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Abstract

Herein, we have successfully synthesized BiVO, photocatalysts via a simple chemical precipitation method followed by heat treat-
ment at 400°C, 500°C, and 600°C. The samples were characterized by XRD combined with Rietveld refinement, Raman spectroscopy,
SEM, and UV- vis DRS. XRD results showed that we obtained monoclinic scheelite phase (m-s BiVO,4) with 1112/b space group. The vis-
ible-light photocatalytic activities of BiVO, -400°C, 500°C, and 600°C for organic dye degradation (MB: methylene blue; MO: and
methyl orange) were investigated, and the BiVO4 400°C showed the highest activity in the photodegradation of MB (95%) and MO
(80%) after 150 min of visible illumination. The photocatalytic degradation mechanism was proposed based on radical trapping meas-

urements and Mott-Schottky analysis.
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Introduction

Recent decades have seen rapid growth of urbanization of the
global population and industrial development that led to water
pollution and scarcity on every continent [1, 2]. This phenome-
non is a consequence of the direct discharge of domestic and
industrial wastes, including heavy metals, residual non-
biodegradable dyes, pesticides, and bacteria [3-8]. These danger-
ous substances have harmful impacts on the environment and
the human health, while it was also reported that 80% of diseases
and 50% of deaths can be linked to wastewater [9]. Therefore,
various treatment technologies were utilized [10, 11], such as co-
agulation [12], flocculation [13], ion exchange [14], chemical pre-
cipitation [15], sedimentation [16], and chlorination [17]. Despite
having been used for decades, the above methods proved to be
expensive and partly ineffective as they cannot completely
remove pollutants [5, 18, 19]. As an alternative approach, semi-
conductor photocatalysis has attracted the attention of research-
ers in the past decades [20]. This process is a promising
environmental-friendly technology, which utilizes the sunlight
as a renewable source for the generation of electron-hole pairs in
semiconducting catalyst particles. The excited charge carriers
lead to the production of reactive oxygen species (05~ and *OH),
which, in turn, participate in the chemical degradation of

pollutants until their mineralization to CO, and H,O [3, 5, 21-25].
In the past decades, titanium dioxide (TiO,) was commonly used
as photocatalyst for the degradation of organic contaminants
due to its high photocatalytic activity, robust chemical stability,
wide commercial availability, affordability, and non-toxic nature
[5, 26-28]. However, the use of TiO, was limited because of its
wide bandgap of 3.2eV, which makes it suitable only for the UV
region [2, 29]. To overcome this, non-titania-based narrow
bandgap semiconductors were developed with and an effective
visible light response [30-32], like FeVO, [33], Bi,WOg¢ [34, 35],
Bi,05 [36], BiVO, [37], g-CsN, [38], LaVO, [39], CeVO, [40], and
YVO, [41]. Bismuth-based oxides are promising candidates for
photocatalytically degrading waste pollutants due to their suit-
able band gap for visible light absorption [42], along with their
low toxicity and high electric conductivity [43]. Taking Bi,O; as
an example, it has recently attracted more attention as a photo-
catalyst for water purification due to its optical properties in
the visible region with a narrow band gap of ~2.8eV [44].
Unfortunately, its high electron-hole pair recombination rate
limits the solar energy utilization, and thus, its photocatalytic ac-
tivity [45]. Also, its photoinduced dissolution leads to a significant
loss of bismuth, which reduces the pollutant degradation
efficiency during Bi203 reuse as released Bi3+ will be one of
the causes of secondary pollution [46]. Bi2O3 presents five
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polymorphic crystal forms: two of them are stable electric con-
ductors (a at low and 8 at high temperature), while others are
metastable (8, v, and w Bi203) [45]. Phase transitions are always
associated with marked changes in the properties and stability of
material, which can be undesirable in applications [47]. Large
particles can be formed in the resulting phase having low surface
area and reducing the photocatalytic activity of the material [48].
A further material that has attracted attention is graphitic car-
bonitride (g-C3N4), a promising and sustainable photocatalyst for
environmental remediation [38]. However, despite of its benefi-
cial properties, it has a number of limitations just like Bi203,
such as low surface area, a ~2.7 eV band gap energy, poor absorp-
tion in the visible region, and high electron-hole recombination.
All these factors reduce photoactivity under visible light irradia-
tion [49, 50]. Among these photocatalysts, bismuth vanadate
(BiVOy) has been extensively studied in organic pollutant photo-
degradation under visible light illumination, as its narrow band
gap, non-toxicity, excellent dispersibility, chemical stability, and
high-performance make it an ideal candidate [5, 51-53].
Although BiVO, has three crystal phases: (i) tetragonal scheelite,
(ii) tetragonal zircon, and (iii) monoclinic scheelite [54], only the
monoclinic scheelite BiVO, (m-s) possess excellent photocata-
lytic activity due to the combination of its narrow band gap
(2.4eV) and high crystal distortion of BiOg hybridization between
the lone pair states of Bi-6s and the O-2p [54-56]. Various BiVO,
synthesis methods have been reported in the literature, e.g. hy-
drothermal [57], sol-gel [58], co-precipitation 37, 59], sonochemi-
cal [60] etc., most of them use templates [61] or surfactants [62].
To avoid the latter, the researchers developed a green and sus-
tainable synthesis without the assistance of any additives [63].

