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Abstract:

In this paper, an LPV-based control design framework is presented, in which a reformulated
ultra-local model is integrated. The limitations of the original ultra-local model-based control
structure, are analyzed and a modified version of it is proposed. The key concept of this approach
is to integrate the whole modified ultra-local model into the polytopic modeling framework.
This results in an extended state-space model, the basis for the LPV control design. The model
uncertainty is handled by the ultra-local model, while the stability requirements are guaranteed
by the LPV controller. Moreover, the tuning parameter of the ultra-local model is handled as
a scheduling parameter of the LPV controller. The effectiveness and operation of the proposed
control algorithm are demonstrated through a vehicle-oriented application.

Keywords: ultra-local model, LPV control, trajectory tracking

1. INTRODUCTION AND MOTIVATION

In the field of control and system theory, one of the ma-
jor challenges is the accurate modeling of the considered
system. In the beginning, the systems were modeled as lin-
ear, and time-invariant, while the nonlinear behavior was
neglected. This approach led to a conservative controller,
which had a significant impact on their performance level.
To improve the performance, polytopic and linear Pa-
rameter Varying (LPV) methods have been developed, as
described in Toth (2010). This modeling framework allows
the designer to capture the nonlinear dynamics using the
set of linear systems. The LPV technique requires the
measurement and observation of the scheduling parame-
ters. However, in some cases, this requirement cannot be

fulfilled.

In recent years, a new modeling approach started to
take place in the field of nonlinear systems: The machine
learning-based solutions, see Narendra and Parthasarathy
(1990). Unlike the classical solutions, the machine learning
techniques do not require a mathematical, physics law-
based model of the considered system. These techniques,
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especially the neural networks, can learn any nonlinear
functions, the only constraint is the number of the hidden
layers and the neurons. The main drawback of these
methods lies behind their black-box nature. The logic and
the connections behind the provided model are hard to
understand, thus its robustness and stability cannot be
proven. This kind of method cannot be used in safety-
critical systems, as detailed in Forsberg et al. (2020).
To bridge this gap, the combined methods are taking
over the place of pure machine learning-based solutions,
see Lelko and Nemeth (2024). These techniques combine
the advantages of the model-based and the data-driven
algorithms. For example, in Fényes et al. (2022) a decision
tree and LPV-based approach is presented. The decision
tree provides the scheduling parameters for the LPV
system based on the available measurements. A trained
neural network can be converted into a set of linear
systems, as detailed in Lelko et al. (2021). The drawback of
this method is that the learning-based algorithm is highly
dependent on the quality and quantity of the training data.
This means that a lot of measurements are needed to cover
the entire operational range of the system considered.

Other solutions could be model-free techniques. The
Model-Free Control (MFC) method has been developed
by Fliess and JOIN (2014). Basically, this algorithm uses
an ultra-local model to capture the nonlinear behavior of
the controlled system in real-time. The ultra-local model is
computed from the applied control signal and the deriva-
tive of the output of the system. The control signal is com-
puted from the ultra-local model and an additional con-



troller, which aims to guarantee the tracking performance.
The MFC structure has been applied for several control
problems, see Polack et al. (2019), Scherer et al. (2023).
However, the same problem arises as in the case of the
machine learning algorithm: robustness and stability. To
resolve this issue a combined technique is proposed, which
merges the ultra-local model into an LPV framework, see
Fenyes et al. (2022). The proposed method is demonstrated
through a vehicle-oriented control problem: longitudinal
motion. The tire characteristics and the unknown braking
system and engine provide a good example to show the
effectiveness and the operation of the developed combined
method.

The paper is organized as follows: The main idea of the
error-based ultra-local model and the nominal model is
shown in Section 2. The LPV design and the extended
state space representation can be found in Section 3. The
simulation results are presented in Section 4, while the
whole paper is concluded in Section 5.

