RESEARCH Open Access

Complementing community science with xenomonitoring: Understanding the eco-epidemiology of *Dirofilaria immitis* infection in dogs and mosquitoes

Tamara Szentivanyi^{1*}, Laura V. González², Ágnes Klein¹, Zoltán Soltész^{1,3} and László Z. Garamszegi^{1,3}

Abstract

Background Dirofilariosis is an emerging mosquito-borne disease that particularly affects domestic dogs worldwide but also causes symptoms in humans. Monitoring the distribution of emerging pathogens is essential for understanding the environmental and ecological factors influencing their transmission, which can be used to develop better prevention strategies.

Methods We applied both community science and molecular xenomonitoring to assess the occurrence of *Dirofilaria immitis* in domestic dogs and mosquitoes.

Results As part of the community science approach, we collected infection data from 1491 dogs from owners across Hungary, using a questionnaire survey. We found that 321 dogs (21.5%) tested positive for current or past dirofilariosis infection, with the highest prevalence observed in the southeastern (47.8%) and the eastern regions (43.4%) of the country. Age and living conditions affected infection status, with older dogs (aged 5–10 years and over 10 years) and those kept exclusively outdoors showing significantly higher infection rates. Molecular xenomonitoring revealed *D. immitis* infection in *Aedes albopictus*, *Aedes koreicus*, and *Aedes vexans*, with the highest minimum infection rate (MIR) in *Ae. koreicus* (28.5). Similar to community science results, the highest infection rates were observed in the southeastern and eastern regions (MIR: 14.9 and 11.6, respectively), but the two approaches generally provided overall similar geographical patterns.

Conclusions While xenomonitoring did not detect infections in Central Transdanubia, community science successfully provided host infection data, demonstrating its usefulness in assessing the presence and distribution of the disease. Finally, we emphasize the value of using an integrative approach, combining community science and xenomonitoring for monitoring dirofilariosis, especially in areas where direct pathogen screening is unavailable.

Keywords Citizen science, Dirofilariosis, Domestic dogs, Infection, Mosquito

Tamara Szentivanyi

szentivanyi.tamara@ecolres.hu

Background

Dirofilariosis is a parasitic disease in domestic dogs, cats, and, occasionally, in other mammals, including wild carnivores and humans [1, 2]. This vector-borne infection is transmitted by mosquitoes, causing mild to severe disease depending on the parasite species [3]. The two most frequently found species are *Dirofilaria immitis*, which is associated with heartworm disease and occurs

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*}Correspondence:

¹ HUN-REN Centre for Ecological Research, Alkotmány Road 4, 2163 Vácrátót, Hungary

² Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France

³ National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina Road 29, 1113 Budapest, Hungary

worldwide, and *Dirofilaria repens*, which is the causative agent of subcutaneous dirofilariosis distributed in the Eastern Hemisphere [4]. The occurrence of dirofilariosis, driven by a complex interplay of ecological, climatic, and socioeconomic factors, poses significant challenges to both veterinarians and public health officials [4–6]. Effective control and management of this disease relies on continuous data collection and monitoring, which traditionally involve veterinary clinics and research institutions.

The emergence of dirofilariosis in domestic dogs is evident in several European regions, including Hungary [5, 7–10]. While the first occurrence of an autochthonous case of *D. immitis* in Hungary was reported in 2007 [11], the infection rate has shown a stable increase in the dog population since then [5, 11, 12]. The prevalence of dirofilariosis may vary depending on the diagnostic methods used and can differ across geographical regions [12, 13]. However, the average prevalence was 2.7% between 2011 and 2015 [11], but it increased to 11.3% by 2017 [5]. Furthermore, the infection rate in mosquitoes has also been reported to be increasing over the past years across Europe [3, 14–16].

Besides veterinarian testing, the distribution and occurrence of *Dirofilaria* species can also be monitored by molecular xenomonitoring of mosquitoes [17]. *Dirofilaria immitis* and *D. repens* have been detected in several mosquito species in Hungary and neighboring countries, including *Aedes vexans*, *Aedes cinereus*, *Anopheles hyrcanus*, *Anopheles maculipennis*, *Coquillettidia richiardii*, *Culex modestus*, *Culex pipiens*, *Ochlerotatus caspius*, *Ochlerotatus sticticus*, and *Ochlerotatus dorsalis* [14, 16, 18, 19]. Molecular xenomonitoring can be especially valuable in regions where collecting host infection data is challenging or unavailable [1, 20].

