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ABSTRACT This paper presents a comprehensive, Al-based state estimation framework designed to address
the complexities introduced by reduced inertia, fast-changing topologies and erratic measurements. The
proposed framework introduces a layered preprocessing and feature-engineering workflow that consists of
data preprocessing techniques and advanced feature engineering that embeds spatial and temporal context to
the integration of topological awareness and machine learning-based estimation. A custom-designed artificial
neural network is trained with tailored optimization strategies and regularization mechanisms to enhance
convergence, deliver high estimation accuracy and strong resilience to bad or corrupted data. Additionally,
robust solver techniques are integrated to further improve estimation reliability under challenging conditions.
The proposed framework achieves consistently high accuracy across networks of varying size, redundancy,
and renewable penetration, outperforming the conventional SE, especially in low-observability grids.
Robustness testing confirms superior performance under bad data and topology errors, with success rates up
to 25% higher than the conventional method, though gross measurement errors remain challenging.
Sensitivity analysis shows that the algorithmic solver, temporal and spatial features, and robust preprocessing
are the strongest contributors to both accuracy and robustness, with their influence increasing as measurement

sparsity intensifies.

INDEX TERMS Artificial intelligence, artificial neural network, feature engineering, state estimation.

I. INTRODUCTION
Accurate and robust power system monitoring has been
recognized as one of the essential prerequisites for normal
power system operation [l]. However, challenges
introduced as a part of global energy transition, such as
bidirectionality of smart grids, have created additional
complexities in maintaining situational awareness and
preserving continuity of electricity supply [2]. Large-scale
proliferation of distributed energy resources, advanced
control mechanisms, more complex communication
networks and high proliferation of power electronics, have
introduced more frequent and new forms of stability issues,
posing challenges for traditional monitoring mechanisms.
State estimation, one of the most significant aspects of
power system monitoring, has traditionally relied on phasor
measurement units (PMU), physical models and linearized
system equations. While effective in steady-state conditions,
these systems often lack the responsiveness and accuracy
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needed for dynamic real-time assessment, especially in the
presence of noisy data, complex interactions, and rapidly
evolving contingencies [3]. In addition to this, conventional
methods fail to take into account new potential forms of
instability, such as topology-induced instability as a
consequence of dynamic reconfigurations due to fast
switching, microgrid operation, as well as cybersecurity-based
threats [4].

These factors underscore the urgent need for smarter, more
flexible, accurate and reliable state estimation frameworks to
achieve optimal system performance and system stability. For
these reasons, this research aims to design and develop a state
estimation framework capable of enhanced stability
monitoring that successfully handles the introduced
complexities and nonlinearities and achieves a considerably
higher level of system controllability and automation.
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Il. STATE ESTIMATION IN POWER SYSTEMS

State estimation is a cornerstone of grid monitoring and
control in modern power systems. The following sections offer
a brief overview of fundamental concepts related to state
estimation and its functions, as well as an elaboration of key
issues and challenges addressed by this paper.

A. DEFINITION AND MATHEMATICAL FORMULATION
One of the most significant objectives in everyday power
system operation is maintaining the normal state, which
heavily relies on the ability of SCADA systems to
continuously monitor the system through the acquisition of
various measurements, their processing and determining the
system state [5]. This process of inferring the values of system
state variables using a limited number of measured data at
certain locations is referred to as state estimation (SE) [6].
State estimation is a vital component of energy management
systems (EMS) and essentially represents a numerical
transformation that infers state variables from a subset of
various measured data [7].

Mathematically, state estimation is most commonly
formulated as an overdetermined system of nonlinear
equations and solved as an optimization problem with a
quadratic objective function, also referred to as Weighted
Least Square (WLS), with equality and inequality constraints
[8].

Consider the nonlinear measurement model:
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where z is the measurement vector, h;(x) is the nonlinear
scalar function relating measurement i to the state vector, e is
the measurement error vector, which is assumed to have zero
mean and variance, 7, and [xy, X5, ..., X,,] = X" is the system
state vector, X. There are m measurements and n state
variables, n < m.

If this
measurement residuals:
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where g; and ¢; are functions representing power flow
quantities.

Whereas the most common state variables are nodal voltage
magnitude and angle, transformer turns ratio magnitude and
angle, as well as complex active and reactive power flow, the
most common measurement variables are bus and line active
and reactive power flows, bus voltage magnitudes and line
currents [9].

B. STATE ESTIMATION FUNCTIONS
State estimation process includes several interconnected
modules, each of which has a specific function and
application. Their interactions are shown in Fig. 1.

