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5Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
*Emails: roland.tobias@ttk.elte.hu and attila.csaszar@ttk.elte.hu

Abstract

Although the collision-induced absorption spectrum of the nitrogen gas is known in considerable detail, little

has been learned experimentally about the structural, dynamical, and rovibrational characteristics of the nitrogen

dimer itself. This study explores all these properties of this prototypical van der Waals (vdW) dimer and provides

definitive quantum chemical results, mostly with attached conservative uncertainty estimates, particularly for the

parent isotopologue, 14N2·14N2. The results obtained are based on three analytical representations of the dimer’s

ground-state potential energy surface (PES), including two full-dimensional models of spectroscopic accuracy,

constructed during the present study. The structural and focal-point analyses confirm that the global minimum

of (N2)2 is planar and has a tilted, Z-shaped form, with an electronic dissociation energy of 109.3(26) cm−1. After

considering zero-point vibrational effects variationally, the first dissociation limit of 14N2·14N2 is estimated to

be 72.2(15) cm−1. The full- and reduced-dimensional variational nuclear-motion computations performed result

in almost 6000 bound rovibrational states for 14N2·14N2, including over 100 purely vibrational modes. Effects

arising from isotopic substitutions, as well as the shifts and splittings of the two quasi-bound N≡N stretch

fundamentals, are also examined. An in-depth analysis of the rovibrational eigenstates indicates that N2·N2 is a

quasistructural molecular complex.

1. Introduction

Nitrogen gas is one of the principal atmospheric constituents not only on Earth, but also on exoplanets, moons,

and even certain stars. As the parent isotopologue of the diatomic N2 molecule, 14N2, has no intrinsic dipole

moment, its typical rovibrational spectral features are due to its nonzero quadrupole moment.1,2 At a sufficiently

high pressure, broad spectral features in the infrared region of the electromagnetic spectrum have been observed3,4

for molecules lacking permanent dipole moments, like H2, N2, O2, CH4, and their mixtures. At lower gas densities,

these features are basically due to binary collisions governed by subtle non-covalent interactions (NCI),5,6 resulting

in what are called collision-induced absorption (CIA) spectra.7 For N2·N2, the collision-induced dipole arises from

the polarization of one monomer by the quadrupolar field of the other one.

The CIA spectrum of the nitrogen gas was discovered in the laboratory in 1949.3 This observation was followed

by numerous experimental8–24 and theoretical/computational25–28 investigations. In particular, CIA spectra of the

nitrogen gas have been measured both in the Earth’s atmosphere20 and in that of Saturn’s largest moon, Titan.11,19

At low N2 concentrations, it is hard to record the CIA spectrum,3,18 but it becomes much more visible in nitrogen-

rich atmospheres, such as that of Earth. CIA even contributes to a small extent to the natural greenhouse effect.20

It is worth mentioning that the CIA of the nitrogen gas had to be accounted for to explain that the atmosphere of

early Mars was warm enough to support liquid water on its surface.29

Starting from its 2012 edition,30 the canonical spectroscopic database HITRAN provides CIA-related parame-

ters.22,30 They are available for 20 binary systems in its latest version, HITRAN2020,31 listed separately from the

more usual line-by-line spectroscopic data. For the N2 dimer, there are more than 250 000 CIA coefficients, col-

lected from both experimental13,16,17,21 and theoretical/computational23,27,28 data sources, in diverse temperature

ranges between 70 and 400 K. These data span the 0 – 650, 1850 – 3000, and 4300 – 5000 cm−1 spectral regions. The

first wavenumber range contains the intermonomer vibrational bands of the N2 dimer, while the second and third

intervals cover transitions involving the two intramonomer (N≡N stretch) fundamentals and their first overtones,
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respectively. Some of these CIA coefficients may have limited accuracy, due to (a) experimental uncertainties, often

caused by ill-resolved overlapping lines and/or contaminant species, and (b) computational artifacts, arising from

the use of inaccurate potential energy (PES) and property surfaces (often in combination with deficiencies of the

dynamical models applied).

The first step toward the accurate first-principles computation of CIA spectra is the determination of an accurate

potential energy surface (PES). About this a lot of experience has been gained over the past few decades, especially

for binary van der Waals complexes; see, for example, Refs. 32–44. To build reliable analytical PESs for NCI

complexes like N2·N2, highly flexible model functions must be selected, trained on NCI energies at a large number

of grid points. For the accurate computation of these rather small NCI energies, not only electron-correlation

effects have to be taken into account, but the basis-set incompleteness and superposition errors should also be

minimized. All this has usually been achieved via the “gold standard” CCSD(T) (that is, the coupled cluster singles,

doubles, and iterative triples) method,45 combined with extrapolation46,47 and counterpoise-correction48 schemes.

To increase accuracy, consideration of so-called “small corrections”49,50 may also become necessary. Convergence

of the individual correlation-energy increments to relative energies can be traced with the help of the focal-point

analysis (FPA) scheme,49,51 yielding the ultimate first-principles estimates, with definitive uncertainties,52 for the

NCI energies at particular configurations or over the entire PES.53 If coupled-cluster computations are unaffordable

for a complex, symmetry-adapted perturbation theory (SAPT) protocols54–58 provide excellent alternatives.

Over the past few decades, several first-principles and empirical PESs have been developed for the N2 dimer,59–73

though most of them within the rigid-monomer approximation (i.e., keeping the two N≡N bond lengths fixed, re-

sulting in four-dimensional (4D) dynamical models). Exceptions are the two full-dimensional (6D) PESs of the

Truhlar group,74,75 designed for the investigation of high-energy rovibrational energy transfer and collision-induced

monomer dissociation in the N2·N2 system. These PESs, unfortunately, have only chemical (∼350 cm−1) accuracy.

Among the 4D surfaces, Hellmann’s scaled benchmark PES72 has the highest accuracy, approaching the full configu-

ration interaction (FCI) and complete basis set (CBS) limits33,53 and involving small corrections49 at vibrationally

averaged monomer bond lengths. This 4D PES leaves no doubt that the global minimum of the N2 dimer is a

planar tilted structure of C2h point-group symmetry, in contrast to PESs exhibiting T-shaped62,66,71 or nonplanar

“twisted”59,60,63 global minima. Such discrepancies can be ascribed to the lack of accurate first-principles data

points and the use of over-simplified functional forms.76

Despite the extensive literature available on other binary complexes, see, e.g., Refs. 32,37,38,40,41,43,44, to

the best of our knowledge there are only three articles66,77,78 reporting bound-state rovibrational computations on

N2·N2. In a first, ground-breaking study, Tennyson and van der Avoird77 employed a rigid-monomer Hamiltonian

and a simple 4D PES,59 with a twisted global minimum of D2d point-group symmetry (this PES was fitted to

SAPT-like computations involving Hartree–Fock monomer wavefunctions and small Gaussian basis sets). This

analysis produced a large number of bound states for J ≤ 2 (specifically, 92 for J = 0), where J denotes the overall

rotational quantum number. Next, Brocks and van der Avoird78 simulated the far- and mid-infrared spectra of
14N2·14N2, using the formalism of Ref. 77, up to J = 7. A similar protocol was followed by Aquilanti et al. in Ref.

66, but with a fully empirical PES parametrized for scattering experiments, whose global minimum has a T-shaped

form.66 They computed bound rovibrational states up to J = 6. Unfortunately, all of these otherwise sophisticated

studies relied on qualitatively incorrect PESs, where the global minimum is neither twisted nor T-shaped.72,76

In this work, the structure, the rovibrational energy levels, and the nuclear dynamics of N2·N2 are reconsidered,

using exact kinetic-energy operators and highly accurate PESs. The potentials used include Hellmann’s 4D PES72

and two newly created 6D PESs, with the more accurate one having spectroscopic (1 cm−1) accuracy. The present

investigation delivers an exhaustive list of bound rovibrational states for the 14N2·14N2 dimer up to J = 10, with

state-by-state uncertainty estimates and correct symmetry labels corresponding to the irreducible representations

of the G16 molecular symmetry group.79 For the first time, accurate shifts and splittings are deduced for the

intramonomer stretch fundamentals, representing quasi-bound (resonance) states. For the lowest doubly degenerate

vibrational state of 14N2·14N2, isotope effects are also considered. Based on our extensive computational results, it

can be firmly established that N2·N2 behaves as a quasistructural80 complex, whose highly unusual and interesting

rovibrational states fail interpretation attempts based on the simplest rigid rotor and harmonic oscillator models.
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2. Results and discussion

Perhaps the most significant finding of this article is that it provides clear evidence for the quasistructural nature80 of

the nitrogen dimer, a prototype of weakly-bound van der Waals (vdW) dimers. This conclusion is based on cutting-

edge electronic-structure and quasi-)variational nuclear-motion computations,81 employing exact kinetic-energy

operators both in reduced and full dimensions. Following some introductory remarks, our discussion focuses only on

the analysis of the numerical results, while the important technical details about the computational methodology

employed are contained in Sec. 4 (Methods) and in Supplementary Notes 1–4. Apart from Sec. 2.2.4, our rovibrational

and dynamical results concern the parent N2·N2 isotopologue, 14N2·14N2.

First, results of rigorous tests performed to determine the level of electronic-structure theory needed to obtain

a highly accurate, spectroscopically meaningful, full-dimensional PES for N2·N2 are discussed (see Fig. 1). Second,

five salient stationary points on the PES of N2·N2, Z, T, X, H, and I (see Fig. 2), are investigated. Third, results

from our benchmark-quality first-principles rovibrational computations, yielding a large number of bound and a

few resonance (quasi-bound)82 states are summarized. Fourth, the peculiar characteristics of these (ro)vibrational

quantum states are explored via probability-density analyses, offering an interpretation of the computational results.