However, the incorporation of community science (or citizen science), a collaborative approach involving the active participation of dog owners and animal shelter volunteers, offers a promising strategy for enhancing *Dirofilaria* spp. infection monitoring. Community science has been proven to be a useful tool in disease ecology and public health and has the potential to overcome limitations such as geographical coverage, resource constraints, and the need for continuous monitoring [21–25]. In the context of dirofilariosis, the contributions of dog owners may provide valuable data on the prevalence, distribution, and risk factors associated with this parasitic infection.

Our goal was to explore the potential of community science for dirofilariosis monitoring in dogs in support of the xenomonitoring approach. Accordingly, by using a questionnaire survey, we collected infection data reported by dog owners, which they previously received from their veterinarians. From these data, we reconstructed country-level distribution patterns, and identified the most important ecological factors (such as age, weight, and owner practices, including the dogs' lifestyles, among others) that can affect *Dirofilaria* spp. prevalence. Furthermore, we incorporated mosquito xenomonitoring data to get a better understanding of the distribution of dirofilariosis in Hungary. Additionally, we aimed to compare different infection data sets (i.e., community science and xenomonitoring) to test the reliability of volunteer-provided data in dirofilariosis monitoring.

Methods

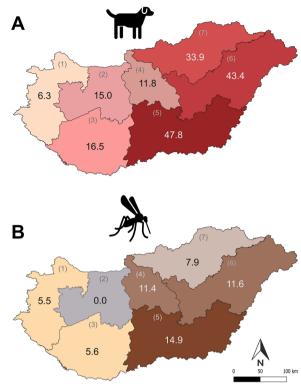
Data collection via community science

A questionnaire was launched in December 2021 and remained accessible until December 2022 on the national mosquito surveillance website (www.mosquitosurveillance.hu). To raise awareness among dog owners, we used various national news and social media platforms. The questionnaire comprised 12 questions, covering topics such as living conditions of the dog, locality, and dog characteristics, including breed, sex, weight, and age. The data were manually reviewed to ensure validity, with questionable responses excluded (e.g., cases where dogs had not been tested for dirofilariosis or that were reported from outside the country).

Mosquito collection and molecular surveillance of nematodes

BG Sentinel traps (with CO₂ lure) were placed from 2022 to 2023 at several localities throughout Hungary to collect adult mosquitoes. A total of 138 traps were deployed across 81 cities and towns, with 1-5 traps placed per site depending on local conditions. Mosquitoes were typically collected every 24-48 h, with most traps operating for 2-5 days, although some sites employed traps that remained active throughout the entire season. Afterward, species identification was performed on the basis of available keys [26, 27], and stored in pools of up to 20 individuals at -20 °C until further processing. Samples were extracted using Qiagen Blood and Tissue kit (Qiagen, Hilden, Germany) using the manufacturer's protocol. For the polymerase chain reaction (PCR), we targeted a 670 bp fragment of the mitochondrial cytochrome c oxidase 1 (COI) using general nematode primers. The primers and protocol were used on the basis of previously published work (Casiraghi et al. 2001), using the following primers: COIintF: 5'-TGATTGGTGGTTTTG GTAA-3' and COIintR: 5'-ATAAGTACGAGTATCAAT ATC-3'. PCR products were visualized on a 1.5% agarose gel. Positive samples were sent for sequencing to Eurofins Genomics (Koln, Germany).

Data analysis and visualization


National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) was used for species identification of the acquired sequences, after quality assessment. Minimum infection rate (MIR) was calculated to assess infection rate in mosquitoes [28]. Statistical analysis of community science infection data was conducted using a generalized linear model (GLM). A logistic regression model was fit to assess the relationship between the predictors and the likelihood of infection. We used the binary infection status (infected versus noninfected) as the response variable, and the dog's weight, age, and lifestyle as predictor variables. Weight (in kg: < 5, 5–15, 15–30, 30–50, 50+) and age (in years: <1, 1-5, 5-10, 10+) were categorized into predefined groups, and dog's lifestyle was classified as 'outdoor', 'indoor', or 'mixed' when dogs were kept both indoors and outdoors. Data analysis and visualization was performed using R version 4.3.1 [29], using the packages car [30], dplyr [31], emmeans [32], and ggplot2 [33].

