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Abstract:

In this paper, a Linear Parameter-Varying (LPV) control algorithm that integrates an error-
based ultra-local model is presented. At each iteration, an ultra-local model is computed,
serving as the basis for identifying the scheduling variable of the polytopic system. Analysis
of the identified models presents a high correlation among the ultra-local models and key
system parameters, which are challenging to measure with high accuracy in practice. To
overcome this limitation, the deviation from the nominal model is computed using the error-
based ultra-local model. The proposed approach is validated through a lateral control problem
for automated vehicles, which is implemented in the vehicle dynamics simulation software,
CarMaker. The results highlight the potential of combining the LPV control framework with
the error-based ultra-local modeling technique to increase the adaptability and performance of

control algorithms in dynamic environments.
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1. INTRODUCTION AND MOTIVATION

One of the major challenges in control theory is the
accurate modeling of the considered system. The vast
majority of the systems are not linear and time-invariant
(LTT) but nonlinear and their parameters can change over
time. However, in most cases, only an LTI representation of
the system is available, which leads to a more complex and
conservative control design process. In the beginning, the
classical PID control structure was utilized to control non-
LTT systems, by using large phase and amplitude margins,
as presented in Diaz-Rodriguez et al. (2009). While this
approach can be effective for relatively simple systems, it
fails to reach satisfactory performance for highly nonlinear
systems. This limitation motivated research on robust
control techniques such as H ., see Zhou and Doyle (1998),
which can handle unmodeled dynamics and disturbances
by minimizing the induced norm between disturbances and
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performance criteria. These techniques work well when the
ratio between the known and unknown parts is small.
However, when the unmodelled/unknown part becomes
large, the robust control design provides a conservative
solution, which can significantly reduce the reachable
performance level.

To address this issue, the polytopic Linear Parameter
Varying (LPV) framework was developed as discussed
in Mohammadpour and Scherer (2012). This approach
models parameter variations as scheduling parameters,
allowing controllers to adapt to system changes using
Lyapunov-based techniques. There are crucial require-
ments for LPV control design: the scheduling parameters
must be measured or estimated during the operation of the
control system. However, in some cases, this information
is not available.

To deal with the difficulties of nonlinear and uncertain
systems, a new control technique was developed. This
method is called Model Free Control (MFC), see Fliess
and Join (2013). The basis of the MFC is an ultra-local
model, which is continuously updated during the operation
of the control system. Basically, the ultra-local model is
used to compute an additional input signal, which aims to



compensate the unmodelled/unknown part of the system.
Although this method has already been applied to several
control problems, in some cases, it can destabilize the
system. Thus, a new formulation of the ultra-local model-
based control structure was introduced, which is called
an error-based ultra-local model. This algorithm uses two
ultra-local models, one is computed from the measured
signals, while the other one is from a nominal model,
as detailed in Hegediis et al. (2022). Although this new
formulation can solve some issues, it is still used as an
additional control signal, which makes the analysis of the
closed-loop system difficult.

In this paper, an LPV control design is presented integrat-
ing an error-based ultra-local model to enhance system
adaptability and performance. In the original ultra-local
model control structure, the computed ultra-local model is
directly used as an additional feedback term in the control
signal. However, in this paper, the main goal is to exploit
the capability of the error-based ultra-local model to catch
the error between the actual operational point of the sys-
tem and the nominal model. The main contribution of this
paper is an algorithm, based on the error-based ultra-local
model, which can determine the actual operational point
of the considered system. The proposed control structure
is validated through a vehicle control problem: trajectory
tracking. The simulations are performed in the vehicle
dynamics software, CarMaker.

The paper is organized as follows: The main idea of
the error-based ultra-local model and the nominal model
is detailed in Section 2. The control structure and the
identification of the actual operating points are explained
in Section 3. The simulation results are given in Section 4,
while the whole paper is concluded in Section 5.

2. STRUCTURE OF THE ERROR-BASED
ULTRA-LOCAL MODEL AND THE NOMINAL
SYSTEM

In this section, the original ultra-local model-based control
algorithm is presented, then, the extended version is briefly
introduced. Moreover, the nominal system is presented
through which the presented control structure is validated.