Herein, we synthesized monoclinic BiVO, by a simple precipi-
tation process without using any organic solvents. The as-
prepared powder was then heated at 400°C, 500°C, and 600°C,
respectively. The obtained samples were characterized by X-ray
powder diffraction (XRD), Raman spectroscopy, scanning elec-
tron microscopy (SEM), and UV-vis diffuse reflectance spectros-
copy (DRS). Finally, the photodegradation activities were
characterized by using the model organic pollutants of methy-
lene blue (MB) and methyl orange (MO) under visible light illumi-
nation. The re-usability of the catalysts was determined
in recycling tests, and the photocatalytic mechanism was un-
veiled by investigating the behavior of the photogenerated charge
carriers.

Experimental
Materials

Bismuth nitrate pentahydrate (Bi(NO)s-5H,0, 98%, Alfa Aesar),
ammonium metavanadate (NH,VO3, 98%, ACROS Organics), ni-
tric acid (HNO3 65%, Merck), and sodium hydroxide (NaOH, 99%,
Fisher Scientific) were used as received without any further puri-
fications. All solutions were prepared by using de-ionized water
as solvent.

Synthesis of BiVO,

BiVO, was synthesized via a simple chemical precipitation
method. First, solution A was obtained after the dissolution of Bi
(NO3)3-5H,0 in diluted HNO; (2M), and then solution B of NH4VO;
dissolved in NaOH (2M) was added dropwise to the former under
constant stirring (250 RPM). After 1h stirring (250 RPM) the pH of
the resulting yellow solution was adjusted to 5 by using NaOH
(5M), and a yellow precipitate is formed under vigorous stirring
(250 RPM) for 30 min. The final product was filtered and washed

with the de-ionized water for several times, and dried at 80°C
overnight [64]. The as-prepared BiVO, samples were prepared at
400°C, 500°C, and 600°C for 3h under air [37].

Characterization of BiVO,

X-ray diffraction (XRD) was used to identify the crystal structure
of the samples by employing Cu Ka radiation (A=1.54064) in a
Rigaku Miniflex II powder diffractometer at a scan speed of 4°
min~?! in the angular range from 26 = 10° to 60°. The crystalline
structure determination was done by Rietveld refinement using
the FullProf Suite software package. Raman spectra were
recorded using 532nm laser excitation at 0.25mW power in a
SENTERRA II Raman spectrometer. The morphology of the BiVO,
powders was characterized by scanning electron microscopy
(SEM, Thermo-Fisher Scientific Apreo C) with an accelerating
voltage of 10kV. UV-vis measurements were carried out with a
miniature fiber optic-based spectrometer (high resolution
HR4000 USB spectrometer HR4000CGUV-vis-NIR, Ocean Optics)
in the wavelength region of 200-800nm using a DH-2000-BAL
(Ocean Optics) Deuterium Tungsten Halogen light source [65].

Photocatalytic degradation experiments

The photocatalytic activity of BiVO, was examined by the re-
moval of 5ppm methylene blue (MB) and 5ppm methyl orange
(MO) in aqueous solution of pH=5.4 and 5.8, respectively. First,
the catalysts were stirred in the dye solutions in dark to reach
the adsorption-desorption equilibrium, then the dispersions were
irradiated in the visible light range by a 300 W Xenon lamp. At
specified time periods, aliquots of 3ml were taken and centri-
fuged at 13400 rpm for UV-vis analysis in the 400-800 nm wave-
length range using a Shimadzu UV 2600 spectrophotometer.
Radical trapping tests were done by using ethylenediamine diso-
dium tetra-acetate (EDTA), isopropanol (IPA), and L-ascorbic acid
as scavengers for the active species h*, *OH, and O™
respectively.

