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1 | INTRODUCTION

Myricetin (MYR; Figure 1) is a flavonol aglycone. MYR and its gly-
cosides are found in several foodstuffs, including fruits, vegetables,
honey, red wine, and teal; and the aglyconeis also contained by dietary
supplements (typical recommended daily dose: 100mg).2 MYR may
have beneficial health effects, and its potential anti-inflammatory, an-
tidiabetic, immunomodulatory, antimicrobial, and antitumor impacts
have been reported.l'3 Like other flavonoids, MYR has low oral bio-
availability (less than 10% in rats).* The peak plasma concentrations of
MYR and its (sulfate and glucuronide) metabolites were together 8 uM
after the per os treatment of rats with 100mg/kg of MYR.#
Ampelopsin (AMP, or dihydromyricetin; Figure 1) is a flavano-
nol aglycone. AMP is contained at very high levels (20-30 w/w%) in
Ampelopsis grossedentata, which is widely applied as vine teain Chinese
traditional medicine, but it is also found in other medicinal plamts.S
Furthermore, AMP is the active ingredient of dietary supplements
(typical suggested daily dose: 300-600 mg).2 Based on earlier studies,
AMP may have cardioprotective, antihypertensive, anti-inflammatory,
antidiabetic, hepatoprotective, neuroprotective, and antitumor ef-
fects.® In a double-blind randomized controlled clinical trial, AMP im-
proved glucose and lipid metabolism and exerted anti-inflammatory
action in patients who suffer from nonalcoholic fatty liver disease.”
Based on rat studies, AMP has low oral bioavailability (approximately
4%); glucuronidation, sulfation, dehydroxylation, and methylation are
its major biotransformation pathways.®? After the peroral adminis-
tration of 100mg/kg AMP, approximately 300-500nM peak plasma
concentrations of the aglycone were detected in rats.?%*
Human serum albumin (HSA) interacts with many endogenous

compounds, drugs, and toxins in human circulation; the formation of
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highly stable ligand-HSA complexes can influence the pharmacoki-
netic properties of the bound ligand molecules.??*® Sudlow's Site |
and Sudlow's Site Il are the most important drug-binding regions on
HSA.X® Earlier reports demonstrated that MYR and AMP form stable
complexes with HSA occupying Site | as their high-affinity binding
site.1*15 In previous studies, the sulfate metabolites of certain flavo-
noids bound to HSA with higher affinity than the parent aglycones,
and caused stronger displacement of the Site | marker warfarin.?618

Cytochrome P450 (CYP) enzymes (including CYP2C9, 2C19, and
3A4) are key players in the oxidative biotransformation of drugs and
other xenobiotics.?”?° Previous studies suggest that MYR and AMP
can inhibit certain CYPs (e.g., CYP3A4), while we found no data re-
garding their sulfate metabolites.?12*

Organic anion-transporting polypeptides (OATPs) are solute car-
rier (SLC)-type membrane transporters mediating the tissue uptake
of endo- and exobiotics, including drugs.?> OATP1B1 plays a major
role in the hepatic uptake of drugs, while OATP2B1 is mainly located
in enterocytes and blood-brain barrier endothelial cells.?%?” Earlier
reports suggest moderate inhibitory effects of MYR and AMP on
OATP1B1.2873! Furthermore, MYR only weakly inhibited OATP2B1
activity.®? Nevertheless, sulfate conjugation may enhance the in-
hibitory action of flavonoids on OATPs.13334 |n addition, certain
flavonoid metabolites are not only inhibitors of OATPs but they are
also transported substrates of these carriers: Recently, we demon-
strated the OATP-mediated cellular uptake of quercetin and luteolin
conjugates, applying their fluorescence detection in the presence of
2-aminoethyl diphenylborinate (APB).>

In this study, we aimed to investigate the interactions of MYR,
myricetin-3’-O-sulfate (M3’S; Figure 1), AMP, and ampelopsin-
4'-O-sulfate (A4'S; Figure 1) with HSA, CYP enzymes, and OATP
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FIGURE 1 Chemical structures

of myricetin (MYR), myricetin-3'-O-
sulfate (M3’S), ampelopsin (AMP), and
ampelopsin-4/-O-sulfate (A4'S).
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transporters. The complex formation of the flavonoids with albumin
was evaluated based on fluorescence quenching studies. To exam-
ine the displacing ability of MYR, AMP, and their sulfate conjugates
versus the Site | marker warfarin, ultrafiltration experiments were
performed. Inhibitory effects of flavonoids on CYP2C9, 2C19, and
3A4 were tested in vitro using human recombinant enzymes. Finally,
the interaction of MYR, M3’S, AMP, and A4'S with OATP1B1 and
OATP2B1 was examined on OATP-overexpressing cell lines applying

both indirect and direct assays.

