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ABSTRACT This paper presents a comprehensive, AI-based state estimation framework designed to address 

the complexities introduced by reduced inertia, fast-changing topologies and erratic measurements. The 

proposed framework introduces a layered preprocessing and feature-engineering workflow that consists of 

data preprocessing techniques and advanced feature engineering that embeds spatial and temporal context to 

the integration of topological awareness and machine learning-based estimation. A custom-designed artificial 

neural network is trained with tailored optimization strategies and regularization mechanisms to enhance 

convergence, deliver high estimation accuracy and strong resilience to bad or corrupted data. Additionally, 

robust solver techniques are integrated to further improve estimation reliability under challenging conditions. 

The proposed framework achieves consistently high accuracy across networks of varying size, redundancy, 

and renewable penetration, outperforming the conventional SE, especially in low-observability grids. 

Robustness testing confirms superior performance under bad data and topology errors, with success rates up 

to 25% higher than the conventional method, though gross measurement errors remain challenging. 

Sensitivity analysis shows that the algorithmic solver, temporal and spatial features, and robust preprocessing 

are the strongest contributors to both accuracy and robustness, with their influence increasing as measurement 

sparsity intensifies. 

INDEX TERMS Artificial intelligence, artificial neural network, feature engineering, state estimation.  

I. INTRODUCTION 

Accurate and robust power system monitoring has been 

recognized as one of the essential prerequisites for normal 

power system operation [1]. However, challenges 

introduced as a part of global energy transition, such as 

bidirectionality of smart grids, have created additional 

complexities in maintaining situational awareness and 

preserving continuity of electricity supply [2]. Large-scale 

proliferation of distributed energy resources, advanced 

control mechanisms, more complex communication 

networks and high proliferation of power electronics, have 

introduced more frequent and new forms of stability issues, 

posing challenges for traditional monitoring mechanisms.  

State estimation, one of the most significant aspects of 

power system monitoring, has traditionally relied on phasor 

measurement units (PMU), physical models and linearized 

system equations. While effective in steady-state conditions, 

these systems often lack the responsiveness and accuracy 

needed for dynamic real-time assessment, especially in the 

presence of noisy data, complex interactions, and rapidly 

evolving contingencies [3]. In addition to this, conventional 

methods fail to take into account new potential forms of 

instability, such as topology-induced instability as a 

consequence of dynamic reconfigurations due to fast 

switching, microgrid operation, as well as cybersecurity-based 

threats [4]. 

These factors underscore the urgent need for smarter, more 

flexible, accurate and reliable state estimation frameworks to 

achieve optimal system performance and system stability. For 

these reasons, this research aims to design and develop a state 

estimation framework capable of enhanced stability 

monitoring that successfully handles the introduced 

complexities and nonlinearities and achieves a considerably 

higher level of system controllability and automation. 
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II. STATE ESTIMATION IN POWER SYSTEMS 

State estimation is a cornerstone of grid monitoring and 

control in modern power systems. The following sections offer 

a brief overview of fundamental concepts related to state 

estimation and its functions, as well as an elaboration of key 

issues and challenges addressed by this paper. 

A. DEFINITION AND MATHEMATICAL FORMULATION 

One of the most significant objectives in everyday power 

system operation is maintaining the normal state, which 

heavily relies on the ability of SCADA systems to 

continuously monitor the system through the acquisition of 

various measurements, their processing and determining the 

system state [5]. This process of inferring the values of system 

state variables using a limited number of measured data at 

certain locations is referred to as state estimation (SE) [6]. 

State estimation is a vital component of energy management 

systems (EMS) and essentially represents a numerical 

transformation that infers state variables from a subset of 

various measured data [7]. 

Mathematically, state estimation is most commonly 

formulated as an overdetermined system of nonlinear 

equations and solved as an optimization problem with a 

quadratic objective function, also referred to as Weighted 

Least Square (WLS), with equality and inequality constraints 

[8]. 

Consider the nonlinear measurement model: 

𝒛 = [

𝑧1

𝑧2
 

⋮
𝑧𝑚

] = [

ℎ1(𝑥1, 𝑥2, … , 𝑥𝑛)

ℎ2(𝑥1, 𝑥2, … , 𝑥𝑛)
⋮

ℎ𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)

] + [

𝑒1

𝑒2
 

⋮
𝑒𝑚

] = ℎ(𝒙) + 𝒆 (1) 

where 𝐳 is the measurement vector, ℎ𝑖(𝒙) is the nonlinear 

scalar function relating measurement 𝑖 to the state vector, e is 

the measurement error vector, which is assumed to have zero 

mean and variance, 𝜎𝑖
2, and [𝑥1, 𝑥2, … , 𝑥𝑛] = 𝐱T is the system 

state vector, 𝐱. There are 𝑚 measurements and 𝑛 state 

variables, 𝑛 < 𝑚.  

If this problem is formulated in terms of 

measurement residuals: 𝑟𝑖 = 𝑧𝑖 − ℎ(𝑧𝑖), the problem 

becomes: 

minimize    𝐽(𝐱) =
1

2
∑

𝑟𝑖
2

𝜎𝑖
2

𝑚

𝑖=1

(2)

subject to  𝑔𝑗(𝐱) = 0, 𝑗 = 1, … , 𝑛𝑔

                    𝑐𝑗(𝐱) ≤ 0, 𝑗 = 1, … , 𝑛𝑐

 

where 𝑔𝑗 and 𝑐𝑗 are functions representing power flow 

quantities. 