Determination of the point of zero charge (pzc)

The pHy,. of the BiVO, surface was determined via the method
reported by Al-Harahsheh [66]. A sample mass of 50mg was
weighted into six beakers each containing 50ml of 0.1 M potas-
sium nitrate (KNO3) solution. The zero-point charge measure-
ments curve was obtained after setting the pHip;ia) Of the beakers
t02.1,4.0,6.5, 8.7, 10.1, and 12.5 by adding either 0.1 M NaOH or
0.1 M HNOs solution dropwise.

Photoelectrochemical measurements
Photoelectrochemical studies were conducted using an Origalys
ElectroChem electrochemical workstation in a three-electrode
system, where working electrodes (WE) were obtained by drop-
casting the samples onto indium tin oxide (ITO)/glass substrates.
In a typical experiment, 10mg photocatalyst powder was dis-
persed into 2ml of absolute ethanol by ultrasonication for
15min. After dropping 100ul of the suspension onto 1x 1cm?
ITO/glass, the electrode was dried at 100°C for Sh.
Measurements were carried out in a 0.1M sodium sulfate
(Na,SO4) aqueous solution, using Ag/AgCl and platinum foil as
reference and counter electrode, respectively. Visible light irradi-
ation was done by a 300 W Xe lamp equipped with a 420nm cut-
off filter (A>420nm). Transient photocurrent curves were
recorded at a bias of 0.4V, while Mott-Schottky measurements
were carried out at a frequency of 200 Hz.
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Results and discussion
Structural analysis of BiVO,

Figure 1 shows the powder X-ray diffractograms of the BiVO,
materials obtained through co-precipitation, then treated at
400°C-600°C for 3h. The diffraction profiles were first compared
to the well referenced BiVO, in the ICSD database. All character-
istic peaks at 26=18.7, 28.9, 30.6, 34.5, and 46.7° were indexed
with a single-phase monoclinic scheelite BiVO, structure (ICSD
datasheet File Card N°96-901-3437). The sharp diffraction peaks
in the XRD patterns indicate the formation of a well crystallized
BiVO4. The average D crystallite size was calculated by the
Scherrer formula:

kA
b= Bcos(®) (1)

Where k is the Scherrer-constant set to k=0.9, A is the wave-
length of the X-ray radiation (0.15406 nm), B refers to the full
width at half maximum (FWHM) of each peak in radian deter-
mined through Gaussian peak fitting, and 6 is the Bragg position.

The crystallite size was found to be 20, 24, and 30nm for sam-
ples prepared at temperatures 400, 500, and 600°C, respectively,
showing only a small variation with calcination temperature.
This latter influences the crystal growth by welding primary par-
ticles together resulting in the formation of bigger particles.

It is known that crystallite size has a significant effect on the
photocatalytic performance of BiVO, through surface area and
the corresponding availability of active sites, the electron-hole
recombination, and charge carrier behavior. The results indicate
that crystallinity and the crystal size of BiVO, increased with
heat treatment temperature from 400°C to 500°C and 600°C,
which is in accordance with growth theory, i.e. high temperature
promotes the increase of grain size [67, 68]. As a consequence,
small particles at low temperatures exhibited large specific sur-
face area, which, in turn, provides higher active site density [69].
Furthermore, small particle size implies shorter diffusion length,
which is beneficial for charge carrier transport as photogenerated
electrons and holes can reach the surface to take part in redox
reactions (photocatalytic degradation) before recombination [70].

The formation of the monoclinic scheelite structure with the
12/b space group was confirmed in all samples by the Rietveld re-
finement of the XRD patterns (Table 1). The observed and the cal-
culated XRD patterns of BiVO, heated at 400°C, 500°C, and 600°C,
along with the corresponding difference curves, are shown in
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Figure 1. XRD pattern of BiVO4 samples prepared at 400, 500, and 600°C.
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Table 1. Crystal structure data of BiVO, obtained at 400, 500,
and 600°C.

Sample 400°C 500°C 600°C
Crystal system Monoclinic
Space group 1112/b
Lattice parameters (3) a=5.1866(3) a=5.1912(3) a=5.1908 (6)
b=5.0879 (4) b=5.0881(4) b=5.0868 (5)
c=11.6873 (3) c=11.692(3) c=11.691(2)
() ﬂ 90.3865 (4) 90.369 (3) 90.377 (5)
Volume (A% 308.41 308.53 308.72
830.1 [—s00°C

[=——400 °C

129 2115
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Figure 2. Raman spectra of BiVO4 prepared at 400, 500, and 600°C.

