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We investigate the ground-state properties of the periodic Anderson model on the square lattice
across various band fillings. Employing the infinite projected entangled-pair states (iPEPS) tech-
nique, we can determine the magnetic ground states accurately and compare them to mean-field
predictions to highlight the effects of quantum fluctuations. At half-filling, we analyze the transition
between the antiferromagnetic and paramagnetic (Kondo singlet) phases as a function of hybridiza-
tion and f-level energy, finding excellent agreement with existing quantum Monte Carlo studies in
the case of hybridization. For n = 1.5 electrons per site, we identify a novel correlated antiferro-
magnetic diagonal stripe phase as the ground state, which competes with its ferromagnetic partner

state.

I. INTRODUCTION

In f-electron systems, we frequently encounter intrigu-
ing phenomena such as unconventional superconductiv-
ity, heavy-fermion behavior, and mixed-valence states
[1, 2]. The heavy-fermion behavior is a consequence of
the greatly enhanced density of states due to strong elec-
tron correlations but the state usually remains param-
agnetic. This is somewhat counterintuitive since accord-
ing to the Stoner criterion electrons with a high density
of states at the Fermi energy should be highly prone to
magnetic ordering. Indeed, many heavy-fermion com-
pounds exhibit antiferromagnetic order at very low tem-
peratures, for example UsZny7, UCd;; [3]. However,
there are exceptions, such as UCus, where magnetic or-
dering coexists with heavy-fermion behavior [4]. While
the above examples pertain to three-dimensional sys-
tems, recent advancements in synthesis techniques have
enabled the creation of two-dimensional f-electron sys-
tems. Notably, heterostructures involving Eu or Gd pro-
vide a platform to explore the interplay of magnetism,
strong correlations, and enhanced quantum effects in re-
duced dimensions [5]. These systems may open up new
avenues for studying heavy-fermion behavior in lower-
dimensional geometries, where quantum fluctuations can
play an even more significant role.

The periodic Anderson model (PAM) is widely re-
garded as the minimal model that captures the essential
physics of these materials. It describes the interaction
between localized, strongly correlated electrons and de-
localized conduction electrons from a broad energy band.
The Hamiltonian is expressed as:
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Here, éT,w (¢ko ) represents the creation (annihilation) op-
erator for conduction electrons with wave vector k and
spin o. Similarly, f}U (fjo) denotes the creation (an-
nihilation) operator for localized f-electrons at site r;.
The particle number operators for f- and c-electrons

are given by ﬁfa = f;»rgfjg and nj, = é;aéj,,, respec-
tively. The hybridization amplitude between the f- and
c-electron states is denoted by V, while Uy represents
the on-site Hubbard repulsion between f-electrons. The
average number of ¢- and f-electrons per site, denoted
as n. and ny, respectively, can range from zero to two.
The model’s filling is defined as the ratio of the total
electron density per site (n = n. + ny) to the maximum
possible electron occupancy (nmax = 4). For a compre-
hensive overview of the fundamental properties of this
model, refer to Ref. [6].

In spite of its apparent simplicity, the PAM has no an-
alytic solution even in one dimension unlike the Hubbard
model, though exact solutions can be constructed in cer-
tain cases [7, 8]. Therefore other techniques have been
used to study this model, which often involve approxi-
mations. In one dimension the density-matrix renormal-
ization group provides a quasi error-free description of
the PAM [9-11]. At half filling a gapped ground-state
emerges with antiferromagnetic correlations between the
f-electrons mediated by the RKKY interaction. In two
dimensions the magnetic properties of the PAM has been
extensively explored using quantum Monte Carlo [12],
variational Monte Carlo methods [13, 14] as well as dy-
namical vertex approximation [15]. In three dimensions,
the model has been investigated with mean-field theory
[16] and, on the Bethe and cubic lattices, with dynamical
mean-field theory [17-20]. While dynamical mean-field
theory (DMFT) yields exact results in infinite spatial di-
mensions, it remains uncertain how quantum fluctuations
in two dimensions modify these findings. The quantum
Monte Carlo technique provides reliable results for the
half-filled and symmetric (¢; = —Uy/2) case, however,
moving away from the symmetric case or considering
other fillings introduce the sign problem [21], which can
significantly complicate or even hinder the simulations.
To mitigate the sign problem the constrained path quan-
tum Monte Carlo technique has been successfully used
to study the PAM at various fillings [22, 23] but it faces
scaling challenges with the system size. Variational tech-
niques have also been widely applied to study the prop-
erties of the PAM. These methods either use the Monte
Carlo technique [13, 14] or the Gutzwiller approximation
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[24-27] to evaluate expectation values. While the for-
mer case provides an exact evaluation of the observables
and the calculation is only impacted by the variational
Ansatz, the latter case involves a further mean-field like
approximation as well. Later on, the PAM has been
investigated using the density-matrix embedding theory
near half filling [28]. Consequently, the analysis of the
PAM with techniques that do no rely on rigid Ansétze or
uncontrolled approximations is highly warranted.