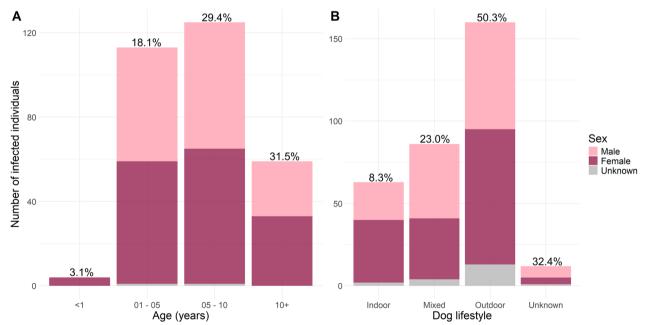
Results

Distribution of *Dirofilaria* spp. infection using community science data

Data for 1661 individual dogs were received from community science participants. After excluding doubtful and incomplete data, 1491 entries remained in the data set, of which 321 showed previous or current infection with dirofilariosis, representing a 21.5% prevalence. Regions in Eastern Hungary showed the highest prevalence rates exceeding 47.8% (Fig. 1A; Table 1). Most cases of infection were reported from Central Hungary (n=87), corresponding to a prevalence of 11.8% (Table 1).

Infection prevalence was 20.3% and 23.0% in females (n = 140/688) and in males (n = 161/700), respectively. We found 19.4% prevalence in dogs of unreported sex (n=20/103). Weight did not affect the occurrence of infection. We found a higher likelihood of infection in dogs between the ages of 5 and 10 years (P=0.01; 95% confidence interval [CI] 0.496; prevalence = 29.4%), and older than 10 years (P = 0.001; 95% CI 0.757; prevalence = 31.5%), when compared with dogs aged 1-5 years (prevalence = 18.1%). Furthermore, our data showed a significantly lower level of infection in dogs kept exclusively indoors (P < 0.001; 95% CI -2.2929; prevalence = 8.3%) or both indoors and outdoors (mixed) (P<0.001; 95% CI -1.1846; prevalence = 23.0%), compared with dogs kept exclusively outdoors (prevalence = 50.3%) (Fig. 2A,B).

Fig. 1 A, B Prevalence of dirofilariosis in dogs based on community science data (**A**), and minimum infection rate (MIR) of *D. immitis* in mosquitoes using molecular surveillance (**B**) across seven geographical regions in Hungary. Regions: (1) Western Transdanubia, (2) Central Transdanubia, (3) Southern Transdanubia, (4) Central Hungary, (5) Southern Great Plain, (6) Northern Great Plain, and (7) Northern Hungary


Occurrence of infection in mosquitoes

A total of 541 mosquito pools representing 3169 specimens were tested molecularly; they belonged to four species, including $Aedes\ vexans\ (n=204\ pools,\ n=1277\ specimens),\ Ae.\ albopictus\ (n=211\ pools,\ n=1630\ specimens),\ Ae.\ japonicus\ (n=15\ pools,\ n=16\ specimens),\ and\ Ae.\ koreicus\ (n=111\ pools,\ n=246\ specimens).\ Dirofilaria\ immitis\ infection\ was\ found in 30\ pools\ of\ Ae.\ albopictus\ (n=11\ pools,\ n=102\ specimens),\ Ae.\ koreicus\ (n=7\ pools,\ n=15\ specimens),\ and\ Ae.\ vexans\ (n=12\ pools,\ n=19\ specimens)\ (Table\ 1).$ Minimum infection rate by $D.\ immitis\ was\ 9.4,\ 6.7,\ 0.0,\ and\ 28.5,\ for\ Ae.\ vexans,\ Ae.\ albopictus,\ Ae.\ japonicus,\ and\ Ae.\ koreicus,\ respectively.$

The highest regional MIRs of *D. immitis* were 14.9, and 11.6 observed in the eastern regions of Hungary (Fig. 1B). Most infections were detected in Central Hungary, including in the capital, with an MIR value of 11.4. Low MIRs or absence of infection was detected in the western regions of Hungary. Overall, *D. immitis* was present in 8 out of 19 counties and the capital region,

Table 1 Dirofilaria immitis infection patterns in tested mosquito species and in dogs reported across different geographical regions in Hungary