2 | MATERIALS AND METHODS
2.1 | Reagents

MYR and AMP were purchased from abcr GmbH (Karlsruhe,
Germany) and Herb Nutritionals Ltd. (Shanghai, China), respectively.
Myricetin-3’-O-sulfate (M3’S) and ampelopsin-4-O-sulfate (A4'S)
were synthesized chemo-enzymatically as it has been described.
Diclofenac, 4-hydroxydiclofenac, sulfaphenazole, (S)-mephenytoin,
and 4-hydroxymephenytoin were from Carbosynth (Berkshire, UK).
CypExpress™ Cytochrome P450 (CYP2C9, 2C19, and 3A4) human
kits, ticlopidine, testosterone, 6f-hydroxytestosterone, ketocona-
zole, racemic warfarin, HSA (product code: A1653), bovine serum al-
bumin (BSA), disulfopyrene, pyranine, 2-aminoethyl diphenylborinate
(APB), bromosulfophthalein (BSP), and further chemicals (if not stated
otherwise) were obtained from Merck (Darmstadt, Germany). Stock
solutions of flavonoids (10mM) were prepared in dimethyl sulfoxide
(DMSO, spectroscopic grade; Fluka, Charlotte, NC, US) and stored
at -20°C. APB was dissolved in DMSO (125mg/mL) and stored at
-20°C. BSP solution (10mM) was prepared in distilled water.

2.2 | Spectroscopic studies

Fluorescence spectroscopic measurements were performed in
phosphate-buffered saline (PBS, pH7.4) at room temperature, using a
Hitachi F-4500 spectrofluorometer (Tokyo, Japan). Increasing amounts
of flavonoids (final concentrations: 0, 1, 2, 3, 4, 5, and 6 uM) were added
to HSA (2uM), after which fluorescence emission spectra were col-
lected (A, =295nm). UV-Vis spectra of MYR, M3’S, AMP, and A4'S
were also recorded, and their inner-filter effects were corrected as it
has been reported.?”*® Flavonoid-HSA interactions were evaluated

based on the graphical application of the Stern-Volmer equation®%”:

$=1+@pr] )

where Kq, is the Stern-Volmer quenching constant, |, denotes the
emission intensity of HSA alone at 340nm, | marks the emission signal
of albumin at 340nm in the presence of flavonoids, while [Q] is the
molar concentration of the quencher. Thereafter, binding constants
(K) of the formed complexes were determined based on the modified

Stern-Volmer equation®>4°;

lo-1) FxKal

B!
7 @

where f, is the fraction of the accessible fluorophore.

Using the binding/association constants and assuming 1:1 stoi-
chiometry of complex formation, we estimated the bound frac-
tions of M3’S and A4’S in the circulation based on the following

equation“:

[FH|
= < hsAl @

where [F], [HSA], and [FH] are the molar concentrations of the un-
bound free flavonoid, the unbound free HSA, and the flavonoid-HSA
complex, respectively. In these calculations, we hypothesized the
presence of 1.0pM levels of M3’S or A4'S in the presence of 600pM
(=40g/L) of HSA.

2.3 | Ultrafiltration studies

The impacts of MYR, M3’S, AMP, and A4'S on the albumin-bound
fraction of the Site | marker warfarin were examined with the previ-
ously reported ultrafiltration method.'”8 Briefly, samples contained
warfarin (1pM) and HSA (5 uM) without or with flavonoids (20 pM) in
PBS (pH 7.4). After two washing steps of the filters (Amicon Ultra-0.5
Centrifugal Filter Units, 30kDa molecular weight cut-off; Merck,
Darmstadt, Germany) with water then PBS (both 500pL), samples
(500pL) were centrifuged for 10min (7500¢g, 25°C, fixed angle rotor).

Warfarin was quantified using an HPLC system (Jasco, Tokyo,
Japan) with an autosampler (AS-4050), a binary pump (PU-4180),
a fluorescence detector (Jasco FP-920), and the ChromNAV2 soft-
ware. The concentrations of warfarin in the filtrate were directly de-
termined by applying the previously described method.}”* Briefly,
samples (20pL) were driven through a pre-column (SecurityGuard
C18, 4.0x3.0mm; Phenomenex, Torrance, CA, USA) linked to a
Nova-Pak C18 (150x 3.9 mm, 4 um; Waters, Milford, MA, USA) ana-
lytical column with 1.0mL/min flow rate at room temperature, using
sodium phosphate buffer (20mM, pH 7.0), methanol, and acetonitrile
(70:25:5v/v%) in the mobile phase. The fluorescence detection of
warfarin was carried out at 310 and 390 nm excitation and emission
wavelengths, respectively.

