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Abstract
Myricetin (MYR) and ampelopsin (AMP, or dihydromyricetin) are flavonoid aglycones 
found in certain plants and dietary supplements. During the presystemic biotransfor-
mation of flavonoids, mainly sulfate and glucuronide derivatives are produced, which 
are the dominant metabolites in the circulation. In this study, we tested the interac-
tions of MYR, myricetin-3′-O-sulfate (M3′S), AMP, and ampelopsin-4′-O-sulfate (A4′S) 
with human serum albumin (HSA), cytochrome P450 enzymes (CYPs), and organic 
anion-transporting polypeptides (OATPs) using in vitro models, including the recently 
developed method for measuring flavonoid levels in living cells. M3′S and MYR bound 
to albumin with high affinity, and they showed moderate displacing effects versus the 
Site I marker warfarin. MYR, M3′S, AMP, and A4′S exerted no or only minor inhibitory 
effects on CYP2C9, CYP2C19, and CYP3A4 enzymes. M3′S and MYR caused consid-
erable inhibitory actions on OATP1B1 at low micromolar concentrations (IC50 = 1.7 
and 6.4 μM, respectively), while even their nanomolar levels resulted in strong in-
hibitory effects on OATP2B1 (IC50 = 0.3 and 0.4 μM, respectively). In addition, M3′S 
proved to be a substrate of OATP1B1 and OATP2B1. These results suggest that MYR-
containing dietary supplements may affect the OATP-mediated transport of certain 
drugs, and OATPs are involved in the tissue uptake of M3′S.
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1  |  INTRODUCTION

Myricetin (MYR; Figure  1) is a flavonol aglycone. MYR and its gly-
cosides are found in several foodstuffs, including fruits, vegetables, 
honey, red wine, and tea1; and the aglycone is also contained by dietary 
supplements (typical recommended daily dose: 100 mg).2 MYR may 
have beneficial health effects, and its potential anti-inflammatory, an-
tidiabetic, immunomodulatory, antimicrobial, and antitumor impacts 
have been reported.1,3 Like other flavonoids, MYR has low oral bio-
availability (less than 10% in rats).4 The peak plasma concentrations of 
MYR and its (sulfate and glucuronide) metabolites were together 8 μM 
after the per os treatment of rats with 100 mg/kg of MYR.4

Ampelopsin (AMP, or dihydromyricetin; Figure  1) is a flavano-
nol aglycone. AMP is contained at very high levels (20–30 w/w%) in 
Ampelopsis grossedentata, which is widely applied as vine tea in Chinese 
traditional medicine, but it is also found in other medicinal plants.5 
Furthermore, AMP is the active ingredient of dietary supplements 
(typical suggested daily dose: 300–600 mg).2 Based on earlier studies, 
AMP may have cardioprotective, antihypertensive, anti-inflammatory, 
antidiabetic, hepatoprotective, neuroprotective, and antitumor ef-
fects.6 In a double-blind randomized controlled clinical trial, AMP im-
proved glucose and lipid metabolism and exerted anti-inflammatory 
action in patients who suffer from nonalcoholic fatty liver disease.7 
Based on rat studies, AMP has low oral bioavailability (approximately 
4%); glucuronidation, sulfation, dehydroxylation, and methylation are 
its major biotransformation pathways.8,9 After the peroral adminis-
tration of 100 mg/kg AMP, approximately 300–500 nM peak plasma 
concentrations of the aglycone were detected in rats.10,11

Human serum albumin (HSA) interacts with many endogenous 
compounds, drugs, and toxins in human circulation; the formation of 

highly stable ligand-HSA complexes can influence the pharmacoki-
netic properties of the bound ligand molecules.12,13 Sudlow's Site I 
and Sudlow's Site II are the most important drug-binding regions on 
HSA.13 Earlier reports demonstrated that MYR and AMP form stable 
complexes with HSA occupying Site I as their high-affinity binding 
site.14,15 In previous studies, the sulfate metabolites of certain flavo-
noids bound to HSA with higher affinity than the parent aglycones, 
and caused stronger displacement of the Site I marker warfarin.16–18

Cytochrome P450 (CYP) enzymes (including CYP2C9, 2C19, and 
3A4) are key players in the oxidative biotransformation of drugs and 
other xenobiotics.19,20 Previous studies suggest that MYR and AMP 
can inhibit certain CYPs (e.g., CYP3A4), while we found no data re-
garding their sulfate metabolites.21–24

Organic anion-transporting polypeptides (OATPs) are solute car-
rier (SLC)-type membrane transporters mediating the tissue uptake 
of endo- and exobiotics, including drugs.25 OATP1B1 plays a major 
role in the hepatic uptake of drugs, while OATP2B1 is mainly located 
in enterocytes and blood–brain barrier endothelial cells.26,27 Earlier 
reports suggest moderate inhibitory effects of MYR and AMP on 
OATP1B1.28–31 Furthermore, MYR only weakly inhibited OATP2B1 
activity.32 Nevertheless, sulfate conjugation may enhance the in-
hibitory action of flavonoids on OATPs.16,33,34 In addition, certain 
flavonoid metabolites are not only inhibitors of OATPs but they are 
also transported substrates of these carriers: Recently, we demon-
strated the OATP-mediated cellular uptake of quercetin and luteolin 
conjugates, applying their fluorescence detection in the presence of 
2-aminoethyl diphenylborinate (APB).35

