1. Schlattmann P, Wieske V, Bressem KK, et al. The effectiveness of coronary computed tomography angiography and functional testing for the diagnosis of obstructive coronary artery disease: results from the individual patient data Collaborative Meta- Analysis of Cardiac CT (COME-CCT). Insights Imaging. 2024;15. https://doi.org/ 10.1186/s13244-024-01702-y. 2. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. J Am Coll Cardiol. 2011;58(19):1989-1997. https://doi.org/10.1016/j. jacc.2011.06.066. 3. L NB, Jonathon L, Sara G, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. JACC. 2014;63(12):1145-1155. https://doi.org/10.1016/j. jacc.2013.11.043. 4. Nascimento BR, De Sousa MR, Koo BK, et al. Diagnostic accuracy of intravascular ultrasound-derived minimal lumen area compared with fractional flow reserve - meta-analysis: pooled accuracy of IVUS luminal area versus FFR. Cathet Cardiovasc Interv. 2014;84:377-385. https://doi.org/10.1002/ccd.25047. 5. Ben-Dor I, Torguson R, Gaglia M, et al. Correlation between fractional flow reserve and intravascular ultrasound lumen area in intermediate coronary artery stenosis. EuroIntervention. 2011;7(2):225-233. https://doi.org/10.4244/EIJV7I2A37. 6. Zhuang B, Wang S, Zhao S, Lu M. Computed tomography angiography-derived fractional flow reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: systematic review and meta-analysis. Eur Radiol. 2020;30:712-725. https://doi.org/10.1007/s00330-019-06470-8. 7. S NN, Ibrahim D, A JR, et al. Development and validation of a quantitative coronary CT angiography model for diagnosis of vessel-specific coronary ischemia. JACC Cardiovasc Imaging. 2024;17(8):894-906. https://doi.org/10.1016/j. jcmg.2024.01.007. 8. Dey D, Gaur S, Ovrehus KA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study. Eur Radiol. 2018;28:2655-2664. https://doi.org/10.1007/s00330-017-5223- z. 9. Gould KL, Nakagawa Y, Nakagawa K, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-toapex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation. 2000;101:1931-1939. https://doi.org/ 10.1161/01.CIR.101.16.1931. 10. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354-1367. https://doi.org/10.1161/01.cir.87.4.1354. 11. Pijls NHJ, de Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334 (26):1703-1708. https://doi.org/10.1056/NEJM199606273342604. 12. De Bruyne B, Sarma J. Fractional flow reserve: a review. Heart. 2008;94:949-959. https://doi.org/10.1136/hrt.2007.122838. 13. Van De Hoef TP, Meuwissen M, Escaned J, et al. Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol. 2013;10:439-452. https://doi.org/10.1038/nrcardio.2013.86. 14. Myung LJ, Ji-Hyun J, Doyeon H, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. JACC. 2016;67(10): 1158-1169. https://doi.org/10.1016/j.jacc.2015.12.053. 15. J PNH, M SJWE. Functional measurement of coronary stenosis. JACC. 2012;59(12): 1045-1057. https://doi.org/10.1016/j.jacc.2011.09.077. 16. Sanz S�nchez J, Farjat Pasos JI, Martinez Sol� J, et al. Fractional flow reserve use in a e coronary artery revascularization: a systematic review and meta-analysis. iScience. 2023;26(8). https://doi.org/10.1016/j.isci.2023.107245. 17. De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991-1001. https://doi.org/10.1056/NEJMoa1205361. 18. Rioufol G, D�rimay F, Roubille F, et al. Fractional flow reserve to guide treatment of e patients with multivessel coronary artery disease. J Am Coll Cardiol. 2021;78(19): 1875-1885. https://doi.org/10.1016/j.jacc.2021.08.061. 19. Stables RH, Mullen LJ, Elguindy M, et al. Routine pressure wire assessment versus conventional angiography in the management of patients with coronary artery disease: the RIPCORD 2 trial. Circulation. 2022;146(9):687-698. https://doi.org/ 10.1161/CIRCULATIONAHA.121.057793. 20. Fearon WF, Zimmermann FM, De Bruyne B, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med. 2022;386(2):128-137. https://doi.org/10.1056/NEJMoa2112299. 21. Maron DJ, Hochman JS, Reynolds HR, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382(15):1395-1407. https://doi. org/10.1056/NEJMoa1915922. 22. Collet C, Sonck J, Vandeloo B, et al. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis. J Am Coll Cardiol. 2019;74(14):1772-1784. https://doi.org/10.1016/j.jacc.2019.07.072. 