24 | CYPassays

To test the inhibitory effects of MYR, M3’S, AMP, and A4’'S on CYP
enzymes, CypExpress Cytochrome P450 human kits were applied,
using U.S. Food and Drug Administration (FDA)-recommended sub-
strates and positive controls. CYP2C9 (diclofenac hydroxylation),
2C19 ((S)-mephenytoin hydroxylation), and 3A4 (testosterone hy-
droxylation) assays were carried out as it has been described, with-

out modifications.*%8
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Substrates and metabolites were analyzed using the HPLC
system described in 2.3, except a UV detector (UV-975; Jasco)
was applied. To quantify diclofenac and 4’-hydroxydiclofenac, (S)-
mephenytoin and 4-hydroxymephenytoin, and testosterone and 6f-
hydroxytestosterone, our previously reported HPLC methods were
applied (see the brief descriptions below).*®

In the CYP2C9 assay, the samples (each 20uL) were driven
throughapre-column (SecurityGuard C8,4.0 x 3.0 mm; Phenomenex)
linked to a Mediterranea Sea8 (C8, 150x 4.6 mm, 5um; Teknokroma,
Barcelona, Spain) analytical column with 1.0mL/min flow rate at
room temperature. The isocratic elution was carried out with phos-
phoric acid (6 mM) and acetonitrile (48:52v/v%) as the mobile phase.
Diclofenac and 4’-hydroxydiclofenac were detected at 275nm.

In the CYP2C19 assay, the samples (each 20uL) were driven
throughapre-column (SecurityGuard C8,4.0 x 3.0 mm; Phenomenex)
linked to a Luna (C8, 150x4.6 mm, 5um; Phenomenex) analytical
column with 1.0mL/min flow rate at room temperature. The isocra-
tic elution was carried out with sodium acetate buffer (6.9 mM, pH4)
and acetonitrile (72:28 v/v%) as the mobile phase. (S)-Mephenytoin
and 4-hydroxymephenytoin were detected at 230 nm.

Inthe CYP3A4 assay, the samples(each 20 L) weredriventhrough
a pre-column (SecurityGuard C18, 4.0x3.0mm; Phenomenex)
linked to Kinetex EVO-C18 (C18, 150x4.6mm, 5um; Phenomenex)
analytical column with 1.2mL/min flow rate at room temperature.
The isocratic elution was carried out with methanol, water, and ace-
tic acid (53:46:1v/v%) as the mobile phase. Testosterone and 6p-

hydroxytestosterone were detected at 240 nm.

2.5 | Cell cultures

Human A431 cells overexpressing OATPs (OATP1B1 or OATP2B1)
and their mock-transfected controls were established earlier.*>*3 The
cells were maintained at 37°C with 5% CO, in Dulbecco's Modified
Eagle Medium (DMEM; Thermo Fischer Scientific, Waltham, MA,
USA) supplemented with fetal bovine serum (10%), L-glutamine
(2mM), penicillin (100 units/mL) and streptomycin (100 pg/mL).

2.6 | Testing the inhibitory effects of flavonoids on
OATP transporters

The inhibitory impacts of MYR, AMP, and their sulfate metabo-
lites on OATP1B1 and OATP2B1 were examined using the fluores-
cent dye substrates disulfopyrene (6,8-dihydroxy-1,3-disulfopyr
ene) and pyranine, respectively.‘u'43 The day before the transport
measurements, A431 cells overexpressing OATP1B1 or OATP2B1
(and their mock-transfected controls) were seeded onto 96-well
plates at a density of 80000 cells/well in DMEM (200pL). Next
day, the medium was removed, the cells were washed three times
with PBS (pH 7.4, 200pL) at room temperature, then the cells were
pre-incubated with 50uL of Hank's Balanced Salt Solution (HBSS,
pH7.4; OATP1B1) or uptake buffer (pH5.5; OATP2B1) for 5min at