Whereas the most common state variables are nodal voltage 

magnitude and angle, transformer turns ratio magnitude and 

angle, as well as complex active and reactive power flow, the 

most common measurement variables are bus and line active 

and reactive power flows, bus voltage magnitudes and line 

currents [9]. 

B. STATE ESTIMATION FUNCTIONS  

State estimation process includes several interconnected 

modules, each of which has a specific function and 

application. Their interactions are shown in Fig. 1. 

In general, the process starts with gathering sensor input 

data, where measurements are aggregated by data 

concentrators [10], and is followed by topology identification, 

in which the network configuration is verified and updated 

based on the status of switching elements, such as circuit 

breakers and disconnectors, to mitigate potential topological 

inconsistencies [11]. After this, observability analysis 

determines the feasibility of uniquely estimating the state 

variables given the current measurement set and identifies any 

unobservable regions as a result of insufficient measurement 

redundancy [12].  

If insufficient measurement redundancy is detected, 

pseudo-measurement generation module is activated to create 

the missing measurements from historical or statistical models 

and improve network observability [13]. Upon confirming 

observability, the SE solver computes the optimal set of 

system states by solving a constrained optimization problem 

that incorporates the network model and the measurement 

data. The process continues with bad data processing, which 

aims to detect, isolate, and if necessary, replace erroneous 

measurements [14]. The final stage involves the integration of 

SE results into downstream processes of power system 

monitoring and control, such as stability assessment, 

contingency analysis, model validation and optimal power 

flow. 
 

 

FIGURE 1. Typical State Estimation workflow. Process steps are denoted by blue boxes, and some possible applications are represented in green 
boxes. 
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1) TOPOLOGY PROCESSING 

Network Topology Processing (NTP) is a module that aims to 

identify energized, de-energized, and grounded electrical 

islands and is usually performed before state estimation and 

other related functions [15].  

In conventional NTP [16], raw analog measurements are 

initially converted into standardized engineering units and 

system conditions, such as operational limits, logical 

switching constraints and rate-of-change thresholds are 

verified. Following this, bus section processing is performed 

to determine electrical connectivity by identifying topological 

islands in the form of bus section groups. The final step 

involves aggregating the physical bus sections into the 

bus/branch model. A variant of NTP that is capable of 

selectively updating only the parts of the network affected by 

changes in switching device statuses in the so-called tracking 

mode is presented in [17]. Generalized NTP approach [18] 

further improves the conventional NTP by integrating the 

topology identification of extended islands into the estimation 

process and explicitly representing uncertain or erroneous 

switching device statuses. 

Recently proposed methods build upon these premises by 

formulating the topology verification as a maximum 

likelihood estimation problem [19] in a statistical learning 

framework for verifying single-phase distribution grid 

topologies using non-synchronized voltage data from smart 

meters. Other methods achieve high topology processing 

accuracy by modeling the grid as a graph and identifying 

subgraphs likely to contain topology errors in a Nonlinear 

Least Absolute Value (NLAV) framework [20] or by 

employing a probabilistic method such as Recursive Bayesian 

Approach (RBA) [21]. 

2) OBSERVABILITY ANALYSIS 

Observability analysis determines if a unique SE solution 

exists, i.e., if the state variables can be inferred from the 

available measurement set [5], and identifies parts of the 

network which are unobservable due to bad or missing data, 

as well as observable islands on which SE can be applied [22]. 

The methods of verifying system observability are generally 

classified into numerical, topological and hybrid approaches.  

Whereas the most widely adopted conventional techniques 

of branch variables, nodal variables and topological 

observability are based on the graph theory of spanning trees 

and work on the principle of formulating every grid topology 

as a system of loop equations, novel research approaches are 

based on probabilistic methods (such as Gaussian Mixture 

Model [23], multivariate complex Gaussian modeling [24]) 

and machine learning (e.g. Artificial Neural Network [25]). 

3) PSEUDO-MEASUREMENT GENERATION 

In case input measurement redundancy is inadequate and the 

system is unobservable, the input set is artificially expanded 

by introducing pseudo-measurements, which are usually 

generated according to the network’s historical data by various 

methods. Two main categories of these methods are 

distinguished in literature: probabilistic and statistical 

approaches, and learning-based approaches. Whereas 

probabilistic methods involve Gaussian Mixture Models 

(GMM) of weighted, finite sum of Gaussian probability 

density functions [26], Kernel Density Estimation (KDE) [27], 

Expectation Maximization (EM) [28], and Schweppe-Huber 

Generalized Method (SHGM) based on projection statistics 

[29], learning-based approaches rely on the concepts of 

Parallel Distributed Processing (PDP) networks [30], a game-

theoretic expansion of Relevance Vector Machines (RVM) 

[31], and Gradient Boosting Trees (GBT) [32]. 