23. Collet C, Munhoz D, Mizukami T, et al. Influence of pathophysiologic patterns of coronary artery disease on immediate percutaneous coronary intervention outcomes. Circulation. 2024;150(8):586-597. https://doi.org/10.1161/ CIRCULATIONAHA.124.069450. 24. Collet C, Collison D, Mizukami T, et al. Differential improvement in angina and health-related quality of life after PCI in focal and diffuse coronary artery disease. JACC Cardiovasc Interv. 2022;15(24):2506-2518. https://doi.org/10.1016/j. jcin.2022.09.048. 25. A TC, A FT, K MJ. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. JACC. 2013; 61(22):2233-2241. https://doi.org/10.1016/j.jacc.2012.11.083. 26. Choy JS, Kassab GS. Scaling of myocardial mass to flow and morphometry of coronary arteries. J Appl Physiol. 2008;104:1281-1286. https://doi.org/10.1152/ japplphysiol.01261.2007. 27. Kirisli HA, Schaap M, Metz CT, et al. Standardized evaluation framework for ¸ evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med Image Anal. 2013;17:859-876. https://doi.org/10.1016/j.media.2013.05.007. 28. Taylor CA, Gaur S, Leipsic J, et al. Effect of the ratio of coronary arterial lumen jamacardio.2023.2595. volume to left ventricle myocardial mass derived from coronary CT angiography on fractional flow reserve. J Cardiovasc Comput Tomogr. 2017;11:429-436. https://doi. org/10.1016/j.jcct.2017.08.001. 29. Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng. 2010;38:3195-3209. https://doi.org/10.1007/s10439-010-0083-6. 30. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82(5):1595-1606. https:// doi.org/10.1161/01.CIR.82.5.1595. 31. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve reserve. Circ Cardiovasc Imaging. 2018;11(6). https://doi.org/10.1161/ from anatomic CT angiography. JAMA. 2012;308:1237-1245. https://doi.org/ 10.1001/2012.jama.11274. 32. Myung LJ, Gilwoo C, Bon-Kwon K, et al. Identification of high-risk plaques destined calculate FFR from coronary CT angiography. J Geriatr Cardiol. 2019;16(1):42-48. to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging. 2019;12 (6):1032-1043. https://doi.org/10.1016/j.jcmg.2018.01.023. 33. Driessen RS, Stuijfzand WJ, Raijmakers PG, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol. org/10.1161/CIRCULATIONAHA.123.063996. 2018;71(5):499-509. https://doi.org/10.1016/j.jacc.2017.11.054. 34. Yang S, Koo BK, Narula J. Interactions between morphological plaque characteristics and coronary physiology. JACC Cardiovasc Imaging. 2022;15(6): 35. Varga-Szemes A, Schoepf UJ, Maurovich-Horvat P, et al. Coronary plaque assessment of Vasodilative capacity by CT angiography effectively estimates fractional flow reserve. Int J Cardiol. 2021;331:307-315. https://doi.org/10.1016/j. ijcard.2021.01.040. 36. Lin A, van Diemen PA, Motwani M, et al. Machine learning from quantitative coronary computed tomography angiography predicts fractional flow reserve-defined ischemia and impaired myocardial blood flow. Circ Cardiovasc Imaging. 2022;15(10):e014369. https://doi.org/10.1161/ CIRCIMAGING.122.014369. 37. Douglas PS, Nanna MG, Kelsey MD, et al. Comparison of an initial risk-based testing strategy vs usual testing in stable symptomatic patients with suspected coronary artery disease. JAMA Cardiol. 2023;8(10):904. https://doi.org/10.1001/ 38. Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39 (41):3701-3711. https://doi.org/10.1093/eurheartj/ehy530. 39. Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography. JACC Cardiovasc Imaging. 2017;10(11):1350-1358. https://doi.org/ 10.1016/j.jcmg.2016.11.024. 40. Coenen A, Kim YH, Kruk M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow CIRCIMAGING.117.007217. 41. Wang Z, Zhou Y, Zhao Y, et al. Diagnostic accuracy of a deep learning approach to https://doi.org/10.11909/j.issn.1671-5411.2019.01.010. 42. Yang J, Shan D, Wang X, et al. On-site computed tomography-derived fractional flow reserve to guide management of patients with stable coronary artery disease: the TARGET randomized trial. Circulation. 2023;147(18):1369-1381. https://doi. 43. van Noort D, Guo L, Leng S, et al. Evaluating machine learning accuracy in detecting significant coronary stenosis using CCTA-derived fractional flow reserve: metaanalysis and systematic review. IJC Heart Vasc. 2024;55:101528. https://doi.org/