The goal of this paper is to investigate the ground-state
properties of the periodic Anderson model (PAM) on a
square lattice at various fillings as a function of the hy-
bridization strength and the f-level energy. We employ
the infinite projected entangled-pair states (iPEPS) tech-
nique [29-34], which overcomes the aforementioned chal-
lenges and has been successfully applied to study frus-
trated spin systems [35-38] as well as correlated fermionic
systems [39-41] in two dimensions. Furthermore, we
compare our results to those obtained via mean-field the-
ory to emphasize the role of quantum fluctuations. In
the symmetric half-filled case, we observe that increas-
ing the hybridization suppresses the antiferromagnetic
order, and beyond a critical value, a Kondo singlet phase
emerges. Our estimate for the critical point aligns excel-
lently with previous quantum Monte Carlo studies. The
antiferromagnetic order persists when the f-level energy
is increased; however, it is suppressed around ny ~ 0.5
occupancy, where a paramagnetic state appears — sig-
nificantly deviating from the predictions of mean-field
theory. Our most striking observation is the emergence
of a diagonal stripe state for n = 1.5 filling hosting a
correlated antiferromagnetic order. This state strongly
competes with its ferromagnetic counterpart in certain
parameter regimes. In general, our studies demonstrate
that the iPEPS technique can produce reliable results for
challenging parameter regimes and fillings of a correlated
two-band model.

The paper is organized as follows. In Sec. II. we re-
view the methodological details. In Sec. III. A and B we
present our results for the half-filled and n = 1.5 filling
case, respectively. Finally, in Sec. IV. we conclude our
findings.

II. METHODS

We use the iPEPS method [29-34] to study the ground-
state properties of the PAM on the square lattice, thus
ec(k) = —2t(cos(kg) + cos(ky)) and we set the hopping
amplitude ¢ to t = 1 and the lattice constant to unity.
The iPEPS technique is a variational method that rep-
resents the wave function as a network of rank-5 tensors.
For a detailed review of the method, see Refs. [29-34, 42]
and the Appendix. The ground state is assumed to be
describable using a supercell of tensors that tiles the en-
tire lattice. Each tensor has four auxiliary legs, which
connect to neighboring sites, and one physical leg. The
accuracy of the approach is controlled by the bond di-

mension, D, of the auxiliary legs. By gradually increas-
ing D, the Ansatz can incorporate more entanglement,
improving the representation of the ground state. Each
tensor contains dD* variational parameters, where d is
the dimension of the local Hilbert space. In the peri-
odic Anderson model (PAM), two fermionic degrees of
freedom per lattice site are present. To adapt to the al-
gorithm, these are merged into a supersite with a local
Hilbert space dimension of d = 16, allowing the originally
developed iPEPS techniques to be directly applied. We
optimize the tensors using the fast full update (FFU) al-
gorithm, employing gauge fixing to enhance convergence
[43], and compute observables using the corner transfer
matrix (CTM) technique [44, 45]. The boundary bond
dimension, x, which determines the accuracy of tensor
contractions in the CTM method, was set to y = D?.
Larger x values were tested, but their effects were neg-
ligible compared to the dependence on D and did not
introduce significant quantitative changes to the results.
In our simulations, we utilized U(1) spin and U(1) charge
symmetries to reduce the sizes of the dense tensor blocks.
In certain cases, only the U(1) charge symmetry was ap-
plied. The use of both symmetries allowed us to reach
bond dimensions up to D = 11, while simulations using
only the U(1) charge symmetry were limited to D = 9.
We considered supercells with sizes 2 x 2, 2 x 4 and
4 x 4. Observables were extrapolated to the error-free
limit (D — o0) as a function of 1/D. For the energies, we
employed extrapolation as a function of the normalized
cost function with the time step of the imaginary time
evolution, w, which has been shown to provide higher ac-
curacy (see Appendix for more details). This approach
yields smoother energy curves as a function of w com-
pared to 1/D [46]. We estimate the extrapolation error
as half the distance between the last data point and the
extrapolated value.