2. THE ERROR-BASED ULTRA-LOCAL MODEL

In this section, a brief introduction to the Model-Free
Control (MFC) method is given (see Fliess and Join
(2009)). In this paper, this control structure will be called
the original structure. A nonlinear physical system can be
represented by the following differential equation:

T = f(xv 'LL), (1)
where x gives the states, while the control input of the
system is provided by u. The core idea behind the Model-
Free Control (MFC) framework is that the real system is
described by an ultra-local model, which is recomputed at
every sample time step. This so-called ” phenomenological”

model is expressed as Fliess and Join (2013) d’Andrea
Novel et al. (2010):

y) = F + au, (2)
where F' € R describes the unknown part of the system
and the input signal is denoted by u € R. The output
of the system is provided by y € R, while the design
parameter of the ultra-local model-based concept is given
by a € R. Finally, the derivative order is represented by v.
In practice, due to measurement noise, the derivative order
is typically limited to v = 2 . Based on (2) the ultra-local
model can be formulated as:

F =y™ — au. (3)
In most cases, the goal of the control algorithm is to
achieve a predefined reference value y,.¢. Using (2) and

the v*" derivative of the reference output and error can be
defined as:
)

e =y — yﬁi} =F+au—y, (4)

The goal is to eliminate the error signals (e*) = 0).
Consequently, the control signal, with which zero error can
be achieved is computed as:

—F+y")
w= — el 5)
«

This control signal does not guarantee zero tracking error
in the steady state. To overcome this limitation of the
control structure, an additional classical controller is incor-
porated to eliminate the tracking error in a steady state.

This ensures improved performance and accurate reference
tracking:
—F + %} + K(e)

U= a ) (6)

where K(e) can be classic controller, such as PID Fliess
and Join (2009), where e = y — y,; denotes the tracking
€eITor.

Remark In a real model-free setting, no prior knowl-
edge of the system is available, which makes the selec-
tion of an appropriate feedback controller particularly
challenging. In real-world applications, even after data-
driven tuning, this control structure may not guarantee
performance specifications. Nevertheless, the fundamental
concept offers significant advantages in dealing with the
uncertainties in the control loop. Therefore, the goal is to
exploit the benefits of this approach while incorporating
prior knowledge of the specific system. In the following,
the original control structure is enhanced by integrating
available system knowledge.

The error-based ultra-local model

The key concept behind the improved structure is to de-
termine a nominal ultra-local model to define an error sys-
tem. This error system represents the deviation between
a predefined nominal model and the real system, which is
valid in the given operational point. The formulation of the
modified error-based ultra-local model is given as follows:

V) = F tau, (72
yq(f;)f = Fhom + QUpom,ref s (7b)
y(u) - y’r(’z)f =F- Fnom +au — QUpom,ref, (7C)
—_————
o) A i
e = A+ ai, (7d)

where the ultra-local model of the real system is given
by F, while F},,,, is the nominal ultra-local model, which
is derived from the nominal model of the system. The
error-based ultra-local model is computed from the error
between the real system and the nominal model. Moreover,
Yres is the reference signal, Upom,res represents the com-
puted reference input signal, which is calculated from the
nominal model. During the control of an arbitrary system,
the objective is to ensure that the v*" derivative of the
error remains zero, which implies:
—-A

=, (3)
By incorporating information from the nominal model
into the ultra-local model-based structure, the error-based
ultra-local model can be created, which is denoted by A.
Similarly to the original ultra-local model-based control
structure, the extended version also involves a classical
controller:

U~

U= f% — K(e, ), (9)

where the error is defined as e = ¥,y — y and the states
of the system are denoted by x.



