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Abstract

Asymptotic tensor rank, originally developed to characterize the
complexity of matrix multiplication, is a parameter that plays a
fundamental role in problems in mathematics, computer science
and quantum information. This parameter is notoriously difficult
to determine; indeed, determining its value for the 2 X 2 matrix
multiplication tensor would determine the matrix multiplication
exponent, a long-standing open problem.

Strassen’s asymptotic rank conjecture, on the other hand, makes
the bold statement that asymptotic tensor rank equals the largest
dimension of the tensor and is thus as easy to compute as matrix
rank. Recent works have proved strong consequences of Strassen’s
asymptotic rank conjecture in computational complexity theory.
Despite tremendous interest, much is still unknown about the struc-
tural and computational properties of asymptotic rank; for instance
whether it is computable.

We prove that asymptotic tensor rank is “computable from above”,
that is, for any real number r there is an (efficient) algorithm that
determines, given a tensor T, if the asymptotic tensor rank of T is at
most r. The algorithm has a simple structure; it consists of evaluat-
ing a finite list of polynomials on the tensor. Indeed, we prove that
the sublevel sets of asymptotic rank are Zariski-closed (just like
matrix rank). While we do not exhibit these polynomials explicitly,
their mere existence has strong implications on the structure of
asymptotic rank.

As one such implication, we find that the values that asymptotic
tensor rank takes, on all tensors, is a well-ordered set. In other
words, any non-increasing sequence of asymptotic ranks stabilizes
(“discreteness from above”). In particular, for the matrix multiplica-
tion exponent (which is the base-2 logarithm of an asymptotic rank)
there is no sequence of exponents of bilinear maps that approxi-
mates it arbitrarily closely from above without being eventually
constant. In other words, any such upper bound on the matrix multi-
plication exponent that is close enough, will “snap” to it. Previously
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such discreteness results were only known for finite fields or for
other tensor parameters (e.g., asymptotic slice rank). We obtain
them for infinite fields like the complex numbers.

We prove our result more generally for a large class of func-
tions on tensors, and in particular obtain similar properties for all
functions in Strassen’s asymptotic spectrum of tensors. We prove
a variety of related structural results on the way. For instance, we
prove that for any converging sequence of asymptotic ranks, the
limit is also an asymptotic rank for some tensor. We leave open
whether asymptotic rank is also discrete from below (which would
be implied by Strassen’s asymptotic rank conjecture).
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1 Introduction

Asymptotic tensor rank is a fundamental parameter in algebraic
complexity theory [5, 15]. Originally rooted in the study of the
matrix multiplication exponent, a burst of recent works has put this
tensor parameter, and specifically Strassen’s asymptotic rank con-
jecture, at the forefront of a wide range of computational complexity
problems [3, 4, 31]. These kinds of asymptotic tensor parameters
more broadly play an important role in various fields, like additive
combinatorics and quantum information theory (asymptotic slice
rank, asymptotic subrank) [30, 40, 42].

Despite tremendous effort (resulting in new matrix multipli-
cation algorithms [2, 23, 29, 44], barriers [1, 8, 17], new routes
[9-11, 19-21], and fundamental theory [18, 27, 28, 36, 38, 43]), we
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are still far away from determining the matrix multiplication ex-
ponent, computing asymptotic ranks in general, or resolving the
asymptotic rank conjecture. All in all, determining asymptotic rank
has turned out very challenging and much is still unknown about
the properties of this parameter.

In this paper we prove a polynomial characterization of asymp-
totic tensor rank: for any number r there are finitely many poly-
nomials on tensors whose vanishing determines if the asymptotic
rank is at most r (just like matrix rank is characterized by van-
ishing of determinants of submatrices). This characterization has
many consequences regarding the computation and topological
structure of this parameter. Indeed, for any r it leads to an algo-
rithm to determine if asymptotic rank is at most r. We obtain from
it that asymptotic rank is semi-continuous (like matrix rank) and
that its values are well-ordered, that is, discrete from above: any
non-increasing sequence of asymptotic ranks stabilizes. For the
matrix multiplication exponent w, this implies in particular (as we
will explain more) that there is a constant € > 0 such that no tensor
has exponent between w and w + ¢.

We will discuss these results and their meaning in more detail.
First we discuss the context of this work in complexity theory and
mathematics.