In this study, we aimed to investigate the interactions of MYR, 
myricetin-3′-O-sulfate (M3′S; Figure  1), AMP, and ampelopsin-
4′-O-sulfate (A4′S; Figure  1) with HSA, CYP enzymes, and OATP 

F IGURE  1 Chemical structures 
of myricetin (MYR), myricetin-3′-O-
sulfate (M3′S), ampelopsin (AMP), and 
ampelopsin-4′-O-sulfate (A4′S).

K E Y W O R D S
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transporters. The complex formation of the flavonoids with albumin 
was evaluated based on fluorescence quenching studies. To exam-
ine the displacing ability of MYR, AMP, and their sulfate conjugates 
versus the Site I marker warfarin, ultrafiltration experiments were 
performed. Inhibitory effects of flavonoids on CYP2C9, 2C19, and 
3A4 were tested in vitro using human recombinant enzymes. Finally, 
the interaction of MYR, M3′S, AMP, and A4′S with OATP1B1 and 
OATP2B1 was examined on OATP-overexpressing cell lines applying 
both indirect and direct assays.

2  | MATERIALS AND METHODS

2.1  |  Reagents

MYR and AMP were purchased from abcr GmbH (Karlsruhe, 
Germany) and Herb Nutritionals Ltd. (Shanghai, China), respectively. 
Myricetin-3′-O-sulfate (M3′S) and ampelopsin-4′-O-sulfate (A4′S) 
were synthesized chemo-enzymatically as it has been described.36 
Diclofenac, 4′-hydroxydiclofenac, sulfaphenazole, (S)-mephenytoin, 
and 4-hydroxymephenytoin were from Carbosynth (Berkshire, UK). 
CypExpress™ Cytochrome P450 (CYP2C9, 2C19, and 3A4) human 
kits, ticlopidine, testosterone, 6β-hydroxytestosterone, ketocona-
zole, racemic warfarin, HSA (product code: A1653), bovine serum al-
bumin (BSA), disulfopyrene, pyranine, 2-aminoethyl diphenylborinate 
(APB), bromosulfophthalein (BSP), and further chemicals (if not stated 
otherwise) were obtained from Merck (Darmstadt, Germany). Stock 
solutions of flavonoids (10 mM) were prepared in dimethyl sulfoxide 
(DMSO, spectroscopic grade; Fluka, Charlotte, NC, US) and stored 
at −20°C. APB was dissolved in DMSO (125 mg/mL) and stored at 
−20°C. BSP solution (10 mM) was prepared in distilled water.

2.2  |  Spectroscopic studies

Fluorescence spectroscopic measurements were performed in 
phosphate-buffered saline (PBS, pH 7.4) at room temperature, using a 
Hitachi F-4500 spectrofluorometer (Tokyo, Japan). Increasing amounts 
of flavonoids (final concentrations: 0, 1, 2, 3, 4, 5, and 6 μM) were added 
to HSA (2 μM), after which fluorescence emission spectra were col-
lected (λex = 295 nm). UV–Vis spectra of MYR, M3′S, AMP, and A4′S 
were also recorded, and their inner-filter effects were corrected as it 
has been reported.37,38 Flavonoid–HSA interactions were evaluated 
based on the graphical application of the Stern–Volmer equation18,39:

where KSV is the Stern–Volmer quenching constant, I0 denotes the 
emission intensity of HSA alone at 340 nm, I marks the emission signal 
of albumin at 340 nm in the presence of flavonoids, while [Q] is the 
molar concentration of the quencher. Thereafter, binding constants 
(K) of the formed complexes were determined based on the modified 
Stern–Volmer equation39,40:

where fa is the fraction of the accessible fluorophore.
Using the binding/association constants and assuming 1:1 stoi-

chiometry of complex formation, we estimated the bound frac-
tions of M3′S and A4′S in the circulation based on the following 
equation41:

where [F], [HSA], and [FH] are the molar concentrations of the un-
bound free flavonoid, the unbound free HSA, and the flavonoid–HSA 
complex, respectively. In these calculations, we hypothesized the 
presence of 1.0 μM levels of M3′S or A4′S in the presence of 600 μM 
(≈ 40 g/L) of HSA.

2.3  | Ultrafiltration studies

The impacts of MYR, M3′S, AMP, and A4′S on the albumin-bound 
fraction of the Site I marker warfarin were examined with the previ-
ously reported ultrafiltration method.17,18 Briefly, samples contained 
warfarin (1 μM) and HSA (5 μM) without or with flavonoids (20 μM) in 
PBS (pH 7.4). After two washing steps of the filters (Amicon Ultra-0.5 
Centrifugal Filter Units, 30 kDa molecular weight cut-off; Merck, 
Darmstadt, Germany) with water then PBS (both 500 μL), samples 
(500 μL) were centrifuged for 10 min (7500 g, 25°C, fixed angle rotor).

