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ABSTRACT Network traffic analysis is fundamental for cybersecurity, network management, and policy
enforcement. The widespread adoption of encryption, particularly through Virtual Private Networks (VPNs),
presents a significant challenge by obscuring traditional visibility methods. While VPNs enhance user
privacy and security, they also create blind spots for network operators, potentially concealing malicious
activities or hindering performance management. Analyzing the characteristics of traffic flowing through
encrypted VPN tunnels, without decryption, has become a critical yet difficult task. This survey provides
a comprehensive review of the state-of-the-art in VPN traffic analysis research published over the past
decade (2016-2025). We specifically focus on three key tasks: detecting the presence of VPN traffic,
identifying the specific VPN protocol or service used, and classifying the application traffic encapsulated
within VPN tunnels. Based on a systematic review of the literature, we provide an in-depth analysis of
the features, methodologies (including traditional and learning-based approaches), and datasets employed
in recent studies. We synthesize reported performance results, analyze trends in feature and methodology
evolution, and highlight the prevalent use and limitations of benchmark datasets. The survey identifies key
technical challenges, discusses the implications of VPN traffic analysis for network security and Quality
of Service (QoS), and proposes promising future research directions. This work serves as a vital resource
for researchers and practitioners navigating the complexities of analyzing encrypted VPN traffic in modern
networks.

INDEX TERMS Application identification, deep learning, encrypted traffic classification, machine learning,
network security, survey, VPN detection, VPN traffic analysis.

I. INTRODUCTION of encryption, primarily driven by rising privacy concerns

The modern digital landscape is increasingly reliant on
network traffic analysis for critical functions spanning
network security, Quality of Service (QoS) management,
resource planning, and policy enforcement. Traditionally,
techniques like Deep Packet Inspection (DPI) provided gran-
ular visibility into traffic content and application usage by
examining payload data. However, the widespread adoption
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and security requirements, has fundamentally altered this
paradigm. Protocols like Transport Layer Security (TLS) 1.3,
DNS over HTTPS / DNS over TLS (DoH/DoT), and Quick
UDP Internet Connections (QUIC) obscure the content layer,
rendering traditional DPI ineffective and creating significant
blind spots for network operators and security analysts
(11, [2].

Virtual Private Networks (VPNs) represent a particu-
larly significant manifestation of this challenge. VPNs are
designed to create encrypted tunnels, encapsulating original
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network traffic to provide privacy, anonymity, bypass censor-
ship, or enable secure remote access. While invaluable for
users, this encapsulation and encryption process effectively
hides the nature of the underlying communication from
external observers. Analyzing traffic flowing through a VPN
tunnel without decrypting it has become a pressing need,
yet it is fraught with technical difficulties. This challenge
necessitates the development and refinement of sophisticated
traffic analysis techniques that can operate on the observable
characteristics of encrypted flow patterns rather than their
content.

The inability to analyze VPN traffic poses several critical
problems. From a security perspective, malicious activities,
covert channels, or command-and-control traffic can be effec-
tively masked within a VPN tunnel, bypassing traditional
signature-based detection systems. For network operators,
the lack of visibility hinders accurate traffic classification,
impacting QoS provisioning, load balancing, and capacity
planning. Furthermore, in certain regulated environments,
understanding VPN usage and the applications within them
may be necessary for policy compliance or incident response.
Therefore, developing robust capabilities to analyze VPN
traffic, including detection, identification, and application
classification, is paramount in today’s encrypted network
environment.

A. CATEGORICAL REVIEW OF EXISTING SURVEYS

To contextualize the contribution of this survey, we first
provide a brief review of existing survey literature related to
VPNs and encrypted traffic analysis published within the past
decades. Based on their primary focus, we categorize these
works into two main themes: (1) surveys primarily addressing
VPN technology and deployment aspects, and (2) surveys
focused on general encrypted traffic classification, where
VPNs might be included but are not the central subject of
analysis.

1) VPN TECHNOLOGY AND DEPLOYMENT

These surveys address VPN systems as infrastructure
components, focusing on aspects such as protocol design,
deployment models, mobility handling, compliance, and
usage trends. Surveys such as [3], [4], [5], and [6] examine
architectural aspects of VPNs, including protocol configura-
tions, mobility support, compliance auditing, and deployment
models across wired, wireless, and cloud environments. How-
ever, these works do not explore VPN traffic classification
or detection tasks such as tunnel identification, protocol
inference, or encrypted application analysis. Expanding on
deployment diversity, [4] introduces a structured taxonomy
of VPN designs, covering multiple protocol types and
presenting comparative insights drawn from deployments
across industry sectors such as healthcare, utilities, and
cloud infrastructure. Security and policy enforcement receive
detailed attention in [5], which proposes a compliance
assessment framework encompassing encryption strength,
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tunnel setup, logging, and vulnerability risks like DNS or
IPv6 leaks. A mobile-specific perspective is explored by [7],
who reviews tunnel establishment modes, OSI-layer support,
and commercial VPN solutions under handoff conditions.
Lastly, [6] presents a broad survey of VPN use trends,
provisioning types (e.g., remote access, site-to-site), platform
diversity (hardware vs. software), and the evolution of VPN
functionality in modern networking contexts, particularly
within 5G and cloud-native architectures.

2) ENCRYPTED TRAFFIC CLASSIFICATION INCLUDING VPN

These surveys examine encrypted traffic classification using
Machine Learning (ML) and Deep Learning (DL) techniques,
often addressing VPNs alongside other encrypted protocols
such as TLS, QUIC, and Tor. In most cases, VPN traffic
is one component of a broader dataset rather than a central
focus. Surveys like [8], [9], and [10] focus on encrypted
traffic classification techniques, often in the context of
protocols such as TLS, QUIC, or Tor. While VPN traffic
is sometimes included in datasets or model evaluations,
it is rarely treated as a standalone classification task.
These surveys tend to address broader modeling strategies
(e.g., deep learning, pre-training, graph-based inference)
without isolating VPN-specific performance or application-
level differentiation. Even in earlier surveys like [11] and
more comprehensive reviews such as [12], VPNs are either
grouped under general encrypted protocols or referenced in
the context of network security use cases. These contributions
do not provide task-specific evaluations of VPN classification
accuracy, nor do they offer detailed comparisons of feature
types, model architectures, or datasets used for VPN-related
analysis. Specifically, Yang et al. [8] reviews deep learning
techniques designed for unidirectional encrypted traffic,
including Convolutional Neural Network (CNNs), Recurrent
Neural Network (RNNs), and Graph Neural Networks
(GNNs). While the analysis introduces a novel taxonomy
based on directional feature handling, VPN traffic appears
only briefly. A more tunnel-centric approach is taken by
Sui et al. [9], who investigates methods for detecting
VPNs and similar traffic obfuscation mechanisms across
multiple protocol layers, using both traditional fingerprinting
and learning-based techniques. Rezaei et al. [13] structures
encrypted traffic classification around a deep learning
pipeline, discussing model architectures and feature types
with minimal attention to VPNs. Similarly, Sharma et al. [14]
offers a comprehensive taxonomy of ML and DL techniques
for encrypted traffic analysis, including advanced models
like GANs and transformers, but considers VPNs only as
one of several application domains. Historical contributions
such as [11] provide early insights into feature-based
classification, noting VPN traffic in the context of IPsec
but not emphasizing it in evaluation. More recent efforts
like [12] extend encrypted traffic analysis to tasks such
as intrusion detection, app usage inference, and privacy
leakage, with VPN detection appearing within multi-purpose
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TABLE 1. Survey organization and content overview.

Section | Topic Area | Focus | Key Topics & Contributions

Section I Introduction Context Problem definition, literature gap analysis, three core VPN tasks (detection, identification, application classification)

Section II Analysis Trends Dataset usage patterns, temporal evolution of methods (2016-2025), performance comparison across 30 studies

Section 111 Implications | Applications | Network security & policy enforcement, QoS management, privacy & ethical considerations

Section IV Methods Techniques 7 class. approaches: Traditional ML, ensemble learning, deep learning, graph NNs, language models, semi-supervised, heuristic
Section V Challenges Limitations Technical challenges (encryption, obfuscation), dataset limitations (ISCXVPN2016 issues), benchmarking problems

Section VI Future Directions Advanced methodologies (transformers, self-supervised), novel features, real-world deployment strategies

Section VII Conclusion Summary Key findings synthesis, research contributions, recommendations for future work

frameworks. Shen et al. [15] presents a modular breakdown
of encrypted traffic analysis goals, including anomaly and
usage detection, where VPNs are discussed in the context of
larger behavioral classification. A similar holistic structure is
found in [16], which introduces a pipeline that includes traffic
representation, modeling, and performance evaluation, but
treats VPN as part of a generalized encrypted traffic group.
Notably, Dong et al. [10] provides the only survey to explic-
itly highlight pre-training techniques—such as BERT-style
transformer models—for traffic classification that includes
VPNs and Tor. Still, the treatment of VPNs remains
secondary to the broader focus on model generalization and
pre-training architectures.

B. GAP AND CONTRIBUTION

Based on the review of existing literature, there is a clear
need for a comprehensive, up-to-date survey specifically
dedicated to the analysis of VPN traffic. Existing surveys
either focus on VPN infrastructure or treat VPN traffic
analysis as a secondary component within broader encrypted
traffic classification discussions. None provide a focused,
analytical review of the techniques, inputs, and performance
specifically for the critical tasks of:

1) VPN Presence Detection: Distinguishing VPN traffic
from other encrypted or non-encrypted traffic.

