implies a facilitated 
charge carrier separation. This decrease in photocurrent re
sponse with increase in calcination temperatures is a result of 
charge carrier recombination. Synthesis at high temperatures 
not only leads to increased crystallinity, but also to a reduction 
in the number of defects that serve as charge recombination cen
ters [82]. Consequently, electron-hole recombination rates rise 
and reducing photocurrent intensity. Moreover, the well- 
preserved photocurrent density in the subsequent excitations 
indicates high photo-electrochemical stability. Calcination at 
400�C resulted in the smallest crystallite size among the studied 
samples. This, on the one hand, increases the specific surface 
area, which provides more active site for pollutant adsorption, 
while on the other hand, give rise to a more pronounced crystal 
defect formation. The latter, in turn, deteriorates charge carrier 
mobility through unwanted photoinduced electron-hole re
combination.

Photocatalytic activity of BiVO4

The photocatalytic activity of BiVO4 obtained at 400�C, 500�C, 
and 600�C was characterized by the decomposition of the model 
pollutants MB and MO dye molecules at room temperature under 
visible light illumination. The photocatalytic dye degradation 

results are shown in Figs 6 and 7. In highly diluted solutions 

(ppm) the Beer-Lambert law applies, which means direct propor

tionality between the analyte concentration and the measured 

absorbance. The photocatalytic decomposition was followed by 

the change in the Ct/C0 ratio with time, where Ct, C0, and t are 

the dye concentration at the beginning of the experiment and at t 

reaction time (Figs 6b and 7b). Kinetic plots of the photodegrada

tion reaction are constructed by plotting the negative logarithm 

of the former against time, and the dataset is fitted by a linear 

equation by using a pseudo-first-order model with the rate con

stant k [83]: 

� ln
ct

c0
¼ kt (2) 

Photocatalytic degradation of MB dye
Figure 6a shows the decreasing intensity of the absorption peak 

of MB at around 664 nm with increasing irradiation time in the 

presence of BiVO4 (400�C). In the absence of irradiation, only 9% 

of the initial MB was decomposed after 1 h, which implies that 

dye removal is mainly the result of photocatalytic degradation 

rather than adsorption. Kinetic plots of the photodegradation 

Figure 4. (a) UV-vis DRS spectra and (b) the corresponding Tauc plots of the BiVO4 samples obtained at 400, 500 and 600�C.

Figure 5. The transient photocurrent curves of BiVO4 prepared at 400, 
500, and 600�C.
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reaction are depicted in Fig. 6b and c, where degradation kinetics 
was described by equation (2). BiVO4 treated at 400�C shows the 
highest photocatalytic performance of 95% MB removal in 
150 min, compared to those of BiVO4 heated at 500�C (86%), and 
600�C (76%). Pseudo-first order kinetic rate constants of 
k¼0.0198, 0.0131, and 0.0097 min−1 for BiVO4 400�C, 500�C, and 
600�C are found, respectively (Fig. 6c). The poor photocatalytic 
performance of the samples heated at higher temperatures 

corroborates with the transient photocurrent results above, indi
cating rapid recombination of the photo induced charge carriers 
(Fig. 5). The catalytic activity of BiVO4 400�C is supported by its 
optical characteristics, particularly its narrow band gap along 
with higher visible light absorption and the small particle size 
with higher accessible surface area [5, 37, 84, 85]. Furthermore, it 
also depends on the point of zero charge (pHpzc) of the catalyst, 
(Fig. 6d) influenced by the electrical charge and the state of the 

Figure 6. (a) UV-vis absorption spectra of MB during photocatalytic degradation on BiVO4 heated at 400�C, (b) variation of the Ct/C0 MB ratio over 
150 min visible light irradiation, (c) the pseudo-first-order photodecomposition kinetics, and (d) Zero-point charge measurement for BiV400�C.

Figure 7. (a) UV-vis absorption spectra of MO during photocatalytic degradation on BiVO4 heated at 400�C, (b) variation of the Ct/C0 MO ratio over 
150 min visible light irradiation on the BiVO4 catalysts prepared at 400, 500, and 600�C, (c) alongside with the pseudo-first-order 
photodecomposition kinetics.