Warfarin was quantified using an HPLC system (Jasco, Tokyo, 
Japan) with an autosampler (AS-4050), a binary pump (PU-4180), 
a fluorescence detector (Jasco FP-920), and the ChromNAV2 soft-
ware. The concentrations of warfarin in the filtrate were directly de-
termined by applying the previously described method.17,18 Briefly, 
samples (20 μL) were driven through a pre-column (SecurityGuard 
C18, 4.0 × 3.0 mm; Phenomenex, Torrance, CA, USA) linked to a 
Nova-Pak C18 (150 × 3.9 mm, 4 μm; Waters, Milford, MA, USA) ana-
lytical column with 1.0 mL/min flow rate at room temperature, using 
sodium phosphate buffer (20 mM, pH 7.0), methanol, and acetonitrile 
(70:25:5 v/v%) in the mobile phase. The fluorescence detection of 
warfarin was carried out at 310 and 390 nm excitation and emission 
wavelengths, respectively.

2.4  |  CYP assays

To test the inhibitory effects of MYR, M3′S, AMP, and A4′S on CYP 
enzymes, CypExpress Cytochrome P450 human kits were applied, 
using U.S. Food and Drug Administration (FDA)-recommended sub-
strates and positive controls. CYP2C9 (diclofenac hydroxylation), 
2C19 ((S)-mephenytoin hydroxylation), and 3A4 (testosterone hy-
droxylation) assays were carried out as it has been described, with-
out modifications.33,38

(1)
I0

I
= 1 + KSV ×

[

Q
]
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(

I0 − I
) =

1

fa × K
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Substrates and metabolites were analyzed using the HPLC 
system described in 2.3, except a UV detector (UV-975; Jasco) 
was applied. To quantify diclofenac and 4′-hydroxydiclofenac, (S)-
mephenytoin and 4-hydroxymephenytoin, and testosterone and 6β-
hydroxytestosterone, our previously reported HPLC methods were 
applied (see the brief descriptions below).16

In the CYP2C9 assay, the samples (each 20 μL) were driven 
through a pre-column (SecurityGuard C8, 4.0 × 3.0 mm; Phenomenex) 
linked to a Mediterranea Sea8 (C8, 150 × 4.6 mm, 5 μm; Teknokroma, 
Barcelona, Spain) analytical column with 1.0 mL/min flow rate at 
room temperature. The isocratic elution was carried out with phos-
phoric acid (6 mM) and acetonitrile (48:52 v/v%) as the mobile phase. 
Diclofenac and 4′-hydroxydiclofenac were detected at 275 nm.

In the CYP2C19 assay, the samples (each 20 μL) were driven 
through a pre-column (SecurityGuard C8, 4.0 × 3.0 mm; Phenomenex) 
linked to a Luna (C8, 150 × 4.6 mm, 5 μm; Phenomenex) analytical 
column with 1.0 mL/min flow rate at room temperature. The isocra-
tic elution was carried out with sodium acetate buffer (6.9 mM, pH 4) 
and acetonitrile (72:28 v/v%) as the mobile phase. (S)-Mephenytoin 
and 4-hydroxymephenytoin were detected at 230 nm.

In the CYP3A4 assay, the samples (each 20 μL) were driven through 
a pre-column (SecurityGuard C18, 4.0 × 3.0 mm; Phenomenex) 
linked to Kinetex EVO-C18 (C18, 150 × 4.6 mm, 5 μm; Phenomenex) 
analytical column with 1.2 mL/min flow rate at room temperature. 
The isocratic elution was carried out with methanol, water, and ace-
tic acid (53:46:1 v/v%) as the mobile phase. Testosterone and 6β-
hydroxytestosterone were detected at 240 nm.

2.5  |  Cell cultures

Human A431 cells overexpressing OATPs (OATP1B1 or OATP2B1) 
and their mock-transfected controls were established earlier.42,43 The 
cells were maintained at 37°C with 5% CO2 in Dulbecco's Modified 
Eagle Medium (DMEM; Thermo Fischer Scientific, Waltham, MA, 
USA) supplemented with fetal bovine serum (10%), l-glutamine 
(2 mM), penicillin (100 units/mL) and streptomycin (100 μg/mL).