We also perform mean-field calculations using the same
supercell sizes as in the iPEPS calculations allowing arbi-
trary magnetic ordering within the supercell generalizing

the approach of Ref. [47]. We use the standard decou-

pling of the Hubbard term nl.af| ~ nl () +n (nl) -

(ﬁ{ ) (fz{T) and solve the single-particle problem in a self-
consistent way.

III. RESULTS
A. Half-filled case

First, we consider the half-filled model at the symmet-
ric point ey = —Uy/2, which ensures that the electron
density remains for both types of electrons ny =n., =1
(Mott-Hubbard regime). This case has been investi-
gated in literature with various many-body techniques
like quantum Monte Carlo [12] or the dynamical vertex
approximation [15] and we choose Uy = 4 so that we can
compare our results directly to them. Since the quan-



tum Monte Carlo method is free from the sign problem
at this point, this serves also as an independent bench-
mark for the iPEPS technique. Based on the Doniach’s
phase diagram, we expect that for small values of the ex-
change coupling, J ~ V?2/U t, the RKKY interaction is
dominant, which mediates antiferromagnetic fluctuations
between the f electrons and leads to magnetic ordering,
while for large J the Kondo effect prevails and local sin-
glets are formed. To capture the antiferromagnetic order
we use a 2 x 2 supercell in the iPEPS simulation. The
sublattice magnetizations for the conduction (m.) and f
electrons (my) are defined in the following way:

1 .
Moy =~ > (1) m 2)
mit = (gl —ag!) (3)

where mf’f denotes the local magnetic moments and the
summation extends over the unit cell, N is the number
of the sites of the supercell, that is, N = 4 and o; = 1
and —1 for the A and B sublattices, respectively. The
results for these quantities are shown in the upper panel
of Fig. 1. The iPEPS results clearly indicate that the
antiferromagnetic phase disappears around Vg ~ 1.2,
which is in excellent agreement with the quantum Monte
Carlo result, Veyiy ~ 1.1(1) [12], while the dynamical ver-
tex approximation estimates it as Ve ~ 0.91 [15]. For
small hybridizations, V' < 0.5, the conduction electron
magnetization m. is indistinguishable from zero, while
my is nearly maximal. For V' = 1 the quantum Monte
Carlo study predicts m; ~ 0.26(5), which is again in per-
fect agreement with the iPEPS value of m; ~ 0.3. The
behavior of m. resembles that observed in the Kondo
lattice model on the square lattice [48]. Moreover, it can
be clearly seen from Fig. 1 (bottom panel) that larger
and larger bond dimensions are required as we approach
Verit ~ 1.2, which confirms the increasing correlation
length in the system. Above the critical point, the con-
duction and f-electrons form a local singlet. This is evi-
dent from the local (Sj . Sj ) correlator, where

Ic— .t - -
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and G, represents the vector of Pauli matrices acting
on the spin indices o« and . This correlator approaches
—3/4+ (ﬁ%ﬁﬁ)—i— (%405, ) corresponding to the condition
<(;SA'JC + SA'Jf)Q) = 0. Since the sublattice magnetization
decreases continuously to zero the transition is of second
order between the two phases in agreement with previous
studies [12, 48].

It is also worth comparing these results to the mean-
field predictions. Although the mean-field theory ex-
hibits qualitatively similar behavior, it significantly over-
estimates the location of the critical point and the mag-
netization of conduction electrons, indicating that it fails
to capture the itinerant magnetization accurately.
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FIG. 1. The sublattice magnetizations, m. s, (upper panel)
and local spin correlation between conduction and f electrons
(middle panel) as a function of the hybridization in the sym-
metric (e; = —Us/2, Uy = 4) half-filled model. For the
magnetizations we plotted the mean-field results as well. The
bottom panel shows the sublattice magnetization of the f
electrons as a function of the inverse bond dimension. The
dotted vertical line on the top panel denotes the quantum
Monte Carlo estimate for the critical point.

