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Abstract
Asymptotic tensor rank, originally developed to characterize the

complexity of matrix multiplication, is a parameter that plays a

fundamental role in problems in mathematics, computer science

and quantum information. This parameter is notoriously difficult

to determine; indeed, determining its value for the 2 × 2 matrix

multiplication tensor would determine the matrix multiplication

exponent, a long-standing open problem.

Strassen’s asymptotic rank conjecture, on the other hand, makes

the bold statement that asymptotic tensor rank equals the largest

dimension of the tensor and is thus as easy to compute as matrix

rank. Recent works have proved strong consequences of Strassen’s

asymptotic rank conjecture in computational complexity theory.

Despite tremendous interest, much is still unknown about the struc-

tural and computational properties of asymptotic rank; for instance

whether it is computable.

We prove that asymptotic tensor rank is “computable from above”,

that is, for any real number 𝑟 there is an (efficient) algorithm that

determines, given a tensor𝑇 , if the asymptotic tensor rank of𝑇 is at

most 𝑟 . The algorithm has a simple structure; it consists of evaluat-

ing a finite list of polynomials on the tensor. Indeed, we prove that

the sublevel sets of asymptotic rank are Zariski-closed (just like

matrix rank). While we do not exhibit these polynomials explicitly,

their mere existence has strong implications on the structure of

asymptotic rank.

As one such implication, we find that the values that asymptotic

tensor rank takes, on all tensors, is a well-ordered set. In other

words, any non-increasing sequence of asymptotic ranks stabilizes

(“discreteness from above”). In particular, for the matrix multiplica-

tion exponent (which is the base-2 logarithm of an asymptotic rank)

there is no sequence of exponents of bilinear maps that approxi-

mates it arbitrarily closely from above without being eventually

constant. In other words, any such upper bound on the matrix multi-

plication exponent that is close enough, will “snap” to it. Previously
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such discreteness results were only known for finite fields or for

other tensor parameters (e.g., asymptotic slice rank). We obtain

them for infinite fields like the complex numbers.

We prove our result more generally for a large class of func-

tions on tensors, and in particular obtain similar properties for all

functions in Strassen’s asymptotic spectrum of tensors. We prove

a variety of related structural results on the way. For instance, we

prove that for any converging sequence of asymptotic ranks, the

limit is also an asymptotic rank for some tensor. We leave open

whether asymptotic rank is also discrete from below (which would

be implied by Strassen’s asymptotic rank conjecture).
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1 Introduction
Asymptotic tensor rank is a fundamental parameter in algebraic

complexity theory [5, 15]. Originally rooted in the study of the

matrix multiplication exponent, a burst of recent works has put this

tensor parameter, and specifically Strassen’s asymptotic rank con-

jecture, at the forefront of a wide range of computational complexity

problems [3, 4, 31]. These kinds of asymptotic tensor parameters

more broadly play an important role in various fields, like additive

combinatorics and quantum information theory (asymptotic slice

rank, asymptotic subrank) [30, 40, 42].

Despite tremendous effort (resulting in new matrix multipli-

cation algorithms [2, 23, 29, 44], barriers [1, 8, 17], new routes

[9–11, 19–21], and fundamental theory [18, 27, 28, 36, 38, 43]), we
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are still far away from determining the matrix multiplication ex-

ponent, computing asymptotic ranks in general, or resolving the

asymptotic rank conjecture. All in all, determining asymptotic rank

has turned out very challenging and much is still unknown about

the properties of this parameter.

In this paper we prove a polynomial characterization of asymp-

totic tensor rank: for any number 𝑟 there are finitely many poly-

nomials on tensors whose vanishing determines if the asymptotic

rank is at most 𝑟 (just like matrix rank is characterized by van-

ishing of determinants of submatrices). This characterization has

many consequences regarding the computation and topological

structure of this parameter. Indeed, for any 𝑟 it leads to an algo-

rithm to determine if asymptotic rank is at most 𝑟 . We obtain from

it that asymptotic rank is semi-continuous (like matrix rank) and

that its values are well-ordered, that is, discrete from above: any

non-increasing sequence of asymptotic ranks stabilizes. For the

matrix multiplication exponent 𝜔 , this implies in particular (as we

will explain more) that there is a constant 𝜀 > 0 such that no tensor

has exponent between 𝜔 and 𝜔 + 𝜀.