2.6  |  Testing the inhibitory effects of flavonoids on 
OATP transporters

The inhibitory impacts of MYR, AMP, and their sulfate metabo-
lites on OATP1B1 and OATP2B1 were examined using the fluores-
cent dye substrates disulfopyrene (6,8-dihydroxy-1,3-disulfopyr
ene) and pyranine, respectively.42,43 The day before the transport 
measurements, A431 cells overexpressing OATP1B1 or OATP2B1 
(and their mock-transfected controls) were seeded onto 96-well 
plates at a density of 80 000 cells/well in DMEM (200 μL). Next 
day, the medium was removed, the cells were washed three times 
with PBS (pH 7.4, 200 μL) at room temperature, then the cells were 
pre-incubated with 50 μL of Hank's Balanced Salt Solution (HBSS, 
pH 7.4; OATP1B1) or uptake buffer (pH 5.5; OATP2B1) for 5 min at 

37°C with or without the flavonoids.43 The transport reaction was 
started by adding 50 μL of disulfopyrene-containing (final concen-
tration: 10 μM) HBSS (OATP1B1 assay), or pyranine-containing (final 
concentration: 20 μM) uptake buffer (OATP2B1 assay). After 10 min 
(OATP1B1) or 15 min (OATP2B1), the transport was stopped by re-
moving the supernatant and washing the cells three times with ice-
cold PBS (200 μL). Then the fluorescence was measured in 200 μL 
of PBS using an Enspire plate reader (PerkinElmer, Waltham, MA, 
US) at excitation and emission wavelengths of 460/510 nm. OATP-
dependent transport was determined by subtracting the fluores-
cence detected in mock control cells from that of OATP-expressing 
cells. Transport activity was measured based on the fluorescence 
signal in the absence of flavonoids (100%). IC50 values were calcu-
lated by sigmoidal fitting (Hill1), using the Origin software (version 
2018, OriginLab Corporation, Northampton, MA, USA).

2.7  |  Fluorescence spectra of flavonoid-APB 
complexes in a cell-free environment

To examine the fluorescence spectra of the flavonoids labeled 
with APB, samples (200 μL) contained the flavonoid (25 pmol), APB 
(250 μg/mL), and BSA (1 mg/mL) in PBS.35 We used an Enspire plate 
reader to measure the fluorescence spectra of the flavonoids. The 
excitation and emission wavelength ranges were set to 400–500 nm 
and 500–700 nm, respectively. We observed the following excitation 
and emission maxima: 480/550 nm for MYR, 480/540 nm for M3′S, 
and 460/540 nm for AMP and A4′S.

2.8  | Uptake of flavonoids by OATP-overexpressing 
versus mock cells

Direct uptake of AMP, MYR, and their sulfate metabolites were ex-
amined in A431 cells overexpressing OATP1B1 or OATP2B1, and 
in their mock-transfected controls using APB as a fluorescence en-
hancer. One day before the uptake measurements, the cells were 
seeded onto 96-well plates at a density of 80 000 cells/well in DMEM 
(200 μL). The following day, the cell culture medium was removed, 
and the cells were rinsed thrice with PBS (200 μL). Thereafter, the 
cells were preincubated with HBSS (50 μL) for 5 min at 37°C. The up-
take reaction was initiated by the addition of a further 50 μL of HBSS 
containing AMP, MYR, or their sulfate conjugates (10 μM). After incu-
bating for 15 min at 37°C, the reaction was stopped by removing the 
supernatant and rinsing the cells three times with ice-cold PBS. Then 
PBS buffer (200 μL) containing APB (250 μg/mL) and BSA (1 mg/mL) 
was added to each well.35 The fluorescence was read using an Enspire 
plate reader using the wavelengths listed in Section 2.7.

The concentration-dependent uptake of M3′S was also tested 
under the same conditions, except the cells were incubated with 
0–10 μM M3′S for 2 min (OATP1B1) or 5 min (OATP2B1).

To test the effect of BSP (a known inhibitor of OATPs44) on the 
cellular uptake of M3′S, cells were preincubated with HBSS buffer 
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(50 μL) with or without BSP (20 μM) for 5 min at 37°C. Thereafter, 
we added 50 μL of HBSS containing M3′S (final concentration: 2 μM), 
and cells were further incubated at 37°C for 2 min (OATP1B1) or 
5 min (OATP2B1). The reaction was stopped by removing the su-
pernatant. After washing the cells with ice-cold PBS, a PBS buffer 
with APB/BSA was added. Fluorescence was determined by apply-
ing an Enspire plate reader at excitation/emission wavelengths of 
480/540 nm.

2.9  |  Statistical analyses

Means and standard error of the mean (± SEM) values demonstrated 
are at least from three independent experiments. Statistical differ-
ences (p < .05 and p < .01) were evaluated using one-way ANOVA 
with Tukey post-hoc test (SPSS Statistics software, IBM, Armonk, 
NY, USA).