2) Specific VPN Identification: Identifying the particular
VPN protocol (e.g., OpenVPN, WireGuard) or com-
mercial service (e.g., Tinc, ExpressVPN) being used.

3) Application Identification within VPNs: Determining
the original application (e.g., Youtube, WhatsApp,
Discord, etc.) or application category (e.g., web
browsing, video streaming, file transfer) whose traffic
is encapsulated within the VPN tunnel.

This survey aims to fill this gap by providing a systematic
and analytical review of research conducted over the past
decade specifically addressing these three core VPN traffic
analysis tasks. Beyond merely listing research papers, our key
contributions are:

o A comprehensive and current review of the state-
of-the-art in VPN presence detection, specific VPN
identification, and application identification within VPN
tunnels.

o A detailed analysis and comparison of the input features,
methodologies (including traditional, machine learning,
and deep learning approaches), and datasets employed
in the surveyed literature.
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o A synthesis of reported performance metrics and
accuracies, providing insights into the effectiveness and
limitations of different techniques.

o Identification of key trends, prevailing challenges,
and promising future research directions specific to
VPN traffic analysis in the context of evolving VPN
technologies and analysis techniques.

By providing this focused and analytical perspective, this
survey serves as a valuable resource for researchers and
practitioners seeking to understand the current capabilities,
limitations, and potential advancements in gaining visibility
into encrypted VPN traffic.

C. SURVEY METHODOLOGY

This survey is based on a systematic review of peer-reviewed
literature published between 2016 and 2025. We con-
ducted extensive searches across major academic databases,
including IEEE Xplore, Elsevier, ACM Digital Library,
SpringerLink, Wiley Online Library, and Google Scholar,
using relevant keywords such as “VPN traffic analysis,”
“VPN detection,” “VPN identification,” “encrypted traf-
fic classification VPN,” ““application identification VPN,”
“machine learning VPN traffic,” and combinations thereof.
Papers were selected based on their direct relevance
to the three core tasks defined in Section I-B and
their publication date within the specified timeframe.
The selected papers were then analyzed, categorized, and
synthesized to extract key information regarding their
objectives, methodologies, features, datasets, and reported
performance.

D. SURVEY ORGANIZATION AND STRUCTURE

To provide readers with a clear understanding of how this
survey is organized, Table 1 presents an overview of the
paper’s structure and key content areas.

The survey structure follows a deliberate logical pro-
gression: the comprehensive analysis of existing literature,
trends and applications (Sections II and III), provides the
foundation for evaluating current classification techniques
(Section IV), which in turn reveals key challenges and
limitations (Section V), ultimately guiding the identification
of promising future research directions (Section VI).

E. SURVEYED LITERATURE AT A GLANCE
To provide a quick, visual overview of the research landscape
covered in this survey, Fig. 1 presents a hierarchical mind map
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FIGURE 1. Hierarchical mind map summarizing surveyed papers on VPN
traffic classification. The structure flows from the central topic to feature
categories, then to individual papers (represented by their reference ID),
and finally to the specific classification method employed. The color of
the paper ID node corresponds to the general method category provided
in the legend.

summarizing the VPN traffic analysis techniques discussed
in the literature. This visualization organizes the surveyed
papers based on the primary feature category employed,
further detailing the specific method used and indicating its
broader methodological category through color-coding.

The mind map is structured hierarchically, originating from
the central theme of “VPN Traffic Classification™.
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o The first level branches out to the primary Feature
Categories identified across the surveyed literature (e.g.,
Flow statistics, Raw packet data, Time-series).

o Each feature category then connects to the individual
Papers (represented by their reference ID, e.g., ‘ [6]°, °
[7]°) that utilized features from that category. The color
of these ID nodes signifies the Method Category (e.g.,
Traditional ML, Deep Learning, Ensemble) employed in
that paper, according to the legend in the figure.

« Finally, each paper ID node links to the specific Method
(e.g., ‘'KNN+C4.5, ‘CNN*, ‘LSTM+Attention+HAN®)
reported in that study.

This visualization serves as a quick reference and structural
summary of the works that will be discussed in detail in
Section IV. It allows readers to rapidly identify papers associ-
ated with specific feature types, observe the methodological
categorization (via color) associated with those papers, and
see the precise algorithm or technique employed. While
the specific placement generated by the layout algorithm
primarily aims for readability and reduced edge crossing
rather than deep semantic clustering, the map effectively
illustrates the breadth of approaches within each feature
domain and the diversity of methods applied across the field.
It visually complements the subsequent analysis presented in
Section II by mapping the individual studies onto a structured
overview based on key technical characteristics before their
detailed examination.

Il. ANALYSIS

This section analyzes the surveyed literature across several
key dimensions, including dataset usage, feature engineering
trends, employed methodologies, and performance evolution,
to identify common practices, challenges, and potential future
directions in VPN traffic analysis.

A. DATASET USAGE PATTERNS
The choice of datasets significantly influences the evaluation,
comparability, and generalizability of research in VPN traffic
analysis. Fig. 2 presents a visualization of dataset usage
across the surveyed papers, revealing critical trends and
potential biases within the field. The percentages shown
represent the proportion of dataset mentions across all
surveyed papers, acknowledging that some studies utilize
multiple datasets.

The analysis highlights several key points regarding dataset
selection and its implications:

1) ISCXVPN2016 DOMINANCE AND LIMITATIONS

The ISCXVPN2016 dataset, introduced by the University of
New Brunswick’s Information Security Centre of Excellence
(ISCX) [17], [18], is one of the most widely used testbeds
for VPN traffic classification. It includes 14 traffic classes,
covering seven application types (Browsing, Email, Chat,
Streaming, File Transfer, VoIP, P2P), each recorded under
both unencrypted and VPN-encrypted conditions. The dataset
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USBVPN2022
2.9%
IDs: [35]
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[26]

ISCXVPN2016
70.6%

IDs: [18], [20], [23], [24], [26]

[32], [33], [34], [36], [37]

[38], [39], [40], [41], [42]

[43], [44], [45], [46], [47]

[48], [49], [50], [52]

FIGURE 2. Distribution of datasets used in VPN traffic analysis research.
Each slice represents the percentage of total dataset mentions across all
papers. Paper reference IDs associated with each dataset mention are
listed.

was created using real applications such as Skype for
Voice over IP (VoIP), BitTorrent for P2P, and YouTube for
streaming, with users “Alice” and “Bob” generating traffic
both with and without a commercial OpenVPN (UDP mode)
connection. The dataset consists of Packet capture files (pcap)
(raw packet captures) and CSV files (flow-based features),
totaling 28 GB of data.

The ISCXVPN2016 dataset is overwhelmingly the most
prevalent benchmark, used by 24 out of 30 unique papers in
this survey. This accounts for 70.6% of all dataset mentions
across the papers (the 30 unique papers we survey utilize
a total number of 34 datasets). Its widespread adoption
has established a valuable common evaluation framework,
enabling more direct performance comparisons between
different classification techniques. However, while fostering
comparability, this heavy reliance raises concerns about
potential overfitting to its specific traffic patterns and the
dataset’s age relative to the rapid evolution of VPNs.

Despite its widespread use, researchers have identified
several inconsistencies in the ISCXVPN2016 dataset that
raise concerns about its suitability for benchmarking VPN
detection models. Jorgensen et al. [19] highlighted that the
dataset contains unencrypted payload within traffic labeled
as VPN. For instance, in the ICQ Chat VPN capture,
plaintext chat messages were found, suggesting that either the
network tap was placed before encryption or certain packets
were not encrypted at all. Additionally, some VPN-labeled
captures contained multiple concurrent connections rather
than a single VPN tunnel, further affecting data consistency.
Similarly, Shapira et al. [20] noted that chat traffic lacks
diversity, prompting them to supplement the dataset with
additional real-world traffic samples. They also identified cat-
egorization inconsistencies, where background traffic was not
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properly filtered, potentially impacting classification accu-
racy. Furthermore, the dataset was captured in a controlled
lab environment, rather than a live ISP network, limiting
its generalizability. The exclusive use of OpenVPN in UDP
mode may bias classification models toward recognizing
OpenVPN-specific patterns rather than detecting VPNs in a
broader context.

These discrepancies have serious implications, methods
leveraging payload inspection (e.g., DPI, certain deep packet
approaches [21]) may gain an unfair advantage from unen-
crypted content, while methods relying on flow-level features
may be skewed by the presence of multiple connections
within a single capture file. Consequently, performance
results reported on ISCXVPN2016, especially for encrypted
traffic scenarios, must be interpreted with significant caution.
Researchers using this dataset should avoid assuming payload
encryption and consider post-processing flow data or replay-
ing traffic through a VPN to ensure evaluation validity for
tunnel-based analysis.

2) USE OF PRIVATE DATASETS

Representing 17.6% of mentions (used by 6 papers, e.g., [20],
[22], [23], [24], [25], [26]), private datasets allow researchers
to investigate specific scenarios or newer VPNs. However,
their inherent inaccessibility severely hinders reproducibility
and cross-study comparison, representing a significant barrier
to validating and building upon prior work.

3) EMERGENCE OF NEWER PUBLIC DATASETS
To address the need for more diverse and up-to-date data,
several newer datasets have been introduced.