We will discuss these results and their meaning in more detail.

First we discuss the context of this work in complexity theory and

mathematics.

Matrix Multiplication Exponent and Asymptotic Rank Conjecture. It
is a fundamental open problem to determine the matrix multiplica-

tion exponent 𝜔 , which is defined as the infimum over all real num-

bers 𝜏 such that 𝑛 ×𝑛 matrices can be multiplied using O(𝑛𝜏 ) arith-
metic operations, with current state of the art 2 ≤ 𝜔 ≤ 2.371552

[2, 23, 29, 44]. It is very well possible that 𝜔 = 2.

The matrix multiplication problem can naturally be phrased in

terms of tensors and asymptotic rank. Namely 2
𝜔 = ˜R(⟨2, 2, 2⟩),

where the asymptotic rank˜R(𝑇 ) = lim𝑛→∞ R(𝑇⊠𝑛)1/𝑛 of a tensor𝑇

measures the rate of growth of tensor rank on Kronecker powers

of𝑇 , and where ⟨2, 2, 2⟩ ∈ F4 ⊗ F4 ⊗ F4 is the so-called 2× 2 matrix

multiplication tensor. Whether 𝜔 = 2 is thus tightly linked to the

question whether asymptotic rank can take non-integer values or

not.

Strikingly, it is possible that for every tensor𝑇 ∈ F𝑛 ⊗F𝑛 ⊗F𝑛 the

asymptotic rank is at most 𝑛, as opposed to the tensor rank, which

can be Ω(𝑛2) (but we do not know such tensors explicitly [6, 32]).

Strassen’s asymptotic rank conjecture indeed states that this is true,

and more precisely states that asymptotic rank equals the largest

flattening rank of the tensor (matrix rank after grouping two legs

of the tensor), and would thus imply not only that asymptotic rank

is always an integer, but also that it is easy to compute and that

𝜔 = 2.

Intriguingly, there is a partial converse to the above connection

between the asymptotic rank conjecture and the matrix multipli-

cation exponent, namely [37], for any tensor in F𝑛 ⊗ F𝑛 ⊗ F𝑛 the

asymptotic rank is at most 𝑛2𝜔/3
. In particular, if 𝜔 = 2, then every

asymptotic rank is at most 𝑛4/3, which is “not far” from the claim of

the asymptotic rank conjecture. In this sense, matrix multiplication

almost acts as a “complete” instance for the asymptotic rank conjec-

ture. In the same spirit, Kaski and Michałek proved a completeness

result for the asymptotic rank conjecture for explicit sequences of

tensors [27].

Recent works have found new strong connections between the

asymptotic rank conjecture and a range of computational complex-

ity problems related to the chromatic number, set partitioning and

the set cover conjecture [3, 4, 31].

Structure of Asymptotic Ranks. The asymptotic rank conjecture

naturally leads to the question: What are the possible values that

the asymptotic rank can take,

R = {˜R(𝑇 ) : 𝑇 ∈ F𝑑1 ⊗ F𝑑2 ⊗ F𝑑3 , 𝑑1, 𝑑2, 𝑑3 ∈ Z≥1}?

And more generally: What is the structure (geometric, algebraic,

topological, computational) of this set of values R? Is there any-
thing we can say about R without resolving the asymptotic rank

conjecture or determining 𝜔? Little is known. Clearly, such ques-

tions can be asked much more broadly, for higher-order tensors,

but also for other asymptotic tensor parameters (asymptotic slice

rank, subrank).

One known structural property is thatR is closed under applying

any univariate polynomial with nonnegative integer coefficients

[43, Theorem 4.8]. Thus R has “many” elements. On the other hand,

a sequence of recent works have revealed a strikingly “discrete”

structure of sets like R (for various notions of asymptotic ranks),

and thus that they have “not too many” elements. In particular,

it can be seen (with a simple proof) that over any finite field (or

finite set of coefficients in any field), R is a discrete set [14]. Their

techniques, however, do not apply to infinite fields like the complex

numbers. This perhaps leaves the impression that discreteness may

be a consequence of considering finitely many tensors in each

format. (One of the main results of this paper, however, is that R is

discrete from above over infinite fields, like the complex numbers).