2.1 FError-based ultra-local model

The main idea behind the ultra-local model-based control
algorithm is to use an additional control signal to compen-
sate the unmodeled, nonlinear dynamics of the considered
system. The ultra-local model is continuously updated
at each time step. Originally, the ultra-local model-based
control structure is formulated as: Fliess and Join (2009):
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where u denotes the control input, yﬁl;} gives the v
derivative of the reference output of the system. The ultra-
local model, denoted by F', is recomputed at every time
step using the two measured signals and typically used as
an additional control input. Moreover, K(e, &) is a classical
feedback controller (e.g., PID or LQR) to eliminate the
steady-state tracking errors. The computation of the ultra-
local model comes from the following relation:

u =

th

y") = F + au. (2)

where vt" derivative of the output (y) and the previously
applied control input multiplied by a parameter («).

In some cases, the original ultra-local model can destabilize
the system, thus a new formulation was introduced in
Hegedlis et al. (2024). The extended structure is called
the error-based ultra-local model, which mainly consists
of two ultra-local models Heged{is et al. (2024):

y(”) =F + au, (3&)
yiz; = Fnom + QUpom, (3b)
v (v) _
y( ) — yref - F - Fnom +au — QUnom, (3C)
RS A atl
e = A + aii. (3d)

One of the ultra-local models is computed from the mea-
sured signals, while the other one is from a nominal model.
Using the two ultra-local models, the error-based ultra-
local can be computed, which is denoted by A. Moreover,
using the output of the system and the reference signal
(Yres), the tracking error can be calculated. In the context
of control design, the objective is to achieve zero tracking
error, ensuring that e*) — 0. Similarly to the original
structure, the zero steady-state error is reached through
an additional, classical feedback controller:

u = —% —K(e, ). (4)

2.2 Ultra-local model in LPV framework

In this paper, the ultra-local model-based term is not
directly used as an additional control input, but it is used
to determine the operational point of the system. Based
on the identified operational points, a polytopic system is
created, which serves as the basis of the control design.
A polytopic, LPV system generally can be formulated as
described in Toth (2010):

i(t) = Alp)a(t) + Blp)u(t), (50)
y(t) = Clp)a(t) + D(p)ult), (5b)

where A(p), B(p),C(p), D(p) are parameter dependent
system matrices. p gives the scheduling variable, while the
output of the system is y and the states are given by =z.
The goal of this paper is to use the error-based ultra-local
model to characterize the deviation between the nominal
model and the system at the given operational point. Thus,
the state-space representation is augmented as follows:

z(t) = (Anom + AA)z(t) + (Bnom + AB)u(t), (6a)
y(t) = (Crom + AC)x(t) + (Dnom + AD)u(t),  (6b)
where the nominal system matricies Ay,om, Broms Croms
Dy om are computed from the nominal model. On the other

hand, the deviation of the nominal model is formulated
through the error-based ultra-local model as:

AA = F4(A), AB = Fg(A), (7)

where F; describes the relationship between the error-
based ultra-local model and the deviation of the system
matrices.



2.8 Nominal system description

In this subsection, the nominal model is presented, wich
is the two wheeled bicycle model. The vehicle motion can
be described by two main equations Rajamani (2005):

Ly = <5 - 8- 1”51)0111 - <B + 1”52)0#2, (8a)
mu(Y 4 B) = (5— _1/151)01_'_ <—ﬁ+w£2>c2v
(8b)

where, v > 0 and v, give to the vehicle longitudinal
and lateral velocity, respectively. The parameters m and
I, represent the mass and yaw moment of inertia. The
variable § defines the side-slip angle, while ¢ denotes the
yaw rate. The geometric parameters of the vehicle are
characterized by [y and [y, whereas C'; and C3 describe
the cornering stiffness of the front (1) and rear (2) axles.
The system is controlled via the steering angle §. In
the nominal model changes in the cornering stiffnesses
(C1,C5) are not explicitly considered during operation.
The presented vehicle model can be transformed into
a parameter-dependent state-space representation, where
the states are x, = [7,/1, vy, Py)T. py is the lateral position
of the vehicle, the control signal is u, = [§]7, and the
scheduling parameter is v.

