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Abstract—This paper proposes a reinforcement learning
(RL)-based approach for dynamically selecting the most suit-
able control method according to changing operating condi-
tions. Using the nominal model of the actual system, several
feedback controllers are developed, each offering different levels
of performance depending on the scenario. The RL algorithm is
employed to determine and apply the optimal control strategy
within a given operational range. Four control methods are
investigated: Linear Parameter Varying (LPV), Ultra-local
Model-based (ULM), Linear Quadratic Regulator (LQR), and
a kinematic model-based controller. The performance and
effectiveness of the proposed approach are assessed through
three test scenarios using the high-fidelity vehicle simulation
platform, CarMaker.

I. INTRODUCTION AND MOTIVATION

The control design process of arbitrary dynamical sys-
tems has been dominated by classical, linear approaches
such as PID (Propotional-Integral-Derivative) [1] or Linear-
Quadratic Regulator (LQR) [2], due to their well-defined
stability properties. However, their performance can degrade
in the presence of unmodeled dynamics and nonlinear effects,
forcing researchers to develop adaptive strategies that over-
come these limitations. A new method has been developed
that relies on multiple nominal models, adapting to varying
system dynamics and operating conditions rather than relying
on just one linear model with fixed, constant parameters.
The main idea was to create a set of nominal models that
accurately describe the dynamics of the real system, with
the control algorithm switching between these linear models
during operation [3].

In the field of switching controllers several methods can
be found such as the fuzzy logic controllers (FLC) [4]. How-
ever, most of the existing switching controller methods can
provide satisfactory results only to specific scenarios, which
highly limits their general applicability. Moreover, these
methods can provide solutions with high complexity, which
can make the implementation process more challenging. The
main challenges within these control frameworks are: 1) to
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find the balance between the complexity and generalization
ability, 2) smooth transition must be guaranteed between
the controllers to avoid oscillations and undesired tran-
sients, which can compromise system stability [5]. Although
switching times that satisfy stability requirements can be
determined using methods such as the Lyapunov approach
[6], identifying the actual operational point can still involve
difficulties.

Neural networks have shown their capability to enhance
the adaptability and performance of control systems. More-
over, neural networks often outperform classical methods in
handling nonlinearities, uncertainties, and neglected or un-
known dynamics. This provides the main motivation behind
the approach, which is called a combined or hierarchical
control design [7]. In this control structure, a neural net-
work is integrated with a classical controller to exploit the
strengths of both approaches: high-performance level and
stability. Within the combined solutions, two main methods
can be separated in the context of the neural network. In
the first type of method, the neural network addresses the
nonlinearities and uncertainties of the system during the
modeling process [8], while in the second type, the neural
network generates the control input, which is supervised by a
classical approach [9]. These methods have been successfully
applied to various control problems over the years, however
similarly to the previous case, the supervisory or the classical
part can have a high complexity. Moreover, in many cases,
the main limitation of these methods is the difficulty in
properly balancing the neural network-based part and the
classical controller. Additionally, the goal of the supervisory
algorithm is to guarantee stability, which indicates that in
some cases, the performance level can decrease significantly.

The limitations of combined solutions motivated this pa-
per, which aims to integrate classical control approaches with
a neural network-based method at the switching mechanism
level. This means, that using the classical control methods
and the nominal model of the systems, different feedback
controllers are designed. Despite the classical switching
control method, the nominal model of the system is not
varied only the design method of the controller. The main
idea is to use a Reinforcement Learning (RL) technique [10],
which provides the switching signal between the different
controllers. The main advantage of this method is that the
performances (e.g., tracking accuracy) can be formulated at a
higher level while the neural network accurately determines
the given operational point of the system. Moreover, the os-
cillations, which come from the inappropriate switching, can
be eliminated through penalization of this behavior during



the training process. The results of this paper contribute to
the field of switching control methods, with the integration of
neural network-based solutions. The improved performance
level of the proposed method is demonstrated through a
vehicle-oriented control problem.