More broadly, notions of discreteness were proven for a range

of asymptotic tensor parameters,˜𝐹 (𝑇 ) = lim𝑛→∞ 𝐹 (𝑇⊠𝑛)1/𝑛 for

varying 𝐹 . It was shown in [12] that for a class of functions over

finite fields, which includes asymptotic (sub)rank and asymptotic

slice rank, the set of values that they take is well-ordered (discrete

from above). The work [18], which resolved a problem on Strassen’s

asymptotic spectrum [37], proved as a consequence that asymptotic

slice rank over complex numbers takes only finitely many values

per format (because of a deep result on the structure of moment

polytopes in representation theory), and thus only countably many

values in total. The work [13] proved that a class of tensor pa-

rameters over complex numbers, which again includes asymptotic

(sub)rank and asymptotic slice rank, take only countably many

values. [14] proved that asymptotic (sub)rank and asymptotic slice

rank over any finite set of coefficients take only a discrete set of

values. In [16, 24] explicit gaps were determined in the smallest

values of these parameters.

Unlike for the asymptotic tensor rank (for which nothing is

known), the computational complexity of tensor rank is well-un-

derstood. Namely, it is known that tensor rank is NP-hard over the

rationals and NP-complete over any finite field [25] and this was

extended by [26]. Recently, [33, 35] proved the stronger statement

that tensor rank over any field has the same complexity as deciding

the existential theory of that field, and [7, 39] proved that tensor

rank is hard to approximate. These results, however, have no imme-

diate implication for the computational complexity of asymptotic

tensor rank (which, for all we know, may be in P).

751



Asymptotic Tensor Rank Is Characterized by Polynomials STOC ’25, June 23–27, 2025, Prague, Czechia

New Results. In this paper:

• We prove that asymptotic tensor rank is computable from

above: over “computable fields”, for every upper bound 𝑟

there is an algorithm that, given any 𝑑 × 𝑑 × 𝑑 tensor 𝑇 ,

decides if its asymptotic tensor rank is at most 𝑟 .

• As the core ingredient, we prove over any field F that the

sublevel sets of asymptotic tensor rank are Zariski-closed.

This means that each such set is precisely determined by

the vanishing of a finite set of polynomials on tensors. It

follows that the sublevel sets are also Euclidean-closed if F
is a subfield of C, and that ˜R is lower-semi-continuous, just

like matrix rank.

• Using the above, we prove for asymptotic tensor rank that

the set of values it takes on all tensors is well-ordered (dis-

crete from above), and when F = C it is even closed (in

the Euclidean topology). In particular, in the context of the

matrix multiplication exponent 𝜔 , we find that there is a

constant 𝜀 > 0 such that no tensor has exponent between 𝜔

and 𝜔 + 𝜀.

• We prove the above results in great generality, for tensors of

any order, and for a large collection of tensor parameters that

generalizes asymptotic rank, including Strassen’s asymptotic

spectrum.

• As a technical ingredient for the general version of our result

we develop new lower bounds on a type of tensor-to-matrix

transformation (max-rank) that may be of independent in-

terest.

2 Polynomial Characterization
We now discuss our results and their context. We prove that upper

bounds on asymptotic rank are computable:

Theorem 1 (Informal). For any “computable” field F and 𝑘 ≥ 3,
for any 𝑟 ∈ R, there is an algorithm that, given any 𝑘-tensor𝑇 over F,
decides if ˜R(𝑇 ) ≤ 𝑟 .

The algorithm in Theorem 1 is in fact efficient in the dimen-

sions 𝑑𝑖 of𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 , for simple reasons that we elaborate

on in a moment.
1
The computability condition for the field is a

natural one: we need to be able to write down (and compute with)

the tensor and certain polynomials on the tensor space that the

algorithm relies on. Theorem 1 almost directly follows from the

following polynomial characterization of asymptotic rank:

Theorem 2. For any field F, 𝑘 ≥ 3, 𝑑 ∈ Z𝑘≥1, and 𝑟 ∈ R, the
sublevel set

{𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 : ˜R(𝑇 ) ≤ 𝑟 }
is Zariski-closed.