4) SE SOLVER 

The state estimation solver aims to find an optimal solution for 

the system states according to the network model constraints 

and given measurements. The optimal solution comprises of a 

vector of complex bus voltages, according to which estimates 

are calculated for other network values, such as generator 

outputs, loads, line flows, transformer taps, etc.  

Conventionally, the solver includes a linear optimization 

problem and contains an algorithm that minimizes an 

objective function in an iterative way. One of the most 

common approaches to determine the system states is the 

statistical method of maximum likelihood estimation (MLE), 

which uses the logical assumption that measurement data 

follows a specific probability distribution and calculates 

parameters of the probability density function so that the 

function has maximum value. 

Solutions to the optimization problem can be obtained using 

either Newton’s method [33] or the iterative re-weighted least 

squares (IRWLS) approach [34]. Whereas Newton’s method 

solves a set of nonlinear equations derived from the 

Lagrangian via Taylor expansion, iteratively updating the 

gradient matrix, IRWLS introduces a penalty factor to reduce 

the influence of outliers and repeatedly applies WLS with 

updated weights. In addition to these, several recent methods 

SE solver have been proposed that utilize Semi-Definite 

Programming (SDP) [35] and linear state estimation [36]. 

5) BAD DATA DETECTION 

Bad data detection usually consists of two major steps: bad 

data detection, a procedure of deciding whether the 

measurement data set includes any bad data, and bad data 

identification, which involves determining which particular 

measurements contain bad data. 

Conventional algorithms rely on the assumption that 

measurement residuals follow a particular probability density 

function and perform statistical hypothesis testing on the data 

that exceeds the threshold ∈ [37]. The most frequently used 

techniques in this group are Chi-squares test [38], normalized 

residuals approach [39], and L2 norm testing [40]. 

Novel bad data detection approaches have utilized linear 

WLS frameworks with equality constraints [41], largest 

normalized residual test of PMU data [42], and advanced 

statistical analyses based on penalized semidefinite 

programming conic relaxation [43]. 
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Recently, it has been shown that the model-based detection 

algorithms described above are susceptible to attack vectors 

created by adversaries with prior knowledge of the system 

[44]. To address these vulnerabilities, a wide range of data-

driven methods has been proposed, the most prominent of 

which seem to be supervised learning techniques [45], Support 

Vector Machine (SVM) [46], and k-means clustering (KMC) 

[47]. 

C. KEY ISSUES AND CHALLENGES 

Recent advancements in static and dynamic state estimation 

have revealed several persistent challenges that limit the 

effectiveness of current methodologies. Some of the key 

concerns are numerical stability, convergence, robustness 

against bad data, accuracy of pseudo-measurements, as well 

as design of efficient real-time SE framework. 

Numerical stability and convergence are particularly 

significant when integrating measurements with differing 

accuracy and scales from diverse sources like RTUs, PMUs, 

and DERs. The biggest challenges in this domain are 

optimality and observability in systems with marginal 

measurement redundancy [48]. Despite improvements in bad 

data handling, new potential threats, such as data corrupted by 

cyberattacks, necessitate more resilient SE frameworks. 

Furthermore, employing new methods to generate pseudo-

measurements to enhance SE accuracy is a significant 

concern, especially when considering the cost associated with 

the installation of advanced metering equipment, especially in 

the distribution systems [7]. From a performance standpoint, 

the growing system complexity necessitates scalable and 

distributed SE architecture capable of real-time application, in 

addition to a more standardized approach that promotes easier 

implementation to future adopters. 

This paper addresses the above issues and proposes 

solutions of the above-mentioned challenges by utilizing data-

driven techniques based on artificial intelligence (AI). 

III. AI-BASED DYNAMIC STATE ESTIMATION 
FRAMEWORK 

The main aim of the proposed framework is to exploit 

deficiencies of conventionally used SE aspects, with a 

particular focus on enhancing pseudo-measurement 

generation and state estimator capabilities by utilizing AI 

techniques and feature engineering. 

A. BASIC AI PRINCIPLES 

AI refers to the theory and development of computational 

systems capable of performing tasks that typically require 

human intelligence, such as reasoning, learning, decision-

making, perception, and language understanding [49]. The 

most basic principle of AI is its ability to imitate or replicate 

cognitive functions of humans, enabling computers to analyze 

data, draw conclusions, and act upon them with minimal 

human intervention. According to [49], the ultimate goal of AI 

is to create systems that can autonomously perceive their 

environment, process information, and act adaptively to 

achieve specific objectives.  

AI systems are generally structured as intelligent agents, 

which perceive their environment through sensors that collect 

data, interpret information by using internal models based on 

a variety of learning algorithms, make decisions through 

reasoning capabilities, and act upon the environment through 

actuators to achieve specific goals [50]. 

AI encompasses a wide set of methods aimed at enabling 

machines to simulate intelligent behavior. The most common 

classification of AI approaches is based on learning paradigm, 

whereby there are three major types of AI frameworks: 

supervised learning – where models are trained on labeled data 

where the correct output is provided for each input with the 

aim of minimizing error, unsupervised learning – in which 

models find pattern or structures in unlabeled data, such as 

clustering or dimensionality reduction, and Reinforcement 

Learning (RL) methods, in which decision-making is defined 

as a Markov Decision Process models where models learn by 

interacting with an environment and receiving feedback in the 

form of rewards or penalties with the aim to maximize 

cumulative reward over time [51]. 