In the context of lateral trajectory tracking for automated
vehicles, several control approaches have been developed in
recent years. The main difference between these methods lies
in the model with which the controller is designed. Kinematic
model-based controllers rely on simplified vehicle motion
equations that ignore forces and dynamics [11], making
them suitable for low-speed or path-planning applications
such as the Stanley controller [12]. These models often
do not need vehicle-specific parameters such as cornering
stiffnesses, however, the vehicle can become unstable within
higher velocity ranges and may produce oscillations in sharp
turns. On the other hand, dynamic model-based controllers
incorporate vehicle-specific parameters such as mass, iner-
tia, and tire forces, providing a more accurate model at
higher velocities. Using these models, a Linear Quadratic
Regulator (LQR) can be designed, which provides high
performances for trajectory tracking [13]. The drawback of
this approach is that the vehicle model may change during
operation, reducing the accuracy of the nominal model,
which results in a degraded tracking accuracy. Using dy-
namical vehicle models, Linear Time-Varying (LTV) models
can be developed, which serve as a basis for designing
Linear Parameter-Varying (LPV) controllers [14]. The main
advantage of these methods is that this type of controller
can adapt to changing parameters through a scheduling
variable, with which enhanced performance level can be
reached. However, in practice, accurately determining this
scheduling parameter can be a challenging task. The Model-
Free Control (MFC) method has been developed to overcome
the limitations of the mentioned methods, which come from
the inaccurate modeling and uncertainties [15]. The main
idea is to estimate the so-called ultra-local model, which
captures effects not considered during the modeling process.
This computed ultra-local model is involved in the control
loop as a control input, with which the tracking performance
can be significantly enhanced. Although this modification
gives an improved performance level, for the computation
of the additional control input the derivatives of the output
are needed, which is hardly computable due to the noises.
MFC-based control structures are sensitive to noises and
time delays, which limits the range of applications of this
approach. In summary, it can be seen that the presented meth-
ods have advantages and also disadvantages. This suggests
that different feedback controllers provide higher accuracy in
different operational ranges. This motivates the main goal of
the paper: to use a reinforcement learning-based algorithm
to select the feedback controller that achieves the highest
possible performance for a given operational range of the
vehicle.

The paper is structured as follows: The applied methods
and techniques are detailed in Section II. The training of the
RL agent is presented in Section III. The operation and the

effectiveness of the proposed method are presented through
simulation in Section IV. Finally, the contribution of the
paper is concluded in Section V.

II. APPLIED METHODS AND TECHNIQUES

In this section, the applied methods are details includ-
ing the control algorithms and the reinforcement learning
technique. Four control methods: Linear Parameter Varying
(LPV), Linear Quadratic Regulator (LQR) feedback con-
troller, Error-based ultra-local model-based control method,
and kinematic model-based controller: Stanley.

A. Stanley

Stanley controller is a vehicle-oriented controller, designed
specifically for trajectory tracking. It is based on the kine-
matic bicycle model, see [12].

In the first step, the heading error must be eliminated:

o(t) = ve(t) (1

where § is the steering angle, 1. is the yaw error.
In the second step, the tracking error is eliminated:

_1 ke(t)
vz (1)

2)

0 = tan

where e(t) is the tracking error, k is the curvature, v, is the
longitudinal velocity.
Finally, the control signal is computed as:

k()
v, (t)

The Stanley is an effective controller for trajectory tracking
especially at low longitudinal velocity.

§ = 1e(t) +tan™! 3

B. Linear Quadratic Regulator (LOR)

LQR is a well-known and widely used technique in control
engineering, It requires an LTI (Linear Time Invariant) state-
space representation of the considered system:

T = Az + Bu 4)
y=0CTz (5)
Using weighting matrices () and R the desired performances

can be guaranteed such as tracking, or limitation of a specific
state. The optimization problem can be formulated as:

J(z(t)) = /OOO(:L'EQLEIC + u;{Ruk) (6)

where x is the state-vector, A, B, C' are the state-matrices.
The optimization can be solved using the Ricatti equation,
see [13].