37°C with or without the flavonoids.*® The transport reaction was
started by adding 50uL of disulfopyrene-containing (final concen-
tration: 10uM) HBSS (OATP1B1 assay), or pyranine-containing (final
concentration: 20 uM) uptake buffer (OATP2B1 assay). After 10 min
(OATP1B1) or 15min (OATP2B1), the transport was stopped by re-
moving the supernatant and washing the cells three times with ice-
cold PBS (200uL). Then the fluorescence was measured in 200uL
of PBS using an Enspire plate reader (PerkinElmer, Waltham, MA,
US) at excitation and emission wavelengths of 460/510nm. OATP-
dependent transport was determined by subtracting the fluores-
cence detected in mock control cells from that of OATP-expressing
cells. Transport activity was measured based on the fluorescence
signal in the absence of flavonoids (100%). IC5, values were calcu-
lated by sigmoidal fitting (Hill1), using the Origin software (version
2018, OriginLab Corporation, Northampton, MA, USA).

2.7 | Fluorescence spectra of flavonoid-APB
complexes in a cell-free environment

To examine the fluorescence spectra of the flavonoids labeled
with APB, samples (200pL) contained the flavonoid (25pmol), APB
(250 pg/mL), and BSA (1 mg/mL) in PBS.3> We used an Enspire plate
reader to measure the fluorescence spectra of the flavonoids. The
excitation and emission wavelength ranges were set to 400-500nm
and 500-700nm, respectively. We observed the following excitation
and emission maxima: 480/550nm for MYR, 480/540nm for M3’S,
and 460/540nm for AMP and A4'S.

2.8 | Uptake of flavonoids by OATP-overexpressing
versus mock cells

Direct uptake of AMP, MYR, and their sulfate metabolites were ex-
amined in A431 cells overexpressing OATP1B1 or OATP2B1, and
in their mock-transfected controls using APB as a fluorescence en-
hancer. One day before the uptake measurements, the cells were
seeded onto 96-well plates at a density of 80000 cells/well in DMEM
(200pL). The following day, the cell culture medium was removed,
and the cells were rinsed thrice with PBS (200pL). Thereafter, the
cells were preincubated with HBSS (50 L) for 5min at 37°C. The up-
take reaction was initiated by the addition of a further 50 uL of HBSS
containing AMP, MYR, or their sulfate conjugates (10 uM). After incu-
bating for 15min at 37°C, the reaction was stopped by removing the
supernatant and rinsing the cells three times with ice-cold PBS. Then
PBS buffer (200puL) containing APB (250 ug/mL) and BSA (1 mg/mL)
was added to each well.®® The fluorescence was read using an Enspire
plate reader using the wavelengths listed in Section 2.7.

The concentration-dependent uptake of M3’S was also tested
under the same conditions, except the cells were incubated with
0-10uMM3’S for 2min (OATP1B1) or 5min (OATP2B1).

To test the effect of BSP (a known inhibitor of OATPs*%) on the
cellular uptake of M3’S, cells were preincubated with HBSS buffer
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(50pL) with or without BSP (20uM) for 5min at 37°C. Thereafter,
we added 50 uL of HBSS containing M3’S (final concentration: 2 uM),
and cells were further incubated at 37°C for 2min (OATP1B1) or
5min (OATP2B1). The reaction was stopped by removing the su-
pernatant. After washing the cells with ice-cold PBS, a PBS buffer
with APB/BSA was added. Fluorescence was determined by apply-
ing an Enspire plate reader at excitation/emission wavelengths of
480/540nm.

2.9 | Statistical analyses

Means and standard error of the mean (+ SEM) values demonstrated
are at least from three independent experiments. Statistical differ-
ences (p<.05 and p<.01) were evaluated using one-way ANOVA
with Tukey post-hoc test (SPSS Statistics software, IBM, Armonk,
NY, USA).

2.10 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY,* and are permanently archived in the Concise
Guide to PHARMACOLOGY 2023/24.4¢4