Figure 1: Comparison of the intermonomer energies of the N2 dimer using various levels of electronic structure theory.
The five electronic-structure protocols applied to compute the potential energy surfaces (PES), called here H0B, “CC”, “SAPT”, N2d-
CC, and N2d-SAPT, are specified in Sec. 2.1. The reference grid points and their benchmark (H0B) intermonomer energies are taken
from Ref. 72, whereas the other (non-H0B) data were obtained during the present study. The relative energies are taken with respect

to the intermonomer energy at the global minimum of the H0B energy scheme, with ∆EH0B,GM
inter ≈ −109.21 cm−1.72 The colored boxes

on the left-hand-side of each panel highlight points whose intermonomer energies are below the dimer’s approximate dissociation limit,

−∆EH0B,GM
inter . In these boxes, the median absolute deviations (MAD) and the largest absolute deviations (LAD) pertaining to dimer

geometries with negative intermonomer energies are also given.
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Figure 2: Five salient stationary points on three analytical potential energy surfaces (PES) of N2·N2. For parameter
values affected by computational error, the last-digit (two-sigma) uncertainties are given in parentheses. The boldfaced ∆Ebest

int values
represent the best estimates of this study. All the other parameter values correspond to the N2d-CC PES [see also Secs. 2.1 and
Supplementary Note 1]. The stationary-point order, i.e., the number of negative Hessian eigenvalues, is given for each shape next to its
point-group symmetry. As customary, the intermonomer coordinates (see Sec. 4.1) are indicated with (dashed) lines and arcs. Instead
of the r1 and r2 bond lengths, the ∆r1 and ∆r2 relative values are displayed, respectively (these relative distances are referenced to
the equilibrium bond length of the isolated N2 unit; see Sec. 4.1). The intramonomer energies, ∆Eintra, are negligibly small for all five
geometries (see Sec. 4.3). The uncertainty estimates are based on the deviations between the N2d-SAPT/H0B and N2d-CC results.

2.1. Potential energy surfaces and stationary points

To decide about the level of electronic-structure theory that should be used to develop an analytical PES for N2·N2

with spectroscopic (≈ 1 cm−1) accuracy, the computational results of Hellmann,72 called here H0B and produced

at a high, composite level of electronic-structure theory, have been taken as reference values. Since our aim has been

to supervise the construction of the PES with the autoPES program system,35,39 used successfully by us during

a similar project,83 the present analysis focuses on levels of electronic-structure theory directly supported by this

package through its interfaces. Specifically, two levels are considered, referred to as “SAPT” and “CC” (always with

double quotes) throughout this paper (for technical details about the H0B, “SAPT”, and “CC” levels, see Sec. 4.2).

Figure 1 illustrates the unsigned deviations of our intermonomer energies from their H0B counterparts at grid

points selected, up to 10 000 cm−1, from the list of Hellmann.72 In Fig. 1(a), a remarkably good agreement is seen

between the results of the coupled-cluster-based “CC” and the H0B protocols, translating to sub-cm−1 agreement

for the majority of the structures with dominant vdW attractions. As apparent from Fig. 1(b), the “SAPT” energies

also agree well with Hellmann’s benchmark values, though the differences are mostly larger here than in the “CC”

case. This encouraged us to create two analytical 6D surfaces, named N2d-CC and N2d-SAPT, fitted to “CC” and

“SAPT” energies, respectively, whose parametrization did not benefit from Hellmann’s grid points. The two PESs

nicely reproduce the H0B energies, to the same extent as the direct “CC”/“SAPT” computations [see Fig. 1(c)/(d)].

These two PESs (see Sec. 4.3 how they were created), along with Hellmann’s original (H0B-based) PES designated

here as N2d-H0B, have been applied in our rovibrational and dynamical analyses.
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To explore the stationary points (SP) of the N2d-H0B, N2d-CC, and N2d-SAPT PESs, extensive global searches

have been made, revealing altogether five salient SPs with relatively high point-group symmetries (see Fig. 2). These

five nuclear arrangements could be identified as SPs on all three PESs and their orders are consistent across the

different PESs. To name these SPs, the convention applied in Ref. 74 has been adopted (see Fig. 2). Our results

show that (a) the tilted, Z-shaped form is the only minimum on these three PESs, and (b) the intramonomer effects

are minuscule, at most 0.05 cm−1 for the relative interaction energies, for the five SPs considered (see Fig. 2 and

Supplementary Table 2 for the structural and interaction parameters of these SPs).

As a next step, detailed FPA analyses49,51 were performed for three of the five SPs to further validate the ac-

curacy of the N2d-CC/SAPT PESs (see Supplementary Note 1). The resulting interaction energies, alongside their

estimated uncertainties in parentheses, are collected in Supplmentary Table 2 (note that part of the electronic-

structure results concerning the global minimum was taken from Ref. 36). The various interaction-energy determi-

nations agree nicely: in fact, almost all of the deviations fall within or are at least reasonably close to the ultimate

FPA uncertainties. As to the correlation-energy increments given in Supplementary Table 1 for the three SPs stud-

ied via FPA, (a) each post-CCSD(T) term is below ± 6 cm−1, and (b) they have rather similar values, mostly with

the same signs. Thus, these contributions cancel each other to a large extent in the relative interaction energies, a

typical effect for non-covalent complexes.84

2.2. First-principles rovibrational results

Making use of the three PESs discussed in Sec. 2.1, variational nuclear-motion computations, always with exact

kinetic-energy operators, have been carried out, exploiting the permutation-inversion symmetry of the dimer (see

Sec. 4.4). This subsection gives a description of the computational results obtained, including accurate rovibrational

energies of the 14N2·14N2 complex both below and above the first dissociation limit, corresponding to bound and

resonance states, respectively. The results reported take advantage of four dynamical models of different dimension-

ality, that is 6D, 4D, 4D0, and 2D, introduced for the N2 dimer in Sec. 4.1. The discussion itself is divided into four

parts, focusing on the zero-point vibrational effect, the bound and then the resonance states, and on isotope effects.

2.2.1. Zero-point vibrational effects

Employing the FPA protocol,49,51 the electronic interaction energy, ∆Eint, is estimated to be −109.3 ± 2.6 cm−1

for the global minimum of N2·N2. Compared to this value, the zero-point vibrational energy (ZPVE) correction,

δEZPVE
int , is substantial (see Table 1); thus, knowing its value accurately is essential to characterize the thermo-

dynamic stability of the N2 dimer at absolute zero temperature. In particular, the sum of these two terms is the

interaction (Gibbs) free energy at 0 K, ∆G0
int, whose absolute value equals the first dissociation limit of (N2)2 (this

quantity is also needed to find the highest-energy bound state in the dimer’s energy spectrum for each J value).

Table 1: Electronic and zero-point vibrational effects in the Z-shaped global minimum of the N2 dimer⟨a⟩

Potential⟨b⟩ ∆Eint
⟨c⟩ δEZPVE

int
⟨d⟩ ∆G0

int
⟨e⟩ ZPVE(N2·N2)⟨f⟩

4D 4D0 6D 4D 4D0 6D 2D+4D 6D

N2d-H0B –109.2 35.5 –73.7

N2d-CC –107.4 35.4 35.2 35.2 –72.0 –72.2 –72.2 2387.0 2386.7

N2d-SAPT –106.3 33.9 33.6 33.6 –72.4 –72.7 –72.7 2385.4 2385.1

Best⟨g⟩ –109.3(26) 35.2(3) –72.2(15) 2386.7(16)

⟨a⟩ All numerical values are given in cm−1.
⟨b⟩ The analytical potential energy surfaces are defined in Sec. 2.1.
⟨c⟩ Estimates for the interaction energy of the Z-shaped global minimum from Supplementary Table 2.
⟨d⟩ First-principles zero-point vibrational energy (ZPVE) corrections determined with different potentials and dynamical models

(see also Sec. 4.1). δEZPVE
int refers to the change due to the intermolecular vibrational modes.

⟨e⟩ Variational estimates for the zero-point-corrected interaction energy (i.e., the interaction free energy at 0 K).
⟨f⟩ Variational ZPVE values for the Z-shaped global minimum. 2D+4D means the sum of the ZPVEs corresponding to the 2D and
4D dynamical models.
⟨g⟩ Best predictions obtained for the four quantities, attached with their last-two-digit (two-sigma) uncertainties in parentheses.
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Table 1 lists various predictions for three quantities, ∆Eint, δE
ZPVE
int , and ∆G0

int, extracted from our electronic

structure and variational nuclear-motion computations. Apparently, the variational δEZPVE
int and ∆G0

int values barely

change across the different dynamical models and PESs: their maximum unsigned deviations are as low as 1.1 and

1.5 cm−1, respectively (based on the deviations observed, uncertainty estimates have been adopted for the best

predictions of all these quantities). A harmonic force field, computed at the frozen-core CCSD(T) level using an

augmented quadruple-zeta basis set,85 provides δEZPVE
int = 49.2 cm−1, which differs significantly, by as much as 14

cm−1, from our accurate variational estimate, 35.2(3) cm−1. Interestingly, previous ∆G0
int predictions, −79.866 and

−75.078 cm−1, are reasonably close to our best estimate, −72.2(15) cm−1, although they are based, respectively,

on PESs with (incorrect) T- and X-shaped global minima (the small deviations observed are most likely due to the

extremely similar interaction energies characterizing these qualitatively different structures).

2.2.2. Bound states

Accurate rovibrational energies have been computed, using an exact kinetic-energy operator, for nearly 6000 bound

states of 14N2·14N2, taking advantage of our improved methodology described in Sec. 4.4. The list of the computed

energy levels, including all rovibrational states with J ≤ 10 below the first dissociation limit, is given in an external

repository86 through an Excel file. Readers interested in individual characteristics of these bound states, such as

the “raw” energy values produced via various dynamical models and PESs, are invited to study that file. In what

follows, our discussion is focusing on some overall statistical measures, illustrated in Fig. 3.