C. Error-based ultra-local model

In the Model Free Control (MFC) structure, the ultra-local
model is used to compute an additional control input, which
aims to deal with the unmodelled, nonlinear behavior of
the considered system, see [16]. The ultra-local model (F)
consists of two signals: previous input u(t — 1), derivative of
the measured signal (y(*)) and a free tuning parameter . An
improved version of the ultra-local model is the error-based
ultra-local model, see [17]. Basically, the error-based ultra-
local model consists of two ultra-local models: The first one
is computed from the measured signals, while the second
one is from a nominal model (yﬁZ},Fnom,unom):

y") = F + au, (7a)
yfnle/} = Fnom + QUpom, (7b)
y(y) - yﬁ:} =F — Fhom + QU — QUnom, (7¢)
—_— —
o) A at
e = A + «i. (7d)

The error-based ultra-local model (A) is the error signal
between the two models. Although the ultra-local models
can help to eliminate the effect of the nonlinearities, they
cannot guarantee any tracking performance. Thus, additional
control is needed (KC(e,x)), whose structure is not limited
to a specific control type e.g. LQR, see [18].

A
u:—E—IC(e,x). (8)

D. Linear Parameter Varying (LPV)

The Linear Parameter Varying model allows engineers
to cope with nonlinear dynamics by applying scheduling
parameters, see [19]:

& = A(p)xr + B(p)u )
y = C"(p)z + D(p)u

The scheduling vector (p) determines the actual operating
point of the system. Similarly to the robust control design
technique, the performances of the controller can be defined,
such as:
o Tracking pefromance As a frequent control goal, the
tracking of a specific state can be formulated as:

2= Tiper — Y, |21 = min, (10)

o Intervention Another goal could be to minimize the
energy consumption of the system:

(1)

The presented performances can be guaranteed by appro-
priately chosen weighting functions. Including the perfor-
mances, the following augmented state-space representation
can be written:

Zg = u, |z2| = min.

te = Ac(p)xe + Be(p)ue + Be.,ﬂ)(P)“’m
Ze = 05,1(/))% + De(p)ue-

(12a)
(12b)

The design of an LPV controller leads to a quadratic
optimization problem, which can be solved by selecting an
adequate controller (K (p)). This controller must guarantee
the quadratic stability of the closed-loop system. Moreover,
the induced £ norm from the disturbances to the perfor-
mances must be smaller than a given value ~.

inf sup sup

; (13)
KUﬁpEE,WMb#QwEEszH2

E. DDPG

Deep Deterministic Policy Gradient (DDPG) is a type of
reinforcement learning algorithm. It simultaneously learns a
Q function and a policy based on the Bellman equation.

If the optimal action-value function (Q*(s, a)) is known, the
optimal action (a*(s)) is computed as:

a*(s) = arg max Q*(s,a) (14)
As mentioned, the DDPG has two sides: Q-learning, and
Policy learning.

a) Q-learning: The Bellman equation provides the op-
timal action function:

Q*(s,a) = E, [r(s,a) + ’yrrzqw@*(s’,a’)] 15)
where s’ ~ P denotes the next state, s’ is from the
environment while +y is the learning rate.

With a neural network-based approximator Q,(s,a) with
parameter ¢ and a set of transitions (s, a,r, s, d), the mean-
squared Bellman error (MSBE) function can be computed

L(¢,D) =

E [(Q¢(s,a) — (r + (1 — d)mﬂqu&(s', a/)))Q]

(16)

(s,a,r,a’,d)~D
The target network is defined as:
74+ (1 = dymazQy(s’, a’) (17)

The Q-learning function tries to reach the target network by
minimizing MSBE.

The MSBE is augmented with a target term pf,.q4, giving
the final MSBE loss function:

L(¢,D) =

E [(ws,a) — (r+ (1 - d)Qp.., <s',uetarg>))2]

(18)

(s,a,r,a’,d)~D
(19)

b) Policy Learning: The aim of this layer is to learn a
deterministic policy (mug(s)) that maximizes Q4(s, a):

maz E [Qo(s, a(s))] 0)

A more detailed description can be found in [20].