3 | RESULTS

3.1 | Interaction of MYR, M3’S, AMP, and A4’'S
with human serum albumin

To test the potential interactions of MYR, M3’S, AMP, and A4’'S
with HSA, fluorescence quenching studies were performed, where
the emission spectra of the protein were collected in the presence
of increasing flavonoid concentrations. Even after the correction
of their inner-filter effects, MYR (Figure 2A), M3'S (Figure 2B),
AMP (Figure 2C), and A4’S (Figure 2D) considerably reduced the
emission intensity of HSA at 340nm in a concentration-dependent
manner. The largest quenching was induced by M3'’S, followed by
MYR,AMP,and A4'S. Stern-Volmer (Figure 2E) and modified Stern-
Volmer (Figure 2F) plots of flavonoid-albumin complexes showed
good linearity (R%>.99). K, values and binding constants were in
good agreement (Figure 2), representing the formation of stable
MYR-HSA (K=1.3x10°L/mol) and M3'S-HSA (K=1.9x10°L/
mol), while moderately stable AMP-HSA (K=5.5x 10%L/mol) and
A4'S-HSA (K=2.5%10%L/mol) complexes. Based on the binding/
association constants and assuming 1:1 stoichiometry of complex
formation, if we estimate 1 uM plasma levels of M3'S and A4'S in
the presence of 600uM HSA (=40g/L), then the albumin-bound
fraction of M3’S exceeds 99% and the bound fraction of A4’S
approximates 94%.

After quenching studies, ultrafiltration experiments were also
performed to examine the potential ability of flavonoids to dis-
place the Site | marker warfarin from albumin. Importantly, HSA and
albumin-bound warfarin are not able to pass through the filter unit
applied. In the filtrate, warfarin levels were not affected by AMP
and A4’S; however, MYR and M3'’S caused statistically significant
(p<.01) but only moderate increases in the filtered fraction of the
site marker (Figure 3). In addition, M3'S caused a stronger (p<.01)

impact compared to its parent aglycone.

3.2 | Interaction of MYR, M3’S, AMP, and A4’S
with CYP enzymes

The potential inhibitory effects of MYR, M3’S, AMP, and A4’'S on
CYP2C9,2C19,and 3A4 enzymes were also examined. Ineach assay,
we applied 20 uM flavonoid versus 5 M substrate concentrations.
In the corresponding assays, the FDA-recommended inhibitors
(sulfaphenazole, ticlopidine, and ketoconazole) caused marked
decreases in metabolite formation (Figure 4). DMSO levels
were uniformly 0.2v/v% in controls and in flavonoid-containing
incubates.

Flavonoids did not affect CYP2C9-catalyzed diclofenac hydrox-
ylation (Figure 4A), and only AMP showed statistically significant
(p<.01) but minor (5%) inhibitory action on CYP2C19-mediated
(S)-mephenytoin hydroxylation (Figure 4B). CYP3A4-catalyzed
testosterone hydroxylation was inhibited by each flavonoid tested
(Figure 4C); however, we noticed less than 10% decrease in metab-
olite formation. Sulfate derivatives showed similar or slightly weaker
effects on CYPs compared to their parent flavonoids.

3.3 | Interaction of MYR, M3’S, AMP, and A4’S
with OATP transporters

First, we examined the potential inhibitory actions of MYR, M3'’S,
AMP, and A4’'S on OATP1B1 and OATP2B1 activity. In the concen-
tration range (0-25pM) tested, each flavonoid exerted a statistically
significant (p <.01) inhibitory effect on both OATP1B1 and OATP2B1
(Figure 5). At 25uM concentration, AMP and A4'S induced approxi-
mately 40% and 70% decrease in the transport activity of OATP1B1,
while the same levels of MYR and M3’S caused close to complete
inhibition of this transporter (Figure 5A). Regarding OATP1B1, the
IC,, value of MYR was 6.4 1M, and its sulfate conjugate M3'S proved
to be a four-fold stronger inhibitor (IC;,=1.7 uM).

In OATP2B1 overexpressing cells, AMP showed again the weak-
est impact, inducing approximately 70% inhibition at 25 uM concen-
tration (Figure 5B). The same level of A4’S caused a 90% reduction
in transport activity; in addition, MYR and M3’S almost completely
blocked the OATP2B1-mediated transport. The IC,, value of A4'S
was 2.2uM, while MYR (IC,,=0.4uM) and M3'S (IC.,=0.3uM)
showed five-fold and seven-fold stronger inhibitory effects than
A4'S, respectively.
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FIGURE 2 Representative fluorescence emission spectra of HSA (2 uM) in the presence of increasing concentrations (0-6 uM) of MYR
(A), M3'S (B), AMP (C), and A4'S (D) in PBS (pH 7.4). Stern-Volmer plots (E) and modified Stern-Volmer plots (F) of flavonoid-HSA complexes

(hey=295nm, A, =340nm).