Regions	Aedes albopictus: tested pools/ individuals/infected pools	Aedes japonicus: tested pools/ individuals/infected pools	Aedes koreicus: tested pools/ individuals/infected pools	Aedes vexans: tested pools/ individuals/infected pools	Mosquitoes total: tested pools/ individuals/infected pools MIR	Dogs: tested/infected Prevalence
1—Western Trans- danubia	1/1/0	1/1/0	0/0/0	62/548/3	64/550/3 5.5	80/5 6.3
2—Central Trans- danubia	4/5/0	5/5/0	10/19/0	18/41/0	37/70/0 0	133/20 15
3—Southern Transdanubia	50/110/1	3/3/0	19/29/1	21/214/0	93/356/2 5.6	79/13 16.5
4—Central Hungary	144/1441/10	1/1/0	57/166/4	49/238/7	251/1846/21 11.4	736/87 11.8
5—Southern Great Plain	8/69/0	0/0/0	6/12/1	16/53/1	30/134/2 14.9	161/77 47.8
6—Northern Great Plain	3/3/0	0/0/0	12/12/0	20/71/1	35/86/1 11.6	175/76 43.4
7—Northern Hungary	1/1/0	5/6/0	7/8/1	18/112/0	31/127/1 7.9	109/37 33.9

Fig. 2 A, B Distribution of infection among age groups (**A**) and lifestyles (**B**) of dogs reported through citizen science surveillance. Prevalence of infection is indicated as a percentage above each bar. Indoor indicates dogs kept mostly indoors; mixed indicates dogs kept for an equal time indoors and outdoors; outdoor indicates dogs kept mostly outdoors; and unknown that no data were reported

as well as 6 out of the 7 main geographical regions (Fig. 1B).

Additionally, we detected *D. repens* infection in *Ae. albopictus* (n=1 pool, n=1 specimen; MIR: 0.6), and *Ae.*

koreicus (n=1 pool, n=1 specimen, MIR: 4.1). Another parasitic nematode species, *Setaria tundra* was also present in *Ae. vexans* (n=6 pools, n=36 specimens; MIR: 4.7).

Comparison of xenomonitoring and community science data

Infection prevalence data from community science and MIR from xenomonitoring showed similar geographical distribution patterns, with the highest infection rates observed in the same administrative regions of eastern Hungary (Fig. 1A, B; Table 1). However, xenomonitoring did not detect any infections in Central Transdanubia, despite recent positive reports from community science.

Discussion

Combining the advantages of community science data and xenomonitoring could increase cost-effectiveness, improve data accuracy, and potentially indicate the spread of emerging pathogens. Here, we show that it is possible to integrate xenomonitoring with community science data when the aim is to investigate the geographical distribution patterns of the disease. Community science data could not only improve our understanding of pathogen occurrence but also shed light on infection patterns in hosts. For instance, dogs kept outdoors exhibit higher levels of *Dirofilaria* spp. infection compared with those primarily kept indoors. This may result from greater exposure to vectors for dogs kept outdoors, placing them at a higher risk of infection, which has been observed in previous studies, as well [34–36]. Age also seemed to be a contributing factor to the presence of infection, as older individuals were more likely to be infected, likely due to prolonged exposure to both the mosquito vector and the parasites, as well as the long prepatent period of the infection [12, 37-39]. We found that weight had no effect on infection patterns.

Invasive mosquitoes have been suggested to play a role in *Dirofilaria* spp. transmission, which has been proven both under natural and laboratory conditions [40–42]. Additionally, invasive mosquitoes are occasionally found to be infected by *Dirofilaria* spp. during pathogen surveillance and xenomonitoring [19, 43]. Here, we found the highest MIR in the invasive Ae. koreicus, further indicating its role as a vector. Furthermore, we also found the presence of D. immitis in the native species, Ae. vexans and the invasive Ae. albopictus, highlighting that both native and invasive species may contribute to Dirofilaria spp. circulation in Hungary. We also found the presence of *D. repens* in invasive mosquito samples. The first autochthonous infections in domestic dogs caused by D. repens were reported in 1998 in Hungary [44]. A previous study has shown that the prevalence of *D. repens* in dogs was 14.2% in 2017 [5]. This infection is considered an emerging zoonosis in Europe and is occasionally associated with human infections in Hungary, as well [45]. Our results confirm previously observed patterns in Central Europe, where Ae. vexans and Ae. koreicus are commonly found to be infected during xenomonitoring of *Dirofilaria* parasites [14, 18, 19, 46–48].

We found the presence of the emerging nematode species, *S. tundra* in *Ae. vexans*, which is the causative agent of setariasis in various cervid species [49]. This finding suggests its potential vectorial role, as *Ae. vexans* has previously been shown to exhibit a high infection rate with this nematode species within the country [14], and is showing an emerging infection rate across Europe [50–52].