In other words, Theorem 2 says that (for every 𝑘,𝑑, 𝑟 ) there is

a finite set of polynomials 𝑝1, . . . , 𝑝ℓ on 𝑉 = F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 such

that for every 𝑇 ∈ 𝑉 we have ˜R(𝑇 ) ≤ 𝑟 if and only if all 𝑝𝑖 vanish

on 𝑇 . Over suitably computable fields, like the algebraic closure of

the rationals, these polynomials are also computable, and indeed

lead to the algorithm of Theorem 1.
2

1
This statement is, however, not uniform in 𝑟 .
2
The reason that this algorithm is efficient in the dimensions 𝑑𝑖 of the input tensor

𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 is as follows. The flattening ranks are a lower bound on the

We note that Theorem 2 has “practical” implications: if for some

family of tensors one can prove an upper bound on the asymptotic

tensor rank, then by Theorem 2 this upper bound directly extends

to the Zariski-closure. Before our result this was only known on

finite unions of GL-orbits.
3
In particular, it also follows from Theo-

rem 2 that, over the complex numbers, for any sequence of tensors

𝑇1,𝑇2, . . . converging to a tensor 𝑇 in the Euclidean norm, if the

asymptotic rank of all𝑇𝑖 is at most 𝑟 , then the asymptotic rank of𝑇

is at most 𝑟 (Euclidean lower-semicontinuity). For instance, we may

apply this idea to tensors converging to a matrix multiplication

tensor ⟨𝑛, 𝑛, 𝑛⟩ in order to get upper bounds on 𝜔 .

As an ingredient in the proof of Theorem 2 we prove that for

any subset𝐴 ⊆ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 the supremum of˜R over the Zariski

closure of𝐴 equals the supremum over𝐴 itself. This result we prove

via a decomposition of powers of elements in the closure of 𝐴 in

terms of powers of elements in 𝐴 combined with an asymptotic

double-blocking analysis of asymptotic rank.

In fact, we prove Theorem 1 and Theorem 2 for a more general

class of functions that includes all functions in Strassen’s asymptotic

spectrum of tensors. Via Strassen’s duality [37], this implies that

the set of all tensors that are an asymptotic restriction of a given

tensor, is Zariski-closed.
4

3 Discreteness from Above and Closedness
As a consequence of Theorem 2 we prove that the set of values

that asymptotic rank takes, on all tensors (of fixed order, but ar-

bitrary dimension), is well-ordered (discrete from above, every

non-increasing sequence stabilizes):

Theorem 3. R = {˜R(𝑇 ) : 𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 , 𝑑 ∈ Z𝑘≥1} is
well-ordered.

In particular, Theorem 3 says that there cannot be a sequence

of tensors with asymptotic rank strictly larger than 2
𝜔
that gets

arbitrarily close to it. Indeed, if it comes arbitrarily close it must

eventually “snap” to 2
𝜔
. Previously this was only known over finite

fields (where the proof is simple, see [14, Theorem 4.4]; however

that proof strategy does not work over infinite fields).

We leave as an open problem to prove discreteness from below

for asymptotic rank. That is, we do not know if there can be (non-

constant) increasing converging sequences of asymptotic ranks of

tensors.

Towards proving discreteness, as an intermediate result, we

prove closedness of the set of values of asymptotic rank, when

the base field is the complex numbers:

Theorem 4. Let F = C. For any sequence in R that converges, the
limit is in R.

asymptotic rank. So if a tensor is concise its dimensions will be at most the flattening

rank. Thus for a given upper bound 𝑟 on the asymptotic rank, and a tensor𝑇 , we first

make𝑇 concise. It will then have one of finitely many formats with dimensions below

𝑟 . We then evaluate the polynomials for that format and check if they all vanish.

3
Indeed, it is known that for any 𝑆 in the closure of (GL𝑑

1
× · · · × GL𝑑𝑘

)𝑇 (i.e., 𝑆 is

a degeneration of𝑇 ) the asymptotic rank ˜R(𝑆 ) is at most ˜R(𝑇 ) ; and the closure of a

finite union of orbits equals the union of the closures.