3. THE CONTROL STRUCTURE AND THE
IDENTIFIED SYSTEMS

In (8) the main dynamical equations are presented for the
lateral motion of the vehicle. The first equation describes
the rotational motion of the vehicle, while the second
one describes the lateral acceleration. Thus, two error-
based ultra-local models are applied to estimate the error
between the nominal model and the real system.
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Fig. 1. Structure of the control system

Fig. 1 illustrates the control structure, which consists of
three key components:

e Error Computation: The deviation between the mea-
sured vehicle position and the reference trajectory.

e Error-Based Ultra-Local Model: Two ultra-local mod-
els are computed using measurements and the nomi-
nal model.

e Control Layer: LPV-based controller and a system pa-
rameter identification layer, which utilizes the error-
based ultra-local models (EB-ULM).

Error (%) [ Dead-beat | tnor,
computation controller
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Fig. 2. Error-based ultra-local model

Furthermore, a more detailed structure is illustrated for
the error-based ultra-local model computation in Fig. 2.

In Fig. 2 ultra-local model for the lateral acceleration of
the vehicle is computed, where the derivative order of the
output is set to 2, 4; = a,. The second ultra-local model
is computed similarly, however, in that case, the output
is 2 = . The ultra-local models use the control input,
which is the applied steering angle v = §. The nominal
ultra-local model is computed from the state of the vehicle,
the nominal model, and the dead-beat controller, which is
briefly described in the following subsection. In this paper,
considering the two main dynamical equations of the
system, two error-based ultra-local models are computed
as described in 3:

Ay = (ay - '(‘]fy,nom) - (a6 - a(;nom) (9)
Au; = W - 7wbnom) - (04(5 - aénom) (10)

3.1 Dead-beat controller

In this subsection, the calculation of the nominal control
input (Upem) is presented. Using the nominal model of
the system, a discrete state space representation can be
created Cassandras and Lafortune (1999):

zalt +1) = Dry(t) + Tug(t), (11a)
ya(t) = CTza(t). (11b)

where the &, T, CT are the discrete state matrices, which
are computed from the continuous model using the sample
time Ts = 0.02s. The computation of the nominal control
input is detailed in Hegedds et al. (2024).

In this concept, both the translational and angular mo-
tion are considered. The ultra-local model for the trans-
lational motion is determined from the lateral error and
the predicted lateral positions, while the angular motion
is also considered through the nominal steering angle see:
Hegediis et al. (2024). This means, that using the nominal
steering angle and the dynamical equations, the nominal
ultra-local model can be computed for both cases.

Note that, the computation of derivatives of the signal
with unspecified noise is challenging. To address this, an
ALIEN filter is employed to estimate the derivatives, see
Polack et al. (2019). Moreover, the design of parameter « is
crucial since it scales the signals. The scaling parameter is
chosen iteratively to a constant value. Detailed description
can be found in Heged(is et al. (2022).

3.2 Data collection and the identified models
The nominal vehicle model is constructed using parame-

ters derived from the Tesla Model S, which is from the
CarMaker simulation software. To explore the unmodeled



dynamics of the lateral dynamics and to find the connec-
tion with the error-based ultra-local models, several test
scenarios have been conducted in the vehicle dynamics
simulation software, CarMaker. During the test scenarios,
a chirp signal is used with different amplitudes to cover
the whole operational range:

Yres(t) = A(t) cos (wo (fot + f1t?) + ¢o),  (12)
where A(t) is adjusted to the physical limits of the vehicle
and the longitudinal velocity. In this paper ¢g = 0,
moreover, fi is selected to 0.01 and fy is 1. Finally, wq
is selected to 0.5. Moreover, during the data generation,
the amplitude of the reference lateral position (yrer) is
decreased along with the frequency, which means A(t) =
Ao —~t, where v characterizes the rate of the change of the
amplitude of the reference signal. Using the saved dataset,
lateral models can be identified in operational ranges,
which are identified by the error-based ultra-local models.
In Fig. 3 an example is shown for the different models with
blue lines, while the nominal model is presented by the red
line, these differences come from mainly the change of the
cornering stiffness.
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Fig. 3. Bode diagram for v=10m/s

The resulted different models (see Fig. 3) are depicted in
terms of error-based ultra-local models. In this example,
various amplitudes are presented at a fixed frequency of
1rad/s. The figure shows that the amplitude response of
the models is well-defined by the ultra-local models, which
indicates that the model can be estimated through the
computed ultra-local models at each operational point.