In general, the process starts with gathering sensor input
data, where measurements are aggregated by data
concentrators [10], and is followed by topology identification,
in which the network configuration is verified and updated
based on the status of switching elements, such as circuit
breakers and disconnectors, to mitigate potential topological
inconsistencies [11]. After this, observability analysis
determines the feasibility of uniquely estimating the state
variables given the current measurement set and identifies any
unobservable regions as a result of insufficient measurement
redundancy [12].

If insufficient measurement redundancy is detected,
pseudo-measurement generation module is activated to create
the missing measurements from historical or statistical models
and improve network observability [13]. Upon confirming
observability, the SE solver computes the optimal set of
system states by solving a constrained optimization problem
that incorporates the network model and the measurement
data. The process continues with bad data processing, which
aims to detect, isolate, and if necessary, replace erroneous
measurements [14]. The final stage involves the integration of
SE results into downstream processes of power system
monitoring and control, such as stability assessment,
contingency analysis, model validation and optimal power
flow.

Stability
assessment

SCADA
integration

SE algorithm }——f—‘

Bad data detection

Model validation

Optimal power flow

—

FIGURE 1. Typical State Estimation workflow. Process steps are denoted by blue boxes, and some possible applications are represented in green

boxes.
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1) TOPOLOGY PROCESSING

Network Topology Processing (NTP) is a module that aims to
identify energized, de-energized, and grounded electrical
islands and is usually performed before state estimation and
other related functions [15].

In conventional NTP [16], raw analog measurements are
initially converted into standardized engineering units and
system conditions, such as operational limits, logical
switching constraints and rate-of-change thresholds are
verified. Following this, bus section processing is performed
to determine electrical connectivity by identifying topological
islands in the form of bus section groups. The final step
involves aggregating the physical bus sections into the
bus/branch model. A variant of NTP that is capable of
selectively updating only the parts of the network affected by
changes in switching device statuses in the so-called tracking
mode is presented in [17]. Generalized NTP approach [18]
further improves the conventional NTP by integrating the
topology identification of extended islands into the estimation
process and explicitly representing uncertain or erroneous
switching device statuses.

Recently proposed methods build upon these premises by
formulating the topology verification as a maximum
likelihood estimation problem [19] in a statistical learning
framework for verifying single-phase distribution grid
topologies using non-synchronized voltage data from smart
meters. Other methods achieve high topology processing
accuracy by modeling the grid as a graph and identifying
subgraphs likely to contain topology errors in a Nonlinear
Least Absolute Value (NLAV) framework [20] or by
employing a probabilistic method such as Recursive Bayesian
Approach (RBA) [21].

2) OBSERVABILITY ANALYSIS
Observability analysis determines if a unique SE solution
exists, i.e., if the state variables can be inferred from the
available measurement set [5], and identifies parts of the
network which are unobservable due to bad or missing data,
as well as observable islands on which SE can be applied [22].
The methods of verifying system observability are generally
classified into numerical, topological and hybrid approaches.
Whereas the most widely adopted conventional techniques
of branch variables, nodal variables and topological
observability are based on the graph theory of spanning trees
and work on the principle of formulating every grid topology
as a system of loop equations, novel research approaches are
based on probabilistic methods (such as Gaussian Mixture
Model [23], multivariate complex Gaussian modeling [24])
and machine learning (e.g. Artificial Neural Network [25]).

3) PSEUDO-MEASUREMENT GENERATION

In case input measurement redundancy is inadequate and the
system is unobservable, the input set is artificially expanded
by introducing pseudo-measurements, which are usually
generated according to the network’s historical data by various
methods. Two main categories of these methods are

distinguished in literature: probabilistic and statistical
approaches, and learning-based approaches. Whereas
probabilistic methods involve Gaussian Mixture Models
(GMM) of weighted, finite sum of Gaussian probability
density functions [26], Kernel Density Estimation (KDE) [27],
Expectation Maximization (EM) [28], and Schweppe-Huber
Generalized Method (SHGM) based on projection statistics
[29], learning-based approaches rely on the concepts of
Parallel Distributed Processing (PDP) networks [30], a game-
theoretic expansion of Relevance Vector Machines (RVM)
[31], and Gradient Boosting Trees (GBT) [32].

4) SE SOLVER

The state estimation solver aims to find an optimal solution for
the system states according to the network model constraints
and given measurements. The optimal solution comprises of a
vector of complex bus voltages, according to which estimates
are calculated for other network values, such as generator
outputs, loads, line flows, transformer taps, etc.

Conventionally, the solver includes a linear optimization
problem and contains an algorithm that minimizes an
objective function in an iterative way. One of the most
common approaches to determine the system states is the
statistical method of maximum likelihood estimation (MLE),
which uses the logical assumption that measurement data
follows a specific probability distribution and calculates
parameters of the probability density function so that the
function has maximum value.