One of the major AI techniques is based on Artificial Neural 

Network (ANN), which is a feedforward, layered architecture 

comprised of multiple layers of interconnected neurons that 

apply nonlinear activation functions, such as ReLU, sigmoid, 

or tanh, to their weighted combinations of inputs. Their typical 

structure consists of input, hidden, and output layers of 

neurons such that neurons of one layer connect only to neurons 

of the immediately preceding and immediately following 

layers. Each weight represents a neuron’s relative importance. 

The training process is based on minimizing a loss function 

(cumulative prediction error of neural network) via 

backpropagation and gradient-based optimizers (e.g., SGD, 

Adam) [52]. 

B. PROPOSED FRAMEWORK 

Fig. 2 illustrates a comprehensive flowchart of proposed 

methodologies used for pseudo-measurement generation 

(PMG), designed to enhance power system state estimation 

through data-driven methods and feature optimization. The 

process begins with the collection of input data, which 

includes static and dynamic system information and grid 

topology data. From this foundation, case studies and specific 

scenarios are selected to define the operating conditions under 

which the model will be developed and tested. The next phase 

involves network modeling and simulation, after which a 

quasi-dynamic simulation is performed using a time-series of 

load, generator and RES profiles, to produce input and output 

measurements that are processed (by cleaning, normalization, 

and structuring). As the most crucial, feature engineering and 

topological considerations are applied to enhance model 

learning.  
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FIGURE 2. Flowchart of applied research methodology.

Then the prepared data is used to train the AI model and 

hyperparameter optimization is used to ensure that the model 

performs efficiently and generalizes well. Finally, the trained 

model is subjected to evaluation and testing to assess its 

accuracy, and sensitivity analysis is conducted to assess 

impacts of the proposed enhancements. Additionally, 

validation and robustness analysis are conducted to examine 

the model’s performance under different operating conditions 

and topological configurations. 

C. INPUT DATA PREPARATION AND 
PREPROCESSING 

The input grid data consisting of three sample systems was 

provided by the SimBench dataset [53]: EHV-HV grid (Grid 

A), HV-MV grid (Grid B), MV-LV grid (Grid C). Table I 

displays basic network characteristics for each of the grids in 

terms of number of elements. Whereas Grid A is a replica of 

the German 380- and 220-kV grid, grid B represents a sub-

urban HV and MV open ring system, and grid C emulates a 

typical rural MV-LV topology. 

For each of the grids, in addition to the base case scenarios, 

denoted as A0, B0 and C0, respectively, there are two 

additional cases, denoted as A1, A2, B1, B2, C1 and C2, 

respectively. The cases differ in the allocations of renewable 

generation capacity per fuel type, such that the capacity 

progressively increases, as illustrated in Fig. 3 for Grid C. 

 The load profiles are modelled as a time series of 35136 

steps (yearly data in 15-minutes resolution) with normalized 

active and reactive power data for each load type. Each load 

has an assigned type, such as rural, urban, commercial etc. and 

each load type possesses its own load curve in each grid.  
TABLE I 

BASIC CHARACTERISTICS OF TEST GRIDS 

Element Type Grid A Grid B Grid C 

No. of lines 1057 204 5391 

No. of loads 523 156 5373 

No. of terminals 713 173 5483 

No. of conventional generators 345 0 0 

No. of RES generators 422 192 581 

No. of substations 32 19 1 

No. of transformers 218 8 92 

Similarly, all generator types (including non-RES, RES and 

storage) are modelled with normalized active power profiles. 

The data preparation process for the training procedure 

involved interfacing DIgSILENT PowerFactory software [54] 

with Python 3.8 and creating time characteristics for all input 

data profiles of load, generator, RES and storage, and running 

a quasi-dynamic analysis on the three test grids for the time-

series simulation of 35136 time intervals. 

The quasi-dynamic simulation yielded the output consisting 

of the bus voltage angles and magnitudes at each bus, an 

example of which is illustrated in Fig. 4, for grid C, allowing 

the initial training input and output data to be taken from the 

PowerFactory variables: active power flow, reactive power 

flow, voltage magnitude, and voltage angle. 

The data was additionally processed by imputation of 

historical averages of the input measurements for weekday-

hour pairs, since it was observed that the input measurements 

have a high weekly seasonality. Thus, an additional input was 

created considering the average value of all P and Q node 

measurements of the same hour and the same weekday, so that 

e.g. all Thursday 10:00h measurements of active power at a 

single bus have the same average value. 

Furthermore, in order to make the data more resistant to 

outliers and random distributions, the data vectors were 

normalized by using the robust scaling approach: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − median(𝑋)

𝐼𝑄𝑅(𝑋)
(3) 

where IQR is the difference between 75th percentile (Q3) and 

25th percentile (Q1). After the scaling, all data points outside 

the criterion: |𝑋𝑠𝑐𝑎𝑙𝑒𝑑| > 2 were cleared as obvious outliers. 

 

FIGURE 3. Installed generation capacity [MW] per fuel type in Grid C 
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FIGURE 4. Yearly voltage magnitude and angle at bus LV1.101. 