The higher infection rates in both mosquitoes and dogs in the eastern and southern parts of the country can be attributed to a combination of factors. In these regions, we received proportionally more reports of dogs being kept outdoors (Supplementary Materials Table S1), indicating that this owner habit is more prevalent compared with other areas, which likely increases dogs' exposure to infected mosquitoes. Nevertheless, there is limited information about preventative measures, such as parasite control in these regions. Furthermore, the infection rate in local wildlife, which can act as a reservoir for Dirofilaria species, might also be high in these regions [9], which can contribute to additional interspecies pathogen flow between wildlife and domestic dogs [53, 54]. Environmental conditions such as warmer temperatures, which can create ideal conditions for both mosquito breeding and parasite development, likely contribute to higher infection rates, as well [5]. Moreover, the composition and abundance of vector species may vary between regions, potentially favoring those with greater vectorial capacity [55]; however, available data on this are limited. Additionally, cross-border transmission is likely playing a role in the spread of *D. immitis*. In Romania, counties near the southern Hungarian border, such as Timis, show the highest rates of *Dirofilaria immitis* infection in dogs [56]. Similarly, northern regions of Serbia, particularly around areas with high infection rates in Hungary, also report elevated infection levels. In Kikinda, Serbia, the highest proportion of dogs were found to be microfilaremic, with D. immitis being the most prevalent parasite in the region, present in 16.1% of dogs, compared with other screened regions in Serbia [57]. Although travel history may also contribute to cross-border infections, we did not collect information on the dogs' movements, as Dirofilaria infection is considered endemic in Hungary; nonetheless, this may represent a limitation of the study. Future research should investigate the role of cross-border transmission in the spread of infection. Overall, dog ownership practices, the local environment, the climate, and both interspecies and intraspecies parasite transmission may all contribute to an increased overall risk of Dirofilaria infection in mosquitoes and dogs in these regions.

Effective tracking of disease dynamics in both hosts and vectors requires the use of combined methods that are reliable, cost-effective, and widely applicable, such as community science and xenomonitoring. Understanding infection spread and disease patterns is necessary to improve preventative efforts and control methods. Involving local communities in data collection can improve awareness of zoonotic parasitic diseases such as dirofilariosis, emphasizing their importance and leading to a better understanding of their spread. This increased awareness among dog owners could, in turn, support more effective prevention and management strategies, given that controlling dirofilariosis largely depends on their actions [58, 59]. It is important to acknowledge that community science data may include false-positive results for D. immitis, as some laboratory tests, such as antigen or antibody tests, Knott's test, or blood smear, occasionally cannot distinguish between D. immitis and D. repens (or other microfilariae) due to potential crossreactivity. Furthermore, D. immitis is likely more frequently diagnosed by veterinary clinicians because of its link to prominent cardiovascular symptoms, while D. repens may be overlooked due to the lack of such noticeable clinical signs. As a result, the distribution of *D. immi*tis could be overestimated, whereas the occurrence of D. repens could be underreported.

Conclusions

Xenomonitoring and community science have proven highly effective in strengthening disease surveillance efforts in domestic animals. Both methods offer complementary but distinct types of disease ecology data, each with its own limitations, with xenomonitoring providing time- and location-specific insights, while community science offers broader, retrospective information that may be less suited for assessing current epidemiological trends. Targeting volunteer data providers, here dog owners, could greatly improve our understanding about infection patterns and disease ecology in domestic dogs. In the context of large-scale epidemics or widespread outbreaks, it can play an important role in informing and supporting preventive measures. While veterinarians may have access to some of these data, much of the information, particularly about dog ownership habits, is typically not documented. By developing partnerships between the scientific community and dog owners, we can increase the collective power of community science to advance our knowledge of Dirofilaria spp. eco-epidemiology, ultimately improving the health and well-being of both pets and humans in affected regions. Xenomonitoring is an effective tool for developing early defense strategies, as it can detect pathogens in vectors before they lead to epidemics in hosts such as domestic dogs, particularly in the case of emerging pathogens originating from wildlife. In contrast, citizen science typically identifies infections after they have occurred, making it less suitable for early prevention at the individual level. Combining these different methods has proven useful not only for tracking the current spread of infection but also for assessing the risk of larger-scale epidemics, such as those associated with the movement of pets to other regions. Moreover, both approaches provide valuable insights into the quality and effectiveness of existing disease control and prevention measures in both vectors and hosts, highlighting areas where further implementation may be necessary. Overall, our findings highlight that an integrated approach to national disease monitoring serves as a valuable alternative when direct pathogen screening methods are limited or unavailable.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13071-025-06882-0.

Supplementary Material 1.
Supplementary Material 2.