MIT Lincoln Laboratory released the VPN Non-VPN Net-
work Application Traffic (VNAT) dataset in 2022 [19], [27].
This dataset consists of traffic from 10 popular applications
(Netflix, YouTube, Vimeo for streaming; Zoiper VoIP; Skype
chat; SSH/RDP for remote access; SFTP, rsync, SCP for
file transfer, etc.), each captured in two conditions: raw
(non-VPN) and encrypted through OpenVPN. The collection
covers about 33,700 flows (272 hours of traffic) across
five broad categories (Streaming, VoIP, Chat, Command &
Control, File Transfer). Importantly, MIT’s dataset provides
not just raw pcaps but also prepared feature sets, including
wavelet-based features and TLS metadata features, shared
in ready-to-use data frames. It is fully public and aimed
at improving reproducible research, which was previously
hindered by data scarcity. The MIT dataset is more recent
and includes some mobile and web-based apps, reflecting
modern traffic mixes. The presence of both encrypted and
unencrypted versions of the same traffic allows testing
application classifiers in ideal vs encrypted scenarios.

However, the dataset was generated in a synthetic lab
environment, which limits its realism. It includes only a single
VPN protocol (OpenVPN), failing to represent the broader
protocol diversity, and lacks background noise typically
present in real-world settings.
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The USBVPN2022 dataset [28], [29] contains network
traffic collected from six VPN protocols: PPTP, L2TP,
L2TP-IPsec, SSTP, OpenVPN, and WireGuard. It includes
both VPN and non-VPN traffic types across a variety of
application categories, such as web browsing, email, VoIP,
streaming, and SSH. The traffic was generated in a controlled
setup using virtual machines and routers, ensuring consistent
labeling and environment control. Each traffic flow is stored
in JSON format and includes detailed per-flow and per-packet
attributes. The dataset captures complete session behavior,
including both VPN handshake phases and continuous com-
munication, making it suitable for multi-task classification
tasks such as VPN detection, protocol identification, and
application-level analysis.

Still, it shares common limitations of synthetic datasets,
such as the absence of spontaneous user behavior and network
noise. It also includes variable bitrate (VBR) traffic like video
streams, which can introduce inconsistencies in flow patterns
and affect result reproducibility across models.

Dalhousie NIMSLabVPN2024 Dataset [30], [31], publicly
available on IEEE DataPort. It comprises labeled encrypted
traffic generated by five widely used applications, Slack,
TikTok, Twitch, Chrome, and Google Drive, spanning four
service categories: messaging, streaming, browsing, and
cloud storage. The traffic was captured using Cloudflare
WARP VPN across two computing platforms (MacBook
and Redmi smartphone) and two network environments
(campus enterprise Wi-Fi and home personal Wi-Fi). For
each application and setup, VPN and non-VPN traffic
were collected at five different times throughout the
day to capture temporal variability. Rather than provid-
ing raw packet capture (pcap) files, the dataset consists
of flow-level records extracted using Tranalyzer, which
include over 70 statistical metadata features per flow.
This flow-based structure makes the dataset lightweight,
privacy-conscious, and directly usable for machine learn-
ing tasks. It enables reproducible evaluation, comparative
benchmarking, and supports further research in encrypted
VPN traffic classification across diverse platforms and
conditions.

While the NIMSLabVPN2024 dataset is valuable for
VPN traffic analysis, it has several limitations that may
affect its generalizability. It includes traffic from only five
applications,Slack, TikTok, Twitch, Chrome, and Google
Drive,across four service categories, limiting the diversity
of traffic behaviors. All traffic was generated using scripted
interactions, which ensures consistency but may not reflect
the complexity of real user behavior. Data was collected
on only two devices, a MacBook and a Redmi smartphone,
and across two network environments, restricting variation
in hardware and network conditions. The dataset provides
only flow-level data extracted via Tranalyzer, without raw
pcap files, which prevents packet-level inspection and limits
certain types of analysis. Moreover, all VPN traffic was
routed exclusively through Cloudflare WARP, which means
the dataset does not capture performance or traffic pattern

VOLUME 13, 2025

differences across other VPN providers. These constraints
should be considered when applying or generalizing findings
from this dataset to real-world scenarios.

Together, these datasets address several issues found in
earlier benchmarks, including lack of protocol diversity
and outdated traffic types. They represent a step forward
in public dataset availability for VPN research. While
current adoption rates remain modest, 5.9% for VNAT,
2.9% for USBVPN2022 and 2.9% for NIMSLabVPN2024,
this is likely due to their recent release rather than a
reflection of their utility. Their controlled environments
ensure consistency but reduce realism, and each presents
protocol or behavioral limitations that future work should
address. With increased awareness and evaluation in broader
contexts, these three datasets are well-positioned to support
more rigorous, reproducible experimentation in VPN traffic
classification.

Beyond data integrity, consistent and unambiguous catego-
rization of traffic within datasets presents another challenge.
For instance, traffic like Skype video calls in ISCXVPN2016
could arguably fit multiple categories (e.g., VoIP, Video
Streaming, potentially even Web), highlighting the difficulty
in creating universally accepted ground truth labels for
application and category identification tasks.

In conclusion, while ISCXVPN2016 has served as a
unifying benchmark, critical data integrity issues necessitate
extreme caution in interpreting results derived from it,
particularly for methods analyzing encrypted payloads or
flow characteristics. The field urgently requires thoroughly
validated, diverse, and publicly accessible datasets, alongside
clear guidelines for their use and interpretation, to ensure
the continued progress and reliability of VPN traffic analysis
research.

B. TEMPORAL EVOLUTION OF VPN TRAFFIC ANALYSIS
Fig. 3 and Fig. 4 visualize the temporal evolution of feature
representation techniques and classification methodologies,
respectively, in VPN traffic analysis research surveyed
from 2016 to 2025. These stacked bar plots illustrate the
proportion of papers employing each category per year,
revealing shifts in research focus and highlighting dominant
and emerging trends. Note that the number of surveyed
papers per year varies, with lower counts in the earlier years
(2016-2021), making percentage trends potentially more
volatile during that period compared to the more recent years
(2022-2025).

1) FEATURE REPRESENTATION TRENDS

Fig. 3 shows a clear diversification in feature engineering
over time. Flow statistics features [18], [24], [25], [32],
[33], [34], [35], [36] represent the most traditional approach
and exhibit a sustained presence across the entire period.
While consistently used, their relative proportion fluctuates,
indicating they remain a foundational but not exclusive
choice.
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FIGURE 3. Evolution of feature representation approaches in VPN traffic analysis research (2016-2025). The y-axis shows
the proportion of papers using each feature category per year, calculated based on the total number of unique papers

published in that year.
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FIGURE 4. Evolution of classification methodologies in VPN traffic analysis research (2016-2025). The y-axis shows the
proportion of papers using each method category per year, calculated based on the total number of unique papers

published in that year.

Features derived directly from Raw packet data [37], [38],
[39], [40], [41], [42], [43], [44], [45], often leveraged by
deep learning models, gained significant traction starting
in 2017 and constitute a major focus in recent years
(2024-2025).

Time-series features [23], [26], [46], [47], capturing the
temporal dynamics of traffic, emerged around 2020 and
appear consistently in subsequent years, often used with
recurrent or attention-based neural networks.

More specialized representations like Image-based fea-
tures [20], [48] (treating traffic as images for CNNs), Graph-
based features [49], [50] (modeling traffic flows or packets
as graphs for GNNs), Wavelet-based features [51] (for time-
frequency analysis), and automated Feature learning [52]
using techniques like autoencoders have appeared more
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recently, showcasing ongoing innovation in data representa-
tion.

Hybrid approaches [19], [22], combining multiple feature
types, also emerge, particularly in later years, suggesting
efforts to capture complementary information.

Overall, the trend moves from reliance on statistical
summaries towards utilizing richer, often less processed data
representations (raw packets, time-series, graphs) that allow
more complex models to potentially uncover deeper patterns,
though flow statistics remain a viable option.

2) CLASSIFICATION METHODOLOGY TRENDS

Fig. 4 illustrates the adoption of different classification
paradigms. Traditional ML algorithms (e.g., Support Vector
Machines (SVM), Random Fores (RF), k-Nearest Neighbors
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(KNN), C4.5 a Decision Tree algorithm (DT), Extreme
Gradient Boosting (XGBoost) [18], [22], [24], [31], [33],
[35], [36], [51] show continuous usage throughout the
surveyed period, indicating their enduring utility, sometimes
enhanced by sophisticated feature engineering or feature
selection techniques.

Deep Learning [19], [20], [26], [37], [38], [39], [40], [41],
[42], [45], [46], [48] experienced a rapid rise starting around
2017 and has become a dominant approach, encompassing
various architectures like CNNs, Long Short-Term Memory
(LSTMs)/Gated Recurrent Unit (GRUs), autoencoders, and
attention mechanisms, often applied to raw packet or time-
series data.

Ensemble methods [32], [34], [47], which combine pre-
dictions from multiple base classifiers (either traditional
ML or DL), appear periodically, often aiming for improved
robustness and accuracy.

Newer paradigms have emerged recently, including Graph
Neural Networks [49], [50] (specifically for graph-based
features), Language model-based approaches [43], [44]
(treating packet sequences like text), Semi-Supervised learn-
ing [23], [52] (leveraging unlabeled data), and Heuristic
methods [25]. These represent specialized or cutting-edge
techniques applied to VPN analysis.