Solutions to the optimization problem can be obtained using
either Newton’s method [33] or the iterative re-weighted least
squares (IRWLS) approach [34]. Whereas Newton’s method
solves a set of nonlinear equations derived from the
Lagrangian via Taylor expansion, iteratively updating the
gradient matrix, IRWLS introduces a penalty factor to reduce
the influence of outliers and repeatedly applies WLS with
updated weights. In addition to these, several recent methods
SE solver have been proposed that utilize Semi-Definite
Programming (SDP) [35] and linear state estimation [36].

5) BAD DATA DETECTION

Bad data detection usually consists of two major steps: bad
data detection, a procedure of deciding whether the
measurement data set includes any bad data, and bad data
identification, which involves determining which particular
measurements contain bad data.

Conventional algorithms rely on the assumption that
measurement residuals follow a particular probability density
function and perform statistical hypothesis testing on the data
that exceeds the threshold € [37]. The most frequently used
techniques in this group are Chi-squares test [38], normalized
residuals approach [39], and L2 norm testing [40].

Novel bad data detection approaches have utilized linear
WLS frameworks with equality constraints [41], largest
normalized residual test of PMU data [42], and advanced
statistical analyses based on penalized semidefinite
programming conic relaxation [43].
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Recently, it has been shown that the model-based detection
algorithms described above are susceptible to attack vectors
created by adversaries with prior knowledge of the system
[44]. To address these vulnerabilities, a wide range of data-
driven methods has been proposed, the most prominent of
which seem to be supervised learning techniques [45], Support
Vector Machine (SVM) [46], and k-means clustering (KMC)
[471.

C. KEY ISSUES AND CHALLENGES
Recent advancements in static and dynamic state estimation
have revealed several persistent challenges that limit the
effectiveness of current methodologies. Some of the key
concerns are numerical stability, convergence, robustness
against bad data, accuracy of pseudo-measurements, as well
as design of efficient real-time SE framework.

Numerical stability and convergence are particularly
significant when integrating measurements with differing
accuracy and scales from diverse sources like RTUs, PMUs,
and DERs. The biggest challenges in this domain are
optimality and observability in systems with marginal
measurement redundancy [48]. Despite improvements in bad
data handling, new potential threats, such as data corrupted by
cyberattacks, necessitate more resilient SE frameworks.
Furthermore, employing new methods to generate pseudo-
measurements to enhance SE accuracy is a significant
concern, especially when considering the cost associated with
the installation of advanced metering equipment, especially in
the distribution systems [7]. From a performance standpoint,
the growing system complexity necessitates scalable and
distributed SE architecture capable of real-time application, in
addition to a more standardized approach that promotes easier
implementation to future adopters.

This paper addresses the above issues and proposes
solutions of the above-mentioned challenges by utilizing data-
driven techniques based on artificial intelligence (Al).

lll. AI-BASED DYNAMIC STATE ESTIMATION
FRAMEWORK

The main aim of the proposed framework is to exploit
deficiencies of conventionally used SE aspects, with a
particular focus on enhancing pseudo-measurement
generation and state estimator capabilities by utilizing Al
techniques and feature engineering.

A. BASIC Al PRINCIPLES
Al refers to the theory and development of computational
systems capable of performing tasks that typically require
human intelligence, such as reasoning, learning, decision-
making, perception, and language understanding [49]. The
most basic principle of Al is its ability to imitate or replicate
cognitive functions of humans, enabling computers to analyze
data, draw conclusions, and act upon them with minimal
human intervention. According to [49], the ultimate goal of Al

is to create systems that can autonomously perceive their
environment, process information, and act adaptively to
achieve specific objectives.

Al systems are generally structured as intelligent agents,
which perceive their environment through sensors that collect
data, interpret information by using internal models based on
a variety of learning algorithms, make decisions through
reasoning capabilities, and act upon the environment through
actuators to achieve specific goals [50].

Al encompasses a wide set of methods aimed at enabling
machines to simulate intelligent behavior. The most common
classification of Al approaches is based on learning paradigm,
whereby there are three major types of Al frameworks:
supervised learning — where models are trained on labeled data
where the correct output is provided for each input with the
aim of minimizing error, unsupervised learning — in which
models find pattern or structures in unlabeled data, such as
clustering or dimensionality reduction, and Reinforcement
Learning (RL) methods, in which decision-making is defined
as a Markov Decision Process models where models learn by
interacting with an environment and receiving feedback in the
form of rewards or penalties with the aim to maximize
cumulative reward over time [51].

One of the major Al techniques is based on Artificial Neural
Network (ANN), which is a feedforward, layered architecture
comprised of multiple layers of interconnected neurons that
apply nonlinear activation functions, such as ReLLU, sigmoid,
or tanh, to their weighted combinations of inputs. Their typical
structure consists of input, hidden, and output layers of
neurons such that neurons of one layer connect only to neurons
of the immediately preceding and immediately following
layers. Each weight represents a neuron’s relative importance.
The training process is based on minimizing a loss function
(cumulative prediction error of neural network) via
backpropagation and gradient-based optimizers (e.g., SGD,
Adam) [52].