Having established that iPEPS reproduces the quan-
tum Monte Carlo results for the symmetric model we
now investigate what happens if the f-level energy is in-
creased and the system enters the mixed-valence regime.
Fig. 2 clearly shows that the magnetic moments decrease
as the f level empties and the electrons begin to pop-
ulate the conduction band. Interestingly, the antiferro-
magnetic order vanishes around ny ~ 0.5 (e ~ 1.5),
and the system transitions smoothly to a paramagnetic
state, where the conduction electrons form a singlet state.
The overall behavior and the nature of the phase tran-
sition agrees well with the previous density-matrix em-
bedding theory investigation [28]. If we compare the
iPEPS results to the mean-field theory we can see that
the mean-field approach reasonably captures the f-level
occupancy but it significantly overestimates the stability
of the antiferromagnetic state, predicting that the para-
magnetic solution becomes energetically favorable only
around ny ~ 0.1 (5 ~ 3.6). This poorer performance
of the mean-field approach can be attributed to the en-
hanced charge fluctuations, which are more pronounced
in the mixed-valence regime than in the localized moment
(symmetric case) regime.
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FIG. 2. The sublattice magnetization of the f electrons (up-
per panel) and the f level occupancy (bottom panel) as the
function of the f-level energy for the parameters Uy = 4,
V = 04 and n = 2. The symbols are the extrapolated
(D — o0) iPEPS results and the dotted curve corresponds
to the mean-field solution.

In general, we demonstrated that iPEPS provides ac-
curate results for the half-filled case, therefore we can
use it to explore other fillings where the quantum Monte
Carlo fails.

B. Away from half filling, n = 1.5

In the remaining part of this paper, we focus on the
case where the system is far from half-filling. This
scenario has received less attention due to the limited
availability of reliable and unbiased methods. Since the
ground-state structure is not known a priori, we begin
our investigations with a 2 x 2 unit cell, allowing four
independent tensors at each site to allow the appearance
of more general magnetic structures. By leveraging the
U(1) charge and U(1) spin symmetries, we target spe-
cific spin sectors of the unit cell corresponding ton = 1.5
filling. Initially, we examine the parameters Uy = 4,
ef = —2, and V = 1 (Mott-Hubbard regime) to ensure
that the f-level is singly occupied. Our most striking
observation is the emergence of a diagonal stripe phase
for the f electrons in the iPEPS simulations. In this
phase, antiferromagnetic order occurs along the [11] di-
rection, while the sites along the [11] direction exhibit
weak magnetization, as shown in Fig. 3(a) (AF state).
Note that the symmetry-equivalent states can also be
found in iPEPS by using either other random initial
states or pinning fields in the beginning of the simula-
tion. In what follows, we use the above convention to
characterise the state. Since the f-level occupancy is
ny ~ 0.8 and uniform, the absence of magnetic moments
along the [11] direction indicates the presence of strong
local correlations. To confirm this, we calculate the local

diag AF state diag F state

FIG. 3. Competing magnetic states that arise in the PAM at
n = 1.5 filling for ey = =2, V =1 and Uy = 4. The arrows
indicate the magnitude of the onsite magnetizations of the f
electrons, which can order antiferromagnetically (a) or ferro-
magnetically (b). The spheres indicate the strength of onsite
correlations, C, according to Eq. (5). Their radii are chosen as
r ~ +/C to make the correlations visible at the magnetic sites
as well. The magnitudes of the local magnetizations (mf) on
the strongly and weakly magnetized sites are 0.4 and 0.09 in
the diagonal AF state and 0.41 and 0.095 in the diagonal F
state at D = 10.

correlator:
C= |<ﬁ;}ﬁ;¢> - <ﬁjf¢><ﬁf¢>| (5)

and Fig. 3(a) shows that this correlator is strongly en-
hanced and very close to its maximal value on the non-
magnetic sites since (ﬁ;}ﬁﬁ) ~ 0.03 and |mf| ~ 0.09
on the weakly magnetized sites. By exploring different
spin sectors of the 2 x 2 supercell, we found that the
state with S%** = 1 (F state in Fig. 3(b)) lies slightly
above but close in energy to the AF state. To determine
which of the competing states is energetically favored in
the D — oo limit, we extrapolated the energies as a
function of the iPEPS cost function. This approach, as
suggested in Ref. [46], provides a more accurate estima-
tion compared to extrapolation using the inverse bond
dimension. As shown in Fig. 4, a smooth third-order
polynomial fit to the data confirms that the AF state,
with Eap = —3.766(7), is the ground state, while the
F state, with Ep = —3.751(4), also belongs to the low-
energy manifold. We also note that for smaller hybridiza-
tions, V' < 0.8, the energy difference between the com-
peting states becomes smaller, and the error bars begin
to overlap. As a result, it is not possible to definitively
identify the state with the lowest energy in the error-
free limit. Nevertheless, in all cases we examined, the
AF state consistently exhibited the lowest variational en-
ergy. To characterize the magnetization of the diagonal