On the left two panels of Fig. 3 the state distributions represent two continuous measures, namely the rovibra-

tional energies [panel (b)] and their uncertainties [panel (a)]. As expected, the overwhelming majority of the bound

states, more than 80% of them, fall above half of the dissociation energy. Nevertheless, there are also dozens of

states in the lowest energy bin, 0 – 7.5 cm−1, reflecting the weakly-bound nature, as well as the relative heaviness,

of N2·N2. Most of the uncertainty, defined in Eqs. (4) and (5) and stretching over the 0 – 1.7 cm−1 range, comes

from intermonomer effects, while the error contributions due to intramonomer motions remain below 0.15 cm−1.

The two right-hand-side panels of Fig. 3 are based on two discrete variables, namely the J values [panel (d)]

and the symmetry blocks [i.e., irreducible representations (irreps) of the G16 group, panel (c)]. The distribution

along the J values has a maximum at J = 5: from that point on, the (2J + 1)-fold rotational degeneracy ceases to

be the dominant factor over the energy cutoff represented by the dissociation energy. It is of interest to observe in

Fig. 3(c) that the blocks E+ and E−, even though their two-fold degenerate states are counted only once, are about

twice as large as the other blocks. The small energy of the lowest E+ state may explain this (see also Sec. 2.2.4),

as it can form several combination bands with other one-dimensional irreps.

Figure 3: Statistical characteristics of the bound rovibrational states obtained during this study. In panels (a) and (b),
the range represented by a bin is given by the actual and the previous axis ticks (e.g., the blue bin at 0.17 cm−1 contains states with an
uncertainty of 0.00 – 0.17 cm−1). In contrast, the horizontal axes of panels (c) and (d) have discrete (integer) values. The state counts,
i.e., the bin sizes, are shown on a unified bi-directed vertical axis for both pairs of distributions.
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Table 2: Computed shifts and splittings in the two intramonomer stretch fundamentals of 14N2·14N2
⟨a⟩

Estimate⟨e⟩
Shift(sSTRE)⟨b⟩[A+

1 ] Shift(aSTRE)⟨c⟩[B+
2 ] Splitting⟨d⟩

2D 6D 2D 6D 2D 6D

Range(N2d-SAPT) [0.10, 0.32] [–0.36, –0.18] [–0.29, –0.06] [–0.43, –0.30] [–0.41,–0.27] [–0.12, –0.05]

Best(N2d-SAPT) 0.13 –0.33 –0.17 –0.38 –0.30 –0.05

Range(N2d-CC) [0.10, 0.31] [–0.21, –0.15] [–0.25, –0.09] [–0.35, –0.28] [–0.40, –0.34] [–0.17, –0.10]

Best(N2d-CC) 0.26 –0.19(10) –0.09 –0.28(10) –0.35 –0.10(10)

⟨a⟩ All numerical data are in cm−1. The full-dimensional ‘best’ cases are attached with expanded (two-sigma) uncertainty estimates.
⟨b/c⟩ Shift of the symmetric/antisymmetric stretch (sSTRE/aSTRE) fundamental, relative to its counterpart in the free N2 molecule,

2329.912 cm−1.1 The symmetry labels of the sSTRE/aSTRE states, within the G16 molecular symmetry group, are given in
brackets. For the 2D/6D model, see Sec. 4.1.

⟨d⟩ Energy difference defined as aSTRE – sSTRE.
⟨e⟩ Estimates using the N2d-CC and N2d-SAPT potential energy surfaces (PES). The best values are derived via the final versions

of the two PESs, while the ranges are deduced from five intermediate PES versions produced during the PES-refinement process.

2.2.3. Resonance states

Among the large number of resonance states82 one may compute for 14N2·14N2, attention is focused here only on

the two long-lived intramonomer stretch fundamentals. The symmetric (sSTRE) and the antisymmetric (aSTRE)

stretch states transform according to the A+
1 and B+

2 irreps of the G16 molecular symmetry group, respectively.

Since the sSTRE and aSTRE states lie at least 30 times higher than the dissociation limit, their computation

was greatly accelerated by the exploitation of the block-diagonal structure of the Hamiltonian; in particular, our

computations were restricted to the A+
1 and B+

2 blocks in this energy domain, a considerable gain in efficiency. The

relatively small basis set sufficient to achieve converged sSTRE/aSTRE energies also helped (see Sec. 4).

Table 2 includes multiple determinations for the shifts and splittings of the sSTRE and aSTRE fundamentals, all

relative to the energy of the fundamental of the N2 monomer. The best results, corresponding to the full-dimensional

N2d-CC PES, are given in the last row of Table 2 (typeset in boldface). Clearly, there are pronounced changes in

these shifts/splittings across the different PESs and their intermediate versions; thus, estimating the uncertainties

of these computed quantities is exceedingly difficult (the value of ± 0.1 cm−1, stated in Table 2, is a conservative

estimate). As the even larger errors of the 2D predictions suggest, the intra- and intermonomer couplings result in

non-negligible contributions to these quantities.

Although the final computed shifts and splittings are small, below 1 cm−1, they are significant given the accuracy

and resolution of today’s spectroscopic measurements. Accordingly, it seems feasible to generate experimental infor-

mation about the energy ordering of the free stretch of N2 and the sSTRE and aSTRE fundamentals of 14N2·14N2,

however small the differences are.

Table 3: Isotope effects in the first two excited vibrational states of the N2 dimer⟨a⟩

Species⟨b⟩ Group⟨c⟩
vib1⟨d⟩ vib2⟨e⟩

Splitting⟨i⟩

Label⟨f⟩ Shift⟨g⟩ Dev.⟨h⟩ Label⟨f⟩ Shift⟨g⟩ Dev.⟨h⟩

14N2·14N2 G16 E+ 0.0 0.0 E+ 0.0 0.0 0.0
14N2·14N15N G4 A+ –0.111(1) 0.001 B+ –0.060(2) 0.001 0.051(1)
14N2·15N2 G8 B′′

2 –0.226(3) –0.001 B′
2 –0.123(1) –0.001 0.103(4)

14N15N·14N15N G4 B+ –0.171(2) 0.002 A+ –0.170(3) 0.003 0.001(1)
14N15N·15N2 G4 B+ –0.285(1) 0.001 A+ –0.233(2) 0.001 0.052(3)
15N2·15N2 G16 E+ –0.346(2) 0.001 E+ –0.346(2) 0.001 0.0

⟨a⟩ All numerical data are given in cm−1, with the (two-sigma) uncertainties of their last few digits in parentheses. For the calculation
of these uncertainties, Eq. (4) was applied, but replacing the absolute energies with shifts/splittings.

⟨b⟩ Isotopologue of the N2·N2 complex, composed of 14N and/or 15N isotopes with spin-1 and spin-1/2 nuclei, respectively.
⟨c⟩ Molecular symmetry group of a particular species.
⟨d/e⟩ First/second excited vibrational state of a given isotopologue.
⟨f⟩ Symmetry label associated with a specific state of this table.
⟨g⟩ Shifts of the first two excited vibrational energies with respect to their degenerate sibling in the 14N2·14N2 species, 3.57(3) cm−1.
⟨h⟩ Deviation of a shift predicted via Eq. (1) from its variational counterpart. The monomer masses behind Eq. (1) rely on 14N and

15N masses defined in Sec. 4.4.
⟨i⟩ Energy splitting between vib1 and vib2, which is equivalent to shift(vib1) – shift(vib2).
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2.2.4. Isotope effects

Table 3 shows the effects of isotopic substitution for the lowest two excited vibrational states of the six possible
14N and 15N isotopologues, with symmetry labels provided for each case. The double degeneracy, characterizing

these two vibrational modes in the 14N2·14N2 dimer, is lifted for the mixed isotopologues, where both 14N and 15N

are present, inducing small shifts and splittings. The largest shift is, of course, for the fully symmetric 15N2·15N2

isotopologue, for which there is again no splitting. These quantities turned out to be insensitive to the details of

the PES used for their computation, leading to estimated uncertainties on the order of 10−3 cm−1 (see Table 3).

As expected, the shifts of Table 3 are always negative, and their absolute values increase with the number of 15N

atoms in the dimer. Assuming ∆M1 ≤ ∆M2, where ∆Mi is the change in the mass of the ith monomer compared

to that of the 14N2 isotopologue, the shifts of the vibrational modes vib1 and vib2 closely follow a simple model,

shift(vibi) ≈ a1 ∆Mi + a2 ∆M3−i, (1)

where a1 = −0.060 8(9) cm−1 u−1 and a2 = −0.112 5(9) cm−1 u−1 are two fitted parameters, which perfectly

coincide with the two shifts of the 14N2·14N15N complex [see Supplementary Note 4 for the derivation of Eq. (1)].

These shifts and splittings are straightforwardly measurable; thus, their accurate estimates given in Table 3 should

become useful guides during the interpretation of the related spectroscopic experiments.

2.3. Manifestation of quasistructurality of the N2·N2 complex

In Ref. 80, it was proposed that a molecular system should be called quasistructural if it satisfies all of the

following five criteria: (i) “the notion of a static equilibrium structure, corresponding to a minimum on the potential

energy surface of the molecule, loses its strict meaning”, (ii) “internal nuclear motions [...] become dominant,

resulting in an effective molecular structure often even qualitatively different from the equilibrium one”, (iii)

“separation of the internal nuclear motions breaks down, rotational and vibrational degrees of freedom cannot be

separated from each other when interpreting even the lowest rovibrational eigenstates of the molecule, often resulting

in effective rotational constants drastically different from the equilibrium ones even for the ground vibrational

eigenstate”, (iv) “classification of the rovibrational states requires the use of permutation-inversion symmetry”,

and (v) “some of the rovibrational eigenenergies assigned to a vibrational parent state exhibit unconventional [...]

rotational contributions”. In the upcoming analysis, our aim is to study how closely these criteria are met for N2·N2.