2.1 Nominal model

In this subsection, the nominal model of the longitudinal
vehicle dynamics is presented. The objective is to formu-
late a simplified model, with which the control design
process can be performed. The longitudinal acceleration
is computed as:

mi = Fy(t) + Fp(t) — Fa(t), (10)
where m gives the mass of the vehicle, F; represents the
driving force, the braking force is Fj(¢). Moreover, the drag
force is denoted by Fy(t). In this paper, the control input
is defined as the throttle and brake pedal positions of the
vehicle, while the system output is the longitudinal veloc-
ity. During the computation of the driving and braking
forces, a simplified actuator model is considered as:

Ayt Ap(t

= 20, R= -2,
where A:(t) and Ap(t) provide the amplitude parameters
of the transfer functions between the pedal position and
the applied force. T' is a parameter of the braking system
and the transmission of the vehicle. u:(t) € [0,100] gives
the throttle position, while the brake pedal position is
given by up(t) € [0,100]. In the simulation example, only
the aerodynamic drag is considered in the nominal model.
Thus the following linearized dynamic equation can be
used to describe the longitudinal dynamics:

mi(t) = {;‘;gut(t) — 0.5AcapPa(t)i(t), 12)

— 720y () — 0.5AcapPa(t) (1),

where A is the cross-sectional area, the drag coeflicient is
given by c¢g, and Py4(t) is a varying parameter related to
the longitudinal velocity. Using the mathematical repre-
sentation of the longitudinal dynamics of the vehicle, the
following state space representation can be created:

t b= (11)

Tpom = Anxnom + Bnua (13)

Ynom = CV;stnom, (14)
where A,,, B, and C" are the nominal system matrices.
The input signal is v and the output is denoted by y. The

actuator dynamics is represented by the following state
space model:

and
By(t) =[] By(t) + [0 ] wy(t)
—0.5AcqpPy(t) 0 L L 8
An(p) = ! 0o s Bu(p) = | A |,
0 0-%4 0 o
0 00 —% A1)
(15)

The two independent control inputs are merged into one
in the following way: if u(t) > 0, then A:(t) = A:(t) and
Ap(t) =0, if u(t) < 0, then A;(t) =0 and Ay(t) = Ap(t).
The scheduling vector of the state-space representation
are: p = [A¢(t), Ap(t), P4(t)] The state.vector contains:
Tnom = |VzsDx,®1,T2]. pr is the traveled distance, and
I'1, o are the inner variables of the braking and transmis-
sion systems.
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Fig. 1. The characteristics of the brake and throttle forces

2.2 Computation of the reference input and output signals

In this section, the computation process is shown, which
is sufficient for the calculation of the nominal ultra-local
model. It is mentioned, that the nominal part of the error-
based ultra-local model is determined using the nominal
model of the real system. In this paper, it is assumed
that the derivatives of the outputs are directly measurable
and can be computed using the simplified longitudinal
dynamics described in (12). Accordingly, the nominal
control inputs can be determined from the measured
longitudinal acceleration by considering the characteristics
of the throttle and brake actuators (see Figure 1). To
improve the accuracy of the estimation, the effect of air
drag is also taken into account. Furthermore, the nominal
longitudinal acceleration (gr.s) can be computed based
on the applied pedal positions. In cases where these
signals are not available, a filtering algorithm-such as
ALIEN filters-can be used for derivative estimation, and
the reference control input can be determined using a
deadbeat-like controller (see Hegedlis et al. (2024)).

2.8 Selection of the parameter a

The final control input is composed of two main compo-
nents: the output of the LPV controller and the computed
error-based ultra-local model. The tuning parameter «
plays a crucial role in the balancing between the LPV-
based and the ultra-local model-based part:

e o — o0: the control input is mainly computed from
the LPV-based part, which means that the effect of
the error-based ultra-local model is suppressed. If «
is selected to a high value, the performance level of
the control system cannot be improved.

e a — 0: the influence of the ultra-local model-based
part increases during the determination of the control
input. If the parameter « is set too low, oscillation
may occur, which is not suitable.

The determination of the « is a non-trivial challenge since
it cannot be computed analytically. Therefore, an iterative
algorithm is used to adjust the optimal value of the tuning
parameter.