Supplementary Fig. S2a—c. The figures of merit characterizing the
quality of the structural refinement are listed in Supplementary
Table S1, and the refined atomic positions are shown in
Supplementary Table S2.

Vibrational analysis of BiVO,

Figure 2 shows the Raman spectra of the samples prepared at
400°C, 500°C, and 600°C. The Raman shift at around 211.5, 325.5,
369, 711, and 830.1cm™* correspond to the monoclinic BiVO,
according to the literature [71, 72]. The most intense bands cen-
tered at 827.7, 828.9, and 830.1cm™" referred to the symmetrical
stretching mode of the V-0 vibrations, while its anti-symmetric
counterpart is located at 711cm™. The bands at 369 and
325.5cm™! are the symmetric and asymmetric deformation
modes of the VO}~ tetrahedron. Besides, the bands located at
211.5 and 129cm™" are the external modes in BiVO, involving ro-
tation and translation. Therefore, results from Raman spectros-
copy agree well with those from the previous XRD analysis [73,
74]. These findings are summarized in Table 2, where we can ob-
serve a red shift in the Raman bands positions with increasing
calcination temperature. This behavior is due to the thermal ex-
pansion, bond population, less agitation of particles [75, 76].

Morphological analysis of BiVO,

SEM images of BiVO, synthesized via the co-precipitation process
after heat treatment at 400-600°C for 3h were shown in Fig. 3.
The sample obtained at 400°C consists of uniform spherically
shaped particles (Fig. 3a), whereas agglomerated smaller par-
ticles are seen in the 500°C sample by assembling pseudospheri-
cal grains with distinct edges and facets (Fig. 3b and d). The
600°C heat treatment gave rise to more massive and dense as-
semblies in Fig. 3c. Thus, increasing calcination temperature in
BiVO, led to an increase in particle size along with increasing
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Table 2. Band identification in the Raman spectra of BiVO, heated at 400, 500, and 600°C.

Calcination temperature (°C) Raman stretching frequency (cm™?) Vibrational modes assignment Refs
400 827.7
500 828.9 v5(V-0)
600 830.1 Symmetric stretching V-O
400 711 Vas(V-0)
Antisymmetric stretching V-O [76-78]
500 369 6S(VOZ_ )
Symmetric deformation V-0 in VO;~
600 3755 825(VO3")
Antisymmetric deformation V-0 in VO;~
211.5
129 External modes (Rotation/Translation) [101]

Figure 3. SEM micrographs of the BiVO4 obtained after calcination at (a) 400, (b) 500, and (c) 600°C. The 500°C sample at higher magnification where

edges and facets are recognizable (d).

degree of particle agglomeration. Moreover, pores are also ob-
served in each sample, at lower temperatures, probably micropo-
rosity due to surfaces defects and grain boundaries, followed by
the formation of macroporosity by coalescence at 600°C.

UV-visible optical absorption of BiVO,

Diffuse reflectance UV-vis spectroscopy (DRS) was utilized at
room temperature to determine the optical properties of the
BiVO, powders, and the optical spectra for BiVO, prepared at
400°C, 500°C, and 600°C are presented in Fig. 4a. The absorption
onset wavelength of 480 nm corresponds to a band gap of 2.58eV,
which makes these catalysts suitable for visible light range
application.

For a more precise band gap determination, the spectra were
converted to the pseudo absorption function F(R) via the
Kubelka-Munk relation (R) = (1—R)?/2R, where R is the absolute
reflectance. The Tauc plots, i.e. (FR) ho)¥® versus the photon

energy ho, were plotted (Fig. 4b), and band gaps E; were calcu-
lated from the equation (F(R) ho)”™ = A (hv - Eg), where A is the
proportionality constant, and n = 1/, or 2 is a coefficient for direct
and indirect band gap, respectively. Previous theoretical studies
on the electronic structure of BiVO, found a direct band gap [77],
i.e. the maximum of the valence band and the minimum of the
conduction band are located at the same momentum. This
allows the direct transition of excited electrons from the valence
band to the conduction band as a result of photon absorption
without any further assistance or change in the momentum [78-
80]. In addition, band extrema are far from the center of the
Brillouin zone, and the presence of Bi 6s and O 2p causes an up-
ward dispersion of the valence band at the zone boundary.
Coupling V 3d, O 2p, and Bi 6p maintains a direct gap and lowers
the conduction band minimum [81].