Figure 4: Contour plots determined from two-dimensional (2D) scans of the N2d-CC potential energy surface (PES).
For each 2D point, the remaining four variables were fully relaxed. The contour levels represent interaction energies, with scales given
separately on the top of each panel. The energetically equivalent Z-, T-, H-, X-, and I-shaped forms are shown explicitly in panel (c),

following the Sϕ
θ1θ2

notation for a shape S, where the specific angle values are / ≈ 49.5◦, ⊥ ≡ 90◦, \ ≈ 130.5◦, π ≡ 180◦, and ⊤ ≡ 270◦.
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It is important to clarify the relation of quasistructural molecules80 to floppy and fluxional/fluctional87 systems.

In floppy molecules, there are one or more large-amplitude internal motions, but their rotational-energy-level struc-

ture may be fitted well by a rigid or a semirigid effective Hamiltonian. As noted by Bunker and Jensen79 about

ethane, “except in ultrahigh resolution spectroscopic studies ethane can be considered to be a rigid molecule.”

Fluxional systems exhibit rapid, degenerate rearrangements among physically equivalent structures. Although qua-

sistructural molecules necessarily fall under the broader categories of floppy or fluxional systems, the converse is not

true. Quasistructurality denotes a more specific structural and dynamical behavior, one accompanied by a qualita-

tive breakdown of standard spectroscopic paradigms. In particular, the commonly assumed separation of rotational

and vibrational motion is already not valid even for the lowest-energy states (see below).

2.3.1. Extremely flat interaction PES

According to the interaction energies given in Fig. 2, the Z-shaped global minimum of the N2 dimer lies below the

T-shaped transition state by only roughly 6 cm−1. Moreover, two other salient, higher-order saddle points, X and

H, are also energetically similar to the Z-shaped minimum. This suggests that the PES is shallow over a large part

of the interacting regime. To gain deeper insight into the overall topology of the PES in the most important regions,

contour plots have been constructed for the (r1, r2), (R,ϕ), and (θ1, θ2) coordinate pairs (see Fig. 4).

Figure 5: Probability-density distributions for the first four vibrational states of the 14N2·14N2 complex. Panels with
identical background color refer to the same state. The #n symbol is the unique serial number of a vibrational state (in an increasing
energy order, counting the E+ state once). The symmetry labels, as well as the quantum-state energies are indicated once for each
state. The (R, ϕ) distribution is identical for the two components of the E+ state. The reduced (quasi) density is calculated as the sum
of the squared eigenvector entries (at high grid resolution) for a specific 2D point, without reliance on the quadrature weights.
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As expected and apparent from Fig. 4(a), the energy increases sharply when the r1 and r2 coordinates describing

the two monomer stretches are distorted. To help interpret Fig. 4(a), recall the minuscule ∆r1 and ∆r2 values of

Fig. 2 and the small shifts and splittings displayed in Table 2. As seen in Fig. 4(b), the R variable, that is the dimer’s

vdW dissociation coordinate, is relatively tightly bound around its equilibrium value, ∼ 4.0 Å. In clear contrast,

motion along the torsional coordinate ϕ is extremely soft, without considerable barriers over the complete [0, 2π)

angular range, as shown in Fig. 4(b). As obvious from Fig. 4(c), the Z-shaped form can also distort quite easily

along the two intermonomer bending coordinates, there is no pronounced angular preference in the broad, dark-green

domain. These observations leave no doubt that the N2 dimer complies with criterion (i) of quasistructurality.

2.3.2. Heavily mixed vibrational states

To gain insight into the vibrational characteristics of N2·N2, probability densities have been generated for all the

bound J = 0 states of 14N2·14N2, as well as for its two intramonomer stretch fundamentals. Density distributions

of the first four vibrational states, of A+
1 , E

+, B+
1 , and A−

1 symmetry, in order, are shown in Fig. 5 (plots of the

other J = 0 states are available in an external repository86). Since the (r1, r2) graphs exhibit a simple and regular

ground-state density profile for the bound states, without noticeable variations, in Fig. 5 density distributions are

given solely for the (R,ϕ) and (θ1, θ2) subspaces. Supplementary Figure 1 provides a density-based comparison

between the ground state and the two intramonomer fundamentals, where the (r1, r2) plots are also included.

In accordance with the flatness of the interaction PES along the three angular coordinates (see Sec. 2.3.1), the

density distributions of Fig. 5 show that the nuclei of N2·N2 are prone to delocalization along all three of them. This

is true even for the ground vibrational state, where (a) along the torsional coordinate ϕ, at fixed R values the density

does not vary noticeably [see Fig. 5(a)], and (b) the points with high densities are accumulated in the broad and

square-shaped central part of Fig. 5(d). These quasi-isotropic density motifs suggest that the effective ground-state

structure of N2·N2 is qualitatively dissimilar to the planar, Z-shaped global minimum. These non-trivial features

observed imply in themselves that the N2·N2 dimer fulfills quasistructurality criteria (ii) and (iii).

Figure 6: Ground-state density distributions derived for the artificial localization model. Panels (a)–(b) and (c)–(f) show
the (R, ϕ) and (θ1, θ2) localized density plots of the four Z-shaped versions, respectively. The naming convention applied for these versions
are the same as in Fig. 4. For specific details about these plots, consult the caption to Fig. 5. The densities of these four versions are
localized in coordinate regions specified in the violet boxes. Note that these versions with the same torsion angle, namely Z0

//
& Z0

\\ and

Zπ
\/ & Zπ

/\, are characterized by identical (R, ϕ) density plots, as seen in panels (a) and (b), respectively. The schematic representation

of the four Z-shaped versions is given in dark blue on panels (c)–(f), where NA ≡ NB and NC ≡ ND denote the monomers.

10



Figure 7: Correspondence of the vibrational states of 14N2·14N2 with those of the artificial localization model. Panel (a)
shows the energies of five vibrational states of the artificial localization model of Sec. 4.5. These artificially localized states correspond to
the ground vibrational state (“GS”), the torsional (“tors”), the antisymmetric bend (“abend”), the intermonomer stretch (“stre”), and
the symmetric bend (“sbend”) fundamentals. Panels (b)–(f) display each vibrational state of 14N2·14N2 whose wave function expansion,
specified in Eq. (7), contains the largest contribution from one of the states of panel (a). Symbol #n has the same meaning as in Fig. 5.
In each panel, the energy values are placed into colored boxes. These vibrational energies, given in cm−1, are relative to that of state #1
in panel (b). The individual states are illustrated with horizontal lines and when the line is dashed, the number of dashes corresponds to
their degeneracy factor. The states are distributed according to the right-hand-side vertical energy axes (note the several axis breaks).
A sign quadruplet, e.g., (+1,+1,+1,+1) for the GS, serves as an assignment of a vibrational state, and contains the signs attached to
the most dominant contribution according to Eq. (7). The squared coefficients of these dominant terms are given as percentages. The
asterisks in brackets highlight the “extra” states which break the four-fold overall degeneracy of the artificial localization model.

In panel Fig. 4(c), the four minimum-like features correspond to the four versions79 of the planar Z-shaped form

of the 14N2·14N2 dimer. This suggests that our understanding of the complicated energy and density patterns can

be enhanced by a model calculation which artificially localizes the vibrational eigenfunctions around one of the four

equivalent Z-shaped versions. In this ‘artificial localization model’, whose precise definition is provided in Sec. 4.5,

each vibrational state becomes four-fold degenerate.

The ground-state density distributions of the localized states of the four Z-shaped versions are shown in Fig. 6.

In accordance with the torsion angles, the (R, ϕ) densities are concentrated around ϕ = 0◦ [Fig. 6(a)] and ϕ = 180◦

[Fig. 6(b)] for versions I/IV and II/III, respectively. As expected, the artificial localization model gives much

simpler density patterns than those seen in Fig. 5. This holds for the excited vibrational states, as well, whose

density distributions are not given here.

Figure 7(a) shows the energy-level structure of the artificial localization model, where the energies are relative

to the true vibrational ground state of 14N2·14N2. As apparent from Fig. 7(b), the first three vibrational states

of 14N2·14N2, of A
+
1 , E

+, and B+
1 symmetry, are reproduced, with a squared overlap of ≈ 75%, by the signed

sums of the four artificially localized ground-state eigenfunctions (the remaining 25% comes from several excited

vibrational states). Basically the same holds for the antisymmetric bend shown in Fig. 7(d), with symmetry species

B+
2 , E

+, and A+
2 . This simple model is unable to explain Figs. 7(c), 7(e), and 7(f), whereby further states, indicated

with bracketed asterisks, mix in. Excluding these extra states from consideration, the retained state triplets fully

reproduce the degeneracy factor of the rovibrational states illustrated in Figs. 7(c), 7(e), and 7(f). Overall, these

results yield clear evidence that quasistructurality criteria (iii) and (iv) are satisfied for N2·N2.
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Figure 8: Illustration of the strong rovibrational couplings in selected rovibrational states of the 14N2·14N2 complex.
The pie charts of panels (a)–(c) demonstrate the results obtained for the lowest three J = 1 states, using the rigid-rotor decomposition
(RRD) method88 and the Ir axis representation.89 The percentages on panels (a)–(c) are squared overlaps among the true eigenstates
and the products of the pure vibrational (J = 0) and the rigid-rotor (RR) eigenstates [the assignments of these products are defined in
the central panel]. The RRD contributions coming from the two eigenvectors of the degenerate eigensubspaces are summed up in the
percentages. Notice that the same colors are used here and in Fig. 5 to denote the vibrational states. For all the bound rovibrational
states computed during this study, the mixing coefficients form part of an external repository.86 Panels (d) and (e) describe the J
dependence of the lowest three rovibrational energies in the RR and the variational (4D0) models, respectively (for simplicity, the
horizontal and vertical axes are swapped). For these two datasets, a quadratic model was fitted, whose parameters, along with their
last-few-digit (two-sigma) uncertainties in parentheses are given in the central panel. The rotational constants of the Z-shaped global
minimum, derived from the N2d-CC PES, as well as its Ray asymmetry constant κ,79 are also reported in the central panel. Those
fitted parameters of the 4D0 dataset which differ considerably from their RR counterparts are typeset in purple bold italics.