6 | Lotfi et al.  

D
ow

nloaded from
 https://academ

ic.oup.com
/oom

s/article/5/1/itaf005/8118645 by H
ungary EISZ C

onsortium
 user on 09 July 2025



surface [86]. Results show, that BiVO4 surfaces are negatively 
charged during the photocatalytic test reaction, as the pH of the 
dye solution (pH¼ 5.1) is higher than that of the pHpzc¼4.1. The 
electrostatic attraction between the negative charged catalyst 
surface and the positively charged cationic dye MB enhances dye 
adsorption, and consequently, improves photocatalytic activity.

The high degradation efficiency observed for BiVO4 sample 
prepared at 400�C can be attributed to the combination of struc
tural and morphological factors derived from crystallite size data 
and SEM analysis. Firstly, smaller crystallite size of 20 nm com
pared to that of 24 nm for BiV 500 and 30 nm for BiV 600, BiV 400 
benefits from a larger specific surface area [87, 88]. This increases 
the number of active sites available for degradation reactions, 
enabling more effective interaction between the material and the 
molecules to be degraded [89, 90]. In addition, SEM analysis 
reveals that the particles at 400�C have a uniform, spherical mor
phology, which promotes homogeneous light scattering and bet
ter photon absorption. Moreover, band gap energy for BiV 400 is 
slightly lower than that for BiV 500 and BiV 600. Narrower band 
gap allows the material to absorb a wider range of wavelengths 
in the visible region, increasing its efficiency in photocatalytic 
reactions. Regarding photoelectrochemical performance, the 
photocurrent results show that BiV 400 exhibits the highest pho
tocurrent density (Fig. 5), indicating high efficiency in separating 
photogenerated charges. In summary, the good performance of 
BiV 400 in terms of degradation is due to its small crystallite size, 
uniform morphology, and the corresponding high photocurrent. 
These factors enable stronger interaction with light and target 
molecules, in contrast to samples calcined at 500�C and 600�C.

Photocatalytic degradation of organic MO dye
Figure 7a shows the time dependent UV-vis absorption spectrum 
of MO with intensity maximum at 465 nm upon visible light irra
diation using the BiVO4 400�C catalyst. The MO loss due adsorp
tion was found to be only 4% in the dark after 1 h, which verifies 
that MO removal also takes places due photocatalytic degrada
tion just like in the case of MB in 3.5.1. The corresponding kinetic 
curves are plotted in Fig. 7b and in their linearized form in Fig. 7c.

The photodegradation efficiency of 80% on BiVO4 obtained at 
400�C was the highest compared to those if 500�C (75%) and 
600�C (69%) samples after 150 min visible light exposure. The 

kinetic constants were extracted from Fig. 7c using the pseudo- 
first order model of equation (2), and the corresponding k values 
were 0.0114, 0.0096, and 0.0086 min−1 for the BiVO4 samples 
treated at 400, 500, and 600�C, respectively. Since the point of 
zero charge of BiVO4 is pHpzc¼ 4.1 (Fig. 6d), the surface of the 
samples in the MO degradation measurements (pH¼3.1) is posi
tively charged. The electrostatic attraction between the positively 
charged catalyst and the negative charge of the anionic dye, in 
turn, further promotes MO photo degradation.

The differences in the photocatalytic performance degrading 
MB and MO can be explained by their chemical properties and 
interactions with the photocatalyst. The different rates of photo
catalytic decomposition of MB and MO may be attributable to the 
different electric charge of the dyes and the photocatalyst, along 
with the different molecular size of the dyes [91, 92]. The pH of 
the medium plays a crucial role in modulating the surface charge 
of the photocatalyst, thereby influencing its interaction with pol
lutants. The surface charge is mainly determined by the photoca
talyst’s point of zero charge (PZC). These variations in charge 
directly affect electrostatic interactions with contaminants. 
Therefore, pH optimization is essential to maximize the favorable 
interactions between the photocatalyst surface and the target 
pollutant, and thus to improve the overall performance of the 
photocatalytic process. On the other hand, the smaller molecular 
size of MB also promoted its faster and more complete photoca
talytic decomposition. Moreover, –C¼S– and –C¼N– in the molec
ular structure of MB dissociate easily upon interacting with 
active species due to their low bond energy [91, 92], while photo
catalytic decomposition of MO was hampered by the high dissoci
ation energy of the –N¼N– bonds in the MO structure [91, 92].