The trend clearly shows a shift towards Deep Learning,
but the persistence of Traditional ML and the emer-
gence of diverse specialized techniques suggest the field
employs a range of methodologies tailored to specific data
representations and research goals.

3) SYNERGIES AND CO-EVOLUTION

The concurrent evolution of features and methods is not
coincidental. The rise of Deep Learning is strongly correlated
with the increased use of raw packet data and time-series
features, which these models are well-suited to process
end-to-end. Similarly, the appearance of Graph Neural
Networks directly corresponds to the adoption of graph-based
feature representations. Conversely, sophisticated feature
engineering (e.g., wavelets) can enhance the performance
of Traditional ML models. This interplay underscores
that advancements often occur at the intersection of data
representation and model architecture. Continued progress
likely requires innovation on both fronts simultaneously.

C. PERFORMANCE COMPARISON ANALYSIS

To provide a comparative overview of capabilities across
the surveyed studies, Fig. 5 visualizes representative perfor-
mance scores for different VPN traffic classification tasks.
We complement Fig. 5 with Table 2, which presents the
same performance data in tabular form for easier reference
and direct comparison. Understanding the methodology
behind this visualization is key to its interpretation. For
each surveyed paper and classification task (binary, appli-
cation, category, specific VPN), we curated the data as
follows: if a study reported results using multiple metrics
or configurations, we selected the single highest reported
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score for inclusion, aiming to represent the peak capability
demonstrated by that approach. Furthermore, if a study
provided separate scores for VPN and non-VPN traffic using
the same metric (e.g., binary precision), these two scores were
averaged to yield a single, balanced performance indicator
for that metric type within the study; if only one (VPN or
non-VPN) or a combined score was reported, that single
value was used. This curation approach, while simplifying
the visualization and highlighting achieved potential, means
the plot represents best-case or averaged scenarios rather
than the full range of performance reported within individual
studies. Additionally, one study [25] reporting a False Posi-
tive Rate significantly outside the range of other metrics was
excluded to maintain visual clarity of the high-performance
region.

Analysis of these curated performance results reveals

several key observations:

o Metric Heterogeneity: Despite selecting the highest
score per study, the choice of which metric was reported
as highest varies. Accuracy and Fl-score are most
common, with some instances of Precision (e.g., [18],
[36], [37]). This underlying heterogeneity in reporting
still complicates direct comparisons, as the “‘best’ score
might be measured differently across papers. The lack
of universally reported metrics like Recall further limits
comprehensive comparison.

o Performance Variation by Task: Even considering
best/averaged scores, performance varies significantly
by task complexity. Binary VPN vs. non-VPN classifi-
cation consistently achieves very high scores (often >
95%, e.g., [201, [24], [34], [35], [36], [37], [40], [43],
[45], [46], [47], [51], [52]), suggesting high efficacy
is attainable for this task. Application and Category
identification exhibit wider performance ranges (75% —
99.9% for Application, e.g., [18], [20], [26], [31],
[38], [42], [43], [49], and 78% — 99.9% for Category,
e.g., [19], [20], [23], [26], [32], [35], [36], [37], [38],
(391, [40], [41], [42], [43], [44], [46], [47], [49],
[50]), reflecting their inherent difficulty. Specific VPN
identification results [22], [35] are limited but show high
potential (94% — 99%).

e Methodological Impact: Cross-referencing these top/
averaged scores suggests Deep Learning (DL)
approaches frequently achieve the highest reported
performance, especially for Application and Category
tasks (e.g., [20], [26], [37], [38], [39], [40], [41], [42],
[43], [44], [46], [47], [49], [50]). However, Traditional
ML (e.g., [35], [36], [51]) and Ensemble methods
(e.g., [34], [47]) also reach near-optimal performance
in several cases, particularly for Binary classification,
indicating their continued relevance when potentially
combined with effective feature engineering.

o Influence of Datasets: The majority of results shown
are on ISCXVPN2016. While high peak performance is
achieved on other datasets (e.g., [19], [22], [35], [51]),
direct comparison remains challenging. Importantly, the
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TABLE 2. Performance comparison of VPN detection methods across different datasets and classification tasks.

Citation | Dataset | Binary | Application | Category |  Specific VPN
‘ ‘ Metric ‘ Score ‘ Metric ‘ Score ‘ Metric ‘ Score ‘ Metric Score
Draper-Gil et al. [18] ISCXVPN2016 Precision 89.801 Precision 86.5071 - - - -
Jorgensen et al. [19] VNAT - - — - F1-score 98.00 - —
Shapira et al. [20] Private dataset, ISCXVPN2016 | Accuracy | 98.35t | Accuracy | 99.851 | Accuracy | 91.707 - -
Gao et al. [22] Private dataset - - — - - — Accuracy 99.12
Iliyasu et al. [23] Private dataset, ISCXVPN2016 - - - - Accuracy 78.00 - -
Li et al. [24] Private dataset, ISCXVPN2016 Accuracy 95.32 — - - — - —
Hanlon et al. [25] Private dataset FPR 29.00 - - - - - -
Kotak et al. [26] Private dataset, ISCXVPN2016 — - Accuracy 89.951 Accuracy 95.55t - —
Liu et al. [31] NIMSLabVPN2024 Fl-score 90.00 F1-score 75.00 - - - -
Caicedo-Muioz et al. [32] ISCXVPN2016 — - - - Accuracy 90.70t - —
Al-Fayoumi e al. [33] ISCXVPN2016 Fl-score 94.50% - - - - - -
Almomani [34] ISCXVPN2016 Fl-score 98.80 - - - - - -
Fesl et al. [35] USBVPN2022 Fl-score 99.90 - - Accuracy 95.30 Accuracy 94.02
Gudla et al. [36] ISCXVPN2016 Precision 98.00 - - Precision 99.00 - -
Wang et al. [37] ISCXVPN2016 Precision 99.95% - - Precision 88.907 - -
Lotfollahi et al. [38] ISCXVPN2016 - - Fl-score 98.00 Fl-score 93.00 - -
Zeng et al. [39] ISCXVPN2016 — — — — F1-score 99.87 - —
Cui et al. [40] ISCXVPN2016 Accuracy | 99.80t - - Accuracy | 99.85% - -
Seydali ef al. [41] ISCXVPN2016 - - — - Fl-score 96.60 - —
Chai et al. [42] ISCXVPN2016 - - Fl-score 95.44 Fl-score 95.81 - -
Park et al. [43] ISCXVPN2016 Fl-score 98.881 Fl-score 96.01 Fl-score 96.61 - —
Luo et al. [44] ISCXVPN2016 - - - - Fl-score 98.50 - -
Tawfeeq et al. [45] ISCXVPN2016 Accuracy 99.58% - — - - - -
Yao et al. [46] ISCXVPN2016 Accuracy 99.70 - - Accuracy 91.20 - -
Abbas et al. [47] ISCXVPN2016 Fl-score 99.00 - - Accuracy 96.00 - —
Liu et al. [48] ISCXVPN2016 Accuracy 90.00 - - - - - -
Huoh et al. [49] ISCXVPN2016 — - Accuracy 89.6071 Accuracy 90.75t - —
Okonkwo et al. [50] ISCXVPN2016 - - - - Accuracy | 92.28% - -
Razooqi et al. [51] VNAT Accuracy 99.00 - - - - - -
Lin et al. [52] ISCXVPN2016 Accuracy 98.40 - - Fl-score 87.70% - -

f Single balanced score obtained via averaging VPN and non-VPN scores.

high scores reported on ISCXVPN2016 must be viewed
critically, considering not only the data curation method
used for this plot but also the dataset integrity issues

discussed in Section II-A.
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In summary, while the curated performance data indi-

cates significant capabilities, particularly in binary VPN
detection, the variability in finer-grained tasks persists. The
visualization highlights peak or averaged performance, and
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interpreting these results requires acknowledging the data
selection methodology, the heterogeneity of reported metrics,
and the critical caveats surrounding the most commonly used
benchmark dataset ISCXVPN2016).

D. ACCURACY TRENDS ON ISCXVPN2016

Given the widespread use of the ISCXVPN2016 dataset
(Section II-A), we examine accuracy trends across three
common tasks: binary classification (7 studies), category
classification (9 studies), and application classification (3
studies). Accuracy was the most consistently reported
metric. No studies reported accuracy for the “specific VPN
identification™ task.

Fig. 6 shows the yearly median accuracy for each task
from 2016 to 2025. Median values are used to reduce
the impact of outliers, especially in years with fewer data
points. From the figure, we find that binary classification
consistently yields the highest accuracy, often exceeding 98%
in recent years (2021-2025). Category classification typically
ranges from 78% to 99.8%. Application classification
achieved its highest median accuracy of 99.8% in 2021, but
lower scores in other years.

Binary classification accuracy remains consistently high
throughout the period, with minimal variation. Category
classification shows improvement over time, with some fluc-
tuation but generally increasing performance. Application
classification exhibits the most variability, with a peak in
2021 and a drop in subsequent years, indicating higher
sensitivity to task setup and methodology.

Lastly, high median scores for category and application
tasks often coincide with deep learning-based studies (e.g.,
[20], [26], [40], [46], [49], [50]). At the same time, ensemble
and traditional ML models also contribute significantly to
binary and category task performance (e.g., [24], [47]),
demonstrating the ongoing value of well-engineered non-DL
approaches.