2.3.3. Strong rovibrational couplings

For semirigid molecules, separation of the vibrational and rotational degrees of freedom works extremely well for

at least the ground vibrational state and the fundamentals, as the vibrational and rotational excitation energies

are drastically different, often by more than an order of magnitude. This is not true for the N2 dimer. The lowest-

lying bound vibrational (J = 0) states of 14N2·14N2 have energies of only a few cm−1, and there are four excited

vibrational states with energies less than 10 cm−1 [see Fig. 7(b)-7(d)]. Therefore, these vibrational states can couple

effectively with the rotational states, as Aeq is close to 2 cm−1 for 14N2·14N2 (for the three rotational constants of

the Z-shaped global minimum, as well as the other symbols used in this subsection, see the central panel of Fig. 8).

Extremely strong coupling between vibrations and rotations, starting at the lowest rotational excitation, has been
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identified in several neutral and charged molecular systems.80,90–96 As shown next, similar interactions, which are

signs of quasistructural behavior, are present in 14N2·14N2, as well.

Figure 8 shows a collection of rovibrational states with low J andKa values, which were subjected to a rigid-rotor

decomposition (RRD) analysis,88 where Ka designates the approximate prolate-top rotational quantum number of

the asymmetric-top 14N2·14N2 dimer. As clear from Fig. 8(a), the rigid-rotor model holds very well for the lowest

J = 1 state of A−
2 symmetry, as Beq + Ceq = 0.142 ≈ 0.144 cm−1, the energy of this state. Thus, the parent

vibrational state of this J = 1 rovibrational state can be safely given as the ground vibrational state. On the other

hand, Figs. 8(b) and 8(c) clearly show the breakdown of the rigid-rotor model, as more than half of the vibrational

contributions come from excited vibrational states for both the second and third J = 1 rovibrational states at

3.459 and 3.538 cm−1, respectively. For the rotational energies of these formally “11,1” [E−] and “11,0” [E+] states,

the RR model provides significantly different values, with Aeq + Ceq = 1.837 cm−1 and Aeq + Beq = 1.839 cm−1,

respectively. Thus, in the case of 14N2·14N2, the formal separation of the vibrational and rotational degrees of

freedom leads to even qualitatively incorrect energies and unacceptable assignment attempts even in the case of the

lowest rovibrational states. These are clear signs of quasistructural behavior.

The bottom two panels of Fig. 8 demonstrate how the rotational energies vary, as a function of the J values,

in the rigid-rotor and the variational 4D0 models (note the inverted vertical and horizontal axes). As to the J0,J
states [green curves in Fig. 8(d) and 8(e)], the results of the two models follow the same quadratic polynomial trend

(see the central panel of Fig. 8 for the parameters of the fitted polynomial). As to the J1,J−1 and J1,J states, the

trends are still quadratic, but the linear and constant terms are considerably different for the two datasets.

With a Ray asymmetry parameter of κ ≈ −0.997 (see the central panel of Fig. 8), the equilibrium structure of
14N2·14N2 corresponds to a nearly prolate symmetric top; thus, the rigid-rotor model predicts fairly small splittings

for the J1,J−1 and J1,J states. In contrast, the variationally computed splittings significantly grow towards larger

J values, indicating increased rovibrational coupling as J increases. While the symmetric-top quantum number K,

which corresponds to Ka for prolate symmetric tops, may behave as a nearly good quantum number even for vdW

dimers,97,98 this is seemingly not the case for (N2)2.

As shown in Fig. 8(b), there is considerable coupling between the Ka = 0 and Ka = 1 rigid-rotor eigenfunctions

even for J = 1, a feature documented neither in Ref. 66 nor in Refs. 77 and 78. For further insight into the

rovibrational mixings present in 14N2·14N2, see the RRD files given in an external repository.86 In the J = 3 case,

where most of the states exhibit pronounced Ka mixings, the RRD coefficients have been determined using both

the N2d-CC and the N2d-H0B PESs, revealing typical deviations on the order of only 1 – 2 %. This means that the

mixing appears to be a genuine physical effect rather than an artifact due to the analytical PESs employed.

Performing a global fit to all of the J ≤ 10 bound rovibrational states where the ground vibrational state gives

the dominant RRD contribution, the following empirical model, not shown in Fig. 8, was obtained (for improved

transparency, the ± notation is used here to display the two-sigma uncertainties of the parameters):

Erot(J,Ka) / cm
−1 = (0.071± 0.002) J(J + 1) + (1.95± 0.02)K2

a + (1.5± 0.1)Ka. (2)

Note the importance of the inclusion of the term linear in Ka in the energy expression. In our previous studies on

CH4·F− 90 and H+
5 ,

91 due to the strong coupling between the vibrational and rotational degrees of freedom, a term

linear in K was also shown to have a remarkable impact on the rotational-vibrational energy level pattern. Clearly,

the discussion presented above about the various aspects of the coupling of rotations and vibrations provides further

evidence that N2·N2 satisfies quasistructurality criteria (iii) and (v).

3. Concluding remarks

Non-covalent interactions govern the dynamical behavior and properties of numerous molecular systems; thus, their

detailed understanding is of extreme importance when studying weakly-bound molecular systems, however small or

large these interactions are. In this work, the structure, nuclear dynamics, and rovibrational states of the prototypical

van der Waals (vdW) dimer, N2·N2, have been investigated. Our computational study relied on two newly created

full-dimensional potential energy surfaces, designed with spectroscopic (≈ 1 cm−1) accuracy in mind.
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Symmetry-adapted variational solution of the nuclear Schrödinger equation resulted in some 6000 bound rovi-

brational states for the parent 14N2·14N2 isotopologue up to J = 10, where J is the rotational quantum number.

Following the recommendations of Ref. 52 and a recent review on reporting spectroscopic data,99 individual un-

certainty estimates, with a median value of 0.8 cm−1, are also reported for each state, along with symmetry labels

corresponding to the irreducible representations of the G16 molecular symmetry group. Accurate shifts and split-

tings have been determined for the quasi-bound intramonomer stretch fundamentals, as it is expected that the yet

missing experimental results can be most easily generated in this spectral region. Isotope effects have also been

considered for the lowest excited vibrational states of N2·N2, where the shifts and splittings computed were perfectly

explained by a simple bilinear model.

Based on the extensive computational results of this study and the thorough analysis of the intriguing struc-

tural/dynamical features observed, it has been firmly established that N2·N2 is a quasistructural species, whereby,

for example, considerable mixing can be observed in the lowest-energy rovibrational quantum states among the four

versions of its Z-shaped global minimum. Similar vdW dimers are expected to fall into the class of quasistructural

systems, meaning that the interpretation of their observed high-resolution spectra would require a special view of

their nuclear motion and molecular structure.

4. Methods

4.1. Internal coordinates and nuclear-motion models

During the present study, the nuclear motions of the nitrogen dimer, N2·N2, have been represented with the six curvi-
linear internal coordinates given in the first two columns of Table 4, whereby the functions stre(· , ·), bend(· , · , ·), and
tors(· , · , · , ·) follow the conventional definitions of bond lengths, bond angles, and torsion angles, respectively.100,101

This internal-coordinate system is ill-defined for θ2 ∈ {0, π}: in that case, ϕ is arbitrary and thus one can set ϕ = 0.
The last four columns of Table 4, under ‘Model’, contain information about the utilization of the internal coordi-
nates during the solution of the time-independent nuclear-motion Schrödinger equation (see Sec. 4.4). The 6D, 4D,
4D0, and 2D models are defined by a collection of active/frozen (A/F) coordinates, as well as by the values where
the frozen coordinates are fixed.

Table 4: The internal coordinates adopted in this study to describe the molecular structure of the N2 dimer⟨a⟩

Internal coordinate DVR Model⟨g⟩

Label Definition⟨b⟩ Range⟨c⟩ Type⟨e⟩ Size⟨f⟩ 6D 4D 4D0 2D

r1 stre(N′
1,N

′′
1 ) [0.9 Å, 1.3 Å] PO-Laguerre102,103 6/6 A F{Z} F{Z0} A

r2 stre(N′
2,N

′′
2 ) [0.9 Å, 1.3 Å] PO-Laguerre102,103 6/6 A F{Z} F{Z0} A

R stre(COM1,COM2) [3.3 Å, 8.4 Å]⟨d⟩ Hermite103 45/6 A A A F{Z}
θ1 bend(N′′

1 ,COM1,COM2) (0,π) cotangent104 14/12 A A A F{Z}
θ2 bend(N′

2,COM2,COM1) (0,π) cotangent104 14/12 A A A F{Z}
ϕ tors(N′

1,COM1,COM2,N′
2) [0, 2π) exponential105 12/8 A A A F{Z}

⟨a⟩ The coordinates are defined for a distinguished version79 of the N2 dimer, with its two monomers symbolized as N′
1 ≡ N′′

1 and
N′

2 ≡ N′′
2 , whose centers of mass are COM1 and COM2, respectively. These sites specify the right-handed embedding chosen in

this study, where (i)
←−−−−−−−−−
COM2 COM1 is the direction vector of the z axis, (ii) N′

1 lies on the positive side of the x axis, and (iii)
the origin is shifted to the dimer’s COM.