It is shown in Fig. 4(a), that the nominal model depicted
in red can be identified in the middle, where both ultra-
local models are zero. In the nominal case, the longitudinal
velocity is selected to 10m/s. Moreover, the other models
are presented with blue, which comes from the different
cornering stiffness. Thus, the actual model is formulated as
a deviation from the nominal model, which is represented
by blue dots in the figure.

In the next step, the nominal model is augmented with
the identified error model by the ultra-local models. To
simplify this task, only the cornering stiffness of the model
is considered since it is the main source of the nonlinear
behavior. Note that the longitudinal velocity (v) can also
change, however it is a measurable signal. Therefore, the
characteristics are analyzed in terms of the longitudinal
velocity. Note that this does not imply that cornering
stiffness is inherently velocity-dependent. However, the
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Fig. 4. Cornering stiffness and the magnitude

ultra-local models used to estimate the cornering stiffness
are velocity-dependent. Fig. 4(b) illustrates an example
of cornering stiffness values at different longitudinal ve-
locities. Moreover, Fig. 4(b) shows that the error-based
ultra-local model estimation of stiffness is highly velocity-
dependent. The red dots represent measurement points
at v = 10m/s, the blue dots give the values at velocity
v = 15m/s, while the black dots belong to measurements
with v = 20m/s.

Fig. 5. Example for the fitted characteristics

In Fig. 5 an example is presented for the estimation of
the model parameters in terms of the error-based ultra-
local models. Using the measurements, it can be seen that
the characteristics can be approximated by a second-order
polynomial.

FC(A%[” Ay) = alAd) + agAy + CL3A12L + CL4A§ —+ a5A¢-}Ay,
(13)
where the parameters of the fitted polynomial are given

by: a1, a9, as, aq,as, and Fe describes the characteristics.
Using the LPV formulation of the system:

L(t) = (Anom + AA(Fe(Ay, Ay)))z(t)+  (14a)
(Bnom + AB(]:C(AQW Ay)))u(t)’
Y(t) = Cnomz(t) + Dpomu(t), (14b)

where AA,AB comes from the nominal model of the
system, and F, describes the velocity dependent charac-
teristics.

3.8 LPV control design

The LPV control design aims to guarantee the ac-
curate trajectory tracking of the vehicle. The poly-
topic LPV model has 7 scheduling parameter p =
[Aall, Aa,lg, Aa,gl, Aagg, Abl, Abg, 'Uw] . Aall ...ACLQQ are the
uncertain part of the matrix A, derived from the error-
based ultra-local model. Similarly, Ab;, Aby are the un-
certain part of the matrix B,, see (14). The measurement
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Fig. 6. Structure of LPV controller

vector contains the states: y = [&,py] The required per-
formances of the controller are defined as:

o Minimization of the lateral error As a primary goal
of the LPV control design, the error between the
measured lateral position p, and the reference signal
Dy,rey Mmust be minimized:

21 = Py,ref — Py, ‘Zl| — mina (15)
o Minimization of the steering intervention As sec-
ondary goal, the intervention - in this specific case,

the steering angle - must be minimized in order to
meet the system’s limitations:

29 =0, |z2| — min. (16)

Detailed performances can be reached by applying appro-
priate weighting functions, W,.s to scale the reference
signal for the controller. W, ; and W, o aims to reach
to performance defined above. The weighting functions
Wy, W, are to attenuate the noises on the measured
signals. The augmented system is shown in Fig. 6.

The design process leads to a quadratic optimization
problem. The solution is a controller K(p) that guarantees
the required performances and closed-loop stability of the
system. As an additional requirement, the induced norm
from the disturbances to the performances must be less
than a given value 7.

inf sup sup =1l (17)

K(p) peF, ||wl|,70,weLs [[wlly’
where F, bounds the scheduling variables. The computed
controller K (v,, p) is formed as:

tx = Ax(p)rx + Br(p)yx, (18a)
u = Cx(p)rx + Dr(p)yk, (18Db)

where Ak (p), Bk(p) and Ck(p), Dk(p) are scheduling
variable dependent matrices.

