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Highlights 
Bat-associated hematophagous ec-
toparasites have been found harbor-
ing zoonotic and potentially zoonotic 
pathogens. 

Some species, such as bat ticks, occa-
sionally feed on humans and other non-
chiropteran hosts. 

A structured research strategy com-
bined with risk assessment could en-
hance our understanding of which bat-
Bats are increasingly in the focus of disease surveillance studies as they harbor 
pathogens that can cause severe human disease. In other host groups, ectopara-
sitic arthropods play an important role in transmitting pathogens to humans. Nev-
ertheless, we currently know little about the role of bat-associated ectoparasites 
in pathogen transmission, not only between bats but also to humans and other 
species, even though some of these parasites occasionally feed on humans and 
harbor potentially zoonotic organisms. In this work, we summarize current knowl-
edge on the zoonotic risks linked to bat-associated ectoparasites and provide 
novel risk assessment guidelines to improve targeted surveillance efforts. Addi-
tionally, we suggest research directions to help adjust surveillance strategies 
and to better understand the eco-epidemiological role of these parasites. 
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associated parasites may act as vectors 
of zoonotic pathogens. 

Future research needs improved guide-
lines, focusing on a One Health strategy 
to predict and prevent potential patho-
gen spillovers.
Recent findings on parasites associated with bats and potentially zoonotic 
pathogens 
Bats represent great diversity worldwide, being the second most speciose group among mam-
mals. This diversity extends to their parasites, as they frequently host a wide range of hematoph-
agous ectoparasitic species. Common ectoparasites of bats include bat bugs (Cimicidae and 
Polyctenidae), bat flies (Nycteribiidae and Streblidae), fleas (Ischnopsyllidae), mites (Acari), and 
ticks (Argasidae and Ixodidae). With the increasing accessibility and decreasing costs of molec-
ular pathogen screening, growing evidence supports the ubiquity of pathogenic organisms in 
these parasites, and their involvement in maintaining the natural transmission cycle of potentially 
zoonotic pathogens (see Glossary) in nature [1–3]. 

Some recent findings indicate the presence of a variety of zoonotic pathogens in bat-associated par-
asites, which includes bacteria, such as Bartonella rousetti [4,5], and Candidatus (Ca.) Mycoplasma  
haemohominis [6] in bat  flies, Rickettsia hoogstraalii [7], R. raoultii [8] and  R. rickettsii [8] in soft ticks,  
and Anaplasma phagocytophilum [9], Borrelia burgdorferi s.l. [10], Neoehrlichia mikurensis [11], and 
Mycoplasma spp., some of which showed high similarity to the human pathogenic Ca. M. 
haemohominis [9] in hard ticks. Furthermore, potentially human pathogenic viruses have also recently 
been detected in these ectoparasites, including Lloviu virus [12], and Issyk-Kul virus in soft and hard 
ticks [13]. These bacterial and viral pathogens are frequently detected in bats, and pathogen-positive 
parasites are often collected from infected hosts [12,14–17]. Infections caused by these organisms – 
such as A. phagocytophilum, N. mikurensis, and tick-borne rickettsioses in humans – are usually mild 
or asymptomatic [18–20]; however, other pathogens, which are known to cause severe disease, and 
even death, in some individuals include Ca. M. haemohominis and R. rickettsii [6,21]. 

Pathogen surveillance efforts in bats have greatly increased over the past decade due to their as-
sociation with highly pathogenic viruses affecting humans, but hematophagous ectoparasites are
Trends in Parasitology, December 2024, Vol. 40, No. 12 https://doi.org/10.1016/j.pt.2024.10.010 1115 
© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

https://orcid.org/0000-0001-8123-0374
https://orcid.org/0000-0002-4236-4211
https://orcid.org/0000-0002-1910-4024
https://orcid.org/0000-0001-5303-0340
https://orcid.org/0000-0001-9775-3065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pt.2024.10.010&domain=pdf
https://doi.org/10.1016/j.pt.2024.10.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trends in Parasitology
OPEN ACCESS