TABLE I
TRAINING SCENARIOS

Type Aggresivity Vg o
DLC H C:5,10....,30m/s 1
DLC M C:5,10....,30m/s 0.8...,1
DLC E C:5,10....,30m/s 0.5...,1
DLC E Vivmaz = 30 4 1
DLC M Vivmaz =30 ) 0.8,0.9
DLC E Vivmaz =30 | 0.5,...,0.7
DLC E Vivpin = 101 1
DLC M Vivpin =101 0.8,0.9
DLC E Vivpin =107 | 05,..,0.7
SINS H C:5,10....,30m/s 1
SINS M C:5,10.,...,30m/s 0.8,0.9
SINS E C:5,10....,30m/s | 0.5,..,0.7
CHIRPS H Viupin = 101 1
CHIRPS M Vivpin =101 0.8,0.9
CHIRPS E Vivpin =107 | 05,...,0.7

III. TRAINING AND CONTROL DESIGN

In this section, the training of the control-aided neural
network is presented. Firstly, the dynamical bicycle model is
detailed, which describes the lateral motion of the vehicle,
and is used in the control design. Then, training scenarios are
described. Finally, the training process of the reinforcement
learning-based agent is presented.

A. Lateral vehicle model

The lateral model, which is used in the control design, is
based on the single-track bicycle model, see [21] It consists
of two main equations: yaw-motion and lateral acceleration:

Iz.zl} = Filaply — Folanly,
may = mug (Y + B) = Frlay) + Frlay),

(21a)
21b)

where: a, denotes the lateral acceleration, v, is the lon-
gitudinal velocity, 8 is the side-slip, I, denotes the yaw-
inertia, m gives the mass of the vehicle, [, [, are geometric

parameters, Fy,Fr are the lateral forces on the tires, oy =

0—p— iﬁ, o =—f+ % present the slip angles of the
front and rear axles.
This model is the basis for the control design for ULM, LPV,

and LQR techniques

B. Training scenarios

The goal of the training scenarios is to cover the whole
dynamic range of the vehicle. Thus, it consists of several
different tests listed in the table below. In the table, DLC
means Double Lane Change, SINS: Sinuse-signal steering,
and CHRIPS: Chirp-signal steering. E: Easy, M: Medium,
H: Hard with regard to the lateral acceleration. C: constant,
V: Varying longitudinal speed. p is the adhesion coefficient,
arrow T means an increasing speed profile, while arrow |
presents a decreasing speed profile.

C. Inputs and structure of agent

One of the most crucial points of RL training is the
selection of the appropriate input signals, which contain
the information from the actual state and dynamic of the

considered system. In case of the lateral dynamics, the
measured and used signals are listed below:

° 'Uy(t),’l)y(t - 1)»1/J(t)71/)(t - 1),Ux(t),’l)m(t -
1),0(t),0(t — 1), ax(t), azx(t — 1), ay(t),ay(t — 1): are
the states of the vehicle, two steps horizon helps to
identify the local operational point of the system.

e ey, are the error signals (lateral and yaw-angle),
which are the inputs of the classical controllers.

o K(t+1),v,(t+1): is the reference signals using a look-
ahead distance-time (/), it allows the agent to select the
appropriate control ahead.

e dnpc,0ULM,OLQR, Ostan: are the control inputs pro-
vided by the presented classical control structures.

a) Structure of the agent: The agent consists of a critic
and an actor network, both have the same structure. They
have one input layer with 21 inputs, 3 hidden layers, and
one output layer with 4 outputs. The hidden layers consist
of 48 neurons with ReLU activation functions. The agent has
4 outputs, which are a number between p; € [0, 1] describing
the predicted goodness of the four controllers on the look-
ahead distance.

b) Reward function: It is a crucial point of the training
of the agent. It must reflect on the stability and the perfor-
mance of the vehicle as well:

R = —6%a; — 6%as + T?as — y§a4
s.tif |the| > 7/2 then stop

(22)

ai,...,ay are parameters weighting the intervention and its
derivative (), the length of the simulation (7"), and the
tracking error (y.). The simulation is also subject to a
constraint: if the orientation error (.) is bigger than /2
the simulation stops avoiding turning back of the vehicle.