⟨b⟩ The definition of the internal coordinates uses the standard abbreviations “stre”, “bend”, and “tors”, corresponding to stretching,
bending, and torsional coordinates, respectively,101 which depend on the positions of the sites listed in parentheses.

⟨c⟩ Coordinate ranges applied for the coordinates, optimized for the variational nuclear-motion computations of this study.
⟨d⟩ For the two intramonomer stretch fundamentals, the R range could be reduced to [3.6, 4.7] Å.
⟨e⟩ Discrete variable representation (DVR) basis types applied during our first-principles nuclear-motion computations. The prefix

“PO-” means that potential optimization102 was employed for the underlying grid points with the help of a 1D model.
⟨f⟩ Optimal DVR sizes for the bound/resonance states, separated by slashes. Utilizing the G16 MS group, the size of the largest

DVR Hamiltonian block is 555 660 / 31 104 for this optimal basis-set pair. For the numerical determination of the rovibrational
states, a variant of the thick-restart Lanczos procedure,106 which mostly relies on Ref. 107, was applied (the approximate Ritz
vectors were reorthogonalized in every second expansion iteration).

⟨g⟩ Dynamical models with active/frozen coordinates designated as A/F. Coordinates with “F{Z}” are frozen at their values within
the Z-shaped global minimum. In the 4D0 model, “F{Z0}” means that a vibrationally averaged N≡N (“r0”) bond length is
used for the fixed coordinates rather than the equilibrium bond lengths of the Z-shaped form. To obtain r0 values for the two
new PESs, a vibrational correction, estimated as δr0 = 0.0037 Å,72 was added to the equilibrium bond lengths.
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4.2. Electronic-structure computations

The electronic-structure computations of this study have been performed at the Hartree–Fock, MP2, SAPT, and
coupled-cluster levels (up to perturbative pentuple excitations in the latter case), utilizing Dunning’s aug-cc-pVXZ
basis sets108 up to X = 6. These computational results form the basis of an FPA analysis, and they helped to
construct two full-dimensional PESs for the N2 dimer at the “CC” and “SAPT” levels (see Table 5). The “SAPT”
protocol corresponds to a density-fitted SAPT(DFT) scheme,109–111 where the PBE0112 functional is adopted,
alongside the aug-cc-pVQZ basis set,108 to describe the electronic structure of the isolated N2 monomer. The
“CC” approach represents counterpoise-corrected, frozen-core CCSD(T), where a CBS extrapolation is carried out
using the aug-cc-pVTZ and aug-cc-pVQZ basis sets108 plus midbond functions.113 Within the “CC” scheme, the
Hartree–Fock and the correlation terms were extrapolated via formulas reported in Refs. 96 and 114, respectively.

The comparisons given in Fig. 1 are based on Hellmann’s direct electronic-structure computations.72 Hellmann
published reference (intermonomer) interaction energies for 408 dimer configurations, keeping the two intramonomer
distances fixed at the vibrationally averaged (“r0”) bond length of the isolated N2 molecule. Among the different lev-
els considered by Hellmann, the highest one is what is abbreviated here as H0B (≡ Hellmann’s r0-based benchmark
scheme), which includes perturbative quadruples [ (Q) ], counterpoise, core-core plus core-valence, and relativistic
corrections near the complete basis set (CBS) and full configuration interaction (FCI) limits.33,53 The (Q) correction
is indeed the highest-order coupled-cluster term which can be afforded for hundreds of dimer arrangements using a
reasonable basis set. In the H0B energy values, Hellmann applied a scaling factor of 0.5 for the (Q) corrections to
increase the accuracy of virial coefficients yielded by his semiclassical Monte Carlo simulations. It turns out, how-
ever, from our examination, that the post-CCSD(T) effects do not play a significant role in achieving spectroscopic
(≈ 1 cm−1) accuracy for the rovibrational states of N2·N2: this justifies the neglect of the expensive iterative triples
and (Q) terms during the calculation of interaction energies.

4.3. PES construction

To determine full-dimensional (6D) PESs for the N2 dimer, the autoPES program suite,35,39 interfaced to SAPT,58

MOLPRO,115 and ORCA,116 was employed, ensuring a highly automatic treatment. To help evaluate the uncertainty
of our rovibrational results, two PES versions, named N2d-SAPT and N2d-CC, were created with autoPES, corre-
sponding to the “SAPT” and “CC” levels, respectively (for the specifications of these two computational protocols,
see Sec. 2.1). Concerning the final versions of these two PESs, a few important characteristics, those that guide our
description of their generation, are listed in Table 5.

Table 5: The main characteristics of the two full-dimensional potential energy surfaces developed during this study⟨a⟩

Indicator N2d-SAPT N2d-CC

(zOA
1 , zOA

2 , zOA
3 )⟨b⟩ (–0.436, –0.219, 0, 0.219, 0.436) (–0.676, –0.272, 0, 0.272, 0.676)

range(r1/2)
⟨c⟩ [–0.08, 0.10]+ 1.088 83⟨c⟩ [–0.09, 0.09]+ 1.098 66⟨d⟩

range(R)⟨c⟩ [2.5, 8.4] [2.7, 8.4]

range(∆Eint)
⟨e⟩ [–104.8, 6 499] [–107.4, 9 181]

range(∆Einter)
⟨e⟩ [–106.2, 3 683] [–107.4, 5 127]

range(∆Eintra)
⟨e⟩ [0, 6 200] [0, 9 182]

Npar
⟨f⟩ 113 143

Ngeo
⟨g,i⟩ 171 / 2 263 / 2 437 172 / 1 699 / 1 847

RMSD⟨h,i⟩ 0.48 / 0.64 / 0.62 0.18 / 0.23 / 0.97

⟨a⟩ The parameters listed here pertain to the final version of the two (N2d-SAPT and N2d-CC) potentials, relying on a new sampling
scheme described in Supplementary Note 2.

⟨b⟩ Positions of the three off-atomic (OA) sites, specified in Å, alongside the z axis; that is, the symmetry axis of the isolated N2

monomer, whose center of mass (COM) corresponds to (x, y, z) = (0, 0, 0).
⟨c⟩ Ranges of the radial (r1 and r2, and R) coordinates within the fitting dataset, given in Å.
⟨d⟩ Equilibrium N≡N bond lengths of the isolated N2 molecule derived from the two PESs.
⟨e⟩ Ranges of the interaction energies and their (intra/inter)monomer contributions, in cm−1, within the fitting dataset.
⟨f⟩ Number of parameters used in the intermonomer fit. Beyond them, 13 parameters were also employed in the intramonomer fit

to reproduce the Rydberg–Klein–Rees potential of the isolated N2 monomer.
⟨g⟩ Number of dimer geometries generated by the sampling process for the intermonomer fit.
⟨h⟩ Root-mean-square deviations (RMSD), in cm−1, characterizing the intermonomer fit.
⟨i⟩ These rows comprise data triplets separated by slashes, representing two distinguished subsets of grid points, subsets I and II, and

the whole grid set. Subset I contains geometries with negative interaction energies, while subset II includes those configurations
whose probability-density-based weights are not smaller than 0.1 [for this weighting scheme, see Supplementary Note 2].
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To enhance the flexibility of our fitted 6D PESs, three off-atomic (OA) sites were introduced for both monomers:
one at its center of mass (COM) and two others on the two sides of the COM along the principal symmetry axis. The
OA positions were optimized with the PES parameters, forcing them to preserve the monomer’s D∞h point-group
symmetry. Permutation invariance of the PESs was maintained by introducing a common set of parameters for the
four nitrogen atoms of the N2 monomers. Under these constraints, the interaction energies were treated as the sums
of the intramonomer (deformation) and intermonomer energies:

∆Eint(r1, r2,ρ) = ∆Eintra(r1, r2) + ∆Einter(r1, r2,ρ), (3)

where ρ = (R θ1 θ2 ϕ)
T designates the intermonomer (“relative”) coordinates of the N2 dimer, with the restriction

that ∆Eintra(re, re) = 0 and limR→∞ ∆Einter(r1, r2,ρ) = 0 (re symbolizes the equilibrium bond length of the isolated
N2 molecule at the “CC”/“SAPT” level). The term ∆Einter(r1, r2,ρ) is based on damped interaction (exponential,
Coulombic, induction+dispersion, and polarization) models,35,39 while the ∆Eintra(r1, r2) contribution is fitted as a
sum of two-body polynomials39 in a separate phase, trained on “experimental” (Rydberg–Klein–Rees) deformation-
energy values1,117 (for further description, see Supplementary Note 2).

The intermonomer fitting process was divided into two parts, based on separate short- (R ≤ 7 Å) and long-
range (R > 7 Å) configuration spaces. In the short-range regime, the intermonomer energies of the grid points
were determined at the “SAPT” and “CC” levels. In the long-range domain, where the accuracy requirement is
less stringent, the intermonomer energies were computed for 9000 grid points with a multipole expansion along the
R coordinate (see Refs. 35 and 118). To produce preliminary versions for the N2d-SAPT/CC PESs, the standard
built-in algorithms of the autoPES code were employed during the grid-generation and the PES-parametrization
process (see Secs. II–IV of Ref. 39). This procedure was performed according to an iterative (grid generation –
fitting – identification of minima – hole fixing) scheme, until a reliable intermonomer fit was obtained.