4
For two tensors 𝑆,𝑇 there is an asymptotic restriction 𝑆 ≲ 𝑇 if 𝑆⊠𝑛 ≤ 𝑇 ⊠(𝑛+𝑜 (𝑛) )

.

Strassen’s duality says that 𝑆 ≲ 𝑇 if and only if for every 𝐹 in the asymptotic spectrum

Δ(F, 𝑘 ) we have 𝐹 (𝑆 ) ≤ 𝐹 (𝑇 ) . Then {𝑆 ∈ 𝑉 : 𝑆 ≲ 𝑇 } = ∩𝐹 ∈Δ(F,𝑘 ) {𝑆 : 𝐹 (𝑆 ) ≤
𝐹 (𝑇 ) }. Every sublevel set {𝑆 : 𝐹 (𝑆 ) ≤ 𝐹 (𝑇 ) } is closed, so their intersection is

closed.
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We note again that all of the above results are consistent with

(and may be thought of as evidence towards) the asymptotic rank

conjecture, since that would imply that asymptotic rank is com-

putable as the matrix rank of a flattening of the tensor, and that

the set of values that asymptotic rank takes is simply the natural

numbers N.

4 Asymptotic Spectrum and Tensor-to-Matrix
Restrictions

Finally, we extend Theorem 3 to the tensor parameters in Strassen’s

asymptotic spectrum of tensors [37, 43], a collection of tensor

parameters with special properties (namely they are restriction-

monotone semiring homomorphisms with respect to direct sum

and tensor product). We denote by Δ(F, 𝑘) the asymptotic spectrum

of 𝑘-tensors over F.

Theorem 5. For every 𝐹 ∈ Δ(F, 𝑘),

{𝐹 (𝑇 ) : 𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 , 𝑑 ∈ Z𝑘≥1}
is well-ordered.

In fact, by Strassen’s duality [37], Theorem 5 implies Theorem 3,

and moreover has discreteness implications for asymptotic trans-

formation rates between tensors. The proof of Theorem 5 is more

involved than Theorem 3. It relies not only on the Zariski-closedness

of sublevel sets, but also on a more technical “growth” argument

(which may be of independent interest) in order to obtain well-

orderedness across all tensor formats.

This growth argument involves new lower bounds on a type of

tensor-to-matrix restrictions. In quantum information these corre-

spond to 𝑘-partite to bipartite entanglement transformations (under

stochastic local operations and classical communication, SLOCC).

For any 𝑘-tensor 𝑇 ∈ 𝑉1 ⊗ 𝑉2 ⊗ · · · ⊗ 𝑉𝑘 , let Q1,2 (𝑇 ) be the

largest number 𝑟 , such that there are 𝐴𝑖 ∈ GL(𝑉𝑖 ) such that (𝐴1 ⊗
· · · ⊗ 𝐴𝑘 )𝑇 =

∑𝑟
𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒1 ⊗ · · · ⊗ 𝑒1 . The right hand side is

essentially a rank 𝑟 identity matrix on tensor legs 1 and 2. This

definition extends to Q𝑖, 𝑗 for 𝑖 ≠ 𝑗 ∈ [𝑘] by placing this “identity

matrix” at legs 𝑖 and 𝑗 . For any proper subset 𝐼 ⊆ [𝑘], let R𝐼 (𝑇 )
be the matrix rank of the matrix obtained by grouping the legs in

𝐼 together and grouping the remaining legs together. If 𝑖 ∈ 𝐼 and

𝑗 ∉ 𝐼 , then R𝐼 (𝑇 ) ≥ Q𝑖, 𝑗 (𝑇 ). We prove the following inequality in

the opposite direction.

Theorem 6. Let 𝐼 ⊆ [𝑘] with 1 ≤ |𝐼 | ≤ 𝑘 − 1, and let 𝑇 be a
𝑘-tensor. If |F| > R𝐼 (𝑇 ), then

∏
𝑖∈𝐼 , 𝑗∈[𝑘 ]\𝐼 Q𝑖, 𝑗 (𝑇 ) ≥ R𝐼 (𝑇 ) .

Theorem 6 generalizes [14, Theorem 1.13], which covered 𝑘 = 3.

Using Theorem 6 we prove that any element 𝐹 in the asymptotic

spectrum is either essentially an element in the asymptotic spec-

trum for lower order tensors, or grows with the size of the tensor

(which in turn is the right ingredient for proving Theorem 5).