To test the potential OATP-mediated uptake of MYR, M3’S, AMP,
or A4’S, our recently reported method was used. APB is a small flu-
orescence enhancer that can form a highly fluorescent complex with
certain flavonoids, allowing flavonoids' detection based on fluores-
cence measurement in living cells. After we confirmed that APB can
increase the fluorescence signals of MYR, M3'S, AMP, and A4'S in
a cell-free environment, OATP-overexpressing cells and their mock
controls were tested for the uptake of these flavonoids. Cellular
concentrations of MYR, AMP, and A4’S did not show statistically
significant differences (p<.05) in the OATP-overexpressing versus
their mock control cells (Figure 6). However, compared to the mock
controls, M3’S levels were more than two-fold and almost five-fold
higher in OATP1B1- (Figure 6A) and OATP2B1-overexpressing cells
(Figure 6B), respectively.

In the next step, the OATP-mediated uptake of M3’'S was
examined in the 0-10pM concentration range. The results
demonstrate a saturable uptake of M3'S in OATP1B1- and
OATP2B1-overexpressing cells, while much slower and close to the

linear elevation of cellular M3'S levels were noticed in the mock
control cells (Figure 7A,B).

Finally, we also investigated the impacts of BSP (a known in-
hibitor of OATP1B1 and OATP2B1) on the uptake of M3’S. In the
mock cells, BSP did not affect the cellular concentrations of M3’S.
However, BSP considerably decreased the uptake of M3’S into
OATP1B1- and OATP2B1-overexpressing cells, resulting in simi-
larly low cellular levels of the flavonoid as in the mock control cells
(Figure 7C,D).

4 | DISCUSSION

The total dietary flavonol intake is estimated between 20 and
30mg/day, which includes only 1-3mg/day of MYR (while we did
not find data regarding AMP).48-50 Certain dietary supplements
contain large doses of MYR and AMP (typical recommended daily
doses: 100-600mg), which highly exceeds the nutritional intake.?
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FIGURE 3 Effects of MYR, M3'S,
AMP, and A4'S on the filtered fraction of
warfarin. Samples, containing warfarin
(1.0pM) and HSA (5.0pM) in the absence
and presence of flavonoids (20 pM) in PBS
(pH 7.4), were filtered through the filter
units (molecular weight cut-off =30kDa;
**p<.01: compared to WAR+HSA; #p <
.01: effects of M3’S compared to MYR).
Warfarin (1.0 pM) filtered without HSA
(100%; brown) and the impact of the
positive control phenylbutazone (20 pM;
navy blue) were marked with dashed lines.
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FIGURE 4 Effects of MYR (blue), M3’S (red), AMP (green), and A4’S (orange) on CYP2C9 (A), CYP2C19 (B), and CYP3A4 (C) enzymes.
Metabolite formation (% of control + SEM) was examined in the absence and presence of the positive control inhibitors (20 uM; magenta) or
flavonoids (20 pM) regarding CYP2C9-catalyzed diclofenac hydroxylation, CYP2C19-catalyzed (S)-mephenytoin hydroxylation, and CYP3A4-
catalyzed testosterone hydroxylation (n=3; substrate concentrations=5pM; *p<.05, **p <.01; SULF, sulfaphenazole; TIC, ticlopidine; KET,

ketoconazole).

The simultaneous administration of these supplements with drugs
may negatively influence pharmacotherapy, where not only the par-
ent aglycones but their metabolites may also be involved. Therefore,
in the current explorative study, we aimed to examine the interac-
tions of MYR, M3’S, AMP, and A4'S with HSA, CYPs, and OATPs by
applying various in vitro assays.

Trp-214 is the sole tryptophan constituent in HSA, its fluores-
cence is sensitive to microenvironmental changes.'?% The complex
formation of a ligand molecule with albumin typically decreases
the emission signal of Trp-214.17*18 Importantly, flavonoids did not
exert background fluorescence at 340nm, and their inner-filter

effects were corrected before evaluation. We noticed the flavonoid-
induced, gradual decreases in the emission signal of the protein at
340nm (Figure 2), suggesting the formation of flavonoid-HSA com-
plexes. K values of M3’S and MYR exceeded 10°L/mol, represent-
ing their strong interactions with HSA. However, AMP and A4'S
(K=10*L/mol) showed moderate affinity toward the protein. Our
results are in good agreement with the previously reported data re-
garding MYR-HSA, and AMP-HSA complexes.!**°