After computing the two intramonomer stretch fundamentals for N2·N2, it has become apparent that the accu-
racy/stability of their splitting tends to be limited across the intermediate versions of the N2d-CC/SAPT PESs. This
may be due to the fact that autoPES focuses mostly on the lower-energy (∆Eint < 0) region of the “CC”/“SAPT”
PES while sampling the grid points and weighting the fitted data. Thus, a new grid-sampling and weighting scheme
has been implemented in autoPES, using direct-product-based eigenvector coefficients to define point-by-point
weights (this method is akin to density-guided PES sampling advocated in Ref. 119). A couple of important details
about this new protocol, called amplitude-driven sampling (ADS), are provided in Supplementary Note 2. These
modified weights, in combination with ADS, led to accurate N2d-CC/SAPT PESs, enabling us to compute (a)
rovibrational energies for N2·N2 with an uncertainty of 0.5 – 1.5 cm−1, and (b) the shifts/splittings of the N≡N
stretch fundamentals with an accuracy of ± 0.1 cm−1 (for details, see Sec. 2.2).

4.4. Symmetry-adapted variational nuclear-motion computations

When breaking the monomer bonds is not allowed, the quantum states of the N2·N2 isotopologues comprising four
identical isotopes transform according to the irreducible representations (irreps) of the G16 molecular symmetry
(MS) group.79,120 The 16 distinct symmetry operations of the G16 group79,120 can be expressed as products of
three elementary operations, E∗, P1, and P12, where E∗ is the space-inversion operation, P1 is a permutation
within monomer 1, and P12 represents the permutation that interchanges the two monomers. The character table
of the G16 group, with the ten irreps denoted as A±

1/2, B
±
1/2, and E

±, is given in Table A-25 of Ref. 79 (note that

our study uses the Merer–Watson convention121 for the irreps). For this group, the selection rules for the dipole-
allowed transitions are A±

1 ↔ B∓
1 , A±

2 ↔ B∓
2 , and E± ↔ E∓.66,78,120 It should also be mentioned that the N2·N2

isotopologues containing non-identical nuclei belong to different subgroups of G16.

As nuclear spins are not considered explicitly during the solution of the time-independent nuclear Schrödinger
equation, their effects must be taken into account a posteriori. Since 14N is a spin-1 nucleus, the monomers of the
14N2·14N2 isotopologue co-exist in separate ortho and para forms (with total nuclear spins 0/2 and 1, respectively).
Thus, the rovibrational states of 14N2·14N2 can be divided into three sets: ortho–ortho (A+

1 , A
−
2 , B

−
1 , and B+

2 ),
para–para (A−

1 , A
+
2 , B

+
1 , and B−

2 ), and ortho–para (E+ and E−).66,78,120 Since the nuclear-spin weights have
nonzero values for all irreps of G16,

120 there are no missing symmetry blocks for 14N2·14N2 (in other words, all
computed quantum states exist). The same holds for all the other isotopologues of the N2 dimer given in Table 3,
with the exception of 15N2·15N2, where the A−

2 and B+
2 states do not exist.

Achieving converged rovibrational results required a large number of symmetry-adapted94 computations with
the code GENIUSH,122,123 used for the variational-like solution of the nuclear Schrödinger equation in both full
and reduced dimensions. In these computations, the masses of the 14N and 15N nuclei were set to 14.003 074 and
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15.000 109 u, respectively. The optimal discrete variable representation (DVR) basis sizes and radial-coordinate
ranges, see Table 4, were selected so that all the vibrational energies reported are converged to within 0.02 cm−1

(for the two intramonomer stretch fundamentals, their shifts and splittings were also monitored, attaining a com-
putational precision of 0.002 cm−1). Convergence of the two bending basis sets was significantly accelerated by
using the cotangent DVR scheme,104 which yields much smoother variations for the computed eigenvalues than the
traditional Legendre-DVR basis.124,125 Note that FBR (finite basis representation) basis sets exhibit better con-
vergence for dimers of linear molecules.66,77,78 In practice, though, FBR requires handling complicated, non-sparse
potential-energy matrices, unlike DVR, where the potential matrix is diagonal. For further details, see Supplemen-
tary Note 3, as well as an external repository,86 where the results of our convergence tests are placed in a folder
called “conv tests”.

Rovibrational energies have been computed with the aid of the following three PESs: N2d-H0B, N2d-SAPT, and
N2d-CC. The computed energy values, e[J], have an associated expanded (two-sigma) uncertainty, U [J]. The e[J=0]

energies are deduced from a 6D model, whose uncertainties are estimated as

U [J=0] =
∣∣∣e[J=0]

N2d-CC(4D0)− e
[J=0]
N2d-H0B(4D0)

∣∣∣+ ∣∣∣δe[J=0]
N2d-CC(6D)− δe

[J=0]
N2d-SAPT(6D)

∣∣∣ , (4)

where e
[J]
p (m) designates the rovibrational energy at a given J value, corresponding to PES version p and model

dimensionality m, and δe
[J]
p (6D) = e

[J]
p (6D) − e

[J]
p (4D0) is the 6D correction to the 4D0 rovibrational energy. For

J > 0, only 4D0 computations have been made, leading to uncertainties approximated as

U [J>0] =
∣∣∣e[J>0]

N2d-CC(4D0)− e
[J>0]
N2d-H0B(4D0)

∣∣∣+ αmaxe
[J>0]
N2d-CC(4D0), (5)

where αmax = 0.64% is the maximum value of the so-called adjustment factor,

α =
(∣∣∣δe[J=0]

N2d-CC(6D)− δe
[J=0]
N2d-SAPT(6D)

∣∣∣+ ∣∣∣δe[J=0]
N2d-CC(6D)

∣∣∣) /e[J=0]
N2d-CC(4D0), (6)

obtained for the vibrational (J = 0) states (for the α values, see the “states.xls” file in an external repository86).
Note that this αmax-based term is used to describe the energy dependence of the 6D− 4D deviations. Since the PES-
related uncertainty is the most dominant contributor to the uncertainties of the computed energies, Eqs. (4)–(6)
should provide realistic estimates for these uncertainties.

4.5. The artificial localization model

To define artificially localized eigenstates for each of the four equivalent Z-shaped versions of the 14N2·14N2 dimer,
the potential energy was drastically increased, to 0.5 Eh, at those direct-product grid points which do not belong to
the (θ1, θ2) coordinate range of the chosen version (see Fig. 6). This model, which artificially distinguishes the four
versions of 14N2·14N2, requires the execution of four nuclear-motion computations. In this model, the wavefunction
is excluded from three out of the four (θ1, θ2) coordinate quadrants. For each resulting, quadruply degenerate state
v of this model, the artificially localized eigenfunctions form an orthonormal quadruplet (ΛI

v,Λ
II
v ,Λ

III
v ,ΛIV

v ), where
ΛV
v is the localized eigenfunction of state v in version V.
Using the set of eigenfunction quadruplets (ΛI

v,Λ
II
v ,Λ

III
v ,ΛIV

v ), a rovibrational state of the 14N2·14N2 dimer can
be expressed as

ψ ≈
∑
v

ov(s
I
vΛ

I
v + sIIv Λ

II
v + sIIIv ΛIII

v + sIVv ΛIV
v ), (7)

where sVv = ±1 is a sign associated with the (ψ, ΛV
v ) pair, and ov stands for the unsigned wave function overlap

between ψ and ΛV
v , which are the same for the four Z-shaped versions. Each wave function ψ can be labelled with

(a) the four-fold degenerate state v having the largest ov value, and (b) its sign quadruplet (sIv, s
II
v , s

III
v , sIVv ). To

avoid labeling inconsistencies, the (arbitrary) eigenfunction phases are synchronized by imposing the sIv = +1 and
ΛI
v = P2Λ

II
v = P1Λ

III
v = P1P2Λ

IV
v conditions upon each v, where the P1/2 operation interchanges the two 14N nuclei

within monomer 1/2.

Data Availability

The computational data obtained during this study are available under the following OSF repository: http:
//dx.doi.org/10.17605/OSF.IO/RJ6XB. This repository consists of two main units: (a) pots.zip, which
contains FORTRAN implementations of the N2d-H0B, N2d-CC, and N2d-SAPT PESs, as well as (b) rovib.zip,
a compressed archive of bound-state rovibrational energies for J ≤ 10, internal-coordinate wavefunction (quasi)
densities, rigid-rotor decomposition files, and convergence tests using various basis functions and PESs.
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Roland Tóbiás: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (equal);
Methodology (lead); Software (lead); Supervision (equal); Validation (equal); Visualization (lead); Writing—original
draft (equal); Writing—review & editing (equal).
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[123] Fábri, C., Mátyus, E. & Császár, A. G. Rotating full- and reduced-dimensional quantum chemical models of
molecules. J. Chem. Phys. 134, 074105 (2011). URL.

[124] Wang, X.-G. & Carrington Jr, T. K-independent vibrational bases for systems with large amplitude motion.
Mol. Phys. 110, 825–835 (2012). URL.
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LIST OF TABLES WITH FOOTNOTES

Table 1: Electronic and zero-point vibrational effects in the Z-shaped global minimum of the N2 dimer⟨a⟩

Potential⟨b⟩ ∆Eint
⟨c⟩ δEZPVE

int
⟨d⟩ ∆G0

int
⟨e⟩ ZPVE(N2·N2)⟨f⟩

4D 4D0 6D 4D 4D0 6D 2D+4D 6D

N2d-H0B –109.2 35.5 –73.7

N2d-CC –107.4 35.4 35.2 35.2 –72.0 –72.2 –72.2 2387.0 2386.7

N2d-SAPT –106.3 33.9 33.6 33.6 –72.4 –72.7 –72.7 2385.4 2385.1

Best⟨g⟩ –109.3(26) 35.2(3) –72.2(15) 2386.7(16)

⟨a⟩ All numerical values are given in cm−1.
⟨b⟩ The analytical potential energy surfaces are defined in Sec. 2.1.
⟨c⟩ Estimates for the interaction energy of the Z-shaped global minimum from Supplementary Table 2.
⟨d⟩ First-principles zero-point vibrational energy (ZPVE) corrections determined with different potentials and dynamical models

(see also Sec. 4.1). δEZPVE
int refers to the change due to the intermolecular vibrational modes.