B. PROPOSED FRAMEWORK

Fig. 2 illustrates a comprehensive flowchart of proposed
methodologies used for pseudo-measurement generation
(PMQG), designed to enhance power system state estimation
through data-driven methods and feature optimization. The
process begins with the collection of input data, which
includes static and dynamic system information and grid
topology data. From this foundation, case studies and specific
scenarios are selected to define the operating conditions under
which the model will be developed and tested. The next phase
involves network modeling and simulation, after which a
quasi-dynamic simulation is performed using a time-series of
load, generator and RES profiles, to produce input and output
measurements that are processed (by cleaning, normalization,
and structuring). As the most crucial, feature engineering and
topological considerations are applied to enhance model
learning.
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FIGURE 2. Flowchart of applied research methodology.

Then the prepared data is used to train the AI model and
hyperparameter optimization is used to ensure that the model
performs efficiently and generalizes well. Finally, the trained
model is subjected to evaluation and testing to assess its
accuracy, and sensitivity analysis is conducted to assess
impacts of the proposed enhancements. Additionally,
validation and robustness analysis are conducted to examine
the model’s performance under different operating conditions
and topological configurations.

C. INPUT DATA PREPARATION AND

PREPROCESSING
The input grid data consisting of three sample systems was
provided by the SimBench dataset [53]: EHV-HV grid (Grid
A), HV-MV grid (Grid B), MV-LV grid (Grid C). Table I
displays basic network characteristics for each of the grids in
terms of number of elements. Whereas Grid A is a replica of
the German 380- and 220-kV grid, grid B represents a sub-
urban HV and MV open ring system, and grid C emulates a
typical rural MV-LV topology.

For each of the grids, in addition to the base case scenarios,
denoted as A0, BO and CO, respectively, there are two
additional cases, denoted as Al, A2, BI, B2, Cl1 and C2,
respectively. The cases differ in the allocations of renewable
generation capacity per fuel type, such that the capacity
progressively increases, as illustrated in Fig. 3 for Grid C.

The load profiles are modelled as a time series of 35136
steps (yearly data in 15-minutes resolution) with normalized
active and reactive power data for each load type. Each load
has an assigned type, such as rural, urban, commercial etc. and

each load type possesses its own load curve in each grid.
TABLEI
BASIC CHARACTERISTICS OF TEST GRIDS

Element Type GridA GridB GridC
No. of lines 1057 204 5391
No. of loads 523 156 5373
No. of terminals 713 173 5483
No. of conventional generators 345 0 0
No. of RES generators 422 192 581
No. of substations 32 19 1
No. of transformers 218 8 92

Similarly, all generator types (including non-RES, RES and
storage) are modelled with normalized active power profiles.

The data preparation process for the training procedure
involved interfacing DIgSILENT PowerFactory software [54]
with Python 3.8 and creating time characteristics for all input
data profiles of load, generator, RES and storage, and running
a quasi-dynamic analysis on the three test grids for the time-
series simulation of 35136 time intervals.

The quasi-dynamic simulation yielded the output consisting
of the bus voltage angles and magnitudes at each bus, an
example of which is illustrated in Fig. 4, for grid C, allowing
the initial training input and output data to be taken from the
PowerFactory variables: active power flow, reactive power
flow, voltage magnitude, and voltage angle.

The data was additionally processed by imputation of
historical averages of the input measurements for weekday-
hour pairs, since it was observed that the input measurements
have a high weekly seasonality. Thus, an additional input was
created considering the average value of all P and Q node
measurements of the same hour and the same weekday, so that
e.g. all Thursday 10:00h measurements of active power at a
single bus have the same average value.

Furthermore, in order to make the data more resistant to
outliers and random distributions, the data vectors were
normalized by using the robust scaling approach:
X — median(X)
TIORM) @

QR(X)
where IQR is the difference between 75th percentile (Q3) and
25th percentile (Q1). After the scaling, all data points outside

the criterion: |Xscqreql > 2 were cleared as obvious outliers.
Installed Capacity by Generation Type - Grid C

Xscatea =
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&
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FIGURE 3. Installed generation capacity [MW] per fuel type in Grid C
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FIGURE 4. Yearly voltage magnitude and angle at bus LV1.101.

An additional enhancement of input data (which was used
in robustness testing and not in the original training) was done
by simulating sparse conditions. This included artificially
generating a Boolean mask of the same shape as the data
matrix with the rates of [0.2, 0.4, 0.6] which produces a matrix
of uniform random numbers in [0,1) and randomly scatters
them, replacing the original measurements with zeros to
emulate sensor outages or communication dropouts.