Matrix Multiplication Exponent and Asymptotic Rank Conjecture. It
is a fundamental open problem to determine the matrix multiplica-
tion exponent w, which is defined as the infimum over all real num-
bers 7 such that n X n matrices can be multiplied using O (n") arith-
metic operations, with current state of the art 2 < w < 2.371552
[2, 23, 29, 44]. Tt is very well possible that w = 2.

The matrix multiplication problem can naturally be phrased in
terms of tensors and asymptotic rank. Namely 2¢ = R((2, 2,2)),
where the asymptotic rank R(T) = lim,—,o R(T®") 1/n ofatensor T
measures the rate of growth of tensor rank on Kronecker powers
of T, and where (2,2,2) € F* @ F* ® F* is the so-called 2 X 2 matrix
multiplication tensor. Whether w = 2 is thus tightly linked to the
question whether asymptotic rank can take non-integer values or
not.

Strikingly, it is possible that for every tensor T € F" @ F"  F"* the
asymptotic rank is at most n, as opposed to the tensor rank, which
can be Q(n?) (but we do not know such tensors explicitly [6, 32]).
Strassen’s asymptotic rank conjecture indeed states that this is true,
and more precisely states that asymptotic rank equals the largest
flattening rank of the tensor (matrix rank after grouping two legs
of the tensor), and would thus imply not only that asymptotic rank
is always an integer, but also that it is easy to compute and that
= 2.

Intriguingly, there is a partial converse to the above connection
between the asymptotic rank conjecture and the matrix multipli-
cation exponent, namely [37], for any tensor in F" ® F" @ F" the

asymptotic rank is at most n2©/3 In particular, if w = 2, then every

4/3 which is “not far” from the claim of

asymptotic rank is at most n
the asymptotic rank conjecture. In this sense, matrix multiplication
almost acts as a “complete” instance for the asymptotic rank conjec-
ture. In the same spirit, Kaski and Michalek proved a completeness
result for the asymptotic rank conjecture for explicit sequences of

tensors [27].
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Recent works have found new strong connections between the
asymptotic rank conjecture and a range of computational complex-
ity problems related to the chromatic number, set partitioning and
the set cover conjecture [3, 4, 31].

Structure of Asymptotic Ranks. The asymptotic rank conjecture
naturally leads to the question: What are the possible values that
the asymptotic rank can take,

R={R(T): T e F" @ F2 @ F%, dy, dy, d3 € Z51}?

And more generally: What is the structure (geometric, algebraic,
topological, computational) of this set of values R? Is there any-
thing we can say about R without resolving the asymptotic rank
conjecture or determining «? Little is known. Clearly, such ques-
tions can be asked much more broadly, for higher-order tensors,
but also for other asymptotic tensor parameters (asymptotic slice
rank, subrank).

One known structural property is that R is closed under applying
any univariate polynomial with nonnegative integer coefficients
[43, Theorem 4.8]. Thus R has “many” elements. On the other hand,
a sequence of recent works have revealed a strikingly “discrete”
structure of sets like R (for various notions of asymptotic ranks),
and thus that they have “not too many” elements. In particular,
it can be seen (with a simple proof) that over any finite field (or
finite set of coefficients in any field), R is a discrete set [14]. Their
techniques, however, do not apply to infinite fields like the complex
numbers. This perhaps leaves the impression that discreteness may
be a consequence of considering finitely many tensors in each
format. (One of the main results of this paper, however, is that R is
discrete from above over infinite fields, like the complex numbers).

More broadly, notions of discreteness were proven for a range
of asymptotic tensor parameters, F(T) = limp—co F(T®)1/n for
varying F. It was shown in [12] that for a class of functions over
finite fields, which includes asymptotic (sub)rank and asymptotic
slice rank, the set of values that they take is well-ordered (discrete
from above). The work [18], which resolved a problem on Strassen’s
asymptotic spectrum [37], proved as a consequence that asymptotic
slice rank over complex numbers takes only finitely many values
per format (because of a deep result on the structure of moment
polytopes in representation theory), and thus only countably many
values in total. The work [13] proved that a class of tensor pa-
rameters over complex numbers, which again includes asymptotic
(sub)rank and asymptotic slice rank, take only countably many
values. [14] proved that asymptotic (sub)rank and asymptotic slice
rank over any finite set of coefficients take only a discrete set of
values. In [16, 24] explicit gaps were determined in the smallest
values of these parameters.