An additional enhancement of input data (which was used 

in robustness testing and not in the original training) was done 

by simulating sparse conditions. This included artificially 

generating a Boolean mask of the same shape as the data 

matrix with the rates of [0.2, 0.4, 0.6] which produces a matrix 

of uniform random numbers in [0,1) and randomly scatters 

them, replacing the original measurements with zeros to 

emulate sensor outages or communication dropouts. 

D. FEATURE ENGINEERING AND TOPOLOGICAL 
CONSIDERATIONS 

To help the model uncover underlying patterns and 

relationships and further improve accuracy, four methods of 

feature engineering were proposed, some of which highly rely 

on input or output topology results: 

1) Integration of temporal features 

The input data timestamps were expanded to offer a better 

insight into cyclic time patterns of the data. The following 

temporal indicators were proposed: hour-of-day, day-of-week, 

and season. They are represented as integer types with the 

ranges of [1-24], [1-7], and [1-4], respectively. 

2) Augmentation of spatial context 

Since each element in the input dataset contains information 

about the subnet parameter that corresponds to the grid to 

which the element belongs, the output set was enhanced by 

adding extra parameters such as the average of voltage 

magnitude of all buses belonging to the same subnet 

(PowerFactory object zone). 

3) Reduction of output measurement outliers 

To further reduce eventual measurement outliers, a method 

is applied which sorts all voltage measurements in descending 

order and computes their standard deviations. Following this, 

measurements from the bottom or top of the list are removed 

and the new standard deviation is computed. If the new 

standard deviation is found to be less than half of the 

previously calculated one, the measurement is substituted by 

the mean value of the measurement set that doesn’t include the 

outlier. This procedure is repeated until removing a 

measurement no longer results in a reduction of the standard 

deviation by more than 50%. 

4) Inclusion of topological considerations 

This extra feature involves the topology solver’s output 

data, particularly the node energization information obtained 

from PowerFactory’s time-series load flow results (variable 

named e:ciEnergized). Consequently, a binary indicator that 

indicates if a specific node is energized or not is created and 

appended to the dataset, enabling a much better capturing of 

network connectivity dynamics by removing the need for 

phantom predictions, as well as enhancing overall robustness, 

generalization and potential failure mode identification by 

distinguishing between normal load variations and fault-

induced islanding events. 

A summary of all proposed data enhancement indicators is 

shown in Table II. 
TABLE II 

SUMMARY OF FEATURE ENGINEERING ENHANCEMENT INDICATORS 

Indicator Type Stage Group Source Target variables 

V_prev float Preprocessing 
Historical average 

imputation 

input 

measurements 
P, Q for training 

X_scaled integer Preprocessing Robust scaling 
input & output 

measurements 

P, Q, V for 

training 

Z_bad boolean matrix Preprocessing 
Sparse condition 

simulation 

input 

measurements 
P, Q for testing 

Hour integer Feature engineering Temporal features timestamps P, Q for training 

Day integer Feature engineering Temporal features timestamps P, Q for training 

Season integer Feature engineering Temporal features timestamps P, Q for training 

V_zone_avg float Feature engineering Spatial context 

input topology, 

output 

measurements 

V for training 

V_bad n/a Feature engineering 
Output outliers 

reduction 

output 

measurements 
V for training 

Energized boolean Feature engineering 
Topological 

consideration 
output topology 

P, Q, V for 

training 
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FIGURE 5. Diagram of the optimal ANN structure. It consists of an input 
layer, 3 hidden layers and an output layer in an 8-512-256-128-2 
configuration. 

E. AI DESIGN AND TRAINING 

an ANN-based feed-forward perceptron architecture is 

proposed. As previously established, ANNs are computational 

networks which attempt to simulate the decision process in 

networks of nerve cells (neurons) of the biological central 

nervous system [55]. A perceptron, which is a commonly used 

model for a neuron, can be defined by the following input-

output relation: 

𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑖

(4) 

𝑦 = 𝑓𝐴(𝑧) (5) 

where 𝑧 is the node (summation) output of linearly combined 

weighted (𝑤𝑖) inputs, 𝑥𝑖, used as an argument of activation 

function, 𝑓𝐴, which is typically linear, unipolar, binary or 

sigmoid. Typically, an ANN is composed of several 

perceptrons arranged in parallel to form a layer, with one or 

more such layers connected in sequence. In this structure, 

known as a multi-layer perceptron, the output from every 

neuron in one layer is transmitted to each neuron in the 

subsequent layer. 

The proposed multi-layered perceptron structure allows for 

one ANN network to estimate the bus voltage magnitudes, and 

a second one to estimate the voltage angles. The input layer 

size is equal to the product of the number of input 

measurements and the added features, and the numbers of 

critical buses. The output layer size is equal to the number of 

bus voltage magnitudes or angles, respectively. Initially, three 

hidden dense layers are proposed for each of the test grids, and 

the Rectified Linear Unit (ReLU) as their activation function, 

to promote sparse, efficient representations. Moreover, the 

initial setup proposes batch normalization in the first and 

second dense layers to normalize the inputs to zero mean and 

unit variance, accelerating convergence and stabilizing 

training, as well as a dropout rate of 20% to prevent overfitting 

and encourage redundancy. Finally, the output layer provides 

simultaneous regression outputs: voltage magnitude and angle 

per bus. 