Acknowledgements

We are grateful for the volunteers who provided data of their dogs, greatly improving our understanding about the current status of disease occurrence across the country.

Author contributions

T.S. and L.Z.G. conceptualized and designed the study. T.S. initiated and coordinated the community science data collection. Z.S. performed the taxonomical identification of mosquitoes. Molecular surveillance was done by L.V.G., A.K., and T.S. T.S, performed the statistical analyses and wrote the first draft of the manuscript. All the authors read and approved the final version of the manuscript.

Funding

Open access funding provided by HUN-REN Centre for Ecological Research. Our work was supported by funds from the Hungary's National Research, Development and Innovation Office (K-135841, FK-138563, PD-135143, RRF-2.3.1-21-2022-00006). T.S. was supported by the AXA Research Fund and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Availability of data and materials

Data are provided within the manuscript or supplementary information files.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 10 March 2025 Accepted: 5 June 2025 Published online: 20 June 2025

References

- Szentiványi T, Garamszegi LZ. Is dirofilariosis an emerging conservation threat in wild carnivores across the Palearctic? Mamm Rev. 2024;1–14.
- 2. Dantas-Torres F, Otranto D. Dirofilariosis in the Americas: a more virulent *Dirofilaria immitis*? Parasit Vectors. 2013;6:1–9.
- Morchón R, Carretón E, González-Miguel J, Mellado-Hernández I. Heartworm disease (*Dirofilaria immitis*) and their vectors in Europe—new distribution trends. Front Physiol. 2012;3 JUN:1–11.
- Genchi C, Kramer LH. The prevalence of *Dirofilaria immitis* and *D. repens* in the Old World. Vet Parasitol. 2020;280:108995.
- Farkas R, Mag V, Gyurkovszky M, Takács N, Vörös K, Solymosi N. The current situation of canine dirofilariosis in Hungary. Parasitol Res. 2020;119:129–35.
- Bowman DD, Liu Y, McMahan CS, Nordone SK, Yabsley MJ, Lund RB. Forecasting United States heartworm *Dirofilaria immitis* prevalence in dogs. Parasit Vectors. 2016:9:1–12.
- Sonnberger K, Duscher GG, Fuehrer HP, Leschnik M. Current trends in canine dirofilariosis in Austria—do we face a pre-endemic status? Parasitol Res. 2020;119:1001–9.
- Martina M, Zuzana H, Daniela V, Lenka B. Different epidemiological pattern of canine dirofilariosis in two neighboring countries in Central Europe—the Czech Republic and Slovakia. Parasitol Res. 2021;120:547–52.
- Tolnai Z, Széll Z, Sproch Á, Szeredi L, Sréter T. Dirofilaria immitis: an emerging parasite in dogs, red foxes and golden jackals in Hungary. Vet Parasitol. 2014;203:339–42.
- Genchi C, Kramer L. Subcutaneous dirofilariosis (*Dirofilaria repens*): an infection spreading throughout the old world. Parasit Vectors. 2017;10:1–6.
- Bacsadi Á, Papp A, Szeredi L, Tóth G, Nemes C, Imre V, et al. Retrospective study on the distribution of *Dirofilaria immitis* in dogs in Hungary. Vet Parasitol. 2016;220:83–6.
- Jerzsele Á, Kovács D, Fábián P, Fehérvári P, Paszerbovics B, Bali K, et al. New insights into the prevalence of *Dirofilaria immitis* in Hungary. Animals. 2025;15:1–14
- 13. Aththanayaka AMMTB, Dayananda BSWMTB, Ranasinghe HAK, Amarasinghe LD. Evolution of dirofilariasis diagnostic techniques from traditional morphological analysis to molecular-based techniques: a comprehensive review. Front Parasitol. 2024;3:1–17.
- Kemenesi G, Kurucz K, Kepner A, Dallos B, Oldal M, Herczeg R, et al. Circulation of *Dirofilaria repens*, *Setaria tundra*, and Onchocercidae species in Hungary during the period 2011–2013. Vet Parasitol. 2015;214:108–13.
- Sulesco T, Von Thien H, Toderas L, Toderas I, Lühken R, Tannich E. Circulation of *Dirofilaria repens* and *Dirofilaria immitis* in Moldova. Parasit Vectors. 2016;9:1-10.
- Bocková E, Iglódyová A, Kočišová A. Potential mosquito (Diptera:Culicidae) vector of *Dirofilaria repens* and *Dirofilaria immitis* in urban areas of Eastern Slovakia. Parasitol Res. 2015;114:4487–92.
- 17. Masny A, Sałamatin R, Rozej-Bielicka W, Golab E. Is molecular xenomonitoring of mosquitoes for *Dirofilaria repens* suitable for dirofilariosis surveillance in endemic regions? Parasitol Res. 2016;115:511–25.
- Kurucz K, Kepner A, Krtinic B, Zana B, Földes F, Bányai K, et al. First molecular identification of *Dirofilaria* spp. (Onchocercidae) in mosquitoes from Serbia. Parasitol Res. 2016;115:3257–60.
- Kurucz K, Kiss V, Zana B, Jakab F, Kemenesi G. Filarial nematode (order: Spirurida) surveillance in urban habitats, in the city of Pécs (Hungary). Parasitol Res.; 2018;3355–60.
- Cameron MM, Ramesh A. The use of molecular xenomonitoring for surveillance of mosquito-borne diseases. Philos Trans R Soc B Biol Sci. 2021:376
- Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour S, et al. Citizen science provides a reliable and scalable tool to track diseasecarrying mosquitoes. Nat Commun. 2017;8:1–12.
- 22. Porter WT, Motyka PJ, Wachara J, Barrand ZA, Hmood Z, McLaughlin M, et al. Citizen science informs human-tick exposure in the Northeastern United States. Int J Health Geogr. 2019;18:1–14.