Unlike for the asymptotic tensor rank (for which nothing is
known), the computational complexity of tensor rank is well-un-
derstood. Namely, it is known that tensor rank is NP-hard over the
rationals and NP-complete over any finite field [25] and this was
extended by [26]. Recently, [33, 35] proved the stronger statement
that tensor rank over any field has the same complexity as deciding
the existential theory of that field, and [7, 39] proved that tensor
rank is hard to approximate. These results, however, have no imme-
diate implication for the computational complexity of asymptotic
tensor rank (which, for all we know, may be in P).



Asymptotic Tensor Rank Is Characterized by Polynomials

New Results. In this paper:

e We prove that asymptotic tensor rank is computable from
above: over “computable fields”, for every upper bound r
there is an algorithm that, given any d X d X d tensor T,
decides if its asymptotic tensor rank is at most r.

e As the core ingredient, we prove over any field F that the
sublevel sets of asymptotic tensor rank are Zariski-closed.
This means that each such set is precisely determined by
the vanishing of a finite set of polynomials on tensors. It
follows that the sublevel sets are also Euclidean-closed if F
is a subfield of C, and that R is lower-semi-continuous, just
like matrix rank.

o Using the above, we prove for asymptotic tensor rank that
the set of values it takes on all tensors is well-ordered (dis-
crete from above), and when F = C it is even closed (in
the Euclidean topology). In particular, in the context of the
matrix multiplication exponent w, we find that there is a
constant ¢ > 0 such that no tensor has exponent between w
and o +¢.

o We prove the above results in great generality, for tensors of
any order, and for a large collection of tensor parameters that
generalizes asymptotic rank, including Strassen’s asymptotic
spectrum.

e Asatechnical ingredient for the general version of our result
we develop new lower bounds on a type of tensor-to-matrix
transformation (max-rank) that may be of independent in-
terest.

2 Polynomial Characterization

We now discuss our results and their context. We prove that upper
bounds on asymptotic rank are computable:

THEOREM 1 (INFORMAL). For any ‘computable” field F and k > 3,
foranyr € R, there is an algorithm that, given any k-tensor T overF,
decides if R(T) <r.

The algorithm in Theorem 1 is in fact efficient in the dimen-
sions d; of T € F4 ® - - - @ Fé, for simple reasons that we elaborate
on in a moment.! The computability condition for the field is a
natural one: we need to be able to write down (and compute with)
the tensor and certain polynomials on the tensor space that the
algorithm relies on. Theorem 1 almost directly follows from the
following polynomial characterization of asymptotic rank:

THEOREM 2. For any field F, k > 3,d € Zlél, andr € R, the
sublevel set
(TeF" @...@F% :R(T) < r}

is Zariski-closed.

In other words, Theorem 2 says that (for every k, d, r) there is
a finite set of polynomials py,...,pr on V = F% @ - - - ® Fé such
that for every T € V we have R(T) < r if and only if all p; vanish
on T. Over suitably computable fields, like the algebraic closure of
the rationals, these polynomials are also computable, and indeed
lead to the algorithm of Theorem 1.?

IThis statement is, however, not uniform in r.
“The reason that this algorithm is efficient in the dimensions d; of the input tensor
T € F41 @ - - - ® F is as follows. The flattening ranks are a lower bound on the
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We note that Theorem 2 has “practical” implications: if for some
family of tensors one can prove an upper bound on the asymptotic
tensor rank, then by Theorem 2 this upper bound directly extends
to the Zariski-closure. Before our result this was only known on
finite unions of GL-orbits.? In particular, it also follows from Theo-
rem 2 that, over the complex numbers, for any sequence of tensors
T1, T, ... converging to a tensor T in the Euclidean norm, if the
asymptotic rank of all T; is at most r, then the asymptotic rank of T
is at most r (Euclidean lower-semicontinuity). For instance, we may
apply this idea to tensors converging to a matrix multiplication
tensor (n, n, n) in order to get upper bounds on .

As an ingredient in the proof of Theorem 2 we prove that for
any subset A C F% ® - - - ® F% the supremum of R over the Zariski
closure of A equals the supremum over A itself. This result we prove
via a decomposition of powers of elements in the closure of A in
terms of powers of elements in A combined with an asymptotic
double-blocking analysis of asymptotic rank.