The band gap energies E, were extracted from the linear fit of
the Tauc plots of each sample [72], and Eg=2.36, 2.38, and

G20z AInr 60 Uo Jasn wniuosuo) 7S 3 Arebuny Aq 4981 1.8/S00IBY/ |L/S/3[01E/SWO00/Ww0oo dno dlwapeae//:sdiy Woll papeojuMo(]



Polycrystalline BiVO, visible-light photocatalytic activity | 5

(b)

2.37eV
1.0
2.36eV
) D1
2 2 2.38¢eV
£
= s
0.5 -
0.0 ¥ ! ' ! — 1 T I T I ™= - n =51
300 400 500 600 700 2.0 2.1 2.2 2.3 24 2.5 2.6 27

Wavelength (nm)

hv (ev)

Figure 4. (a) UV-vis DRS spectra and (b) the corresponding Tauc plots of the BiVO4 samples obtained at 400, 500 and 600°C.

2.37 eV were obtained for the 400°C, 500°C, and 600°C samples,
respectively. These results are in good agreement with previous
literature results [37].

Optical absorption below 500 nm varies with calcination tem-
perature. Absorbance of the sample treated at 400°C (black
curve) is fairly high, reflecting strong light absorption in this re-
glon. Increasing the calcination temperature to 500°C (red curve),
the absorbance drops, implying possible changes in the structure
or morphology of the material, like reduction in defect density or
change in grain size. Nevertheless, at 600°C (blue curve) the ab-
sorbance increases again and exceeds that of the 500°C sample.
This is possibly due to enhanced crystallinity or particle aggrega-
tion that enhance the optical properties of the material.

Photocurrent analyses

The efficient charge carrier separation in the semiconductor is a
prerequisite for a high photocatalytic performance, thus charge
separation efficiency was investigated in transient photocurrent
experiments (Fig. 5). The photocurrent response of BiVO,
decreases with increasing calcination temperature, where the
highest photocurrent density in BiVO, 400 implies a facilitated
charge carrier separation. This decrease in photocurrent re-
sponse with increase in calcination temperatures is a result of
charge carrier recombination. Synthesis at high temperatures
not only leads to increased crystallinity, but also to a reduction
in the number of defects that serve as charge recombination cen-
ters [82]. Consequently, electron-hole recombination rates rise
and reducing photocurrent intensity. Moreover, the well-
preserved photocurrent density in the subsequent excitations
indicates high photo-electrochemical stability. Calcination at
400°C resulted in the smallest crystallite size among the studied
samples. This, on the one hand, increases the specific surface
area, which provides more active site for pollutant adsorption,
while on the other hand, give rise to a more pronounced crystal
defect formation. The latter, in turn, deteriorates charge carrier
mobility through unwanted photoinduced electron-hole re-
combination.

Photocatalytic activity of BiVO,

The photocatalytic activity of BiVO, obtained at 400°C, 500°C,
and 600°C was characterized by the decomposition of the model
pollutants MB and MO dye molecules at room temperature under
visible light illumination. The photocatalytic dye degradation

—— BiV400
0.7 4——Bivs00
€ {——svew ::] s N
S o6+ Ny N
-
>054 T e Sy
‘»
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< 0.4 4
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L 0.3
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-
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Figure 5. The transient photocurrent curves of BiVO4 prepared at 400,
500, and 600°C.

results are shown in Figs 6 and 7. In highly diluted solutions
(ppm) the Beer-Lambert law applies, which means direct propor-
tionality between the analyte concentration and the measured
absorbance. The photocatalytic decomposition was followed by
the change in the Cy/C, ratio with time, where C;, Co, and t are
the dye concentration at the beginning of the experiment and at t
reaction time (Figs 6b and 7b). Kinetic plots of the photodegrada-
tion reaction are constructed by plotting the negative logarithm
of the former against time, and the dataset is fitted by a linear
equation by using a pseudo-first-order model with the rate con-
stant k [83]:

“Int =kt @)