2.10  | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked 
to corresponding entries in http://​www.​guide​topha​rmaco​logy.​
org, the common portal for data from the IUPHAR/BPS Guide to 
PHARMACOLOGY,45 and are permanently archived in the Concise 
Guide to PHARMACOLOGY 2023/24.46,47

3  |  RESULTS

3.1  |  Interaction of MYR, M3′S, AMP, and A4′S 
with human serum albumin

To test the potential interactions of MYR, M3′S, AMP, and A4′S 
with HSA, fluorescence quenching studies were performed, where 
the emission spectra of the protein were collected in the presence 
of increasing flavonoid concentrations. Even after the correction 
of their inner-filter effects, MYR (Figure  2A), M3′S (Figure  2B), 
AMP (Figure 2C), and A4′S (Figure 2D) considerably reduced the 
emission intensity of HSA at 340 nm in a concentration-dependent 
manner. The largest quenching was induced by M3′S, followed by 
MYR, AMP, and A4′S. Stern–Volmer (Figure 2E) and modified Stern–
Volmer (Figure 2F) plots of flavonoid–albumin complexes showed 
good linearity (R2 > .99). KSV values and binding constants were in 
good agreement (Figure 2), representing the formation of stable 
MYR–HSA (K = 1.3 × 105 L/mol) and M3′S–HSA (K = 1.9 × 105 L/
mol), while moderately stable AMP–HSA (K = 5.5 × 104 L/mol) and 
A4′S–HSA (K = 2.5 × 104 L/mol) complexes. Based on the binding/
association constants and assuming 1:1 stoichiometry of complex 
formation, if we estimate 1 μM plasma levels of M3′S and A4′S in 
the presence of 600 μM HSA (≈ 40 g/L), then the albumin-bound 
fraction of M3′S exceeds 99% and the bound fraction of A4′S 
approximates 94%.

After quenching studies, ultrafiltration experiments were also 
performed to examine the potential ability of flavonoids to dis-
place the Site I marker warfarin from albumin. Importantly, HSA and 
albumin-bound warfarin are not able to pass through the filter unit 
applied. In the filtrate, warfarin levels were not affected by AMP 
and A4′S; however, MYR and M3′S caused statistically significant 
(p < .01) but only moderate increases in the filtered fraction of the 
site marker (Figure 3). In addition, M3′S caused a stronger (p < .01) 
impact compared to its parent aglycone.

3.2  |  Interaction of MYR, M3′S, AMP, and A4′S 
with CYP enzymes

The potential inhibitory effects of MYR, M3′S, AMP, and A4′S on 
CYP2C9, 2C19, and 3A4 enzymes were also examined. In each assay, 
we applied 20 μM flavonoid versus 5 μM substrate concentrations. 
In the corresponding assays, the FDA-recommended inhibitors 
(sulfaphenazole, ticlopidine, and ketoconazole) caused marked 
decreases in metabolite formation (Figure  4). DMSO levels 
were uniformly 0.2 v/v% in controls and in flavonoid-containing 
incubates.

Flavonoids did not affect CYP2C9-catalyzed diclofenac hydrox-
ylation (Figure 4A), and only AMP showed statistically significant 
(p < .01) but minor (5%) inhibitory action on CYP2C19-mediated 
(S)-mephenytoin hydroxylation (Figure  4B). CYP3A4-catalyzed 
testosterone hydroxylation was inhibited by each flavonoid tested 
(Figure 4C); however, we noticed less than 10% decrease in metab-
olite formation. Sulfate derivatives showed similar or slightly weaker 
effects on CYPs compared to their parent flavonoids.

3.3  |  Interaction of MYR, M3′S, AMP, and A4′S 
with OATP transporters

First, we examined the potential inhibitory actions of MYR, M3′S, 
AMP, and A4′S on OATP1B1 and OATP2B1 activity. In the concen-
tration range (0–25 μM) tested, each flavonoid exerted a statistically 
significant (p < .01) inhibitory effect on both OATP1B1 and OATP2B1 
(Figure 5). At 25 μM concentration, AMP and A4′S induced approxi-
mately 40% and 70% decrease in the transport activity of OATP1B1, 
while the same levels of MYR and M3′S caused close to complete 
inhibition of this transporter (Figure 5A). Regarding OATP1B1, the 
IC50 value of MYR was 6.4 μM, and its sulfate conjugate M3′S proved 
to be a four-fold stronger inhibitor (IC50 = 1.7 μM).

In OATP2B1 overexpressing cells, AMP showed again the weak-
est impact, inducing approximately 70% inhibition at 25 μM concen-
tration (Figure 5B). The same level of A4′S caused a 90% reduction 
in transport activity; in addition, MYR and M3′S almost completely 
blocked the OATP2B1-mediated transport. The IC50 value of A4′S 
was 2.2 μM, while MYR (IC50 = 0.4 μM) and M3′S (IC50 = 0.3 μM) 
showed five-fold and seven-fold stronger inhibitory effects than 
A4′S, respectively.
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To test the potential OATP-mediated uptake of MYR, M3′S, AMP, 
or A4′S, our recently reported method was used. APB is a small flu-
orescence enhancer that can form a highly fluorescent complex with 
certain flavonoids, allowing flavonoids' detection based on fluores-
cence measurement in living cells. After we confirmed that APB can 
increase the fluorescence signals of MYR, M3′S, AMP, and A4′S in 
a cell-free environment, OATP-overexpressing cells and their mock 
controls were tested for the uptake of these flavonoids. Cellular 
concentrations of MYR, AMP, and A4′S did not show statistically 
significant differences (p < .05) in the OATP-overexpressing versus 
their mock control cells (Figure 6). However, compared to the mock 
controls, M3′S levels were more than two-fold and almost five-fold 
higher in OATP1B1- (Figure 6A) and OATP2B1-overexpressing cells 
(Figure 6B), respectively.