These trends suggest binary classification performance
on ISCXVPN2016 may be nearing saturation. In contrast,
category and application tasks still present variability and
opportunities for further improvement.

IIl. IMPLICATIONS AND APPLICATIONS

Despite the challenges, VPN traffic analysis techniques offer
significant implications for various network management and
security domains.

A. NETWORK SECURITY AND POLICY ENFORCEMENT
The ability to reliably detect VPN usage is fundamental
for enforcing organizational security policies, particularly in
environments requiring visibility into network connections
(e.g., restricting unsanctioned encrypted tunnels or ensuring
traffic flows through mandated security gateways). The high
accuracy achieved for binary classification (Section II-D)
suggests deployable solutions for basic VPN detection are
feasible.
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Identifying specific applications or traffic categories
within VPN tunnels, while currently more challenging
(Section II-C), offers deeper security insights. It enables
detection of policy violations (e.g., unauthorized file sharing),
identification of potential covert channels used by malware
(e.g., C&C communication over seemingly legitimate VPNs),
or monitoring for data exfiltration attempts. The varying
performance seen in application/category classification high-
lights the need for context-specific deployment; while not
perfect, current methods might still provide valuable signals
for threat hunting when correlated with other security data.

The capability to identify specific VPN services or proto-
cols (represented by the ““specific VPN task, e.g., [22], [35])
could enable risk-based policy enforcement, differentiating
between corporate-sanctioned VPNs and potentially less
trusted consumer services. However, the limited research and
variable performance in this specific task indicate it requires
further development for reliable application.

Furthermore, temporal analysis methods (e.g., using time-
series features [26], [46]) could potentially detect anomalous
VPN usage patterns deviating from normal user behavior,
aiding in the detection of compromised accounts or insider
threats, although this remains an emerging application area.

B. QUALITY OF SERVICE (QOS) MANAGEMENT

VPN classification allows network operators to implement
more granular QoS policies, moving beyond simple port- or
IP-based rules which are ineffective for encrypted tunnels.
By identifying VPN traffic and potentially its internal appli-
cation category, operators can prioritize latency-sensitive
applications (VoIP, video conferencing) or manage band-
width consumption for bulk traffic (file transfers, streaming)
even within VPNs.

The improving median accuracy for category classifica-
tion on ISCXVPN2016 (Section II-D) suggests that this
level of granularity is becoming increasingly practical for
QoS differentiation. Recognizing broad categories such as
“Streaming” or “Chat’ often provides sufficient information
for effective traffic prioritization, without requiring precise
per-application classification.

However, the computational cost of accurate real-time
classification remains a significant consideration, as noted
in Section V-A. High-throughput environments or resource-
limited network edges may struggle to implement complex
DL-based classifiers at line rate. This highlights the need
for continued research into efficient yet accurate models
or hardware acceleration techniques to make sophisticated
VPN-aware QoS feasible in diverse deployment scenarios.

C. PRIVACY AND ETHICAL CONSIDERATIONS

The development and deployment of VPN traffic analysis
techniques inherently intersect with user privacy expectations
and ethical considerations. While network operators and
organizations have legitimate interests in security, compli-
ance, and performance management, these must be balanced
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against the privacy afforded by VPNs, which are often used
specifically to shield activities from monitoring.

The increasing accuracy of classification methods, partic-
ularly fine-grained application/category identification (e.g.,
achieving high accuracy in studies like [20], [40]), intensifies
this tension. The capability to infer specific user activities
within an encrypted tunnel raises significant privacy con-
cerns. Ethical deployment necessitates careful consideration
of proportionality (is the level of monitoring necessary for the
stated goal?), purpose limitation (using the information only
for legitimate, predefined purposes), transparency (informing
users about monitoring practices), and data minimization
(collecting/analyzing only the necessary information).

Legal frameworks like GDPR in Europe impose strict
regulations on processing network data that could be linked to
individuals, requiring clear legal bases and robust safeguards.
Deploying VPN analysis tools, especially those inferring
application usage, requires careful legal and ethical review
within specific jurisdictional contexts.

Furthermore, widespread or overly aggressive VPN detec-
tion/classification could have a chilling effect on the legiti-
mate use of VPN for security (e.g., on public Wi-Fi), access-
ing geo-restricted content legally, or protecting sensitive
communications. Research and deployment practices should
ideally strive for solutions that meet security/operational
needs with the minimum possible impact on user privacy and
the beneficial uses of VPN technology.

IV. REVIEW OF CLASSIFICATION TECHNIQUES

VPN traffic classification has prompted the development
of diverse techniques, ranging from traditional machine
learning algorithms to advanced deep learning and semi-
supervised methods. This survey reviews the major categories
of existing approaches. The categorization adopted here is
one of several possible schemes, structured primarily around
methodological distinctions,namely, traditional supervised
learning, deep learning, and other emerging paradigms.
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Certain approaches, such as those involving language models,
may be considered a subset of deep learning. However,
we treat them separately when their architectures or training
strategies justify distinct consideration. The goal is to provide
a clear, practical organization of the literature without
implying a definitive or exhaustive taxonomy.

A. TRADITIONAL SUPERVISED LEARNING

Traditional supervised learning has played a foundational
role in early VPN traffic classification research. These
methods typically rely on statistical, payload-independent
flow features such as packet size distributions, inter-arrival
times, and flow durations. Classical models like DT, k-NN,
Naive Bayes, and SVM have been widely used to perform
binary or multi-class classification of encrypted traffic.
The following studies highlight the breadth of supervised
approaches, their evolving feature engineering strategies,
and comparative effectiveness in both legacy and modern
datasets.

Draper-Gil et al. [18] proposed a supervised learning
method based solely on time-related flow features, including
inter-arrival time, duration, and idle/active time. Their
approach used C4.5 and k-NN classifiers to detect VPN
traffic and classify the category of encrypted applications
such as VoIP, chat, and streaming. Achieving over 80%
accuracy in both detection and classification, their results
demonstrated that simple, content-independent features can
effectively characterize encrypted flows.

However, Gao et al. [22] identified limitations in relying
exclusively on time or entropy-based features, particularly
when handling obfuscated VPN traffic. To address this,
they introduced a two-stage classification framework using
Sample Entropy Fingerprints and Payload Length Sequence
(PLS). While entropy captured randomness in packet pay-
loads, it struggled with obfuscation. PLS, which records
bidirectional payload length sequences, proved more robust
and protocol-specific. Models trained on PLS features,
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especially using t RF, achieved up to 98.7% Fl-score,
outperforming entropy-only methods and traditional DPI
tools.

Building on time-based analysis, Al-Fayoumi et al. [33]
developed a flow-based classification model using RF to
distinguish VPN from non-VPN traffic. Their feature set
included flow duration, inter-arrival times in both directions,
and flow throughput. To enhance efficiency and model inter-
pretability, they applied feature selection methods such as
Pearson Correlation and Genetic Algorithms (GA), achieving
over 95% accuracy even after dimensionality reduction. This
made their approach practical for real-time deployment.

In contrast, Li et al. [24] focused on tunneling protocol
characteristics (TPC) rather than conventional time features.
They proposed four statistical feature categories, including
two novel entropy-based metrics designed to capture the
structural effects of VPN encapsulation. Their model, trained
with RF, achieved 99.02% accuracy on real-world VPN
traffic and 95.32% on the ISCXVPN2016 dataset. This
approach combined high accuracy with interpretability,
avoiding the computational demands of deep learning.

To address dataset limitations, Fesl et al. [35] introduced
USBVPN2022, a custom dataset comprising six VPN
protocols and multiple traffic types. They evaluated several
models,RF, XGBoost, MLP, and LSTM,across tasks such
as VPN detection, protocol classification, and encrypted
traffic identification. Their framework achieved up to 99.9%
accuracy in VPN detection and over 94% in encrypted traffic
classification. Importantly, they incorporated obfuscation
techniques to assess model robustness and inform the devel-
opment of stealth VPNs resistant to ML-based detection.

Building on the need for richer datasets and reliable
feature extraction, Liu et al. [31] introduce a new dataset
and use statistical flow features extracted with Tranalyzer,
a high-performance network flow analyzer. After removing
protocol-specific and constant fields to avoid model bias,
they retained 71 features for laptops and 76 for smart-
phones. These features include flow duration, packet counts,
byte statistics, and inter-arrival times,suitable for analyzing
encrypted traffic without deep packet inspection. The authors
applied three traditional machine learning models: C4.5 DT,
RF, and Lasso Regression. These models were trained on their
dataset for three classification tasks: binary classification
(VPN vs. non-VPN), application classification (e.g., Slack,
Chrome), and category-level classification (e.g., messaging,
streaming, browsing, cloud storage). RF achieved the best
performance, with Fl-scores reaching, in some categories,
100% for binary classification and over 90% for application
classification.

While prior work focused on accuracy and feature design,
Gudla et al. [36] emphasized efficiency and scalability. They
proposed TCC, a time-constrained classification framework
targeting both VPN and non-VPN encrypted traffic using
the ISCXVPN2016 dataset. Their hybrid dimensionality
reduction method, combining autoencoders with Linear
Discriminant Analysis (LDA), reduced feature space while
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maintaining accuracy. Among the tested models, a DT with
autoencoder preprocessing achieved perfect Fl-scores in
several classes. Compared to CNN and LSTM, their approach
offered faster and more consistent performance, well-suited
for real-time systems.