During the optimization, the squared sum of the tracking
error and the squared sum of the control input are consid-
ered. The squared sum of the control input aims to prevent



Algorithm 1 Optimization of Tuning Parameter «
IHPUt: Qop, Mm.am, ACM, Y
Output: Optimized parameter «
for m =1 to M,,.. do
Compute error vector:

em,i = YYresi — yill + [Jwill (16)

if % va em,i = % va €m—1, OT M > Mp,,, then
Terminate iteration.

end if

Update a:

end for

the choice of parameter a that results in oscillations. In
Figure 2 an example is shown for the effect of the tuning
parameter.
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Fig. 2. Effect of the tuning parameter o on the tracking
accuracy

Note that the accuracy of the nominal model depends on
the actual operational point of the real system, There-
fore, in several applications, the accuracy of the control
algorithm can be increased by a dynamically varying «
parameter see: Hegeddis et al. (2022).

Overall structure of the control algorithm

In this section, the extended state space representation
of the system is presented, in which the error-based ultra-
local model is incorporated. In this representation, the first
derivative of the output is considered (v = 1). Moreover,
it is shown that the extended state space can be simplified
in the case when the derivatives are directly measurable.

3. EXTENDED STATE SPACE REPRESENTATION

The external components of the error-based ultra-local
model are: Yref = Yrefs and Upom,ref- It is important to
note that, in general, the nominal input signal is com-
puted using a deadbeat-like controller, which cannot be
directly calculated within the classical control framework.
To integrate the error-based ultra-local model into the
LPV design framework, these signals are considered to
be external, measurable disturbances. The inclusion of
the error signals y. and the previous control input (u)
are more challenging because the first derivative of the
output signal is taken into account. To address this issue,

a filtering algorithm is incorporated into the state space
representation of the system, with which the derivatives of
the signals can be approximated. For this purpose, several
algorithms can be employed, such as Pade Approximation
Brezinski (2002). In this paper, to satisfy implementation-
related requirements, the filtering algorithm is defined as
a second-order term:

S

Gri(s) = =g——) 18
£(s) T2s% + 2T;s + 1 (18)

where T; is the time constant. Using 18 the following state-
space representation can be formulated:

=2/T; 1 1 Tv'2

The calculation process of the y and u can be carried
out using the filtering algorithm (18). Note that, the
LPV-based controller determines the control, with which
the stability requirements can be carried out considering
the effect of the error-based ultra-local model, which is
composed from: [, Yref, U, Unom,ref). In the following, the
general form of the extended state-space representation is
presented, considering a general state-space representation
of the controlled system (& = Ax + bu):

-i‘e = Ae(ﬁ)xe + Be(ﬁ)ue + Be,w(ﬁ)wev (20&)
A BC;{l —BC}FQ/a 1
Ac(p) = | Oaxz | A1 |=BraCi,/al, (20b)
| By 2 AV3] 020 Ao ]
[ B, ] [ B/a | —B ]
Be(ﬁ): O2x1 ], Be,w(ﬁ): Bf,l/a _Bf,1 ) (200)
[ 0251 | | O2x1 | O2x1 |
where u. = [u], 2T = [Zhom, Tf1, Tfol, wl =

[yrefyunom,ref] and A3 = eTA7 el = [Oa 170]a ﬁ = [p7 Oé].
u = [0, 1]zs,1. The LPV-based control design relies on the
extended state space representation. Note that, it is men-
tioned that the a can be selected dynamically to increase
the performances, however, in this paper, it is selected to
a constant value. This means, that the parameter « is not
considered as a scheduling variable. Further details can be
found in the paper Fenyes et al. (2022).

3.1 LPV control design

In the case of the longitudinal dynamics, the derivative of
the reference output (§ref = agref) is computable, thus
the filter G; is omitted.

The LPV control design has two goals: The first is to
guarantee the tracking of the given reference signal. The
second is to ensure the stability of the closed-loop system
influenced by the external reference signals from the ultra-
local model. Thus, the performances of the closed-loop
system are:

e Guaranteeing the tracking of the reference speed:
21 ¢ (Vg ref — Vz) — min!

e minimization of the intervention:
Z9 : u — min!