4. SIMULATION EXAMPLE

This section presents the simulation results for trajectory
tracking. The entire validation process is carried out in the
CarMaker simulator. The Tesla Model S, which is a widely
used passanger vehicle, is selected for simulation purposes.
In the first simulation example, the vehicle is driven along
an F'1 race track Yas Marina and it is shown that using the
proposed solution, the control problem can be solved with
high performance. Furthermore, in the second simulation,
the impact of varying external parameters on the proposed
method is analyzed.

4.1 Trajectory tracking of the vehicle

Firstly, the reference trajectory and the computed lateral
error can be examined in Fig. 7.
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Fig. 7. Reference trajectory and the computed lateral error

The maximum lateral tracking error of the vehicle reaches
0.4 m, which is acceptable for this application, as the vehi-
cle operates near its physical limits to demonstrate the per-
formance of the error-based ultra-local model-aided model
selector algorithm. Moreover, in Fig. 8 the velocity profile
of the vehicle and the steering angle can be examined.
The velocity profile is generated using the built-in driver
model provided by the CarMaker simulation software. The
velocity varies significantly during the simulation, ensuring
comprehensive validation of the control algorithm within
the entire range.
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Fig. 8. Velocity and the steering angle of the vehicle

Finally, the translational and angular error-based ultra-
local models, computed during the simulation, are illus-
trated in Fig. 9. The results show that the vehicle reaches
various operational points, and the controller can effec-
tively control the vehicle along the predefined path.

Fig. 9. The computed error-based ultra-local models
4.2 Changing external parameters

The effect of the vayring parameters is examined. Since
the lateral dynamics of the vehicle are highly influenced



by the friction coefficients through the tire characteristics
Pacejka (2004) simulation examples are compared to each
other when 4 = 1,4 = 0.6, = 0.4. Note that, in the
nominal case p = 1.

During the design process of the LPV controller, 40 grid
points are defined in terms of the two error-based ultra-
local models such as the deviation of the nominal model in
terms of the tire stiffness varies between 1.2 - C...0.25 - C,
where C' gives the nominal value. The minimum velocity
value is selected to v = 5m/s, while the maximum velocity
is v = 30m/s, and it is divided into 30 grid points. The
goal is to demonstrate the current operational points of
the system during the control along the race track. In Fig.
10, the operational points can be seen, which are provided
by the error-based ultra-local models. The velocity is
limited during the simulation example t0 vpq = 26m/s.
Moreover, the velocity profile is decreased in the case,
when the friction coefficient is decreased.

Grid point (v

— 10
43 30 35 0 Gridpoint(A,)
Grid point(A,)

Fig. 10. Grid points during the simulation

Figure 10 demonstrates that the operating points are well-
separated across different friction coefficients.This indi-
cates that the proposed algorithm can effectively detect ex-
ternal factors influencing tire characteristics. Additionally,
Fig. 5 shows that as the friction coefficient decreases, in the
identified operational points tire stiffness is reduced. This
means, that the operational points are correctly adjusted
using the results from the error-based ultra-local models.
Moreover, in Fig. 11 the accelerations can be seen in both
x and y directions.

10

2l

Lateral acceleration (m/sz)
o

Longitudinal acceleration (m/sz)

Fig. 11. Lateral and longitudinal acceleration

Fig. 11 illustrates the acceleration values in both longi-
tudinal and lateral directions, showing that the vehicle
operates close to its physical limits. It can be seen, that the
lateral acceleration of the vehicle nearly reaches 10m /s,
which is close to the maximum value achievable by a
vehicle.

5. CONCLUSION

This paper presented an LPV control algorithm in which
the actual operational point is determined using error-
based ultra-local models of the system. An ultra-local
model is computed at each iteration step, serving as the
basis for determining the scheduling variable of the poly-
topic system. Analysis of the identified models showed
that a high correlation can be observed among the ultra-
local models and two key system parameters, which cannot
be directly measured with high accuracy. To address this
limitation, the model deviation is formulated based on
the error-based ultra-local model. The proposed algorithm
was validated through a lateral control problem for au-
tomated vehicles, implemented in CarMaker. The results
demonstrate that the ultra-local model-based approach ef-
fectively handles external disturbances and ensures robust
system operation. These findings highlight the potential of
the combined LPV and error-based ultra-local method in
enhancing the adaptability and performance of the control
algorithm.
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