AF state, m&/ | we introduce the quantity

diag
c,f 1 k.. cf
mdiag - (_1) m;, (6)
Naiag i€[11]

where k = 1, (2) for the diagonal sites of the unit cell
with even (odd) indices, for example, (z,y) = [0, 0] and
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FIG. 4. The energy per site for the diag AF and diag F states
as a function of the iPEPS cost function, w, (divided by the
time step of the imaginary time evolution) and as a function
of the inverse bond dimension for Uy = 4, V =1, 5 = -2
and n = 1.5. The solid lines are third order polynomial fits
to the iPEPS data.
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FIG. 5. The sublattice magnetization of the f electrons (up-
per panel) and the f level occupancy (bottom panel) as the
function of the f-level energy for the parameters Uy = 4,
V =1 and n = 1.5. The symbols are the extrapolated
(D — o0) iPEPS results.

(x,y) = [1,1] for Ngiag = 2. In Fig. 5 we show the mag-
netization of the diagonal AF state as a function of the
f-level energy. This indicates a smooth decrease in mag-
netization and a phase transition of second order, further-
more the appearance of a paramagnetic state for e 20,
similar to what occurs in the half-filled case. As the Fermi
energy in the conduction band is reduced compared to the
half-filled case, the f-level becomes empty sooner, cf. the
bottom panels of Figs. 2-5. A notable feature common
to both the n = 2 and n = 1.5 cases is that the magneti-
zations vanish around ny ~ 0.5 in both scenarios. Addi-
tionally, we observe that the conduction electrons remain

nearly unpolarized, with mg;,, ~ O(107%), in contrast to
the half-filled case.

Having observed that the system at this filling prefers
a diagonal stripe pattern, a natural question arises: does
this pattern persist in larger unit cells, or can vertical
stripes or stripes with other periodicity also emerge? To
address this, we performed exploratory simulations start-
ing from various random initial states using 2 x 4 (8 inde-
pendent tensors) and 4 x 4 (16 independent tensors) unit
cells. In all cases, the diagonal stripe pattern appeared,
supporting our initial findings.

Another important issue is the total spin per unit cell,
which can vary continuously in an infinite system. To
allow this, we carried out calculations where only U(1)
charge conservation was enforced in the iPEPS simula-
tion. This approach, however, limits the maximum bond
dimension to D = 9 due to the larger dense blocks in the
tensors. Starting from various random initial states (in-
cluding states with O(1) magnetization per unit cell), we
found that the total magnetization decreases as the bond
dimension increases, eventually approaching zero. This
result confirms our assumption that the total magnetiza-
tion vanishes in the thermodynamic limit. Furthermore,
the lowest-energy states consistently exhibited the diag-
onal stripe pattern.

C. Discussion

Several comments are in order: to discuss the predic-
tions of mean-field theory for this filling and to place our
findings in the context of previous studies. We find that,
in the mean-field description, the vertical stripe state —
comprising ferromagnetic lines arranged in an antiferro-
magnetic pattern — has the lowest energy when the f level
is occupied. However, as outlined above, no signatures
of such states were observed in the iPEPS calculations.
Consequently, we did not compare the properties of this
state with the iPEPS results in Fig. 5. An interesting
feature of the mean-field calculation is the presence of
a diagonal AF stripe-like solution, although its energy
is much higher than that of the vertical stripe state.
This discrepancy arises because mean-field theory can
lower the energy of the Hubbard term only by inducing
magnetic order; it cannot simultaneously suppress dou-
ble occupancy and maintain paramagnetic behavior at
specific sites. As shown in Fig. 3(a), the strong fluctua-
tions along the [11] diagonal suppress magnetic moments
and enhance local correlations. Regarding energetics, we
note that although mean-field theory is not a variational
approach, even the raw iPEPS energies (without extrap-
olation) are significantly lower than the mean-field ones
for both n =2 and n = 1.5.