Glossary 
Citizen science: the practice of 
engaging (non-professional) volunteers 
in scientific research, allowing them to 
contribute data, and observations. 
Ecotone: a transitional  zone  between  
two distinct ecological communities or 
ecosystems, where species from both 
areas often interact. 
Host range: the variety of different 
species that a particular pathogen, 
parasite, or organism can infect or live 
on. 
Machine learning: a field of artificial 
intelligence (AI) that involves training 
algorithms to recognize patterns in data 
and make predictions. 
Reservoir: one or multiple species in 
which a pathogen normally multiplies, 
and can transmit the infection to other 
individuals, serving as a source of 
infection. 
Risk assessment: involves evaluating 
the likelihood and impact of pathogen-
related hazards to guide protective 
measures and control strategies. 
Spillover: the movement of disease-
causing agents from one certain species 
(often a reservoir) to another one, which 
occasionally leads to a new infection. 
Vectorial capacity: a measure of a 
vector's ability to transmit a pathogen. 
Xenomonitoring: the use of different 
species (e.g., ticks or mosquitoes) to 
detect and monitor the presence of 
pathogens in the environment. 
Zoonotic pathogen: disease-causing 
agents that can be transmitted from 
animals to humans.
often excluded from these studies. Additionally, minimal effort is usually dedicated to understand-
ing the ecological role of these parasites in pathogen transmission between bats and other spe-
cies. However, with the rise in human–wildlife interactions, there is increasing evidence that these 
parasites could play a significant role in the interspecies transmission of vector-borne pathogens.

Feeding behavior and vectorial capacity of bat-associated parasites, and 
assessing the risk of pathogen spillover 
Several factors affect the transmission of vector-borne diseases between and within host populations, 
including ectoparasite feeding behavior, host range, and  vectorial capacity. The host range and 
actual vectorial capacity of bat-associated ectoparasites remain unclear and difficult to study due to 
the technical challenges of maintaining both parasites and their hosts in the laboratory, including the 
stress of captivity for bats and the difficulty of obtaining permits for keeping these animals. Additionally, 
only a few attempts have been made to demonstrate the vector competence of bat-associated ecto-
parasites, such as a recent study on the Marburg virus, in which batflies were found to play no obvious 
role in pathogen transmission among bats [22]. Generally, the zoonotic potential of several pathogens 
detected in bat parasites has not been proven; therefore, their vectorial capacity requires further inves-
tigation. Soft tick species are excellent candidates for laboratory maintenance as they can live for sev-
eral years, even decades (up to 25 years) and do not require the presence of their bat hosts due to 
their broader host range and tolerance of starvation [23]. Therefore, their feeding behavior, host 
range, and vectorial capacity could likely be investigated more efficiently under laboratory conditions. 

For efficient pathogen spillover to occur from bats to humans and other animals via ectopara-
sites, several factors must align, including a suitable environment for both hosts and parasites, 
as well as immunological, ecological, and behavioral compatibility [24]. For instance, bat flies 
are not yet known to feed on humans or other species besides bats, likely due to their highly spe-
cialized morphology, digestive system, and microbial composition, which are adapted exclusively 
to feeding on their bat hosts [25]. Therefore, they are less likely to act as vectors during interspe-
cies pathogen spillover events. 

To be considered a potential vector, parasites must also have a broader host preference that 
extends beyond a single bat species or closely related hosts. So far, only a number of bat-
associated parasites have been observed to feed on non-chiropteran hosts; some of these species 
include various soft ticks – such as Argas boueti, A. transgariepinus, Carios kelleyi, C. vespertilionis, 
and Reticulinasus salahi – which often parasitize bats occupying human dwellings and can be 
found inside homes occasionally seeking out human hosts [2,26]. Additionally, ixodid bat ticks, 
such as Ixodes simplex and I. vespertilionis can also be found feeding on humans due to shared 
working or recreational spaces [27]. Also, human-associated parasites can occasionally be 
found on bats, like the common bedbug C. lectularius [28], and bat-associated cimicids – such 
as Stricticimex parvus and C. insuetus – sometimes attack humans [29]. Other mammal-
associated ticks, which are known to harbor several pathogens with high medical and veterinary 
importance – such as I. ricinus and Haemaphysalis concinna – can be found on bats [30,31]. 

The above evidence suggests that some bat-associated ectoparasites play, or could play, a yet-
to-be-confirmed role in the transmission of zoonotic pathogens between bats and humans. How-
ever, our understanding of the frequency of these interactions and pathogen-sharing events, the 
number of bat-associated parasite species capable of doing so, and the spatial occurrence of 
these events, remain significantly limited. 