Trapping test and recyclability
Trapping tests were conducted for the determination of the ma
jor oxidizing species responsible for dye degradation. 
Ethylenediaminetetraacetic acid (EDTA), L-ascorbic acid (L-asc) 
and isopropanol alcohol (IPA) were selected as specific radical 
trap moieties for identifying any short-lived species potentially 
involved in MB and MO decomposition, i.e. hþ, O• −

2 , and •OH. 
Figure 8a depicts the impacts of trapping agents on the photode
gradation efficiency of MB and MO on the BiVO4 400�C catalyst. 
In the absence of trapping agents, the photocatalytic 

Figure 8. (a) Photocatalytic decomposition efficiency of MB and MO on BiVO4 400�C in the presence of trapping agents, and (b) photocatalyst recycling 
in four successive tests.
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decomposition rates were 95% for MB and 80% for MO (Figs 6 and 
7). Upon addition of L-ascorbic acid, EDTA, and IPA, the activities 

dropped to 39%, 51%, and 77% for MB and 42%, 59%, and 69% for 

MO, respectively. This indicates that holes hþ and superoxide 

O• −
2 appear to be the major species in the photocatalytic decom

position of MB and MO, whereas hydroxyl radicals •OH have a 

secondary role in the photocatalytic decomposition. The stability 

of the BiVO4 400�C sample was assessed by reusing the catalyst 

at the end of every photocatalytic reaction. The collected photo

catalyst has been washed and then dried for subsequent reuse. 

The results in Fig. 8b show only a minor drop in the decomposi

tion efficiency after 4 successive tests.

Proposed mechanism
The band gap of BiVO4 400�C, i.e. the energy difference of the 

band edges of the conduction (CB) and valence bands (VB), was 

determined from its optical properties in Fig. 4, whereas the band 

edge of the CB (the so-called flat-band potential) can be indepen

dently calculated from electrochemical measurements using the 

Mott-Schottky equation: 

C� 2 ¼
2

NDeɛɛ0
V � Vfb �

kT
e

� �

(3) 

where C is the interfacial capacitance, ND is the carrier density, e 

is the electronic charge, ε and ε0 is the dielectric constant of the 

semiconductor and the free space, V and Vfb is the applied and 

the flat band potential, k is the Boltzmann constant, and T is the 

absolute temperature.
Plotting C−2 against the applied potential, a linear trend is 

seen in a limited potential region in Fig. 9a. A positive slope of the 

latter indicates that the fabricated BiVO4 400�C is a n-type semi

conductor, while fitting Equation (3) to these data provides its 

flat band potential (Vfb) from the x-intercept. The resulted Vfb ¼

−0.61 V (versus. Ag/AgCl) can then be translated onto the normal 

hydrogen electrode scale (NHE) by EAg/AgCl¼ENHE - 0.197 [93, 94], 

however, it is known from the literature that conduction band 

potentials are more negative by 0.2 V than the measured Vfb flat 

band potential in n-type semiconductors [95–97]. Thus, the va

lence and conduction band edge positions in BiVO4 400 was cal

culated by the following equations: 

ECB ¼ Vfb � 0:2 (4) 

Eg ¼ EVB � ECB (5) 

From Equation (4) the ECB value of − 0.81 V (versus. Ag/AgCl) is 
given, which equals to − 0.613 V (versus. NHE). The corresponding 
EVB¼1.74 (V versus. NHE) is derived from Equation (5) by adding 
ECB and Eg, while the active species of the BiVO4 400�C photocata
lyst are characterized by the potentials of the E(H2O/•OH) ¼ (1.99 
(V versus. NHE) and the E(O2/O•−