In fact, we prove Theorem 1 and Theorem 2 for a more general
class of functions that includes all functions in Strassen’s asymptotic
spectrum of tensors. Via Strassen’s duality [37], this implies that
the set of all tensors that are an asymptotic restriction of a given
tensor, is Zariski-closed.*

3 Discreteness from Above and Closedness

As a consequence of Theorem 2 we prove that the set of values
that asymptotic rank takes, on all tensors (of fixed order, but ar-
bitrary dimension), is well-ordered (discrete from above, every
non-increasing sequence stabilizes):

TueorEM 3. R = {R(T) : T € Fh @ --- @ Fé,d € Zlil} is
well-ordered. )

In particular, Theorem 3 says that there cannot be a sequence
of tensors with asymptotic rank strictly larger than 2% that gets
arbitrarily close to it. Indeed, if it comes arbitrarily close it must
eventually “snap” to 2¢. Previously this was only known over finite
fields (where the proof is simple, see [14, Theorem 4.4]; however
that proof strategy does not work over infinite fields).

We leave as an open problem to prove discreteness from below
for asymptotic rank. That is, we do not know if there can be (non-
constant) increasing converging sequences of asymptotic ranks of
tensors.

Towards proving discreteness, as an intermediate result, we
prove closedness of the set of values of asymptotic rank, when
the base field is the complex numbers:

THEOREM 4. Let F = C. For any sequence in R that converges, the
limit is in R.

asymptotic rank. So if a tensor is concise its dimensions will be at most the flattening
rank. Thus for a given upper bound r on the asymptotic rank, and a tensor T, we first
make T concise. It will then have one of finitely many formats with dimensions below
r. We then evaluate the polynomials for that format and check if they all vanish.
3Indeed, it is known that for any S in the closure of (GLgy X -+ x GLg, )T (ie., S is
a degeneration of T) the asymptotic rank R(S) is at most R(T'); and the closure of a
finite union of orbits equals the union of the closures.

“For two tensors S, T there is an asymptotic restriction S < T if $8 < T8(n+o(m)
Strassen’s duality says that S < T if and only if for every F in the asymptotic spectrum
A(F, k) we have F(S) < F(T). Then {S € V : S S T} = Npeari){S : F(S) <
F(T)}. Every sublevel set {S : F(S) < F(T)} is closed, so their intersection is
closed.
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We note again that all of the above results are consistent with
(and may be thought of as evidence towards) the asymptotic rank
conjecture, since that would imply that asymptotic rank is com-
putable as the matrix rank of a flattening of the tensor, and that
the set of values that asymptotic rank takes is simply the natural
numbers N.

4 Asymptotic Spectrum and Tensor-to-Matrix
Restrictions

Finally, we extend Theorem 3 to the tensor parameters in Strassen’s
asymptotic spectrum of tensors [37, 43], a collection of tensor
parameters with special properties (namely they are restriction-
monotone semiring homomorphisms with respect to direct sum
and tensor product). We denote by A(F, k) the asymptotic spectrum
of k-tensors over F.

THEOREM 5. For every F € A(F, k),
{F(T):TeFh & - @Fk dezk }
is well-ordered.

In fact, by Strassen’s duality [37], Theorem 5 implies Theorem 3,
and moreover has discreteness implications for asymptotic trans-
formation rates between tensors. The proof of Theorem 5 is more
involved than Theorem 3. It relies not only on the Zariski-closedness
of sublevel sets, but also on a more technical “growth” argument
(which may be of independent interest) in order to obtain well-
orderedness across all tensor formats.

This growth argument involves new lower bounds on a type of
tensor-to-matrix restrictions. In quantum information these corre-
spond to k-partite to bipartite entanglement transformations (under
stochastic local operations and classical communication, SLOCC).

For any k-tensor T € V1 ® V2 ® -+ ® Vg, let Q; »(T) be the
largest number r, such that there are A; € GL(V;) such that (A; ®
- ®ANT = Y e; ®e; ® e ® -+ ® e1. The right hand side is
essentially a rank r identity matrix on tensor legs 1 and 2. This
definition extends to Q; ; for i # j € [k] by placing this “identity
matrix” at legs i and j. For any proper subset I C [k], let R(T)
be the matrix rank of the matrix obtained by grouping the legs in
I together and grouping the remaining legs together. If i € I and
j ¢ L then Ry(T) > Q; ;(T). We prove the following inequality in
the opposite direction.