Developing risk assessment strategies could help to identify parasite species or groups that po-
tentially contribute to zoonotic transmission between bats, humans, and other animals, based on
1116 Trends in Parasitology, December 2024, Vol. 40, No. 12
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their host range (e.g., less specialized on bats), feeding behavior (e.g., occasionally feeding on 
humans), habitat preference (i.e., associated with hosts occupying human-made structures or 
habitats), and the pathogens they harbor (e.g., presence of zoonotic pathogens) (Figure 1, and 
see Table S1 the supplemental information online). Consequently, these species, particularly 
some of the hard and soft ticks, should be given particular focus due to the presence of known 
zoonotic pathogens, and due to their host preference, which includes not only bats, but also 
humans and other mammals, making them an already recognized link for zoonotic transmission 
towards humans. 
TrendsTrends inin ParasitologyParasitology 

Figure 1. Risk assessment strategy is based on data already available. Risk of possible transmission of infectious agents via bat-associated ectoparasitic groups: 
high, known human biting behavior, common occurrence in and around human settlements, known infection by (potentially) zoonotic pathogens; moderate, occasional 
known human biting behavior, rare occurrence in and around human settlements, known infection by (potentially) zoonotic pathogens; low, rare/extremely rare known 
human biting behavior, rare occurrence in and around human settlements, known infection by (potentially) zoonotic pathogens; unknown, unknown human biting 
behavior, unknown occurrence in and around human settlements, known infection by (potentially) zoonotic pathogens. Future research focuses are indicated in the 
gray circle, that is, vector occurrence, host range, vectorial capacity, distribution. Main known potentially zoonotic pathogenic groups are indicated, (i.e., viruses and/or 
bacteria), and detailed in supplementary Table S1.

Trends in Parasitology, December 2024, Vol. 40, No. 12 1117

Image of Figure 1


Trends in Parasitology
OPEN ACCESS

 

Landscape ecology of vector-borne pathogen spillover from bats to humans 
Changes in land use, habitat fragmentation, and climate change have been identified as signifi-
cant factors influencing the dynamics of bat-associated pathogens [32,33]. Alterations in land-
scape structure directly affect bat populations, vectors, and other potential hosts, 
consequently modifying disease transmission dynamics [32]. Vector-borne disease spillovers 
are shaped by a complex range of ecological, environmental, and behavioral factors on the 
level of the reservoirs and susceptible hosts, vectors and pathogens; however, these are often 
difficult to monitor due to their complexity [34]. Furthermore, direct and indirect contacts deter-
mine whether human hosts are potentially exposed to these vectors and eventually to the path-
ogens spread by these parasites. First, it is important to determine such points of direct or 
indirect contact, where humans and other species may acquire such infections. Ecotones that 
are transitional zones are favored by some bat species over other habitats as these areas allow 
them to access a variety of environments, including forests, pastures, and human dwellings 
[35]. Moreover, hosts and vectors of zoonotic pathogens are often more abundant in ecotones 
than in other habitats [36,37]. Since ecotones are recognized as key areas where interactions be-
tween bats, humans, and domestic animals often occur, we propose that these zones are the 
most likely sites for potential vector-borne pathogen spillover [37–39]. 

Interactions between bat-associated parasites and humans are usually reported from human 
dwellings, such as homes, or during recreational or work activities, such as visiting caves, base-
ments, and attics, or spending time in forested areas [27,40,41] (Figure 2). Additionally, domestic 
animals and livestock may be an important indirect transmission point of bat-associated patho-
gens through ectoparasites [11]. Exterminating bats, mostly for pest control, is common to this 
day worldwide [42]. Handling bats during these events provides an additional direct contact 
with bats, and people can be exposed to their pathogens and parasites [43]. Furthermore, spatial 
and behavioral changes in disturbed bat populations may amplify the spread of viruses [44] and 
could also increase ectoparasite abundance [45,46]. Therefore, protecting natural bat habitats, 
especially in or near ecotones, can help to prevent pathogen spillover from bats to other species 
[32]. A key focus for future research should be to understand how ecotones influence parasite 
ecology and to connect this knowledge with the risk of spillover for potential pathogens.

Perspectives on disease surveillance methods 
To effectively monitor and identify potential pathogen spillover events between bats and other 
species, more effort needs to be invested in disease surveillance, as well as in understanding vec-
tor host range, distribution, and vectorial capacity. New and traditional methods to monitor wild-
life diseases have been increasingly developed and improved in the past decades. In addition to 
conventional pathogen surveillance methods, such as microscopy, serology, molecular pathogen 
detection, and necropsy [47,48], modern approaches, such as xenomonitoring, machine 
learning, and  citizen science are increasingly being used in disease eco-epidemiology 
[14,49,50]. These innovative approaches complement traditional data collection methods, offer-
ing valuable improvements in the understanding of disease spread. 