Photocatalytic degradation of MB dye

Figure 6a shows the decreasing intensity of the absorption peak
of MB at around 664nm with increasing irradiation time in the
presence of BiVO, (400°C). In the absence of irradiation, only 9%
of the initial MB was decomposed after 1h, which implies that
dye removal is mainly the result of photocatalytic degradation
rather than adsorption. Kinetic plots of the photodegradation
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Figure 6. (a) UV-vis absorption spectra of MB during photocatalytic degradation on BiVO4 heated at 400°C, (b) variation of the Ct/CO MB ratio over
150 min visible light irradiation, (c) the pseudo-first-order photodecomposition kinetics, and (d) Zero-point charge measurement for BiV400°C.
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dation on BiVO4 heated at 400°C, (b) variation of the Ct/CO MO ratio over

150 min visible light irradiation on the BiVO4 catalysts prepared at 400, 500, and 600°C, (c) alongside with the pseudo-first-order

photodecomposition kinetics.

reaction are depicted in Fig. 6b and ¢, where degradation kinetics
was described by equation (2). BiVO, treated at 400°C shows the
highest photocatalytic performance of 95% MB removal in
150min, compared to those of BiVO, heated at 500°C (86%), and
600°C (76%). Pseudo-first order kinetic rate constants of
k=0.0198, 0.0131, and 0.0097 min~* for BiVO, 400°C, 500°C, and
600°C are found, respectively (Fig. 6c). The poor photocatalytic
performance of the samples heated at higher temperatures

corroborates with the transient photocurrent results above, indi-
cating rapid recombination of the photo induced charge carriers
(Fig. 5). The catalytic activity of BiVO, 400°C is supported by its
optical characteristics, particularly its narrow band gap along
with higher visible light absorption and the small particle size
with higher accessible surface area [5, 37, 84, 85]. Furthermore, it
also depends on the point of zero charge (pHy,c) of the catalyst,
(Fig. 6d) influenced by the electrical charge and the state of the
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surface [86]. Results show, that BiVO, surfaces are negatively
charged during the photocatalytic test reaction, as the pH of the
dye solution (pH=>5.1) is higher than that of the pHpzc=4.1. The
electrostatic attraction between the negative charged catalyst
surface and the positively charged cationic dye MB enhances dye
adsorption, and consequently, improves photocatalytic activity.
The high degradation efficiency observed for BiVO, sample
prepared at 400°C can be attributed to the combination of struc-
tural and morphological factors derived from crystallite size data
and SEM analysis. Firstly, smaller crystallite size of 20nm com-
pared to that of 24nm for BiV 500 and 30 nm for BiV 600, BiV 400
benefits from a larger specific surface area [87, 88]. This increases
the number of active sites available for degradation reactions,
enabling more effective interaction between the material and the
molecules to be degraded [89, 90]. In addition, SEM analysis
reveals that the particles at 400°C have a uniform, spherical mor-
phology, which promotes homogeneous light scattering and bet-
ter photon absorption. Moreover, band gap energy for BiV 400 is
slightly lower than that for BiV 500 and BiV 600. Narrower band
gap allows the material to absorb a wider range of wavelengths
in the visible region, increasing its efficiency in photocatalytic
reactions. Regarding photoelectrochemical performance, the
photocurrent results show that BiV 400 exhibits the highest pho-
tocurrent density (Fig. 5), indicating high efficiency in separating
photogenerated charges. In summary, the good performance of
BiV 400 in terms of degradation is due to its small crystallite size,
uniform morphology, and the corresponding high photocurrent.
These factors enable stronger interaction with light and target
molecules, in contrast to samples calcined at 500°C and 600°C.

Photocatalytic degradation of organic MO dye
Figure 7a shows the time dependent UV-vis absorption spectrum
of MO with intensity maximum at 465nm upon visible light irra-
diation using the BiVO,4 400°C catalyst. The MO loss due adsorp-
tion was found to be only 4% in the dark after 1h, which verifies
that MO removal also takes places due photocatalytic degrada-
tion just like in the case of MB in 3.5.1. The corresponding kinetic
curves are plotted in Fig. 7b and in their linearized form in Fig. 7c.
The photodegradation efficiency of 80% on BiVO, obtained at
400°C was the highest compared to those if 500°C (75%) and
600°C (69%) samples after 150min visible light exposure. The
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kinetic constants were extracted from Fig. 7c using the pseudo-
first order model of equation (2), and the corresponding k values
were 0.0114, 0.0096, and 0.0086min~* for the BiVO, samples
treated at 400, 500, and 600°C, respectively. Since the point of
zero charge of BiVO, is pHpzc=4.1 (Fig. 6d), the surface of the
samples in the MO degradation measurements (pH=3.1) is posi-
tively charged. The electrostatic attraction between the positively
charged catalyst and the negative charge of the anionic dye, in
turn, further promotes MO photo degradation.