THEOREM 6. Let I C [k] with1 < |I| < k-1, andletT bea
k-tensor. If [F| > Ry(T), then [1ier jex\r Qi (T) = Ry(T).

Theorem 6 generalizes [14, Theorem 1.13], which covered k = 3.
Using Theorem 6 we prove that any element F in the asymptotic
spectrum is either essentially an element in the asymptotic spec-
trum for lower order tensors, or grows with the size of the tensor
(which in turn is the right ingredient for proving Theorem 5).

5 Discussion and Open Problems
We discuss several natural directions and open problems in the
context of our results, Strassen’s asymptotic rank conjecture and
the matrix multiplication exponent.
e Discreteness from below. We proved discreteness from
above for the asymptotic rank (and a large class of other
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parameters) over (for instance) the complex numbers. One
of the main problems that we leave open is whether this
parameter is also discrete from below. Indeed, Strassen’s
asymptotic rank conjecture would imply this.

As an intermediate result, we have shown that any converg-
ing sequence of asymptotic ranks has a limit which is also
an asymptotic rank (Theorem 4). What remains to be shown
is that any such sequence is eventually constant.

Notions of discreteness for asymptotic parameters have been
studied more broadly, in particular in the context of the
Shannon capacity of graphs [34] and the related asymptotic
spectrum of graphs [41, 45]; interestingly, in that setting, the
asymptotic parameter of interest (Shannon capacity) is not
discrete (neither from above or from below), which leads to a
graph limit approach to determining Shannon capacity [22].
Geometric properties; irreducibility. Given that the sub-
level sets {T e FI ® - - - @ Fk - R(T) < r} of the asymptotic
tensor rank are Zariski-closed (Theorem 2), it is natural to
ask about the geometric properties of these sets. For instance,
we may ask if they are irreducible (i.e., cannot be written as
the union of two proper Zariski-closed subsets) whenever F
is algebraically closed.

Indeed, irreducibility is true for k = 2 (matrices), since then
the asymptotic rank coincides with matrix rank, and the set
of matrices of at most a given rank is an irreducible variety.
For k > 3, irreduciblity is open. It would imply both that the
set of achievable values of the asymptotic rank is discrete,
and a weak form of Strassen’s asymptotic rank conjecture:
there exist at most dj - - - dg + 1 asymptotic ranks in format
dq X - - - X dy.. This follows from a dimension argument (topo-
logical dimension is the maximal length of a decreasing chain
of irreducible subvarieties, and the dimension of i X e Xdg
is d] tee dk)-

To see that this is a weak form of Strassen’s conjecture, note
that Strassen’s conjecture is equivalent to the statement
that there are d + 1 distinct asymptotic ranks in (F¢)®k
(namely {0, 1,...,d}). Note that Strassen’s conjecture also
implies that the sets {T € Fh @ ... @Fd : R(T) < r} are
irreducible: r is integer, and FH X7 x . .. x X 5 Frx-xr
is irreducible and admits a surjective polynomial map onto
the set of tensors with all flattening ranks at most r.
Computation and structure of asymptotic ranks. Our re-
sults provide new tools to concretely understand the asymp-
totic rank of families of tensors and their relation to the
matrix multiplication exponent w, in the spirit of [27]. For
instance (by Theorem 2), truth of the asymptotic rank con-
jecture on any subset of tensors by our result extends to the
Zariski-closure.

Another natural direction where our result plays a role is in
the task of understanding the relation between asymptotic
ranks of explicit (families of) tensors and the matrix multi-
plication exponent. For example, it is well-known that if the
asymptotic rank of the small Coppersmith-Winograd tensor
cwy equals 3, then w = 2. For which tensors can we prove
this property?
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It follows from Theorem 2 and known classifications that
cwy has asymptotic rank at most the generic asymptotic
rank of 3 X 3 X 3 tensors with hyperdeterminant 0 (which is
a codimension 1 variety). It also has at most the asymptotic
rank of a generic tensor with support

{(0,0,0),(1,1,1),(2,2,2),(0,1,2),(1,2,0),(2,0,1) }.
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