It is also worth putting these findings in context with
previous results in the literature. Mean-field theory on
the cubic lattice [16], DMFT on hypercubic lattice [49],
variational Monte Carlo as well as [14] constrained path
quantum Monte Carlo simulations [22] on the square lat-



tice addressed the ground-state properties of the PAM
at n = 1.5 filling. Mean-field theory, DMFT and varia-
tional Monte Carlo predict a ferromagnetic ground state
for a wide range of paramaters and occupied f-level. The
discrepancy with our findings likely stems from the fact
that only conventional antiferromagnetic, paramagnetic,
and uniform ferromagnetic states were considered in the
variational Monte Carlo and mean-field approaches. The
newly identified candidate states from our work cannot
be captured by these Ansétze, highlighting the need for
more general trial wave functions or unit cells in future
studies. The results of the constrained path quantum
Monte Carlo simulations [22], on the other hand, show
some similarities with our findings. They found that a
resonating spin-density-wave ground state emerges due
to the nesting property of the Fermi surface with the
wave vectors g = (m,0), (0,7). This state is character-
ized by the absence of onsite magnetization, strong an-
tiferromagnetic spin correlations between diagonal sites,
and weak correlations between nearest-neighbor sites on
a 6 x 6 lattice. Since larger system sizes were out of
reach for this technique, the question whether this state
evolves to long-range order or not in the thermodynamic
limit remains inconclusive. The resonating spin-density-
wave ground state observed in this finite lattice might be
a precursor of the long-range ordered diagonal AF state
presented in this paper, although no evidence of its fer-
romagnetic counterpart was observed in that study.
Finally, we mention that stripe states (beside uniform
states) emerge in the two-dimensional Hubbard model
around 1/8 doping as well [39, 50] and the vertical one
appears to have the lowest energy. There is a strong
competition between them but an important difference
to our case is that these stripe states host a modulated
antiferromagnetic order, while in our case antiferromag-
netic and ferromagnetic stripe states compete and we did
not find vertical stripes at all in the iPEPS simulations.

IV. CONCLUSIONS

We investigated the ground-state properties of the pe-
riodic Anderson model (PAM) on the square lattice at
various fillings. Using the iPEPS technique, we obtained
unbiased results across a wide range of parameters. First,
to benchmark the applicability of the iPEPS approach,
we examined the symmetric half-filled model and ob-
served that increasing the hybridization leads to the dis-
appearance of antiferromagnetic order. Beyond a critical
hybridization value, local Kondo singlets are formed. Our
estimate for the critical point is in excellent agreement
with quantum Monte Carlo results, underscoring the ac-
curacy of the iPEPS approach. Next, we studied the
system away from the symmetric point by varying the f-
level energy. We found that antiferromagnetic order per-
sists in the mixed-valence regime but vanishes when the
f-level occupancy falls below ny ~ 0.5. A comparison
with mean-field theory revealed that, while the mean-

field approach provides a qualitatively correct picture, it
significantly overestimates the critical point and conduc-
tion electron magnetization. This discrepancy becomes
even more pronounced in the mixed-valence region.

In the second part of the paper, we focused on the
doped case with n = 1.5 electrons per site. We demon-
strated the emergence of novel diagonal (anti-) ferromag-
netic stripe states, characterized by strong local correla-
tions along one diagonal. We also highlighted the compe-
tition between these states and concluded, based on our
energy extrapolations, that the antiferromagnetic stripe
state is energetically favored. In contrast, the mean-field
calculation incorrectly predicts a vertical stripe state.
Overall, our results indicate that the ground state at
n = 1.5 filling is more complex than those previously
proposed in variational Monte Carlo calculations, war-
ranting future studies with more sophisticated trial wave
functions.

As an outlook, we mention that it would be interesting
to examine how stable the diagonal stripe phase is against
doping in the vicinity of n = 1.5 filling. Furthermore,
we did not explore the possibility of a superconducting
ground state in this model, which could provide insights
into heavy-fermion superconductors. Another promis-
ing extension involves including Hund’s coupling via the
Kanamori Hamiltonian to investigate how quantum fluc-
tuations modify the phase diagram [51]. Such studies
are challenging for quantum Monte Carlo methods, but
as we have shown, iPEPS is capable of providing reliable
results for models with large local Hilbert spaces. These
problems are therefore within the reach of the iPEPS
technique.
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FIG. 6. Illustration of the contraction of an iPEPS with bond
dimension D using the CTM technique for the calculation of
the norm. First, we contract the double-layer iPEPS along
the physical indices, then the network of reduced tensors (with
bond dimension D?) can be approximated by a set of corner
and edge tensors (with bond dimension x) that encode the
information of the infinite environment.