Since only free unbound warfarin can pass through the fil-
ter applied, the elevated levels of warfarin in the filtrate indicate
the decreased albumin-bound fraction of the site marker.''® We
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selected phenylbutazone as a positive control because earlier stud-
ies demonstrated its strong interaction with the Site | region of
HSA: its bound concentration in the plasma is approximately 98%-
99%, its binding constant is around 10°L/mol, and it can effectively
displace warfarin from HSA.13°152 |n ultrafiltration studies, AMP
and A4’S did not affect while M3’S and MYR only moderately in-
creased the filtered fraction of warfarin (Figure 3). Thus, ultrafil-
tration experiments confirmed the stronger interactions of M3’S
and MYR with HSA compared to AMP and A4’S. The higher binding
affinity and the stronger displacing effect of M3’S versus MYR are
in accordance with earlier studies, where the sulfate conjugation
of quercetin, chrysin, luteolin, and naringenin also improved the al-
bumin binding of the parent flavonoids.*¢"'® However, as an oppo-
site example, quenching studies demonstrated the lower stability
of A4'S-HSA versus AMP-HSA complex (Figure 2). Importantly,
M3’S and MYR showed statistically significant, although consid-
erably weaker displacing effects compared to the positive control
phenylbutazone (Figure 3). In addition, under the same experimen-
tal conditions, quercetin-3’-sulfate and chrysin-7-sulfate almost
completely displaced the site marker,*”*® which underlines again
the limited displacing ability of M3’S and MYR. Therefore, it is
very unlikely that MYR, M3’S, AMP, or A4’S could affect the albu-
min binding of warfarin or other Site | ligand drugs under clinical

conditions, and these results presumably have only some theoret-
ical importance.

Previous in vitro investigations performed using human or rat
liver microsomes suggest the weak to moderate inhibitory effects of
MYR on CYP2C9 and CYP3A4, and that of AMP on CYP3A4.2"%4 |
the current study, we noticed no or only slight decreases in CYP2C9,
CYP2C19, and CYP3A4 activity in the presence of MYR, AMP, or
their sulfate conjugates (Figure 4). Importantly, we tested the im-
pacts of 20uM flavonoid concentrations, which highly exceed their
possible peak plasma levels. In a rat experiment, MYR increased
the plasma levels of tolbutamide (a substrate of CYP2C9) and mid-
azolam (a substrate of CYP3A4).5% In another rat study, the peroral
co-administration of MYR with docetaxel (a substrate of CYP3A4)
increased the oral bioavailability and peak plasma concentration of
the drug.54 However, it has also been demonstrated that the inhibi-
tory impact of MYR on CYP3A4 has no significant in vivo relevance,
while the elevated oral bioavailability of docetaxel is likely caused
by the MYR-induced inhibition of P-glycoprotein.>* Considering the
above-listed observations, it seems to be unlikely that MYR, AMP,
and/or their sulfate metabolites could strongly affect the CYP-
mediated elimination of drugs.

We noticed a weak inhibitory action of AMP on OATP1B1
(Figure 5A), which is coherent with the previous observations.?

85UBJ1 SUOWIWIOD SAIER.D 3|1 jddte L Aq peueA0b a1 Se e YO 88N JO S3|n Joj A%igIT 8UIIUO AB|IM UO (SUORIPUCD-PUe-SLLBY/WOY S| 1M AReiq 1 puljU0//SARY) SUOIPUOD PU SIS L 8U} 885 *[7202/60/0€] U0 Areiqraunuo ABjim ‘Buuses] 1o} anued pue sxed Jo Ariqi Aiseaun Ag 12002 2did/z00T 0T/opuod A m Aseiqiuiuo sandsda//sdny Wwoj pepeojumod ‘G ‘Z0g ‘L0LTZ502



DOMBI ET AL.
FIGURE 7 Concentration-dependent (A) OATP1B1
uptake of M3'S by A431 cells
overexpressing OATP1B1 (A) or OATP2B1 1200
(B) versus their mock-transfected controls, 10004
and the effects of BSP (OATP inhibitor) 5 5
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Furthermore, our results suggest for the first time, that AMP is also
a weak inhibitor of OATP2B1 (Figure 5B). Importantly, in the same
experimental model, the positive control inhibitor bromosulfophtha-
lein showed 0.06 uM and 1.3uM IC, values regarding OATP1B1 and
OATP2B1 transporters, respectively.® In our study, MYR showed a
moderate inhibitory effect (IC;,=6.4 uM) on OATP1B1-mediated di-
sulfopyrene uptake (Figure 5A). Very similar inhibitory action of MYR
(IC5=5.8uM) has been reported for 2’,7'-dichlorofluorescein up-
take,3! while 50 uM concentration of MYR resulted in approximately
35% decrease in the OATP1B1-mediated transport of dehydroepi-
androsterone sulfate and fluvastatin.?®%° In the current work, MYR
was a highly potent inhibitor (IC;,=0.4uM) of OATP2B1-mediated
pyranine uptake (Figure 5B). However, previous reports described
only weak inhibitory effects of MYR on OATP2B1-dependent trans-
port of 4’,5-dibromofluorescein and estrone 3-sulfate.?”*? These
differences may suggest some substrate specificity regarding the
inhibitory potency of MYR on OATP1B1 and OATP2B1, which
has been previously demonstrated regarding certain other OATP
inhibitors.**%°