In the next step, the OATP-mediated uptake of M3′S was 
examined in the 0–10 μM concentration range. The results 
demonstrate a saturable uptake of M3′S in OATP1B1-  and 
OATP2B1-overexpressing cells, while much slower and close to the 

linear elevation of cellular M3′S levels were noticed in the mock 
control cells (Figure 7A,B).

Finally, we also investigated the impacts of BSP (a known in-
hibitor of OATP1B1 and OATP2B1) on the uptake of M3′S. In the 
mock cells, BSP did not affect the cellular concentrations of M3′S. 
However, BSP considerably decreased the uptake of M3′S into 
OATP1B1-  and OATP2B1-overexpressing cells, resulting in simi-
larly low cellular levels of the flavonoid as in the mock control cells 
(Figure 7C,D).

4  | DISCUSSION

The total dietary flavonol intake is estimated between 20 and 
30 mg/day, which includes only 1–3 mg/day of MYR (while we did 
not find data regarding AMP).48–50 Certain dietary supplements 
contain large doses of MYR and AMP (typical recommended daily 
doses: 100–600 mg), which highly exceeds the nutritional intake.2 

F IGURE  2 Representative fluorescence emission spectra of HSA (2 μM) in the presence of increasing concentrations (0–6 μM) of MYR 
(A), M3′S (B), AMP (C), and A4′S (D) in PBS (pH 7.4). Stern–Volmer plots (E) and modified Stern–Volmer plots (F) of flavonoid-HSA complexes 
(λex = 295 nm, λem = 340 nm).
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The simultaneous administration of these supplements with drugs 
may negatively influence pharmacotherapy, where not only the par-
ent aglycones but their metabolites may also be involved. Therefore, 
in the current explorative study, we aimed to examine the interac-
tions of MYR, M3′S, AMP, and A4′S with HSA, CYPs, and OATPs by 
applying various in vitro assays.

Trp-214 is the sole tryptophan constituent in HSA, its fluores-
cence is sensitive to microenvironmental changes.12,39 The complex 
formation of a ligand molecule with albumin typically decreases 
the emission signal of Trp-214.17,18 Importantly, flavonoids did not 
exert background fluorescence at 340 nm, and their inner-filter 

effects were corrected before evaluation. We noticed the flavonoid-
induced, gradual decreases in the emission signal of the protein at 
340 nm (Figure 2), suggesting the formation of flavonoid–HSA com-
plexes. K values of M3′S and MYR exceeded 105 L/mol, represent-
ing their strong interactions with HSA. However, AMP and A4′S 
(K ≈ 104 L/mol) showed moderate affinity toward the protein. Our 
results are in good agreement with the previously reported data re-
garding MYR–HSA, and AMP–HSA complexes.14,15

Since only free unbound warfarin can pass through the fil-
ter applied, the elevated levels of warfarin in the filtrate indicate 
the decreased albumin-bound fraction of the site marker.17,18 We 

F IGURE  3 Effects of MYR, M3′S, 
AMP, and A4′S on the filtered fraction of 
warfarin. Samples, containing warfarin 
(1.0 μM) and HSA (5.0 μM) in the absence 
and presence of flavonoids (20 μM) in PBS 
(pH 7.4), were filtered through the filter 
units (molecular weight cut-off = 30 kDa; 
**p < .01: compared to WAR+HSA; ##p < 
.01: effects of M3′S compared to MYR). 
Warfarin (1.0 μM) filtered without HSA 
(100%; brown) and the impact of the 
positive control phenylbutazone (20 μM; 
navy blue) were marked with dashed lines.

F IGURE  4 Effects of MYR (blue), M3′S (red), AMP (green), and A4′S (orange) on CYP2C9 (A), CYP2C19 (B), and CYP3A4 (C) enzymes. 
Metabolite formation (% of control ± SEM) was examined in the absence and presence of the positive control inhibitors (20 μM; magenta) or 
flavonoids (20 μM) regarding CYP2C9-catalyzed diclofenac hydroxylation, CYP2C19-catalyzed (S)-mephenytoin hydroxylation, and CYP3A4-
catalyzed testosterone hydroxylation (n = 3; substrate concentrations = 5 μM; *p < .05, **p < .01; SULF, sulfaphenazole; TIC, ticlopidine; KET, 
ketoconazole).
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selected phenylbutazone as a positive control because earlier stud-
ies demonstrated its strong interaction with the Site I region of 
HSA: its bound concentration in the plasma is approximately 98%–
99%, its binding constant is around 106 L/mol, and it can effectively 
displace warfarin from HSA.13,51,52 In ultrafiltration studies, AMP 
and A4′S did not affect while M3′S and MYR only moderately in-
creased the filtered fraction of warfarin (Figure 3). Thus, ultrafil-
tration experiments confirmed the stronger interactions of M3′S 
and MYR with HSA compared to AMP and A4′S. The higher binding 
affinity and the stronger displacing effect of M3′S versus MYR are 
in accordance with earlier studies, where the sulfate conjugation 
of quercetin, chrysin, luteolin, and naringenin also improved the al-
bumin binding of the parent flavonoids.16–18 However, as an oppo-
site example, quenching studies demonstrated the lower stability 
of A4′S–HSA versus AMP–HSA complex (Figure  2). Importantly, 
M3′S and MYR showed statistically significant, although consid-
erably weaker displacing effects compared to the positive control 
phenylbutazone (Figure 3). In addition, under the same experimen-
tal conditions, quercetin-3′-sulfate and chrysin-7-sulfate almost 
completely displaced the site marker,17,18 which underlines again 
the limited displacing ability of M3′S and MYR. Therefore, it is 
very unlikely that MYR, M3′S, AMP, or A4′S could affect the albu-
min binding of warfarin or other Site I ligand drugs under clinical 