2 ) ¼ −0.33 (V versus. NHE) redox 
couples [98]. As can be seen in Fig. 9b, the CB edge potential is 
more negative compared to that of O2/O• −

2 , which in turn implies 
that the BiVO4 400�C catalyst is able to produce O• −

2 . On the other 
hand, the VB edge potential is more negative than that of 
H2O/•OH making it difficult to generate •OH radicals. As a conse
quence, •OH radicals play a minor function in the degradation 
process [99–101]. This aligns well with the active moieties trap
ping results in Fig. 8, which showed that superoxide radicals are 
the major species responsible for degradation. The photocatalytic 
performance of various BiVO4-based systems were collected 
from the literature, and their performance metrics are presented 
in Table 3 along with the experimental parameters of the tested 
model contaminants and the irradiation sources. The material 
developed in this study shows a high photocatalytic performance 
compared to the other reported BiVO4-based photocatalysts.

Conclusions
BiVO4 has been successfully prepared by a facile precipitation 
method without using any organic additives. The as-prepared 
materials were subjected to a subsequent calcination at 400, 500, 
and 600�C. It was found that the heat treatment had a significant 
impact on the structural, morphological, optical, and photocata
lytic properties of the resulting BiVO4. All synthesized samples 
possessed a single phase monoclinic scheelite structure with a 
uniform spherical particle morphology, where increasing calci
nation temperature resulted in an increase in the crystallite size. 
The bandgap of the semiconductor catalysts was determined by 
optical spectroscopy (Eg¼2.36 eV), which shows considerably vis
ible light absorption and makes the catalyst suitable for sunlight 
activation. The BiVO4 prepared at 400�C showed the highest pho
tocatalytic activity among the studied materials, decomposing 
95% and 80% of the initial methylene blue and methyl orange af
ter 150 minutes of visible light illumination, respectively. 

Figure 9. (a) Mott-Schottky graph of the BiVO4 400 photocatalyst, and (b) the scheme of the proposed degradation mechanism.
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Moreover, the same sample provided the highest photocurrent 
density implying an effective charge carrier separation. Finally, 
the trapping experiment indicated that the primary reactive spe
cies utilized in the photocatalytic degradation of MB and MO are 
holes (hþ) and superoxide (O•−

2 ), which corroborated well with 
the band structure determination. In conclusion, BiVO4 is a 
promising visible-light semiconductor photocatalyst for various 
applications, such as hydrogen production, degradation of or
ganic pollutants in water and volatile organic compounds 
(VOCs). However, several challenges still need to be resolved, like 
fast charge carrier recombination, low electric conductivity, and 
the cost-effective synthesis. To that end, several strategies (con
trolling the kinetics and morphology, surface modification and 
doping, fabricating heterostructures and depositing co-catalysts) 
were employed to enhance the photocatalytic performance.
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Photocatalyst Pollutant Synthesis method Concentration (mg/L) Light sources (W) Efficiency Ref

1 wt% Pd/BiVO4 MO Impregnation 10 Lamp 
(12 W) 

100% 
15 h 

[102]

BiVO4-1
MO hydrothermal 10 Xe lamp  

(300 W)

44% 
4 h 

[103]

BiVO4-2 60% 
4 h 

BiVO4-3 68% 
4 h 

BiVO4-4 87% 
4 h 

0.04 mol% B/BiVO4 MO Sol gel 10 Halogen lamp 
(250 W) 

98% 
50 min 

[104]

6.5 wt% Ag/BiVO4 MB Hydrothermal 5 Xe lamp 
(350 W) 

98% 
6 h 

[105]

BiVO4 

þ Peroxymonosulfate  
(PMS) þ Visible 

MB Hydrothermal 5 LED light 99% 
90 min 

[106]

0 wt%-BiVO4–paint

MB Coating 5 2 Havells  
bulbs 
(15 w) 

27% 
240 min 

[107]

20 wt%-BiVO4–paint 67% 
240 min 

40wt%-BiVO4–paint 72% 
240 min 

BiVO4 400�C MB Co-precipitation 5 Philips  
lamps  
(300 W)

95% 
150 min 

This study

MO 80% 
150 min 
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