Alternative and noninvasive surveillance methods, such as xenomonitoring, are useful not only for 
host conservation but also because they are often operationally less difficult to implement during 
fieldwork [14,51]. Bat flies have been used to investigate the presence of a wide range of blood-
associated pathogens in their bloodmeal, including Bartonella, Polychromophilus, and
Trypanosoma [14,51]. Additionally, bat flies have proven to be an effective alternative for monitor-
ing the presence of viruses within bat colonies without the need for invasive sampling methods, 
such as blood or organ collection from bats [12]. This is particularly important in cases where 
bats are protected or when there are additional concerns, such as field biosafety in research
1118 Trends in Parasitology, December 2024, Vol. 40, No. 12
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Figure 2. Points of interaction between bat-associated parasites and humans. Different habitat types affect parasite and host diversity, which leads to altered 
exposure to vectors and therefore affects pathogen spillover likelihood, particularly in ecotones. Host and pathogen diversity are represented by the number of bats 
and ectoparasites across each habitat type.
involving highly pathogenic microorganisms [12,22]. Targeting blood-sucking ectoparasites 
could be a potential alternative to monitoring bat-associated pathogens of host populations 
and could improve our understanding of the vectorial capacity of these parasites. Furthermore, 
since pathogen surveillance is increasingly carried out in bats, more consistently incorporating 
the tripartite aspect – the vector itself – could improve our understanding of its potential role in 
transmitting pathogens to humans. 

Other rapidly developing methods, such as machine learning, have been successfully applied to 
explore reservoirs and vectors of zoonotic pathogens [52,53]. Vector status can be predicted 
with high accuracy in ticks using ecological, behavioral, and morphological data [53]. Applying
Trends in Parasitology, December 2024, Vol. 40, No. 12 1119
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data-driven vector prediction, the bat-associated tick, I. vespertilionis, is ranked high on the list of 
potential zoonotic vectors within Ixodes species [53]. Using machine learning, the vectorial ca-
pacity of other bat-associated parasites with well-known ecology and behavior could potentially 
be predicted; this could improve surveillance efforts and would further help to develop targeted 
pathogen screening. In addition, there is a strong need for collecting more ecological and behav-
ioral data to successfully implement and extend this method to other parasitic groups 
(e.g., cimicids and soft ticks) with moderate or high pathogen transmission risk to humans and 
other species (Figure 1) as these data are currently lacking for most species. This information 
could help us to better understand which species have higher vectorial capacity and play a role 
in pathogen transmission from bats to other species. 

Furthermore, citizen science has also proved useful in the detection of pathogen vectors, such as 
ticks and mosquitoes [54,55], and it can also be used to reveal certain environmental and ecological 
factors that are associated with the occurrence of these invertebrates [55]. Bat-associated parasites 
have also been observed in and around human settlements, due to citizen science activity [50]. The 
bat-associated soft tick species, C. kelleyi has been reported multiple times in homes across North 
America on iNaturalist [50], which is the potential vector of several pathogens (Table S1). Developing 
citizen-science-based projects to explore the occurrence of bat-associated parasites could greatly 
improve our understanding of parasite species around human settlements. 

In addition, unique evolutionary adaptations – such as flight, echolocation, longevity, and patho-
gen tolerance – can be explored using modern genomics [56,57]. Long-read sequencing is in-
creasingly used to generate reference-quality bat genomes, which have already provided 
answers to key evolutionary questions related to these special traits [58]. Additionally, thanks to 
the application of this technique, significant insights have been gained into the role of bats as 
efficient viral reservoirs [57–60]. Interestingly, these developments have not been applied in 
bat-associated parasite research to date, even though they have proven to be effective  tools
for describing basic evolutionary traits related to vector roles (e.g., endogenous viral elements) 
[61,62]. They could also provide insights into the microbiome of these parasites [63], which is 
known to affect pathogen presence and transmission in other tick species [64]. 

Molecular techniques for sequencing and rapid, PCR-based detections are increasingly used and 
have been developed rapidly during the last decade, mostly in association with outbreak situa-
tions [65]. These advancements and techniques can be used for rapid monitoring of vector pop-
ulations in bats. Conducting field-based surveillance may be beneficial in resource-limited setups 
and in regions where it is difficult to support cold chains for sample transport. In addition, mobile 
laboratory diagnostic techniques (e.g., PCR detection or sequencing) and on-site data generation 
are an important aspect to align with the Nagoya protocol and support ethical research and data 
sharing globally. 