- Szentivanyi T, Oedin M, Rocha R. Cat–wildlife interactions and zoonotic disease risk: a call for more and better community science data. Mamm Rev. 2023;54:93–104.
- Garamszegi LZ, Soltész Z, Kurucz K, Szentiványi T. Using community science data to assess the association between urbanization and the presence of invasive *Aedes* species in Hungary. Parasit Vectors. 2023;16:1–5.
- Garamszegi LZ, Soltész Z, Szentiványi T, Kurucz K, Nagy G, Bede-Fazekas Á. Identifying ecological factors mediating the spread of three invasive mosquito species: citizen science informed prediction. J Pest Sci; 2024; 024–01841–7.
- 26. Kenyeres Z, Tóth S. Csípőszúnyog határozó II.(Imágók). 2nd ed. Pannónia Füzetek; 2008.
- 27. ECDC. "Reverse" identification key for mosquito species. Accessed on 21.06.21, 2021;1–21.
- 28. Gu W, Lampman R, Novak RJ. Assessment of arbovirus vector infection rates using variable size pooling. Med Vet Entomol. 2004;18:200–4.
- 29. R Core Team. R: a language and environment for statistical computing (4.3.1). 2021. Available from: https://cran.r-project.org/
- John A, Weisberg S, Price B, Adler D, Bates D, Baud-bovy G, et al. Package 'car.' 2024.
- 31. Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: a grammar of data manipulation. R package version 1.1. 2. 2023.
- 32. Lenth R V., Banfai B, Bolker B, Buerkner P, Giné-Vázquez I, Herve M, et al. emmeans: Estimated marginal means, aka least-squares means. 2024. https://rvlenth.github.io/emmeans/.
- 33. Wickham H, Chang W. Package "ggplot2." Cham, Switz. 2016;
- Dimzas D, Aindelis G, Tamvakis A, Chatzoudi S, Chlichlia K, Panopoulou M, et al. Dirofilaria immitis and Dirofilaria repens: investigating the prevalence of zoonotic parasites in dogs and humans in a hyperenzootic area. Animals. 2024;14:2529.
- Diakou A, Kapantaidakis E, Tamvakis A, Giannakis V, Strus N. Dirofilaria infections in dogs in different areas of Greece. Parasit Vectors. 2016:9:1–7.
- Boonyapakorn C, Srikitjakarn L, Morakote N, Hoerchner F. The epidemiology of *Dirofilaria immitis* infection in outpatient dogs at Chiang Mai University Small Animal Hospital, Thailand. Southeast Asian J Trop Med Public Health. 2008;39:33–8.
- Adanir R, Sezer K, Köse O. The prevalence of *Dirofilaria immitis* in dogs with different breed, ages and sex. Ankara Univ Vet Fak Derg. 2013;60:241–4.
- Labarthe NV, Paiva JP, Reifur L, Mendes-De-Almeida F, Merlo A, Pinto CJC, et al. Updated canine infection rates for *Dirofilaria immitis* in areas of Brazil previously identified as having a high incidence of heartworm-infected dogs. Parasit Vectors. 2014;7:1–8.
- Hou H, Shen G, Wu W, Gong P, Liu Q, You J, et al. Prevalence of *Diro-filaria immitis* infection in dogs from Dandong. China Vet Parasitol. 2011;183:189–93.
- Cancrini G, Frangipane Di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M. Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol. 2003;118:195–202.
- Montarsi F, Ciocchetta S, Devine G, Ravagnan S, Mutinelli F, Frangipane A, et al. Development of *Dirofilaria immitis* within the mosquito *Aedes* (Finlaya) *koreicus*, a new invasive species for Europe. Parasit Vectors. 2015;1–9.
- 42. Silaghi C, Beck R, Capelli G, Montarsi F, Mathis A. Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus. Parasit Vectors. 2017;1–13.
- 43. Younes L, Barré-Cardi H, Bedjaoui S, Ayhan N, Varloud M, Mediannikov O, et al. *Dirofilaria immitis* and *Dirofilaria repens* in mosquitoes from Corsica Island. Parasit Vectors. 2021;14:1–7.
- 44. Fok É, Szabó Z, Farkas R. The first autochthonous case of a dog infected with *Dirofilaria repens* in Hungary. Kisállatorvoslás. 1998;4:218–9.
- Dóczi I, Bereczki L, Gyetvai T, Fejes I, Skribek Á, Szabó Á, et al. Description of five dirofilariasis cases in South Hungary and review epidemiology of this disease for the country. Wien Klin Wochenschr. 2015;127:696–702.
- Tomazatos A, Cadar D, Török E, Maranda I, Horváth C, Keresztes L, et al. Circulation of *Dirofilaria immitis* and *Dirofilaria repens* in the Danube Delta Biosphere Reserve. Parasit Vectors. 2018;11:1–8.
- Kronefeld M, Kampen H, Sassnau R, Werner D. Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors. 2014;7:1–6.