The AI training procedure, which utilizes a Python 3.8 

environment’s scikit-learn library for machine learning [56], 

starts with determination of the dataset split ratio. In this 

research, the split of 75-25% is applied, which means that 75% 

of the data is used for training and 25% for validation. The 

training data comprises a number of training samples and 

features for each sample, where the total dataset size is 

determined by the product of sample and feature number. 

However, due to samples being time-series results, the 

augmented data having the size of (time steps × (no. of features 

· no. of buses)) needed to be transformed to avoid an input 

layer of too large size and possible overfitting errors. For this, 

the data science technique of melting, i.e., converting a wide-

format dataset into a long-format one by unpivoting columns 

into rows, was utilized. As a result, the training dataset size of 

(4∙24∙366∙nb)∙10 was reached, with nb defined as the number 

of buses in a subset of buses taken from the test grid. The 

features set consists of an array of 4 measurements (2 input, 2 

output) and 6 additional features explained in the previous 

sections. The Adam optimization algorithm is employed to 

adjust the ANN’s weights, initially using a learning rate of 

0.001, with the objective of minimizing the mean squared 

error (MSE) between the network’s output and the target 

values. In the process, the early stopping option is used, 

meaning that the validation error is monitored to stop training 

early if no improvement is reached in several consecutive 

epochs, i.e., complete cycles through the entire training 

dataset. 

F. HYPERPARAMETER OPTIMIZATION 

Unlike model parameters (weights and biases), 

hyperparameters are set prior to training and critically 

influence convergence speed, generalization ability and 

computational efficiency. Hyperparameters such as the 

number of layers, the number of neurons per layer, learning 

rate, batch size, dropout rate, the number of training epochs 

and the amount of training data are fine-tuned by calculating 

them using several combinations and recording the success 

rate. After the initial training was conducted on a large, diverse 

grid (Case A), the fine-tuning assessments were performed on 

the MV (Case B) grid with less sample data. The ideal number 

of layers is chosen based on heuristics and the input dataset 

considerations. To balance model capacity with 

generalization, three hidden layers are chosen. For the ideal 

number of neurons per layer, estimations were made for the 

combinations represented in Table III. The chosen 

configuration, shown in Fig. 5, is the one with the lowest 

average validation p.u. mean square error (MSE). 

 
TABLE III 

VALIDATION MSE FOR DIFFERENT ANN CONFIGURATIONS. 

ANN configuration (number of 

neurons in hidden layers) 

Average 

validation MSE 

32-16-8 0.089 

64-32-16 0.08 

128-64-32 0.072 

256-128-64 0.068 

512-256-128 0.075 
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FIGURE 6. MSE progression with hybrid LR schedule approach. 

Since the initial learning rate of 0.001 has proven to be 

slightly too large, and the minimum validation MSE has 

occurred around 0.0001, but using it may lead to slower 

convergence, a hybrid schedule-based learning rate has been 

proposed in which the learning rate changes from the initial 

0.001 to 0.0001 after the 30th epoch, as can be seen in Fig. 6. 

For the training dataset, the most optimal maximum epoch 

number has proven to be between 50 and 150, and therefore, 

the middle value of 100 is chosen. Moreover, the batch size of 

256 and the dropout rate of 20% are chosen as a rule of thumb, 

without further detailed analysis. 

IV. RESULTS 

As training and optimization have been conducted on diverse 

networks with different generation and load patterns, as well 

as topological structures, but on a grid that is inherently 

observable, the capability of the proposed approach to 

produce accurate pseudo-measurements needs to be tested by 

using a range of scenarios that feature low measurement 

redundancy and/or low observability. Moreover, robustness 

to bad data such as gross errors, missing measurements, and 

topology inaccuracies has been tested on different scenarios. 

Finally, sensitivity analysis has been conducted to assess the 

contributions of the proposed feature enhancements. 

A. EVALUATION AND TESTING 

The accuracy of the proposed approach was tested on the grids 

described in Table I. Table IV shows the number of installed 

measurements in each of the defined cases, indicating that 

grids B1, B2, C0, C1 and C2, have the lowest measurement 

redundancy in addition to having the high penetration of 

renewables.  

 
TABLE IV 

MEASUREMENT CONFIGURATION THROUGHOUT THE CASE STUDIES 

 Case 

Meas. 

type 
A0 A1 A2 B0 B1 B2 C0 C1 C2 

i 952 986 1058 65 2 2 2 2 2 

p 1533 1291 1633 321 36 38 14 14 16 

q 1533 1291 1633 321 36 38 14 14 16 

v 708 597 599 284 54 55 7 7 9 

Total 4726 4165 4923 991 128 133 7 7 9 

 

TABLE V 

COMPARISON OF SE ACCURACY 

 Proposed framework Conventional SE 

Case 
MAE 

(pu) 

RMSE 

(pu) 
R2 

MAE 

(pu) 

RMSE 

(pu) 