Finally, Razooqi et al. [S1] explored signal processing
techniques by applying Discrete Wavelet Transform (DWT)
to packet size sequences. They extracted statistical features
from both traffic directions at decomposition levels 5 and 12.
RF models trained on these wavelet-based features achieved
up to 99% Fl-score. Although higher decomposition levels
slightly improved accuracy, they also increased dimension-
ality. The study showed strong generalization across traffic
types like chat, VoIP, and file transfer, highlighting the ability
of wavelet features to capture fine-grained and coarse traffic
behaviors.

B. ENSEMBLE LEARNING

Ensemble learning methods have gained prominence in VPN
traffic classification due to their ability to combine multi-
ple models and improve generalization. These approaches
leverage the strengths of individual classifiers while miti-
gating their weaknesses, often resulting in higher accuracy
and robustness. The following studies demonstrate various
ensemble strategies,bagging, stacking, and boosting,each
tailored to enhance performance in different classification
scenarios using time-based and statistical features.

Caicedo-Mufioz et al. [32] proposed a QoS-Classifier
that uses time-related features to distinguish VPN from
non-VPN traffic. The approach integrates a two-stage pro-
cess,classification and marking,aligned with Per-Hop Behav-
ior (PHB) in DiffServ architectures. The authors created a
QoS-labeled dataset based on known VPN traffic and evalu-
ated several machine learning algorithms. Bagging achieved
the highest classification accuracy, reaching 94.42%. Their
findings confirm the effectiveness of time-based features
in analyzing encrypted traffic and demonstrate how PHB
labeling can enhance classification accuracy while supporting
network-level QoS policies for real-time traffic management.

While CaicedoMuoz focused on bagging, Almomani [34]
introduced a stacking ensemble model combining REF,
Artificial Neural Networks (ANNs), and SVM as base
classifiers, with Logistic Regression (LR) serving as the
meta-learner. Their system was trained using 61 statistical
flow-level features such as duration, packet sizes, byte
rates, and header flags. Tested on the ISCXVPN2016
dataset, the stacking model achieved 99.3% classification
accuracy, outperforming all individual models. Notably, the
method operated without payload inspection, relying solely
on metadata features, which enhances its suitability for
encrypted traffic environments.

Expanding on ensemble diversity, Abbas et al. [47]
proposed a two-strategy ensemble framework using
boosting-based models such as Light Gradient Boosting
Machine (LGBM), XGBoost, and Categorical Boosting
(CatBoost), combined with thorough feature engineering and

132841



IEEE Access

Y. S. Razooqj, A. Pekar: VPN Traffic Analysis: A Survey on Detection and Application Identification

partitioning techniques. Their evaluation covered both binary
and multiclass classification tasks on the ISCXVPN2016
dataset. For multiclass application category-level classifica-
tion, XGBoost achieved 96.0% accuracy using 15-second
non-VPN traffic segments. In binary classification, AdaBoost
reached 93.1% accuracy. Their second strategy, which
included dataset merging, feature scaling via min-max
normalization, and stratified k-fold cross-validation, resulted
in a peak accuracy of 99.7% using LGBM, outperforming
prior approaches.

C. DEEP LEARNING

Deep learning has become a key enabler in encrypted VPN
traffic classification, offering automatic feature extraction
and high classification accuracy without the need for manual
engineering. Unlike traditional approaches that rely on
statistical or handcrafted features, deep neural networks
learn complex spatial, temporal, and hierarchical patterns
directly from raw or minimally processed traffic data. Various
architectures,including CNNs, RNNSs, attention mechanisms,
and hybrid models,have been applied to traffic sequences,
images, and signal representations to enhance performance,
generalizability, and robustness in real-world scenarios.

Wang et al. [37] proposed an end-to-end method using
one-dimensional convolutional neural networks (1D-CNN)
for classifying encrypted traffic, including VPN and non-
VPN flows. This model processes raw packet data directly,
removing the need for handcrafted features. Validated on the
ISCXVPN2016 dataset, the approach achieved significant
gains in accuracy, precision, and recall over traditional
machine learning baselines. The study found 1D-CNN
to outperform 2D-CNN due to its better alignment with
one-dimensional traffic sequences, confirming the effective-
ness of CNN-based models in encrypted traffic classification.

Building on this, Lotfollahi et al. [38] developed Deep
Packet, an end-to-end deep learning framework that inte-
grates stacked autoencoders and 1D-CNN for both applica-
tion and traffic category classification. Trained on the same
ISCXVPN2016 dataset, Deep Packet achieved a weighted
F1-score of 98% for application identification and 0.93 for
traffic category classification. Like the previous work,
it bypasses manual feature design, demonstrating scalability
and speed in processing raw packet-level data.

While Deep Packet focused on single-architecture models,
Zeng et al. [39] introduced Deep-Full-Range (DFR), a hybrid
framework that combines CNN, LSTM, and stacked autoen-
coders (SAE). DFR jointly captures spatial, temporal, and
coding-level features from raw traffic, enabling precise clas-
sification without using payload data or sensitive information.
Evaluated on the ISCXVPN2016 dataset, DFR achieved up to
99.85% accuracy, outperforming previous deep learning and
machine learning baselines in terms of Fl-score and storage
efficiency.

In contrast, Shapira et al. [20] presented FlowPic, which
transforms network flows into 2D histograms repre-
senting packet size and inter-arrival time. These visual
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representations are classified using CNNs, capturing both
structural and temporal aspects of VPN traffic. FlowPic
achieved over 99% accuracy on ISCXVPN2016 and ISCX
Tor datasets, generalizing well to unseen applications and
preserving privacy by avoiding payload analysis. The method
outperformed conventional feature-based and deep learning
models across multiple encrypted traffic scenarios.

Expanding on temporal modeling, Yao et al. [46] proposed
an attention-based deep learning framework using LSTM
and Hierarchical Attention Networks (HAN). By treating
flows as time-series and applying attention mechanisms,
the model identified critical packets and byte regions in
the sequence. On the ISCXVPN2016 dataset, the system
achieved 91.2% accuracy for a 12-class task, outperforming
CNN-based and traditional models. The results emphasized
the benefit of attention in capturing temporal relevance for
encrypted traffic.

Focusing on IoT-specific challenges, Liu et al. [48] intro-
duced a CNN-based classification system that incorporates
both spatial features (e.g., IPs, ports, flags) and temporal
metrics (e.g., delays, durations). These were encoded into
structured image representations and processed using CNNs.
The framework achieved 90% accuracy and 93.3% recall
while maintaining low latency and high throughput, making
it suitable for real-time IoT environments.

Meanwhile, Cui et al. [40] introduced AMAE, an inter-
pretable deep learning model combining attention mech-
anisms and autoencoders. Encrypted session-level traffic
was converted into 28 x28 grayscale images and processed
through spatial and channel attention layers to enhance
important byte-level patterns. The model achieved 99.69%
accuracy for VPN traffic and 100% for non-VPN traffic on
the ISCXVPN2016 dataset, outperforming CNN+RNN and
standard autoencoders. AMAE also provided interpretable
visualizations, addressing the lack of transparency in most
deep learning classifiers.

In a different direction, Jorgensen et al. [19] proposed
an extensible classification framework using wavelet-
transformed features and traditional flow statistics. Sta-
tionary Wavelet Transform (SWT) was applied to extract
frequency-domain features like wavelet energy and Shannon
entropy. These were input into a prototypical neural
network with uncertainty estimation via Mahalanobis
distance, enabling detection of out-of-distribution samples.
The approach enhanced adaptability and interpretability in
dynamic network environments.

To address scalability and deployment challenges,
Seydali et al. [41] developed a distributed deep learning
pipeline using Apache Kafka, Apache Spark Streaming,
and TensorFlow. The model combined 1D-CNN with
an attention-based Bidirectional Gated Recurrent Unit
(Bi-GRU) to capture both spatial and temporal features.
Evaluated on the ISCXVPN2016 dataset, the system
demonstrated up to 25% improvement in Fl-score under
scaling, showing effective performance in high-throughput,
real-time network scenarios.
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Focusing on packet-level representation, Chai et al. [42]
introduced Combo Packet, which uses CNNs with spatial
and channel attention to extract byte-level and contex-
titual features from packet sequences. Validated on the
ISCXVPN2016 dataset, the model achieved 97.04% and
97.13% accuracy in category and application classifi-
cation, respectively. Its emphasis on contextitual packet
relationships improved robustness to transmission variability,
outperforming state-of-the-art models.

For adversarial robustness, Tawfeeq et al. [45] proposed
a hybrid model combining EfficientNet-BO and BiLSTM,
trained with Projected Gradient Descent (PGD). This archi-
tecture processes variable-length raw packet sequences into
fixed-size vectors and resists network anomalies such as
delays and congestion. On the ISCXVPN2016 dataset,
the model reached 99.81% accuracy for normal and
99.35% for adversarial traffic, showing high robustness and
generalization.

Finally, Kotak et al. [26] introduced a time-series classi-
fication framework based on InceptionTime. Their model
used 1-second interval statistical features with a 60-second
sliding window, trained on a custom dataset from three
geographic regions. It achieved 93.8% accuracy for VPN
category-level and 86.5% for application-level classification.
The model also performed well on non-VPN and IoT
traffic, outperforming feature-based methods in handling
tunnel-encapsulated VPN flows.

D. GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have emerged as a
promising direction for encrypted VPN traffic classification,
offering a distinct shift from traditional sequential or grid-
based models. Instead of treating flows or packets as isolated
instances, GNNs model traffic as graphs where nodes repre-
sent packets or flows and edges encode temporal, structural,
or contextitual relationships. This graph-based perspective
allows GNNs to learn complex dependencies and interactions
across traffic elements, making them well-suited for handling
encrypted and variable-length traffic in dynamic network
environments.

Huoh et al. [49] proposed a GNN-based framework
that classifies encrypted VPN and non-VPN traffic using
flow-level input. Unlike conventional CNN or RNN archi-
tectures, their model processes raw bytes, temporal rela-
tionships, and metadata within a non-Euclidean graph
structure. The framework employs an encoder-core-decoder
design to learn feature representations from the graph
topology. Trained on the ISCXVPN2016 dataset, the
GNN outperformed CNN and LSTM baselines in both
category and application-type classification, demonstrat-
ing higher accuracy and Fl-scores. The study highlights
GNN’s flexibility in dealing with variable-length flows
and its robustness across both encrypted and unencrypted
data.

Building on this direction, Okonkwo et al. [50] introduced
a higher-order GNN that models individual traffic sessions
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as graphs with packets as nodes and sequential dependencies
as edges. This setup enables the model to capture both
local packet features and global structural patterns. Their
architecture includes five GNN layers with GraphConv
operations, batch normalization, and top-K pooling for effec-
tive representation learning and dimensionality reduction.
Evaluated on the ISCXVPN2016 and USTC-TFC datasets,
the model achieved 97.48% accuracy for VPN traffic and
87.07% for non-VPN traffic in category classification,
outperforming existing techniques. The study also analyzed
the impact of input truncation and adopted fixed-length graph
representations with stratified cross-validation to ensure
generalization.

E. LANGUAGE MODEL

Recent research has explored the application of pre-trained
language models to encrypted VPN traffic classification,
motivated by their strong performance in sequence mod-
eling and transfer learning. These models treat network
traffic as a form of structured textit, enabling the use
of architectures originally designed for natural language
processing. By leveraging models like Bidirectional Encoder
Representations from Transformers (BERT) and Text-to-Text
Transfer Transformer (TS5), these approaches can perform
multi-task learning (MTL), eliminate the need for manual
feature engineering, and generalize well with limited labeled
data.

Park et al. [43] introduced a Multi-Task Learning
(MTL) framework based on DistilBERT for encrypted
traffic classification. The model simultaneously addresses
three tasks: detecting encryption status (VPN vs. non-
VPN), identifying the application category (e.g., VoIP,
streaming), and classifying specific applications (e.g., Skype,
Gmail). Trained on the ISCXVPN2016 dataset, the model
uses hard parameter sharing to optimize training effi-
ciency and incorporates class and task weights to mitigate
imbalances. It achieved 99.29% accuracy for encryp-
tion detection, 97.38% for category -classification, and
96.89% for application-level classification. The results
demonstrate the effectiveness of MTL in capturing inter-
related traffic patterns while improving training speed and
robustness.

Building on the idea of traffic-as-text, Luo et al. [44]
proposed an approach using a fine-tuned TS5 model for
encrypted traffic classification. Their method converts traffic
data into a textual format suitable for language modeling
and applies transfer learning to fine-tune the T5 architecture.
Validated on the ISCXVPN2016 dataset, the model achieved
a weighted F1-score of 98%, outperforming baseline models
such as CNN, stacked autoencoders (SAE), and DeNeT-
Lang. It showed strong performance in classifying VPN
traffic types, including chat, VoIP, email, and streaming,
even with limited training data. The study highlights the
potential of language models for scalable and accurate
encrypted traffic classification without manual feature
extraction.
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F. SEMI-SUPERVISED LEARNING

Semi-supervised learning offers a practical solution for
encrypted VPN traffic classification in scenarios where
labeled data are scarce. These approaches combine the
strengths of supervised and unsupervised learning by lever-
aging a small labeled dataset alongside a larger pool of
unlabeled traffic. This is especially useful in encrypted
environments, where manual labeling is costly and limited
in scope. Recent work in this area has focused on generative
models, clustering-based frameworks, and self-training tech-
niques to enhance classification performance with minimal
supervision.

Iliyasu et al. [23] proposed a semi-supervised approach
using Deep Convolutional Generative Adversarial Networks
(DCGAN) to address the challenge of limited labeled data
in VPN traffic classification. Their model combines a small
number of labeled samples with synthetic data generated by a
GAN. Time-series features such as inter-arrival time, packet
length, and direction are transformed into pseudo-image
matrices for input to the classifier. Evaluated on the
ISCXVPN2016 and QUIC datasets, the model achieved 78%
and 89% accuracy, respectively, using only 10% labeled
data. It outperformed CNN and Multilayer Perceptron (MLP)
baselines on the QUIC dataset, showing strong potential for
real-world encrypted traffic analysis under data-constrained
conditions.

Complementing this, Lin et al. [52] introduced Sauce,
a semi-supervised model designed to reduce dependence on
labeled data while maintaining high performance in VPN
detection. The framework integrates an autoencoder for
unsupervised feature extraction with an auxiliary network
that uses pseudo-labels to guide clustering. Dimensionality
reduction is achieved through t-distributed Stochastic Neigh-
bor Embedding (t-SNE), followed by k-means clustering.
Sauce attained clustering accuracy of 98.4% on the VPN
dataset and 98.0% on the Tor dataset, using only 5% labeled
data. Compared to models requiring more supervision, Sauce
improves generalization and clustering stability through self-
training, offering a reliable alternative to fully supervised
classification.

G. HEURISTIC METHODS

Heuristic methods offer a rule-based alternative to
data-driven approaches for VPN traffic detection. These
techniques apply manually defined rules based on pro-
tocol behavior, timing patterns, or statistical properties,
enabling interpretable and computationally efficient detec-
tion. Although often less flexible than learning-based models,
heuristic approaches can deliver high precision in specific
use cases, especially when targeting well-defined protocol
anomalies or behaviors.

Hanlon et al. [25] proposed a protocol-agnostic VPN
detection method based on heuristic analysis of encapsulated
Transmission Control Protocol (TCP) behavior in UDP tun-
nels. Instead of using machine learning, the method relies on
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Request for Comments (RFC)-defined TCP traits, including
the presence of a Three-Way Handshake (3WHS), timely
acknowledgments within 500 milliseconds (500msACK),
and acknowledgments after receiving twice the Remote
Maximum Segment size (2xRMSS). These traits serve
as indicators of TCP encapsulation. Evaluated on real-
world traffic, the approach achieved a false positive rate
as low as 0.11%, outperforming many machine learning
models. It proved particularly effective for identifying file
transfer and SSH traffic, though it was less accurate for
multiplexed web traffic. The study underscores the potential
of protocol behavior analysis as a lightweight and effective
VPN detection strategy, revealing weaknesses in existing
tunneling practices.

V. CHALLENGES AND LIMITATIONS

Despite significant advancements, VPN traffic analysis faces
persistent technical hurdles, data limitations, and method-
ological inconsistencies that impede further progress and
reliable deployment.

A. TECHNICAL CHALLENGES

The core technical challenges stem primarily from encryp-
tion, obfuscation, and the operational constraints of real-
world networks.

o Encryption and Protocol Evolution: The fundamental
difficulty lies in classifying traffic whose content is
intentionally obscured by encryption. While current
methods successfully exploit metadata (flow statistics,
packet timing/size), the continuous evolution of VPN
protocols (e.g., WireGuard gaining traction) and encryp-
tion standards (like TLS 1.3 reducing handshake infor-
mation) constantly threatens the longevity of existing
feature-based approaches. Methods relying on specific
protocol artifacts are particularly vulnerable.

o Obfuscation and Adversarial Tactics: Recognizing the
effectiveness of traffic analysis, VPN services and pri-
vacy tools increasingly employ obfuscation techniques
like traffic shaping, padding, and randomized timing
to mimic benign traffic (e.g., standard HTTPS). These
techniques directly attack the statistical and temporal
features used by many classifiers. Our survey reveals a
significant gap in addressing these adversarial tactics,
with only limited work [45] explicitly incorporating
adversarial robustness into model training. This arms
race necessitates research into features and models
inherently resilient to common obfuscation strategies.

o Scalability and Real-time Performance: The compu-
tational demands of sophisticated methods, especially
Deep Learning models operating on raw packet or
fine-grained temporal data, pose practical challenges
for real-time, line-rate deployment on high-speed
networks or resource-constrained edge devices. Most
surveyed studies focus primarily on classification accu-
racy, often neglecting crucial performance metrics like
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inference latency, throughput, and resource utiliza-
tion (CPU/memory). This accuracy-efficiency trade-off
remains a critical, underexplored area essential for
translating research into deployable solutions.

o Distinguishing Encrypted Traffic Types: Differentiating
VPN traffic from other ubiquitous encrypted flows
(HTTPS, DoH/DoT, QUIC, SSH, secure messaging) is
increasingly complex. As more internet traffic becomes
encrypted by default, relying solely on encryption
presence is insufficient. Classifiers need robust features
that specifically fingerprint VPN tunneling behavior
amidst a sea of other encrypted protocols, a challenge
acknowledged but not comprehensively solved in the
current literature.