D. FEATURE ENGINEERING AND TOPOLOGICAL
CONSIDERATIONS

To help the model uncover underlying patterns and
relationships and further improve accuracy, four methods of
feature engineering were proposed, some of which highly rely
on input or output topology results:
1) Integration of temporal features

The input data timestamps were expanded to offer a better
insight into cyclic time patterns of the data. The following
temporal indicators were proposed: hour-of-day, day-of-week,

and season. They are represented as integer types with the
ranges of [1-24], [1-7], and [1-4], respectively.
2) Augmentation of spatial context

Since each element in the input dataset contains information
about the subnet parameter that corresponds to the grid to
which the element belongs, the output set was enhanced by
adding extra parameters such as the average of voltage
magnitude of all buses belonging to the same subnet
(PowerFactory object zone).
3) Reduction of output measurement outliers

To further reduce eventual measurement outliers, a method
is applied which sorts all voltage measurements in descending
order and computes their standard deviations. Following this,
measurements from the bottom or top of the list are removed
and the new standard deviation is computed. If the new
standard deviation is found to be less than half of the
previously calculated one, the measurement is substituted by
the mean value of the measurement set that doesn’t include the
outlier. This procedure is repeated until removing a
measurement no longer results in a reduction of the standard
deviation by more than 50%.
4) Inclusion of topological considerations

This extra feature involves the topology solver’s output
data, particularly the node energization information obtained
from PowerFactory’s time-series load flow results (variable
named e:ciEnergized). Consequently, a binary indicator that
indicates if a specific node is energized or not is created and
appended to the dataset, enabling a much better capturing of
network connectivity dynamics by removing the need for
phantom predictions, as well as enhancing overall robustness,
generalization and potential failure mode identification by
distinguishing between normal load variations and fault-
induced islanding events.

A summary of all proposed data enhancement indicators is
shown in Table II.

TABLE I

SUMMARY OF FEATURE ENGINEERING ENHANCEMENT INDICATORS

Indicator Type Stage Group Source Target variables
. Historical average input .
V_prev float Preprocessing imputation measurements P, Q for training
. . . i P fi
X scaled integer Preprocessing Robust scaling input & output ’ Q.’ V or
measurements training
Z bad boolean matrix Preprocessing Spar'se coqdltlon input P, Q for testing
simulation measurements
Hour integer Feature engineering Temporal features timestamps P, Q for training
Day integer Feature engineering Temporal features timestamps P, Q for training
Season integer Feature engineering Temporal features timestamps P, Q for training
input topology,
V_zone avg float Feature engineering Spatial context output V for training
measurements
V_bad n/a Feature engineering Output ogthers output V for training
- reduction measurements
. . . Topological P,Q,V for
Energized boolean Feature engineering consideration output topology training
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FIGURE 5. Diagram of the optimal ANN structure. It consists of an input
layer, 3 hidden layers and an output layer in an 8-512-256-128-2
configuration.

E. Al DESIGN AND TRAINING
an ANN-based feed-forward perceptron architecture is
proposed. As previously established, ANNs are computational
networks which attempt to simulate the decision process in
networks of nerve cells (neurons) of the biological central
nervous system [55]. A perceptron, which is a commonly used
model for a neuron, can be defined by the following input-

output relation:
z= E wiX; 4)
i

y = fa(2) (5)
where z is the node (summation) output of linearly combined
weighted (w;) inputs, x;, used as an argument of activation
function, f,, which is typically linear, unipolar, binary or
sigmoid. Typically, an ANN is composed of several
perceptrons arranged in parallel to form a layer, with one or
more such layers connected in sequence. In this structure,
known as a multi-layer perceptron, the output from every
neuron in one layer is transmitted to each neuron in the
subsequent layer.

The proposed multi-layered perceptron structure allows for
one ANN network to estimate the bus voltage magnitudes, and
a second one to estimate the voltage angles. The input layer
size is equal to the product of the number of input
measurements and the added features, and the numbers of
critical buses. The output layer size is equal to the number of
bus voltage magnitudes or angles, respectively. Initially, three
hidden dense layers are proposed for each of the test grids, and
the Rectified Linear Unit (ReLU) as their activation function,
to promote sparse, efficient representations. Moreover, the
initial setup proposes batch normalization in the first and
second dense layers to normalize the inputs to zero mean and
unit variance, accelerating convergence and stabilizing
training, as well as a dropout rate of 20% to prevent overfitting
and encourage redundancy. Finally, the output layer provides
simultaneous regression outputs: voltage magnitude and angle
per bus.