R2 

A0 0.0021 0.003 0.974 0.002 0.0029 0.961 

A1 0.0019 0.0028 0.989 0.002 0.0031 0.976 

A2 0.0021 0.0031 0.953 0.0022 0.003 0.956 

B0 0.0026 0.0035 0.989 0.0033 0.0042 0.98 

B1 0.0012 0.0021 0.956 0.0015 0.0025 0.946 

B2 0.0015 0.0024 0.968 0.0019 0.0029 0.958 

C0 0.0022 0.003 0.988 0.0028 0.0036 0.979 

C1 0.0024 0.0029 0.977 0.003 0.0035 0.967 

C2 0.0016 0.0023 0.973 0.002 0.0028 0.963 

 

To compare the proposed SE method with the conventional 

SE with respect to accuracy, another WLS-based SE is 

performed on the initial measurement and pseudo-

measurement datasets. The following error metrics are used to 

assess the performance of the proposed method and 

benchmark with the conventional SE: 

• Mean Absolute Error (MAE) - the average of the 

absolute differences between predicted and actual 

values, 

• Root Mean Squared Error (RMSE) - the square root of 

the average squared differences between predicted and 

actual values, 

• Coefficient of Determination (R2 Score) - the proportion 

of variance in the actual data that is predictable from the 

model. 

The estimation results are shown in Table V, across all error 

metrics and consider average error values for both output 

measurement vectors, as tested by 9 case studies of the 3 test 

networks. The results demonstrate that the ANN-based SE 

maintains consistently low error levels and high determination 

coefficient, even as grid size, measurement density, generation 

and load profiles and storage capacity vary. In the large EHV-

HV network (A-cases), MAE hovers around 0.0021 p.u. for 

baseline and maximum storage case (A0 and A2, 

respectively), dipping to 0.0019 when storage is doubled. The 

R2 peaking to 0.989 in A1 and falling to 0.953 in A2 suggests 

diminishing returns once storage exceeds certain point despite 

slightly higher measurement counts. In the MV-LV grid (B-

cases) with 100% RES penetration, baseline case (B0) 

displays the highest MAE and RMSE, but an excellent R2, and 

the addition of storage in B1 and B2 seems to improve the 

MAE by roughly half and reduce the RMSE by around 30%, 

followed by a small decrease in R2. Finally, in the MV-LV 

network (C-cases) MAE and RMSE errors remain modest, 

even with very sparse measurements, while R2 stays above 

0.97. Moreover, the results indicate that the ANN-based SE 

performs comparably well in grids with high measurement 

redundancy (Cases A), whereas for medium-redundancy 

suburban networks (Cases B) and low-redundancy rural 

networks (Cases C), its accuracy outperforms the conventional 

method across all metrics. 
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TABLE VI 

ROBUSTNESS TESTING SCENARIOS 

Case 

ID 
Type Description 

M1 
Gross 

Measurement Error 

+50% voltage offset at HV1 

Bus 1 

M2 
Gross 

Measurement Error 

+50% voltage offset at 

MV4.101 Bus 76 

M3 
Gross 

Measurement Error 

+50% P, Q offset at MV4.101 

Bus 15 

O1 
Measurement 

Outage 

Voltage measurement of 0 p.u. 

at HV1 Bus 1 

O2 
Measurement 

Outage 

Voltage measurement of 0 p.u. 

at MV4.101 Bus 76 

O3 
Measurement 

Outage 

P, Q measurement of 0 at HV1 

Bus 15 

T1 Topology Error 
Switch status of HV1 Switch 1 

inverted 

T2 Topology Error 
Switch status of MV1 Switch 1 

and 2 inverted 

T3 Topology Error 

R, X of line MV4.101 

loop_line 1 90 % of actual 

value 

The accuracy of the conventional SE deteriorates more due 

to increased sensitivity to measurement sparsity and noise, 

with relative differences of up to 25% compared to the 

proposed method. 

B. ROBUSTNESS ANALYSIS 

The objective of robustness analysis is to assess the influence 

of different operating conditions on estimation accuracy, 

considering variations in measurement quantity and type, as 

well as the method’s robustness to bad data such as gross 

errors, missing measurements, and topology inaccuracies. 

For that purpose, different test scenarios are developed, as 

described in Table VI, and tested on the B2 scenario (MV-

HV grid, full renewable generation, storage, DER, with 

extremely low measurement redundancy of around 15%). 

The cases include an increase of bus voltage measurement at 

random buses, emulating a sensor outage by setting the 

voltage measurement as 0 p.u., inverting the binary status of 

switches (open/close), and decreasing line resistance and 

reactance parameters by 10%. The success condition of each 

scenario is to achieve a voltage magnitude prediction error 

of less than 1% or a voltage angle prediction error of less 

than 5%. The success rate is measured as the ratio of all 

scenarios where the tested method satisfies the success 

condition to the maximum number of successful tests (i.e., 

for each of the 9 robustness scenarios there are 18 tests = 9 

case studies × 2 variables). Finally, the proposed framework 

is compared against the conventional SE across the 

robustness metrics (M1–M3, O1–O3, T1–T3) in terms of 

success rate, and the results are presented in Fig. 7. 

From the figure, it may be observed that the proposed 

framework dominates in every category, often by a large 

margin, especially in T1, T2 and T3 (topological errors). This 

can be attributed to the feature engineering and preprocessing 

done on the ANN input data. 