The differences in the photocatalytic performance degrading
MB and MO can be explained by their chemical properties and
interactions with the photocatalyst. The different rates of photo-
catalytic decomposition of MB and MO may be attributable to the
different electric charge of the dyes and the photocatalyst, along
with the different molecular size of the dyes [91, 92]. The pH of
the medium plays a crucial role in modulating the surface charge
of the photocatalyst, thereby influencing its interaction with pol-
lutants. The surface charge is mainly determined by the photoca-
talyst’s point of zero charge (PZC). These variations in charge
directly affect electrostatic interactions with contaminants.
Therefore, pH optimization is essential to maximize the favorable
interactions between the photocatalyst surface and the target
pollutant, and thus to improve the overall performance of the
photocatalytic process. On the other hand, the smaller molecular
size of MB also promoted its faster and more complete photoca-
talytic decomposition. Moreover, -C=S- and -C=N-in the molec-
ular structure of MB dissociate easily upon interacting with
active species due to their low bond energy [91, 92|, while photo-
catalytic decomposition of MO was hampered by the high dissoci-
ation energy of the -N=N-bonds in the MO structure [91, 92].

Trapping test and recyclability

Trapping tests were conducted for the determination of the ma-
jor oxidizing species responsible for dye degradation.
Ethylenediaminetetraacetic acid (EDTA), L-ascorbic acid (L-asc)
and isopropanol alcohol (IPA) were selected as specific radical
trap moieties for identifying any short-lived species potentially
involved in MB and MO decomposition, i.e. h*, 037, and "OH.
Figure 8a depicts the impacts of trapping agents on the photode-
gradation efficiency of MB and MO on the BiVO, 400°C catalyst.
In the absence of trapping agents, the photocatalytic

[ ]Biv400

80 4

60

40 -

Degradation efficiency (%)

0 T T T
1 2 3 4

Cycle number

Figure 8. (a) Photocatalytic decomposition efficiency of MB and MO on BiVO4 400°C in the presence of trapping agents, and (b) photocatalyst recycling

in four successive tests.
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decomposition rates were 95% for MB and 80% for MO (Figs 6 and
7). Upon addition of L-ascorbic acid, EDTA, and IPA, the activities
dropped to 39%, 51%, and 77% for MB and 42%, 59%, and 69% for
MO, respectively. This indicates that holes h* and superoxide
O3~ appear to be the major species in the photocatalytic decom-
position of MB and MO, whereas hydroxyl radicals *OH have a
secondary role in the photocatalytic decomposition. The stability
of the BiVO, 400°C sample was assessed by reusing the catalyst
at the end of every photocatalytic reaction. The collected photo-
catalyst has been washed and then dried for subsequent reuse.
The results in Fig. 8b show only a minor drop in the decomposi-
tion efficiency after 4 successive tests.

Proposed mechanism

The band gap of BiVO, 400°C, i.e. the energy difference of the
band edges of the conduction (CB) and valence bands (VB), was
determined from its optical properties in Fig. 4, whereas the band
edge of the CB (the so-called flat-band potential) can be indepen-
dently calculated from electrochemical measurements using the
Mott-Schottky equation:

2 kT
,2 _ _ &
c?2= v (v Vi ) 3)

where C is the interfacial capacitance, Ny is the carrier density, e
is the electronic charge, € and ¢ is the dielectric constant of the
semiconductor and the free space, V and Vg, is the applied and
the flat band potential, k is the Boltzmann constant, and T is the
absolute temperature.

Plotting C~2 against the applied potential, a linear trend is
seen in a limited potential region in Fig. 9a. A positive slope of the
latter indicates that the fabricated BiVO, 400°C is a n-type semi-
conductor, while fitting Equation (3) to these data provides its
flat band potential (Vg,) from the x-intercept. The resulted Vg, =
—0.61V (versus. Ag/AgCl) can then be translated onto the normal
hydrogen electrode scale (NHE) by Eag/agci—enue - 0.197 [93, 94],
however, it is known from the literature that conduction band
potentials are more negative by 0.2V than the measured Vg, flat
band potential in n-type semiconductors [95-97]. Thus, the va-
lence and conduction band edge positions in BiVO,4 400 was cal-
culated by the following equations:
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Ecs = Vjp — 02 ()
Eg = Evp — Ecs (5)