The Al training procedure, which utilizes a Python 3.8
environment’s scikit-learn library for machine learning [56],
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starts with determination of the dataset split ratio. In this
research, the split of 75-25% is applied, which means that 75%
of the data is used for training and 25% for validation. The
training data comprises a number of training samples and
features for each sample, where the total dataset size is
determined by the product of sample and feature number.
However, due to samples being time-series results, the
augmented data having the size of (time steps x (no. of features
- no. of buses)) needed to be transformed to avoid an input
layer of too large size and possible overfitting errors. For this,
the data science technique of melting, i.e., converting a wide-
format dataset into a long-format one by unpivoting columns
into rows, was utilized. As a result, the training dataset size of
(4-24-366'np)-10 was reached, with ny defined as the number
of buses in a subset of buses taken from the test grid. The
features set consists of an array of 4 measurements (2 input, 2
output) and 6 additional features explained in the previous
sections. The Adam optimization algorithm is employed to
adjust the ANN’s weights, initially using a learning rate of
0.001, with the objective of minimizing the mean squared
error (MSE) between the network’s output and the target
values. In the process, the early stopping option is used,
meaning that the validation error is monitored to stop training
early if no improvement is reached in several consecutive
epochs, i.e., complete cycles through the entire training
dataset.

F. HYPERPARAMETER OPTIMIZATION

Unlike model parameters (weights and biases),
hyperparameters are set prior to training and critically
influence convergence speed, generalization ability and
computational efficiency. Hyperparameters such as the
number of layers, the number of neurons per layer, learning
rate, batch size, dropout rate, the number of training epochs
and the amount of training data are fine-tuned by calculating
them using several combinations and recording the success
rate. After the initial training was conducted on a large, diverse
grid (Case A), the fine-tuning assessments were performed on
the MV (Case B) grid with less sample data. The ideal number
of layers is chosen based on heuristics and the input dataset
considerations. To balance model capacity with
generalization, three hidden layers are chosen. For the ideal
number of neurons per layer, estimations were made for the
combinations represented in Table III. The chosen
configuration, shown in Fig. 5, is the one with the lowest
average validation p.u. mean square error (MSE).

TABLEIII
VALIDATION MSE FOR DIFFERENT ANN CONFIGURATIONS.

ANN configuration (number of Average
neurons in hidden layers) validation MSE
32-16-8 0.089
64-32-16 0.08
128-64-32 0.072
256-128-64 0.068
512-256-128 0.075
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FIGURE 6. MSE progression with hybrid LR schedule approach.

Since the initial learning rate of 0.001 has proven to be
slightly too large, and the minimum validation MSE has
occurred around 0.0001, but using it may lead to slower
convergence, a hybrid schedule-based learning rate has been
proposed in which the learning rate changes from the initial
0.001 to 0.0001 after the 30th epoch, as can be seen in Fig. 6.

For the training dataset, the most optimal maximum epoch
number has proven to be between 50 and 150, and therefore,
the middle value of 100 is chosen. Moreover, the batch size of
256 and the dropout rate of 20% are chosen as a rule of thumb,
without further detailed analysis.

IV. RESULTS

As training and optimization have been conducted on diverse
networks with different generation and load patterns, as well
as topological structures, but on a grid that is inherently
observable, the capability of the proposed approach to
produce accurate pseudo-measurements needs to be tested by
using a range of scenarios that feature low measurement
redundancy and/or low observability. Moreover, robustness
to bad data such as gross errors, missing measurements, and
topology inaccuracies has been tested on different scenarios.
Finally, sensitivity analysis has been conducted to assess the
contributions of the proposed feature enhancements.

A. EVALUATION AND TESTING
The accuracy of the proposed approach was tested on the grids
described in Table 1. Table IV shows the number of installed
measurements in each of the defined cases, indicating that
grids B1, B2, C0, C1 and C2, have the lowest measurement
redundancy in addition to having the high penetration of
renewables.

TABLE IV
MEASUREMENT CONFIGURATION THROUGHOUT THE CASE STUDIES

TABLEV
COMPARISON OF SE ACCURACY
Proposed framework Conventional SE
c MAE RMSE 2 MAE RMSE R?
ase R
(pu) (pw) (pu) (pu)
A0 0.0021  0.003  0.974 | 0.002 0.0029 0.961
Al 0.0019 0.0028 0.989 | 0.002 0.0031 0.976
A2 0.0021 0.0031 0.953 | 0.0022 0.003 0.956
B0 0.0026  0.0035 0.989 | 0.0033 0.0042 0.98
Bl 0.0012 0.0021 0.956 | 0.0015 0.0025 0.946
B2 0.0015 0.0024 0.968 | 0.0019 0.0029 0.958
co 0.0022  0.003  0.988 | 0.0028 0.0036 0.979
Cl 0.0024 0.0029 0.977 | 0.003 0.0035 0.967
C2 0.0016 0.0023 0.973 | 0.002 0.0028 0.963