APPENDIX: OVERVIEW OF THE IPEPS
ALGORITHM

Here we give a brief overview and further technical
details about the iPEPS method employed in the pa-
per. For an in-depth review of the method we refer to
Refs. [29-34, 42], here we summarize its main aspects.
As we outlined in the main text, the iPEPS on a square
lattice consists of five-legged tensors. Four of them are
auxiliary indices of dimension D that link it to its near-
est neighbors, along with a physical index of dimension
d representing the local Hilbert space, which is d = 16 in
our model. The bond dimension D governs the accuracy
of the variational Ansatz. A ground-state iPEPS simula-
tion unfolds in two main steps. First, the tensor network
is optimized to faithfully approximate the ground state
of a chosen Hamiltonian. We achieve this optimization
via the imaginary-time evolution. Once optimized, the
iPEPS enables the calculation of physical properties — for
instance, expectation values of observables. Both stages
generally require contracting the two-dimensional tensor
network. We discuss these stages in more detail in the
following.

Contraction of the tensor network

First, we overview the contraction of an iPEPS state,
as this is also a prerequisite for the different optimization
techniques. The exact contraction of an iPEPS state is
exponentially hard, therefore approximate but controlled
contraction schemes were developed. We use the corner
transfer matrix (CTM) technique [44, 45], whose main
idea is shown schematically in Fig. 6 for the simplest
case, where the iPEPS has a single-site unit cell. When
calculating the norm or the expectation value of a local
operator, we need to contract the double-layer network
shown in Fig. 6. The CTM technique makes this con-
traction feasible by introducing eight fixed-point tensors
surrounding the iPEPS tensor in the middle. The ac-

curacy of this technique can be controlled by the bond
dimension of the environment tensors, x. The numerical
cost of the CTM technique scales as O(x3D®) [42], which
is O(D'?) for our choice with y = D?.

Optimization of an iPEPS

We use the imaginary time evolution for the ground-
state search of a given Hamiltonian, H. The optimization
starts usually from a random initial state |¢) and for long
enough times

e~ g)
Ugs) = lim —— 19
Pas) = 1 T=am )]

(A7)
the ground state |Ugg) is projected out. In order to make
this tractable, the time evolution operator is decomposed
into two-site gates using the Trotter-Suzuki formula (sec-
ond order):

e PH = =Ty Ho — He_TH” +0(1?), (A)
b

where 7 = B/N is the time step and the summation
extends over the bonds in the supercell. The Trotter er-
ror, occurring due to the splitting of the time evolution
operator to two-site gates, is well-controlled and can be
reduced by making the time steps smaller. After the gate
application to an iPEPS bond with bond dimension D,
it will increase to d?D. To keep the iPEPS state numeri-
cally feasible we need to truncate this back to D. Unlike
matrix-product states, the iPEPS does not have a canon-
ical form because of loops in the lattice, therefore a naive
usage of singular value decomposition for the truncation
produces suboptimal results. Consequently, a different
strategy is utilized to find the truncated tensors. Let us
consider a bond b hosting the A and B tensors. After the
gate application the new state |y, 5) = e "He|W4p5)
needs to be truncated to bond dimension D. In the full
update this is achieved by finding iteratively the new A
and B tensors with bond dimension D that minimize the
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cost function [33, 43]. As we mentioned in the main text
the quantity w = C/7 — which is similar to the trun-
cation error in the density-matrix renormalization group
method — can be used as an error measure to extrapo-
late the ground-state energy to the error-free limit [46].
Since the full update requires the calculation of the whole
environment in each step, this becomes computationally
expensive with increasing the bond dimension. Hence,
another approach, the fast-full update [43] was developed
which recycles part of the CTM environment but main-
tains the accuracy of the update procedure at the same
time. We compared both approaches for our Hamiltonian
and found that they give identical results up to D = 7,
where the full update was still feasible.

C=1Vyp) - (A9)
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