- Čabanová V, Miterpáková M, Valentová D, Blažejová H, Rudolf I, Stloukal E, et al. Urbanization impact on mosquito community and the transmission potential of filarial infection in central Europe. Parasit Vectors. 2018;11:1–10.
- 49. Grzegorz O, Julita N, Renata WF. *Setaria tundra*, what do we know, what is still to be discovered? Ann Parasitol. 2021;667:1–10.
- Angelone-Alasaad S, Jowers MJ, Panadero R, Pérez-Creo A, Pajares G, Díez-Baños P, et al. First report of Setaria tundra in roe deer (Capreolus capreolus) from the Iberian Peninsula inferred from molecular data: epidemiological implications. Parasit Vectors. 2016;9:1–5.
- Oloś G, Nowakowska J, Rojewska S, Welc-Falegciak R. New findings of Setaria tundra and Setaria cervi in the red deer (Cervus elaphus) in Poland. Parasitology. 2019;146:1333–7.
- Čurlík J, Šmigová J, Šmiga Ľ, Lazár J, Lazár P, Konjević D, et al. The first report of Setaria tundra (Issaitshikoff & Rajewskaya, 1928) in Slovakia by using of molecular methods. Vet Res Commun. 2023;47:2247–51.
- Potkonjak A, Rojas A, Gutiérrez R, Nachum-Biala Y, Kleinerman G, Savić S, et al. Molecular survey of *Dirofilaria* species in stray dogs, red foxes and golden jackals from Vojvodina, Serbia. Comp Immunol Microbiol Infect Dis. 2020:68.
- Duscher GG, Leschnik M, Fuehrer HP, Joachim A. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int J Parasitol Parasites Wildl. The Authors; 2015;4:88–96.
- Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere. 2011;2:1-21.
- Giubega S, Imre M, Ilie MS, Imre K, Luca I, Florea T, et al. Identity of microfilariae circulating in dogs from western and south-western Romania in the last decade. Pathogens. 2021;10:1400.
- Tasić A, Rossi L, Tasić S, Miladinović-Tasić N, Ilić T, Dimitrijević S. Survey of canine dirofilariasis in Vojvodina, Serbia. Parasitol Res. 2008:103:1297–1302.
- Matos M, Alho AM, Owen SP, Nunes T, Madeira de Carvalho L. Parasite control practices and public perception of parasitic diseases: a survey of dog and cat owners. Prev Vet Med.; 2015;122:174–80.
- 59. Strube C, Neubert A, Springer A, Von Samson-Himmelstjerna G. Survey of German pet owners quantifying endoparasitic infection risk and implications for deworming recommendations. Parasit Vectors. 2019;12:1–12.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.