The presented performances can be fulfilled by carefully
selected weighting functions. W,.; scales the reference
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Fig. 3. Augmented LPV system

signal, W, ; guarantess the tracking performance, W o
is to minimize the intervention, W, attenuetes the noise
on the measured signal. The last two weighting functions:
Witnom rey and Wy, are to scale the external disturbances

from the ultra-local model. The interconnected structure
is shown in Figure 3.

The augmented plant can be expressed in state-space form
as:

Foe = Aec(p)Tee + Bee(p)tee + Beew(p)Wee, (21a)
= Cec1(p)Tec + Dec,i (p)tec, (21b)
Cee2(p)Tec + Dec2(p)Wee,2, (21¢)

The control design leads to a quadratic minimization
problem, which results in a controller K(p). This controller
can guarantee the stability of the closed-loop system by
minimizing the induced norm £, from the disturbances to
the presented performances. The induced norm Lo should
be less than a given value ~.

inf sup sup ”Z”2, (22)
K(p) peF, ||wl|,7#0,weLs [[wll,
In figure 4 the error-based ultra-local model computation
can be seen. It can be also observed, that a time delay
is applied for the control input, which comes from the
LPV-based part, in order to guarantee the signal matching
between the control signal and the measurements.

Reference
velocity

Vehicle

nnnnnnn

Inverse
model

Nominal Yret
model

Measured pedal
positions

Fig. 4. Structure of the error-based ultra-local model

4. SIMULATION EXAMPLE

In this section, a simulation example is presented to
demonstrate the combined LPV and error-based ultra-
local control structure. During the simulation example, the
tuning parameter is set to a = 5. The entire simulation is
carried out in CarMaker, a high-fidelity vehicle dynamics

simulation software. During the simulation, the reference
velocity is chosen randomly, and the goal is to demonstrate
the enhanced performance level of the proposed control
structure. Firstly, the control inputs for the throttle posi-
tion are presented in Figure 5. The result of the LPV-based
controller is presented in blue, while the red line shows the
computed error-based ultra-local model.
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LR L
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Error-based ultra-local model
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Fig. 5. Throttle position during the simulation

In the next step, the brake position is depicted in Figure 6.
Similarly to the previous case, both the classical and the
error-based ultra-local model-based parts are presented. It
can be concluded that the ultra-local model-based part has
higher values at the beginning and at the end of the given
reference velocity segment. This means that the response
for the reference value change is faster in the case when
the ultra-local model is also used.

Error-based ultra-local model
0.8 r Classical controller
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Fig. 6. Brake position during the simulation

In Figure 7 the final control inputs can be seen, where the
brake and throttle positions are normalized to 1.

Finally, the performance is compared to a classical-only
control structure, specifically the same LPV controller
without the error-based ultra-local model. It can be ob-
served that the extended controller reaches better tracking
performances. Based on the mean of the sum of errors, the
proposed control structure achieves a 38 % reduction in
tracking error.
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Fig. 8. Error between the measured and the reference value

5. CONCLUSION

In this paper, a combined control approach is proposed,
integrating an error-based ultra-local model with an LPV-
based control algorithm. An optimization-based iterative
algorithm is introduced for tuning the parameter of the
error-based ultra-local model. Then, the entire control
structure is incorporated into an LPV framework to en-
sure robust system performance. The effectiveness of the
proposed method was validated through a longitudinal
control problem for automated vehicles, implemented in
the CarMaker high-fidelity simulation environment. The
simulation results demonstrate that the ultra-local model-
based approach effectively compensates for external dis-
turbances and enhances the accuracy of the conventional
control algorithm. These findings highlight the potential
of the combined LPV and error-based ultra-local control
strategy to improve the adaptability and overall perfor-
mance of advanced vehicle control systems.
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