conditions, and these results presumably have only some theoret-
ical importance.

Previous in  vitro investigations performed using human or rat 
liver microsomes suggest the weak to moderate inhibitory effects of 
MYR on CYP2C9 and CYP3A4, and that of AMP on CYP3A4.21–24 In 
the current study, we noticed no or only slight decreases in CYP2C9, 
CYP2C19, and CYP3A4 activity in the presence of MYR, AMP, or 
their sulfate conjugates (Figure  4). Importantly, we tested the im-
pacts of 20 μM flavonoid concentrations, which highly exceed their 
possible peak plasma levels. In a rat experiment, MYR increased 
the plasma levels of tolbutamide (a substrate of CYP2C9) and mid-
azolam (a substrate of CYP3A4).53 In another rat study, the peroral 
co-administration of MYR with docetaxel (a substrate of CYP3A4) 
increased the oral bioavailability and peak plasma concentration of 
the drug.54 However, it has also been demonstrated that the inhibi-
tory impact of MYR on CYP3A4 has no significant in vivo relevance, 
while the elevated oral bioavailability of docetaxel is likely caused 
by the MYR-induced inhibition of P-glycoprotein.54 Considering the 
above-listed observations, it seems to be unlikely that MYR, AMP, 
and/or their sulfate metabolites could strongly affect the CYP-
mediated elimination of drugs.

We noticed a weak inhibitory action of AMP on OATP1B1 
(Figure  5A), which is coherent with the previous observations.28 

F IGURE  5 Concentration-dependent 
inhibitory effects of MYR (blue), M3′S 
(red), AMP (green), and A4′S (orange) 
on OATP1B1 (A) and OATP2B1 (B). The 
transport of disulfopyranine (OATP1B1) 
and pyranine (OATP2B1) in A431 cells was 
evaluated in the absence or presence of 
increasing concentrations of flavonoids 
(0–25 μM; see further experimental details 
in Section 2.6). The mean (% of control 
± SEM) values are demonstrated (n = 3), 
where the fluorescence measured in the 
absence of flavonoids was set as 100%.

F IGURE  6 The cellular uptake of 
MYR, M3′S, AMP, and A4′S in A431 cells 
overexpressing OATP1B1 (A) or OATP2B1 
(B) was determined by exposing the 
cells to flavonoids (10 μM) for 15 min. 
Flavonoids were visualized by adding 
APB + BSA (see experimental details in 
Section 2.8). The mean (± SEM) values are 
demonstrated (n = 3; **p < .01).
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    | 9 of 12DOMBI et al.

Furthermore, our results suggest for the first time, that AMP is also 
a weak inhibitor of OATP2B1 (Figure 5B). Importantly, in the same 
experimental model, the positive control inhibitor bromosulfophtha-
lein showed 0.06 μM and 1.3 μM IC50 values regarding OATP1B1 and 
OATP2B1 transporters, respectively.33 In our study, MYR showed a 
moderate inhibitory effect (IC50 = 6.4 μM) on OATP1B1-mediated di-
sulfopyrene uptake (Figure 5A). Very similar inhibitory action of MYR 
(IC50 = 5.8 μM) has been reported for 2′,7′-dichlorofluorescein up-
take,31 while 50 μM concentration of MYR resulted in approximately 
35% decrease in the OATP1B1-mediated transport of dehydroepi-
androsterone sulfate and fluvastatin.28,30 In the current work, MYR 
was a highly potent inhibitor (IC50 = 0.4 μM) of OATP2B1-mediated 
pyranine uptake (Figure 5B). However, previous reports described 
only weak inhibitory effects of MYR on OATP2B1-dependent trans-
port of 4′,5′-dibromofluorescein and estrone 3-sulfate.29,32 These 
differences may suggest some substrate specificity regarding the 
inhibitory potency of MYR on OATP1B1 and OATP2B1, which 
has been previously demonstrated regarding certain other OATP 
inhibitors.44,55