From Equation (4) the Ecp value of —0.81V (versus. Ag/AgCl) is
given, which equals to—0.613 V (versus. NHE). The corresponding
EVB =1.74 (V versus. NHE) is derived from Equation (5) by adding
Ecg and Eg, while the active species of the BiVO, 400°C photocata-
lyst are characterized by the potentials of the E(H,O/°OH) = (1.99
(V versus. NHE) and the E(O,/0;7) = —0.33 (V versus. NHE) redox
couples [98]. As can be seen in Fig. 9b, the CB edge potential is
more negative compared to that of 0,/0;~, which in turn implies
that the BiVO, 400°C catalyst is able to produce O;~. On the other
hand, the VB edge potential is more negative than that of
H,0/°OH making it difficult to generate "OH radicals. As a conse-
quence, ‘OH radicals play a minor function in the degradation
process [99-101]. This aligns well with the active moieties trap-
ping results in Fig. 8, which showed that superoxide radicals are
the major species responsible for degradation. The photocatalytic
performance of various BiVOs-based systems were collected
from the literature, and their performance metrics are presented
in Table 3 along with the experimental parameters of the tested
model contaminants and the irradiation sources. The material
developed in this study shows a high photocatalytic performance
compared to the other reported BiVO4-based photocatalysts.

Conclusions

BiVO,4 has been successfully prepared by a facile precipitation
method without using any organic additives. The as-prepared
materials were subjected to a subsequent calcination at 400, 500,
and 600°C. It was found that the heat treatment had a significant
impact on the structural, morphological, optical, and photocata-
lytic properties of the resulting BiVO,. All synthesized samples
possessed a single phase monoclinic scheelite structure with a
uniform spherical particle morphology, where increasing calci-
nation temperature resulted in an increase in the crystallite size.
The bandgap of the semiconductor catalysts was determined by
optical spectroscopy (Eg =2.36 eV), which shows considerably vis-
ible light absorption and makes the catalyst suitable for sunlight
activation. The BiVO, prepared at 400°C showed the highest pho-
tocatalytic activity among the studied materials, decomposing
95% and 80% of the initial methylene blue and methyl orange af-
ter 150minutes of visible light illumination, respectively.

Pollutants
Degradation (Of/h*)

CO,+H,0

Figure 9. (a) Mott-Schottky graph of the BiVO4 400 photocatalyst, and (b) the scheme of the proposed degradation mechanism.
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Table 3. A comparative analysis of the photocatalytic efficacy of the BiVO, photocatalyst with other reported photocatalysts.

Photocatalyst Pollutant Synthesis method Concentration (mg/L) Light sources (W) Efficiency Ref
1wt% Pd/BiVO, MO Impregnation 10 Lamp 100% [102]
(12W) 15h
BiVO,-1 44% [103]
MO hydrothermal 10 Xelamp 4h
BiVO,-2 (300W) 60%
4h
BiVO,-3 68%
4h
BiVO,-4 87%
4h
0.04 mol% B/BiVO, MO Sol gel 10 Halogen lamp 98% [104]
(250 W) 50min
6.5wWt% Ag/BiVO, MB Hydrothermal 5 Xe lamp 98% [105]
(350 W) 6h
BiVO, MB Hydrothermal 5 LED light 99% [106]
+ Peroxymonosulfate 90 min
(PMS) + Visible
0 wt%-BiVO,-paint 27% [107]
240min
20 wt%-BiVO,—paint MB Coating 5 2 Havells 67%
bulbs 240 min
40wt%-BiVO4-paint (15 w) 72%
240 min
BiVO, 400°C MB Co-precipitation 5 Philips 95% This study
lamps 150 min
MO (300W) 80%
150 min

Moreover, the same sample provided the highest photocurrent
density implying an effective charge carrier separation. Finally,
the trapping experiment indicated that the primary reactive spe-
cies utilized in the photocatalytic degradation of MB and MO are
holes (h™) and superoxide (O57), which corroborated well with
the band structure determination. In conclusion, BiVO, is a
promising visible-light semiconductor photocatalyst for various
applications, such as hydrogen production, degradation of or-
ganic pollutants in water and volatile organic compounds
(VOCs). However, several challenges still need to be resolved, like
fast charge carrier recombination, low electric conductivity, and
the cost-effective synthesis. To that end, several strategies (con-
trolling the kinetics and morphology, surface modification and
doping, fabricating heterostructures and depositing co-catalysts)
were employed to enhance the photocatalytic performance.
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