5 Discussion and Open Problems
We discuss several natural directions and open problems in the

context of our results, Strassen’s asymptotic rank conjecture and

the matrix multiplication exponent.

• Discreteness from below. We proved discreteness from

above for the asymptotic rank (and a large class of other

parameters) over (for instance) the complex numbers. One

of the main problems that we leave open is whether this

parameter is also discrete from below. Indeed, Strassen’s

asymptotic rank conjecture would imply this.

As an intermediate result, we have shown that any converg-

ing sequence of asymptotic ranks has a limit which is also

an asymptotic rank (Theorem 4). What remains to be shown

is that any such sequence is eventually constant.

Notions of discreteness for asymptotic parameters have been

studied more broadly, in particular in the context of the

Shannon capacity of graphs [34] and the related asymptotic

spectrum of graphs [41, 45]; interestingly, in that setting, the

asymptotic parameter of interest (Shannon capacity) is not

discrete (neither from above or from below), which leads to a

graph limit approach to determining Shannon capacity [22].

• Geometric properties; irreducibility. Given that the sub-

level sets {𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 : ˜R(𝑇 ) ≤ 𝑟 } of the asymptotic

tensor rank are Zariski-closed (Theorem 2), it is natural to

ask about the geometric properties of these sets. For instance,

we may ask if they are irreducible (i.e., cannot be written as

the union of two proper Zariski-closed subsets) whenever F
is algebraically closed.

Indeed, irreducibility is true for 𝑘 = 2 (matrices), since then

the asymptotic rank coincides with matrix rank, and the set

of matrices of at most a given rank is an irreducible variety.

For 𝑘 ≥ 3, irreduciblity is open. It would imply both that the

set of achievable values of the asymptotic rank is discrete,

and a weak form of Strassen’s asymptotic rank conjecture:

there exist at most 𝑑1 · · ·𝑑𝑘 + 1 asymptotic ranks in format

𝑑1 × · · · ×𝑑𝑘 . This follows from a dimension argument (topo-

logical dimension is themaximal length of a decreasing chain

of irreducible subvarieties, and the dimension of F𝑑1×···×𝑑𝑘

is 𝑑1 · · ·𝑑𝑘 ).
To see that this is a weak form of Strassen’s conjecture, note

that Strassen’s conjecture is equivalent to the statement

that there are 𝑑 + 1 distinct asymptotic ranks in (F𝑑 )⊗𝑘
(namely {0, 1, . . . , 𝑑}). Note that Strassen’s conjecture also
implies that the sets {𝑇 ∈ F𝑑1 ⊗ · · · ⊗ F𝑑𝑘 : ˜R(𝑇 ) ≤ 𝑟 } are
irreducible: 𝑟 is integer, and F𝑑1×𝑟 × · · · × F𝑑𝑘×𝑟 × F𝑟×···×𝑟

is irreducible and admits a surjective polynomial map onto

the set of tensors with all flattening ranks at most 𝑟 .

• Computation and structure of asymptotic ranks.Our re-
sults provide new tools to concretely understand the asymp-

totic rank of families of tensors and their relation to the

matrix multiplication exponent 𝜔 , in the spirit of [27]. For

instance (by Theorem 2), truth of the asymptotic rank con-

jecture on any subset of tensors by our result extends to the

Zariski-closure.

Another natural direction where our result plays a role is in

the task of understanding the relation between asymptotic

ranks of explicit (families of) tensors and the matrix multi-

plication exponent. For example, it is well-known that if the

asymptotic rank of the small Coppersmith–Winograd tensor

cw2 equals 3, then 𝜔 = 2. For which tensors can we prove

this property?

753



Asymptotic Tensor Rank Is Characterized by Polynomials STOC ’25, June 23–27, 2025, Prague, Czechia

It follows from Theorem 2 and known classifications that

cw2 has asymptotic rank at most the generic asymptotic

rank of 3 × 3 × 3 tensors with hyperdeterminant 0 (which is

a codimension 1 variety). It also has at most the asymptotic

rank of a generic tensor with support

{(0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 1, 2), (1, 2, 0), (2, 0, 1)}.
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