To the best of our knowledge, this is the first study that ex-
amined the interactions of M3′S and A4′S with OATPs. Both sul-
fate conjugates proved to be stronger inhibitors of OATP1B1 and 
OATP2B1 than their parent aglycones (Figure 5). In line with these 
findings, sulfate conjugates of chrysin, quercetin, luteolin, and nar-
ingenin showed similar or stronger inhibitory effects on OATP1B1 
and OATP2B1 compared to their aglycones.16,33,34 Since sulfate and 

glucuronic acid conjugates are the dominant forms of flavonoids in 
circulation, the potent inhibitory actions of flavonoid sulfates on 
certain OATPs may have high pharmacological importance. A4′S can 
be considered as a weak inhibitor of OATP1B1 (Figure 5). However, 
we observed low micromolar IC50 values of M3′S (IC50 = 1.7 μM) and 
A4′S (IC50 = 2.2 μM) regarding OATP1B1 and OATP2B1, respectively. 
In addition, even nanomolar concentrations of M3′S (IC50 = 0.3 μM) 
caused remarkable decreases in OATP2B1 activity. Unfortunately, 
no data are available regarding the plasma levels of M3′S and A4′S. 
However, based on human studies with quercetin (which has a simi-
lar chemical structure),56–58 it is reasonable to hypothesize the high 
nanomolar or low micromolar peak plasma concentrations of M3′S 
and A4′S as a result of the repeated administration of MYR-  and 
AMP-containing dietary supplements (with hundreds of mg daily 
doses of MYR/AMP), respectively. Therefore, our data suggest that 
the high intake of MYR and AMP may affect the OATP-driven uptake 
of certain drugs, likely with the significant involvement of sulfate me-
tabolites. In addition, the consumption of dietary supplements can 
result in high levels of MYR in the gastrointestinal tract, which may 
influence the OATP2B1-mediated absorption of some medications.

We also demonstrated that the presence of OATP1B1 or 
OATP2B1 does not affect the cellular levels of MYR, AMP, and A4′S 
(Figure 6); thus, these flavonoids are inhibitors but not substrates of 
the OATPs examined. However, considerably higher concentrations 
of M3′S were observed in OATP-overexpressing versus mock control 
cells (Figure 6). In addition, the saturable concentration-dependent 

F IGURE  7 Concentration-dependent 
uptake of M3′S by A431 cells 
overexpressing OATP1B1 (A) or OATP2B1 
(B) versus their mock-transfected controls, 
and the effects of BSP (OATP inhibitor) 
on the uptake of M3′S by OATP1B1 (C) 
and OATP2B1 (D). Cells were incubated 
with M3′S for 2 min (OATP1B1; A) or 5 min 
(OATP2B1; B). The impacts of BSP on 
M3′S (2 μM) transport in A431-OATP1B1 
and A431-OATP2B1 cells (and their mock 
controls) were determined after the 
incubation with or without BSP (20 μM) 
for 5 min (C, D). Cells were rinsed, then the 
fluorescence was determined after adding 
APB + BSA (see further experimental 
details in Section 2.8). The mean (± SEM) 
values demonstrated were obtained from 
three biological replicates (n = 3; *p < .05, 
**p < .01).
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uptake of M3′S as well as the inhibitory effect of BSP on the OATP-
mediated uptake of M3′S were confirmed (Figure 7). These findings 
prove that M3′S is a substrate of both OATP1B1 and OATP2B1. 
Thus, M3′S can be taken up by OATP1B1- and OATP2B1-expressing 
cells through these carrier-mediated transport mechanisms. 
Nevertheless, it is important to note that the strong albumin binding 
of M3′S may limit its interaction (inhibition/uptake) with OATPs.

In conclusion, the interactions of MYR, M3′S, AMP, and A4′S 
were examined with HSA, CYPs, and OATPs applying in vitro mod-
els. M3′S and MYR showed strong interactions with HSA, and they 
moderately displaced the Site I marker warfarin from the protein; 
while AMP and A4′S bound to albumin with lower affinity. The 
flavonoids assessed caused no or only slight inhibitory effects on 
CYP2C9, CYP2C19, and CYP3A4 activity. M3′S and MYR caused 
a strong decrease in OATP1B1 activity even at a few micromo-
lar concentrations. Furthermore, M3′S and MYR were highly 
potent inhibitors of OATP2B1 with nanomolar IC50 values, and 
A4′S showed inhibitory action at low micromolar levels. Among 
the flavonoids examined, only M3′S proved to be a substrate of 
OATP1B1 and OATP2B1. Considering the above-listed observa-
tions, it is unlikely that these flavonoids can affect the albumin 
binding and the CYP2C9-, 2C19-, or 3A4-catalyzed biotransfor-
mation of drugs. However, our novel observations highlight that 
M3′S may interfere with the OATP1B1/2B1-mediated cellular 
uptake of certain drugs. In addition, the OATP2B1-dependent in-
testinal absorption of some medications may also be reduced by 
MYR. Nevertheless, further in vivo studies are required to con-
firm the potential clinical relevance of these interactions.
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