 

FIGURE 7. Comparison of robustness of the SE methods. 

Moreover, O1 shows a modest gain, suggesting a similar 

performance of both methods assuming the strict 1% criterion, 

in the case of HV measurement outage. However, the other 

two cases of measurement outages (voltage outage at an MV 

bus and a P, Q outage) prove that the proposed approach 

significantly improves robustness. Furthermore, for gross 

measurement errors, the proposed framework fails to offer a 

significantly large success rate, which can be explained with 

the strict success rate and the requirement of convergence. 

C. SENSITIVITY ANALYSIS 

To assess the relative contribution of each framework 

component to the overall performance gains sensitivity 

analysis is conducted as a series of ablation studies that 

systematically remove key elements of the proposed 

framework, such as the feature engineering enhancements 

from Table II in such a way that only one enhancement is 

added at a time. Consequently, the ANN is retrained on a 

smaller input set and tested on the test cases C1, C2 and C3. 

Additionally, a case in which the SE solver is replaced by the 

Schweppe–Huber solver and IRWLS algorithm is applied on 

the ANN-generated pseudo-measurements is tested. Table 

VII displays the results in terms of average relative 

difference in RMSE (compared to the results in Table V) and 

the relative difference in the success rate of the robustness 

testing scenarios (comparison with Table VI) for each of the 

cases. 

From the table, it can be seen that all the proposed 

components display performance enhancements and generally 

have a bigger influence as the measurement sparsity increases. 

Furthermore, the largest single contributor to the RMSE 

improvement is the SE solver, followed by temporal and 

spatial features. Whereas some features, such as robust scaling 

and historical average imputation show a particularly stronger 

effect under noisy conditions, other features, such as 

topological considerations show a moderate but consistent 

impact. 
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TABLE VII 

SENSITIVITY ANALYSIS RESULTS OF THE PROPOSED FEATURE ENGINEERING ENHANCEMENT INDICATORS

Indicator Stage Group 

Relative RMSE 

difference [%] 
Relative SR difference [%] 

C1 C2 C3 M1 M2 M3 O1 O2 O3 T1 T2 T3 

V_prev Preprocessing 
Historical average 

imputation 
3.2 4.1 7.9 6.1 5.8 6.5 14.3 15.1 13.8 3.5 3.9 4.1 

X_scaled Preprocessing Robust scaling 8.4 12.3 15.1 18.4 17.3 19.1 10.2 10.7 9.9 5.8 6.1 6.4 

Z_bad Preprocessing 
Sparse condition 

simulation 
2.1 4.2 6 4.2 4.6 4.4 9.5 10.2 9.8 3.1 3.4 3.6 

Hour 
Feature 

engineering 
Temporal features 

10.5 10.4 17.8 12.8 12.2 13.5 9.1 9.6 8.9 7.3 7.8 8.1 Day 
Feature 

engineering 
Temporal features 

Season 
Feature 

engineering 
Temporal features 

V_zone_avg 
Feature 

engineering 
Spatial context 5.3 11.1 12.2 8.6 9.2 8.9 7.4 7.7 7.1 13.4 14.1 14.7 

V_bad 
Feature 

engineering 

Output outliers 

reduction 
4.1 7.3 3.0 10.1 10.7 10.3 7.6 8.1 7.3 6 6.4 6.7 

Energized 
Feature 

engineering 

Topological 

consideration 
4.2 3.8 9.1 6.5 6.8 6.4 5.8 6.1 5.7 17.5 18.3 17.9 

SH and 
IRWLS 

SE solver Algorithm 12.1 16.8 20.3 20.7 19.9 21.3 15.9 16.4 15.1 12.1 12.7 13.4 

Moreover, the biggest factor affecting robustness is the 

algorithm, as it provides the highest universal SR 

improvement across all cases. It is also noteworthy that 

different feature enhancements have shown stronger influence 

(biggest SR gains) on different categories of the robustness 

analysis, such as robust scaling and algorithm choice on the 

gross errors (M1-M3), historical imputation and sparse 

condition simulation on the outages (O1-O3). Similarly, 

topological considerations and spatial context addition 

provide the highest boosts of the topology errors. 

V. CONCLUSION 

This paper presents a cohesive end-to-end framework that 

combines robust data preprocessing, advanced feature design 

and ANN-learning-based pseudo-measurement generation. 

To counteract measurement gaps and erratic outliers, a layered 

preprocessing and feature engineering workflow is developed. 

By combining statistics-based imputations, IQR 

normalization, iterative cleaning of extreme values, and 

adversarial injection of synthetic data dropouts, the framework 

successfully reconstructs a reliable, high-dimensional input 

space. The addition of spatial averages and topology-derived 

connectivity flags further embeds structural knowledge, 

resulting in a robust observability platform that operates 

effectively even when the majority of measurements are 

unavailable or compromised.  

Therefore, as demonstrated on test grids, the proposed 

methodology achieves high estimation accuracy, effectively 

capturing the system states across various operating conditions 

and significantly outperforming the conventional SE 

methodology in terms of robustness against sudden data 

fluctuations and measurement errors. 
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