D. Control signal selection

Finally, the applied control signal is selected based on the
prediction values (p;):
u = F(max(p;), vu L, Ustan, ULPV, ULQR) (23)
F represents the selection function. In this case, the control
signal with the highest prediction value will be chosen.

IV. SIMULATION

In this section, the operation and the effectiveness of the
proposed RL-based control algorithm are presented through
3 different scenarios. The control algorithm is implemented
in a Simulink environment with a connection to the high-
fidelity vehicle dynamics simulation software, CarMaker. In
the simulation, a D-class passenger car is used. In the first
test, the vehicle is driven along the Hungarian Formula 1
track at low speed. The second simulation includes the same
track with a high-speed profile. In the last scenario, the
vehicle is driven on a low pu surface.
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A. First test scenario

In the first scenario, the proposed algorithm is tested at
low longitudinal velocity. Figure 2(a) presents the test track,
while Fig 3 (b) the lateral error during the simulation. As
the figure shows, the peak value of the lateral error is below
< 0.4m, which means the vehicle is able to follow the
test track with high accuracy. Fig 3 presents the selected
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Fig. 2.
simulation

Reference trajectory and the computed lateral error during the

signal by the neural network and all control signals. In the
selection 17 is the ULM, 2" is the Stanley controller, 73"
is LQR, and 74" denotes the LPV controller. As the figure
shows, in this test case, the neural network switches between
the Stanley and the LPV controller. The switching is linked
to the longitudinal velocity, shown in Fig 4 (b). When the
velocity is low (around 5m/s) and there is a bend within
the lookahead distance, the RL chooses the Stanley controller
and, in other cases, the LPV-based steering angle. In Fig 3(b)
the blue line represents the ULM, the yellow is the Stanley,
orange means the LQR, and purple depicts the LPV control
signals. The applied steering angle is shown in Fig 4(a).
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Fig. 3. Selected control signal and all controllers

Structure of the proposed algorithm
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Fig. 4. Steering angle and velocity profile

The Fig 5 presents the lateral acceleration and the yaw-
rate signal. Around ¢ = 300s there is a peak value in the
lateral acceleration and the yaw rate. It is caused by a sharp
bend and a relatively high longitudinal velocity.

08
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(a) Lateral acceleration (b) Yaw-rate

Fig. 5. Lateral acceleration and yaw-rate

B. Second test scenario

In the second test case, the vehicle is driven with the same
conditions except for the longitudinal velocity profile. Fig 6
(a) presents the speed profile for this case. It varies between
16 —23m/s. The lateral error (Fig 6(b)) remains in the same
range as in the previous case. Fig 7 demonstrates the control
selection and the steering angle. In this case, the RL switches
between the first (ULM) and the fourth (LPV) controllers. It
is reasonable since the Stanley controller works well only at
low longitudinal velocity, while the LQR is at a specific v,.

C. Low p test scenario

In the last scenario, the proposed algorithm is tested under
extreme circumstances, meaning surface with p = 0.6. The
longitudinal velocity and the lateral error are shown in Fig 8.
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The lateral error is still in an acceptable range. Finally, Fig
9 presents the selected controller and the steering angle. In
this case, the RL agent switches between the LPV and ULM
controllers. ULM is used in more than 80% of the simulation.
The LPV controller has no information on the changed p
surface, however, the ULM can identify the change in the
dynamics.

Steering angle (rad)
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(a) Selected signal (b) Steering angle

Fig. 9. Selected control signal and all controllers at low

V. CONCLUSION

In the paper, a reinforcement learning-based switching
control has been proposed. Four different controller tech-
niques have been involved: LPV, ULM, LQR, and Stanley.
The control algorithm has been tested through three different
test scenarios: low and high-velocity profiles and with low

adhesion coefficients. The tests have shown that the proposed
agent is able to detect the changes and select the best control
algorithm for the given circumstances. In this way, the sta-
bility of the controller can be guaranteed while maintaining

a high performance level.
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