Case
Meas. 0o A1 A2 BO BI B2 CO Cl C2
type
i 952 98 1058 65 2 2 2 2 2
p 1533 1291 1633 321 36 38 14 14 16
g 1533 1291 1633 321 36 38 14 14 16
v 708 597 599 284 54 55 7 7 9
Total 4726 4165 4923 991 128 133 7 7 9
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To compare the proposed SE method with the conventional
SE with respect to accuracy, another WLS-based SE is
performed on the initial measurement and pseudo-
measurement datasets. The following error metrics are used to
assess the performance of the proposed method and
benchmark with the conventional SE:

e Mean Absolute Error (MAE) - the average of the
absolute differences between predicted and actual
values,

e Root Mean Squared Error (RMSE) - the square root of
the average squared differences between predicted and
actual values,

e Coefficient of Determination (R? Score) - the proportion
of variance in the actual data that is predictable from the
model.

The estimation results are shown in Table V, across all error
metrics and consider average error values for both output
measurement vectors, as tested by 9 case studies of the 3 test
networks. The results demonstrate that the ANN-based SE
maintains consistently low error levels and high determination
coefficient, even as grid size, measurement density, generation
and load profiles and storage capacity vary. In the large EHV-
HV network (A-cases), MAE hovers around 0.0021 p.u. for
baseline and maximum storage case (A0 and A2,
respectively), dipping to 0.0019 when storage is doubled. The
R? peaking to 0.989 in A1 and falling to 0.953 in A2 suggests
diminishing returns once storage exceeds certain point despite
slightly higher measurement counts. In the MV-LV grid (B-
cases) with 100% RES penetration, baseline case (B0)
displays the highest MAE and RMSE, but an excellent R?, and
the addition of storage in B1 and B2 seems to improve the
MAE by roughly half and reduce the RMSE by around 30%,
followed by a small decrease in R2. Finally, in the MV-LV
network (C-cases) MAE and RMSE errors remain modest,
even with very sparse measurements, while R2 stays above
0.97. Moreover, the results indicate that the ANN-based SE
performs comparably well in grids with high measurement
redundancy (Cases A), whereas for medium-redundancy
suburban networks (Cases B) and low-redundancy rural
networks (Cases C), its accuracy outperforms the conventional
method across all metrics.
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TABLE VI
ROBUSTNESS TESTING SCENARIOS
CI?)SG Type Description
Ml Gross +50% voltage offset at HV1
Measurement Error Bus 1
M2 Gross +50% voltage offset at
Measurement Error MV4.101 Bus 76
M3 Gross +50% P, Q offset at MV4.101
Measurement Error Bus 15
ol Measurement Voltage measurement of 0 p.u.
Outage at HV1 Bus 1
02 Measurement Voltage measurement of 0 p.u.
Outage at MV4.101 Bus 76
03 Measurement P, Q measurement of 0 at HV1
Outage Bus 15
Switch status of HV1 Switch 1
TI Topology Error inverted
Switch status of MV1 Switch 1
72 Topology Error and 2 inverted
R, X of line MV4.101
T3 Topology Error loop_line 1 90 % of actual

value

The accuracy of the conventional SE deteriorates more due
to increased sensitivity to measurement sparsity and noise,
with relative differences of up to 25% compared to the
proposed method.

B. ROBUSTNESS ANALYSIS
The objective of robustness analysis is to assess the influence
of different operating conditions on estimation accuracy,
considering variations in measurement quantity and type, as
well as the method’s robustness to bad data such as gross
errors, missing measurements, and topology inaccuracies.
For that purpose, different test scenarios are developed, as
described in Table VI, and tested on the B2 scenario (MV-
HV grid, full renewable generation, storage, DER, with
extremely low measurement redundancy of around 15%).
The cases include an increase of bus voltage measurement at
random buses, emulating a sensor outage by setting the
voltage measurement as 0 p.u., inverting the binary status of
switches (open/close), and decreasing line resistance and
reactance parameters by 10%. The success condition of each
scenario is to achieve a voltage magnitude prediction error
of less than 1% or a voltage angle prediction error of less
than 5%. The success rate is measured as the ratio of all
scenarios where the tested method satisfies the success
condition to the maximum number of successful tests (i.c.,
for each of the 9 robustness scenarios there are 18 tests = 9
case studies x 2 variables). Finally, the proposed framework
is compared against the conventional SE across the
robustness metrics (M1-M3, O1-03, T1-T3) in terms of
success rate, and the results are presented in Fig. 7.