B. DATASET LIMITATIONS AND BENCHMARKING ISSUES
The quality, diversity, and accessibility of datasets remain
significant bottlenecks, directly impacting the validity and
generalizability of research findings.

o Benchmark Staleness and Integrity: As highlighted
in Section II-A, the field heavily relies on the
ISCXVPN2016 dataset (used in 70.6% of surveyed
papers). This dataset, captured in 2016, may not repre-
sent current VPN protocols, applications, or background
traffic accurately. More critically, identified integrity
issues (unencrypted payloads in VPN captures, multiple
connections per capture file) undermine its validity
for evaluating methods designed for encrypted traffic,
potentially leading to inflated performance metrics and
misleading conclusions, particularly for payload-aware
or flow-based methods [25].

o Lack of Diverse Public Datasets and Reproducibil-
ity: The scarcity of modern, large-scale, and diverse
public benchmarks hinders progress. The reliance on
private datasets (17.6% of papers) prevents indepen-
dent verification and reproduction of results. Even
among public datasets (ISCXVPN2016, VNAT, USB-
VPN2022, NIMSLabVPN2024), variations in capture
environments, traffic types, labeling granularity, and
preprocessing steps make direct cross-dataset com-
parisons challenging. The slow adoption of newer
datasets like VNAT [19], [51], USBVPN2022 [35], and
NIMSLabVPN2024 [31] suggests a need for community
consensus or more compelling benchmark options.

o Ecological Validity and Labeling Ambiguity: Many
datasets are generated in controlled laboratory envi-
ronments, potentially lacking the noise, scale, and
heterogeneity of real-world network traffic (“ecological
validity”’). Furthermore, datasets often cover a limited
range of VPN services, applications, and user behaviors.
Labeling ground truth, especially for application or
category classification, can also be ambiguous (as
noted with Skype traffic) or lack sufficient granularity,
impacting the training and evaluation of fine-grained
classifiers.
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Temporal Relevance and Concept Drift: Internet traffic
is non-stationary; application behaviors, protocol usage,
and VPN obfuscation techniques evolve. Most existing
datasets represent static snapshots in time. The lack of
longitudinal datasets capturing this evolution makes it
difficult to assess the long-term robustness of classifica-
tion methods or study the phenomenon of concept drift,
where model performance degrades as real-world traffic
patterns diverge from the training data.

VI. FUTURE RESEARCH DIRECTIONS

Addressing the identified challenges and leveraging emerg-
ing technologies points towards several promising avenues
for future research in VPN traffic analysis.

A. ADVANCED METHODOLOGIES AND LEARNING
PARADIGMS

Transformer Architectures: Largely untapped in this
domain, Transformers’ ability to model long-range
dependencies could be highly effective for capturing
subtle sequential patterns in packet sizes, timings,
or flow metadata characteristic of specific VPN pro-
tocols or encapsulated applications. Adapting these
models for network traffic data is a key direction.
Self-Supervised and Contrastive Learning: Given the
difficulty in obtaining large, accurately labeled VPN
datasets, self-supervised approaches that learn represen-
tations from abundant unlabeled traffic data are highly
appealing. Contrastive methods, learning to distinguish
similar vs. dissimilar traffic flows/sessions, could gen-
erate robust features resistant to minor variations.
Multimodal Learning: Integrating diverse feature types
(e.g., flow statistics, packet sequences, DNS queries,
TLS handshake details where available) into unified
models could provide a more holistic view and improve
robustness compared to single-modality approaches.
Exploring effective fusion techniques is crucial.
Continual Learning and Concept Drift Adaptation:
Developing models that can incrementally adapt to
evolving VPN protocols, application behaviors, and
obfuscation techniques without catastrophic forgetting
is essential for long-term deployment. Online learning
and explicit concept drift detection mechanisms are
needed.

Adversarial Robustness: Systematically designing and
evaluating classifiers against realistic adversarial obfus-
cation techniques (padding, timing manipulation, traffic
morphing) is critical. Incorporating adversarial training
or utilizing inherently robust features/models should
become standard practice.

B. NOVEL FEATURE REPRESENTATIONS

Advanced Temporal/Spectral Analysis: Beyond basic
time-series, exploring sophisticated techniques like
wavelet transforms [51] or other spectral methods could
better capture multi-scale temporal characteristics or
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frequency-domain fingerprints potentially resistant to
simple padding/timing obfuscation.

o Graph-based Representations: Further investigation
into optimal graph construction (e.g., flow graphs,
packet graphs, host communication graphs) and tailored
GNN architectures holds significant potential, building
on promising initial results [49], [50]. Capturing rela-
tional information seems key for certain classification
tasks.

o Behavioral Fingerprinting: Moving beyond passive sta-
tistical features, identifying characteristic protocol-level
behaviors or responses of different VPN clients/servers
to network events (e.g., connection setup, retrans-
missions, handling congestion) could provide robust
fingerprints.

o Learned Embeddings: Developing compact, efficient,
yet discriminative embeddings for flows or packets
using techniques like autoencoders, variational autoen-
coders, or language model pre-training (e.g., [43],
[44]) could improve both accuracy and computational
efficiency.

C. REAL-WORLD DEPLOYMENT AND EVALUATION

o Efficiency and Scalability: Focused research on model
compression, quantization, knowledge distillation, and
efficient architectures suitable for high-throughput net-
work devices and edge computing is paramount for
practical adoption. Performance should be reported not
just in accuracy but also in throughput, latency, and
resource usage.

o Longitudinal Evaluation and Robustness: Assessing
model performance over extended periods using lon-
gitudinal datasets (if available) or through realistic
simulations of concept drift is needed to understand
real-world robustness and retraining requirements.

o Standardized Benchmarking and Datasets: The commu-
nity urgently needs new, large-scale, diverse, validated,
and publicly accessible benchmark datasets reflecting
contemporary VPN usage and internet traffic. Estab-
lishing standardized evaluation protocols, including
common task definitions and metrics, is equally crucial
for meaningful progress tracking. Efforts should also
focus on generating datasets with reliable ground truth
that capture various obfuscation techniques.

o Integration and Explainability (XAI): Research on
integrating VPN classifiers into existing security frame-
works (SIEM, SOAR, Firewalls) and providing inter-
pretable explanations for model predictions using XAl
techniques will increase operator trust and enable more
effective response actions.

o Privacy-Preserving Techniques: Exploring methods like
federated learning (training models without central-
izing raw traffic), differential privacy (adding noise
to protect individual flows), or secure multi-party
computation could enable effective VPN analysis while
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mitigating privacy risks, potentially reconciling the
tension between monitoring and confidentiality.

VIl. CONCLUSION

The increasing adoption of encryption, particularly through
VPNs, has fundamentally altered the landscape of network
traffic analysis. While providing essential privacy and secu-
rity benefits, VPNs obscure traditional visibility methods,
creating significant blind spots for network management,
security monitoring, and policy enforcement. This challenge
necessitates the development of sophisticated techniques to
analyze encrypted VPN traffic without relying on payload
inspection.

This survey conducted a comprehensive review of research
in VPN traffic analysis over the past decade (2016-2025),
focusing on three core tasks: VPN presence detection,
specific VPN identification, and application identification
within VPN tunnels. Our analysis of the surveyed literature
revealed significant progress driven by the application of
various methodologies, from traditional supervised learning
and ensemble methods to advanced deep learning architec-
tures, graph neural networks, and language models. These
techniques leverage diverse features, primarily derived from
flow statistics, packet sequences, and temporal patterns.

Key findings from our analysis highlight that binary VPN
detection is generally a well-addressed problem, with many
methods achieving high reported accuracies, suggesting
feasibility for deployment in certain contexts. However,
the more granular tasks of identifying specific VPN pro-
tocols/services and, particularly, classifying the application
traffic encapsulated within VPN tunnels, remain substantially
more challenging, exhibiting greater performance variability
across studies.

Despite methodological advancements, the field faces
critical limitations, significantly impacted by dataset avail-
ability and quality. The heavy reliance on the aging and
publicly documented integrity issues of the ISCXVPN2016
dataset raises concerns about the generalizability and true
performance of many reported methods. The scarcity of
modern, diverse, and ecologically valid public datasets
hinders rigorous benchmarking, reproducibility, and the study
of dynamic network conditions and concept drift.

The implications of effective VPN traffic analysis are
substantial, offering capabilities to enhance network security
through improved policy enforcement and threat detection,
and enabling more granular Quality of Service management.
However, these capabilities must be balanced against the crit-
ical privacy and ethical considerations inherent in analyzing
encrypted communications.

Addressing the identified challenges points towards vital
future research directions. Methodological advancements
leveraging paradigms like Transformers and Self-Supervised
Learning, coupled with the exploration of novel features
such as sophisticated temporal/spectral properties, graph-
based representations, and learned embeddings, are crucial.
Equally important is a strong focus on real-world deployment
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challenges, including improving efficiency and scalability
for high-throughput networks, developing robust models
resilient to obfuscation and concept drift, establishing stan-
dardized benchmarking, and integrating privacy-preserving
techniques to navigate the ethical landscape responsibly.

In conclusion, while considerable strides have been made
in analyzing VPN traffic despite the fundamental challenges
posed by encryption, significant work remains. Future
research must prioritize the development of robust, efficient,
and ethically conscious techniques supported by realistic
and diverse datasets to provide reliable visibility into the
ever-evolving encrypted network environment.
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