Outlook on present and future research directions 
Several key aspects of bat-associated vector-borne pathogen eco-epidemiology are still not fully 
understood, particularly the role of ectoparasites in pathogen maintenance and transmission. We 
propose that a comprehensive approach, similar to the One Health strategy, should be used to 
understand this pathogen niche (including bats, vectors, the environment, and potential satellite 
factors) as a whole (Figure 3).

However, there are various major knowledge and research gaps, which we summarize in three 
categories: host–vector interactions’ ecology, laboratory-based investigations, and intra-vector 
mechanisms (Figure 3). To optimize research capacities, we propose categorizing pathogen–
1120 Trends in Parasitology, December 2024, Vol. 40, No. 12
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Figure 3. Knowledge gaps in different aspects of bat ectoparasite host–vector interactions, ecology, vectorial 
capacity and genetics, and intra-vector mechanisms. Current and future research focus on goals to get a better 
understanding of the role of bat-associated parasites in zoonotic disease eco-epidemiology. We highlight possible research 
directions and main outcomes in three categories and propose a two-category framework for pathogen–vector pairs.
vector pairs as either 'priority' or 'prototype' subjects of investigation, based on their relevance to 
human or animal health and their potential broader significance. Intensified surveillance activities 
are needed to understand the complex ecology of different ectoparasites and to identify the 
nodes of spillover. This is particularly important in the case of 'priority' pathogen–vector pairs in 
which preventing spillover events is crucial. For example, Issyk–Kul virus was recently detected 
and isolated from multiple countries in Europe, giving the possibility of detailed investigations 
[16,66,67]. The other proposed direction is to intensify the discovery of yet unidentified nodes 
of transmission outside of the bat–vector ecosystem (Figure 3). 

Laboratory-based studies with vectors, such as ticks, are effective tools to understand vector 
competence to different pathogens [68,69]. Developing the technological and methodological 
foundation to maintain a wider diversity of ectoparasites, including bat-associated parasites, 
may open up possibilities for similar studies. This includes integrating host–vector ecology studies 
to help develop maintenance protocols for vectors in a laboratory setting and to establish feeding 
methods. For both wild-caught and laboratory-maintained ectoparasites, genomic studies are ef-
fective for revealing the evolutionary and functional perspectives of their potential role as vectors. 

Finally, understanding the complexity of intra-vector mechanisms, particularly the entry and dis-
semination of pathogens, is a key component of this system [70]. While the main tissue barriers 
for effective pathogen dissemination from vectors have been extensively studied in ticks [70], 
they have largely been neglected in other ectoparasites, representing a significant knowledge gap.
Trends in Parasitology, December 2024, Vol. 40, No. 12 1121
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Outstanding questions 
Which bat-associated ectoparasites 
represent the highest risk to human 
health? 

What is  the vectorial  capacity of  
most bat  parasites that  have been 
associated either with humans or 
zoonotic pathogens? 

How could climate change, landscape 
modifications, and other anthropogenic 
activities affect the eco-epidemiology of 
bat-associated vector-borne pathogens? 

How can bat conservation efforts be 
improved using knowledge about 
pathogen vectors and reverse spillover 
pathways? 
This complex investigative approach may lead to the development of effective strategies for host 
conservation, preventing and predicting zoonotic spillovers, and a better understanding of the 
evolution of these pathogens. There is still much to explore when studying bat-associated para-
sites on a disease eco-epidemiology scale. We need improved insights into how climate change, 
habitat fragmentation, and increased human–wildlife interactions affect the ecology of vector-
borne pathogens to prevent transmission between bats and non-chiropteran species. 

Concluding remarks 
Understanding the mechanisms of vector-borne pathogen transmission beyond bat colonies is 
essential for further exploring the role of bats as pathogen reservoirs. Bat-associated parasites 
may serve as an important link in disease transmission between humans and other animals. Inte-
grating new and improved methods into monitoring efforts for bat-associated parasites and dis-
eases, whether in the laboratory or in the field, can provide valuable insights into the dynamics of 
vector-borne diseases at the human–bat interface and support strategic risk assessments and 
preventive efforts (see Outstanding questions). Additionally, bat-associated pathogen surveil-
lance in humans and other non-chiropteran mammals is still largely lacking and should be a 
focus of future research. It should be also highlighted that bats are vulnerable to anthropogenic 
disturbances, which likely influence disease and parasite dynamics, potentially affecting both 
bat and human health. Bats may be susceptible to certain human pathogens and other diseases 
from wildlife species; therefore, we need a better understanding of reverse spillover to bats to en-
able effective conservation and protect their diversity. 
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