From the figure, it may be observed that the proposed
framework dominates in every category, often by a large
margin, especially in T1, T2 and T3 (topological errors). This
can be attributed to the feature engineering and preprocessing
done on the ANN input data.
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Proposed vs. Conventional SE Framework Performance

Proposed SE framework
—— Conventional SE
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FIGURE 7. Comparison of robustness of the SE methods.

Moreover, O1 shows a modest gain, suggesting a similar
performance of both methods assuming the strict 1% criterion,
in the case of HV measurement outage. However, the other
two cases of measurement outages (voltage outage at an MV
bus and a P, Q outage) prove that the proposed approach
significantly improves robustness. Furthermore, for gross
measurement errors, the proposed framework fails to offer a
significantly large success rate, which can be explained with
the strict success rate and the requirement of convergence.

C. SENSITIVITY ANALYSIS
To assess the relative contribution of each framework
component to the overall performance gains sensitivity
analysis is conducted as a series of ablation studies that
systematically remove key eclements of the proposed
framework, such as the feature engineering enhancements
from Table II in such a way that only one enhancement is
added at a time. Consequently, the ANN is retrained on a
smaller input set and tested on the test cases C1, C2 and C3.
Additionally, a case in which the SE solver is replaced by the
Schweppe—Huber solver and IRWLS algorithm is applied on
the ANN-generated pseudo-measurements is tested. Table
VII displays the results in terms of average relative
difference in RMSE (compared to the results in Table V) and
the relative difference in the success rate of the robustness
testing scenarios (comparison with Table VI) for each of the
cases.

From the table, it can be seen that all the proposed
components display performance enhancements and generally
have a bigger influence as the measurement sparsity increases.
Furthermore, the largest single contributor to the RMSE
improvement is the SE solver, followed by temporal and
spatial features. Whereas some features, such as robust scaling
and historical average imputation show a particularly stronger
effect under noisy conditions, other features, such as
topological considerations show a moderate but consistent
impact.
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TABLE VII
SENSITIVITY ANALYSIS RESULTS OF THE PROPOSED FEATURE ENGINEERING ENHANCEMENT INDICATORS

Relative RMSE
difference [%]

Relative SR difference [%]

Indicator Stage Group
Cl C2 C3 M1 M2 M3 o1 02 03 T1 T2 T3
V_prev Preprocessing  ustoriealaverage |5, g0 L6 58 65 143 150 138 35 39 41
imputation
X scaled Preprocessing Robust scaling 8.4 123 151 | 184 173 191 102 107 99 5.8 6.1 6.4
Z bad Preprocessing Sparsccondition | oo |40 46 44 95 102 98 31 34 36
simulation
Hour Ff:aturf: Temporal features
engineering
Feature
Day . . Temporal features 10.5 104 178 | 128 122 135 9.1 9.6 8.9 7.3 7.8 8.1
engineering
Season F§atur§ Temporal features
engineering
Feature .
V_zone_avg X ) Spatial context 53 1.1 122 8.6 9.2 8.9 7.4 7.7 7.1 13.4  14.1 14.7
engineering
V_bad Feature Output outliers 41 73 30 | 101 107 103 76 81 73 6 64 67
- engineering reduction
Energized Feature Topological 42 38 91 | 65 68 64 58 61 57 175 183 179
engineering consideration
SH and .
IRWLS SE solver Algorithm 12.1 16.8 203 | 207 199 213 159 164 151 121 127 134
Moreover, the biggest factor affecting robustness is the
algorithm, as it provides the highest universal SR ACKNOWLEDGMENT

improvement across all cases. It is also noteworthy that
different feature enhancements have shown stronger influence
(biggest SR gains) on different categories of the robustness
analysis, such as robust scaling and algorithm choice on the
gross errors (M1-M3), historical imputation and sparse
condition simulation on the outages (O1-O3). Similarly,
topological considerations and spatial context addition
provide the highest boosts of the topology errors.

V. CONCLUSION

This paper presents a cohesive end-to-end framework that
combines robust data preprocessing, advanced feature design
and ANN-learning-based pseudo-measurement generation.
To counteract measurement gaps and erratic outliers, a layered
preprocessing and feature engineering workflow is developed.
By combining  statistics-based  imputations, IQR
normalization, iterative cleaning of extreme values, and
adversarial injection of synthetic data dropouts, the framework
successfully reconstructs a reliable, high-dimensional input
space. The addition of spatial averages and topology-derived
connectivity flags further embeds structural knowledge,
resulting in a robust observability platform that operates
effectively even when the majority of measurements are
unavailable or compromised.

Therefore, as demonstrated on test grids, the proposed
methodology achieves high estimation accuracy, effectively
capturing the system states across various operating conditions
and significantly outperforming the conventional SE
methodology in terms of robustness against sudden data
fluctuations and measurement errors.
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