To the best of our knowledge, this is the first study that ex-
amined the interactions of M3’S and A4’'S with OATPs. Both sul-
fate conjugates proved to be stronger inhibitors of OATP1B1 and
OATP2B1 than their parent aglycones (Figure 5). In line with these
findings, sulfate conjugates of chrysin, quercetin, luteolin, and nar-
ingenin showed similar or stronger inhibitory effects on OATP1B1
and OATP2B1 compared to their aglycones.?**334 Since sulfate and

glucuronic acid conjugates are the dominant forms of flavonoids in
circulation, the potent inhibitory actions of flavonoid sulfates on
certain OATPs may have high pharmacological importance. A4’S can
be considered as a weak inhibitor of OATP1B1 (Figure 5). However,
we observed low micromolar IC values of M3'S (IC,,=1.7 pM) and
A4'S (IC.,=2.2pM) regarding OATP1B1 and OATP2B1, respectively.
In addition, even nanomolar concentrations of M3'S (IC;,=0.3uM)
caused remarkable decreases in OATP2B1 activity. Unfortunately,
no data are available regarding the plasma levels of M3'S and A4'S.
However, based on human studies with quercetin (which has a simi-

lar chemical structure),s""58

it is reasonable to hypothesize the high
nanomolar or low micromolar peak plasma concentrations of M3'S
and A4'S as a result of the repeated administration of MYR- and
AMP-containing dietary supplements (with hundreds of mg daily
doses of MYR/AMP), respectively. Therefore, our data suggest that
the high intake of MYR and AMP may affect the OATP-driven uptake
of certain drugs, likely with the significant involvement of sulfate me-
tabolites. In addition, the consumption of dietary supplements can
result in high levels of MYR in the gastrointestinal tract, which may
influence the OATP2B1-mediated absorption of some medications.
We also demonstrated that the presence of OATP1B1 or
OATP2B1 does not affect the cellular levels of MYR, AMP, and A4'S
(Figure 6); thus, these flavonoids are inhibitors but not substrates of
the OATPs examined. However, considerably higher concentrations
of M3'S were observed in OATP-overexpressing versus mock control
cells (Figure 6). In addition, the saturable concentration-dependent
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uptake of M3'’S as well as the inhibitory effect of BSP on the OATP-
mediated uptake of M3’S were confirmed (Figure 7). These findings
prove that M3'S is a substrate of both OATP1B1 and OATP2B1.
Thus, M3’S can be taken up by OATP1B1- and OATP2B1-expressing
cells through these carrier-mediated transport mechanisms.

Nevertheless, it is important to note that the strong albumin binding
of M3’S may limit its interaction (inhibition/uptake) with OATPs.

In conclusion, the interactions of MYR, M3’S, AMP, and A4’'S
were examined with HSA, CYPs, and OATPs applying in vitro mod-
els. M3’S and MYR showed strong interactions with HSA, and they
moderately displaced the Site | marker warfarin from the protein;
while AMP and A4’S bound to albumin with lower affinity. The
flavonoids assessed caused no or only slight inhibitory effects on
CYP2C9, CYP2C19, and CYP3A4 activity. M3’S and MYR caused
a strong decrease in OATP1B1 activity even at a few micromo-
lar concentrations. Furthermore, M3’S and MYR were highly
potent inhibitors of OATP2B1 with nanomolar 1C;, values, and
A4'S showed inhibitory action at low micromolar levels. Among
the flavonoids examined, only M3’S proved to be a substrate of
OATP1B1 and OATP2B1. Considering the above-listed observa-
tions, it is unlikely that these flavonoids can affect the albumin
binding and the CYP2C9-, 2C19-, or 3A4-catalyzed biotransfor-
mation of drugs. However, our novel observations highlight that
M3’'S may interfere with the OATP1B1/2B1-mediated cellular
uptake of certain drugs. In addition, the OATP2B1-dependent in-
testinal absorption of some medications may also be reduced by
MYR. Nevertheless, further in vivo studies are required to con-

firm the potential clinical relevance of these interactions.
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