⟨e⟩ Variational estimates for the zero-point-corrected interaction energy (i.e., the interaction free energy at 0 K).
⟨f⟩ Variational ZPVE values for the Z-shaped global minimum. 2D+4D means the sum of the ZPVEs corresponding to the 2D and
4D dynamical models.
⟨g⟩ Best predictions obtained for the four quantities, attached with their last-two-digit (two-sigma) uncertainties in parentheses.

Table 2: Computed shifts and splittings in the two intramonomer stretch fundamentals of 14N2·14N2
⟨a⟩

Estimate⟨e⟩
Shift(sSTRE)⟨b⟩[A+

1 ] Shift(aSTRE)⟨c⟩[B+
2 ] Splitting⟨d⟩

2D 6D 2D 6D 2D 6D

Range(N2d-SAPT) [0.10, 0.32] [–0.36, –0.18] [–0.29, –0.06] [–0.43, –0.30] [–0.41,–0.27] [–0.12, –0.05]

Best(N2d-SAPT) 0.13 –0.33 –0.17 –0.38 –0.30 –0.05

Range(N2d-CC) [0.10, 0.31] [–0.21, –0.15] [–0.25, –0.09] [–0.35, –0.28] [–0.40, –0.34] [–0.17, –0.10]

Best(N2d-CC) 0.26 –0.19(10) –0.09 –0.28(10) –0.35 –0.10(10)

⟨a⟩ All numerical data are in cm−1. The full-dimensional ‘best’ cases are attached with expanded (two-sigma) uncertainty estimates.
⟨b/c⟩ Shift of the symmetric/antisymmetric stretch (sSTRE/aSTRE) fundamental, relative to its counterpart in the free N2 molecule,

2329.912 cm−1.1 The symmetry labels of the sSTRE/aSTRE states, within the G16 molecular symmetry group, are given in
brackets. For the 2D/6D model, see Sec. 4.1.

⟨d⟩ Energy difference defined as aSTRE – sSTRE.
⟨e⟩ Estimates using the N2d-CC and N2d-SAPT potential energy surfaces (PES). The best values are derived via the final versions

of the two PESs, while the ranges are deduced from five intermediate PES versions produced during the PES-refinement process.

Table 3: Isotope effects in the first two excited vibrational states of the N2 dimer⟨a⟩

Species⟨b⟩ Group⟨c⟩
vib1⟨d⟩ vib2⟨e⟩

Splitting⟨i⟩

Label⟨f⟩ Shift⟨g⟩ Dev.⟨h⟩ Label⟨f⟩ Shift⟨g⟩ Dev.⟨h⟩

14N2·14N2 G16 E+ 0.0 0.0 E+ 0.0 0.0 0.0
14N2·14N15N G4 A+ –0.111(1) 0.001 B+ –0.060(2) 0.001 0.051(1)
14N2·15N2 G8 B′′

2 –0.226(3) –0.001 B′
2 –0.123(1) –0.001 0.103(4)

14N15N·14N15N G4 B+ –0.171(2) 0.002 A+ –0.170(3) 0.003 0.001(1)
14N15N·15N2 G4 B+ –0.285(1) 0.001 A+ –0.233(2) 0.001 0.052(3)
15N2·15N2 G16 E+ –0.346(2) 0.001 E+ –0.346(2) 0.001 0.0

⟨a⟩ All numerical data are given in cm−1, with the (two-sigma) uncertainties of their last few digits in parentheses. For the calculation
of these uncertainties, Eq. (4) was applied, but replacing the absolute energies with shifts/splittings.

⟨b⟩ Isotopologue of the N2·N2 complex, composed of 14N and/or 15N isotopes with spin-1 and spin-1/2 nuclei, respectively.
⟨c⟩ Molecular symmetry group of a particular species.
⟨d/e⟩ First/second excited vibrational state of a given isotopologue.
⟨f⟩ Symmetry label associated with a specific state of this table.
⟨g⟩ Shifts of the first two excited vibrational energies with respect to their degenerate sibling in the 14N2·14N2 species, 3.57(3) cm−1.
⟨h⟩ Deviation of a shift predicted via Eq. (1) from its variational counterpart. The monomer masses behind Eq. (1) rely on 14N and

15N masses defined in Sec. 4.4.
⟨i⟩ Energy splitting between vib1 and vib2, which is equivalent to shift(vib1) – shift(vib2).
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Table 4: The internal coordinates adopted in this study to describe the molecular structure of the N2 dimer⟨a⟩

Internal coordinate DVR Model⟨g⟩

Label Definition⟨b⟩ Range⟨c⟩ Type⟨e⟩ Size⟨f⟩ 6D 4D 4D0 2D

r1 stre(N′
1,N

′′
1 ) [0.9 Å, 1.3 Å] PO-Laguerre102,103 6/6 A F{Z} F{Z0} A

r2 stre(N′
2,N

′′
2 ) [0.9 Å, 1.3 Å] PO-Laguerre102,103 6/6 A F{Z} F{Z0} A

R stre(COM1,COM2) [3.3 Å, 8.4 Å]⟨d⟩ Hermite103 45/6 A A A F{Z}
θ1 bend(N′′

1 ,COM1,COM2) (0,π) cotangent104 14/12 A A A F{Z}
θ2 bend(N′

2,COM2,COM1) (0,π) cotangent104 14/12 A A A F{Z}
ϕ tors(N′

1,COM1,COM2,N′
2) [0, 2π) exponential105 12/8 A A A F{Z}

⟨a⟩ The coordinates are defined for a distinguished version79 of the N2 dimer, with its two monomers symbolized as N′
1 ≡ N′′

1 and
N′

2 ≡ N′′
2 , whose centers of mass are COM1 and COM2, respectively. These sites specify the right-handed embedding chosen in

this study, where (i)
←−−−−−−−−−
COM2 COM1 is the direction vector of the z axis, (ii) N′

1 lies on the positive side of the x axis, and (iii)
the origin is shifted to the dimer’s COM.

⟨b⟩ The definition of the internal coordinates uses the standard abbreviations “stre”, “bend”, and “tors”, corresponding to stretching,
bending, and torsional coordinates, respectively,101 which depend on the positions of the sites listed in parentheses.

⟨c⟩ Coordinate ranges applied for the coordinates, optimized for the variational nuclear-motion computations of this study.
⟨d⟩ For the two intramonomer stretch fundamentals, the R range could be reduced to [3.6, 4.7] Å.
⟨e⟩ Discrete variable representation (DVR) basis types applied during our first-principles nuclear-motion computations. The prefix

“PO-” means that potential optimization102 was employed for the underlying grid points with the help of a 1D model.
⟨f⟩ Optimal DVR sizes for the bound/resonance states, separated by slashes.
⟨g⟩ Dynamical models with active/frozen coordinates designated as A/F. Coordinates with “F{Z}” are frozen at their values within

the Z-shaped global minimum. In the 4D0 model, “F{Z0}” means that a vibrationally averaged N≡N (“r0”) bond length is
used for the fixed coordinates rather than the equilibrium bond lengths of the Z-shaped form. To obtain r0 values for the two
new PESs, a vibrational correction, estimated as δr0 = 0.0037 Å,72 was added to the equilibrium bond lengths.

Table 5: The main characteristics of the two full-dimensional potential energy surfaces developed during this study⟨a⟩

Indicator N2d-SAPT N2d-CC

(zOA
1 , zOA

2 , zOA
3 )⟨b⟩ (–0.436, –0.219, 0, 0.219, 0.436) (–0.676, –0.272, 0, 0.272, 0.676)

range(r1/2)
⟨c⟩ [–0.08, 0.10]+ 1.088 83⟨c⟩ [–0.09, 0.09]+ 1.098 66⟨d⟩

range(R)⟨c⟩ [2.5, 8.4] [2.7, 8.4]

range(∆Eint)
⟨e⟩ [–104.8, 6 499] [–107.4, 9 181]

range(∆Einter)
⟨e⟩ [–106.2, 3 683] [–107.4, 5 127]

range(∆Eintra)
⟨e⟩ [0, 6 200] [0, 9 182]

Npar
⟨f⟩ 113 143

Ngeo
⟨g,i⟩ 171 / 2 263 / 2 437 172 / 1 699 / 1 847

RMSD⟨h,i⟩ 0.48 / 0.64 / 0.62 0.18 / 0.23 / 0.97

⟨a⟩ The parameters listed here pertain to the final version of the two (N2d-SAPT and N2d-CC) potentials, relying on a new sampling
scheme described in Supplementary Note 2.

⟨b⟩ Positions of the three off-atomic (OA) sites, specified in Å, alongside the z axis; that is, the symmetry axis of the isolated N2

monomer, whose center of mass (COM) corresponds to (x, y, z) = (0, 0, 0).
⟨c⟩ Ranges of the radial (r1 and r2, and R) coordinates within the fitting dataset, given in Å.
⟨d⟩ Equilibrium N≡N bond lengths of the isolated N2 molecule derived from the two PESs.
⟨e⟩ Ranges of the interaction energies and their (intra/inter)monomer contributions, in cm−1, within the fitting dataset.
⟨f⟩ Number of parameters used in the intermonomer fit. Beyond them, 13 parameters were also employed in the intramonomer fit

to reproduce the Rydberg–Klein–Rees potential of the isolated N2 monomer.
⟨g⟩ Number of dimer geometries generated by the sampling process for the intermonomer fit.
⟨h⟩ Root-mean-square deviations (RMSD), in cm−1, characterizing the intermonomer fit.
⟨i⟩ These rows comprise data triplets separated by slashes, representing two distinguished subsets of grid points, subsets I and II, and

the whole grid set. Subset I contains geometries with negative interaction energies, while subset II includes those configurations
whose probability-density-based weights are not smaller than 0.1 [for this weighting scheme, see Supplementary Note 2].
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