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We study the phase diagram of the antiferromagnetic J1-J2 Heisenberg model on the pyrochlore
lattice with S = 1 spins at zero and finite temperatures. We use a combination of complemen-
tary state-of-the-art quantum many-body approaches such as density matrix renormalization group
(DMRG), density-matrix purification and pseudo-Majorana functional renormalization group (PM-
FRG). We present an efficient approach to preserve the applicability of the PMFRG for spin-1
systems at finite temperatures despite the inevitable presence of unphysical spin states. The good
performance of our methods is first demonstrated for the nearest-neighbor pyrochlore Heisenberg
model where the finite temperature behavior of the specific heat and uniform susceptibility show ex-
cellent agreement within PMFRG and density-matrix purification. Including an antiferromagnetic
second neighbor coupling we find that the non-magnetic ground-state phase of the nearest neighbor
model extents up to J2/J1 ∼ 0.02 within DMRG, beyond which magnetic k = 0 long-range order
sets in. Our PMFRG calculations find the phase transition in a similar regime J2/J1 ∼ 0.035(8)
which, together with the DMRG result, provides a strong argument for the existence of a small
but finite non-magnetic ground-state phase in the spin-1 pyrochlore Heisenberg model. We also
discuss the origin of discrepancies between different versions of the functional renormalization group
concerning the location of this phase transition.

I. INTRODUCTION

The understanding of magnetically frustrated quan-
tum systems is still among the central problems of con-
densed matter physics. Due to frustration, the ground
state of a quantum spin system is not simply related
to a classical long-range ordered state that simultane-
ously minimizes the local energies on all lattice bonds,
like in a conventional antiferromagnet. Instead frustra-
tion induces a complex global interplay of spins which
may results in a highly entangled ground state such as a
quantum spin liquid [1].

The most prominent systems where frustration
emerges from the geometrical structure are the Heisen-
berg models on the kagomé lattice (in two dimensions)
and on the pyrochlore lattice (in three dimensions) with
antiferromagnetic couplings between neighboring spins.
Tremendous effort has been put into understanding these
systems both at the classical and quantum level [2–16].
In particular, the Ising model on the pyrochlore lattice
realizes the celebrated spin ice state [17], a classical spin
liquid which hosts fractional excitations and an emergent
U(1) gauge field [18].

In the extreme spin-1/2 quantum limit, recent density-
matrix renormalization group (DMRG) [19], variational
Monte Carlo [20] and pseudo-fermion functional renor-
malization group (PFFRG) [21] calculations show strong
indications that the ground state of the pyrochlore
Heisenberg antiferromagnet with only nearest-neighbor
interactions (J1) is non-magnetic but breaks the C3

and/or inversion symmetries of the lattice. These find-

ings provide a compelling argument against a spin liquid
scenario. Very recently, this has been further substanti-
ated by the proposal of a new family of valence bond crys-
tals which produce competitive energies with the afore-
mentioned numerical calculations [22]. Even though all
these studies cannot finally answer the question about
the system’s ground state, they significantly limit the
possible scenarios and highlight the competition between
different states.
An interesting extension is the inclusion of second

neighbor Heisenberg couplings (J2) on the pyrochlore lat-
tice. These interactions enrich the competition between
different states even further as they increase the tendency
towards magnetic long-range order. Specifically, in the
classical limit even an infinitesimally small antiferromag-
netic J2 makes the system enter the k = 0 magnetic phase
[11], where all tetrahedra related by lattice translations
exhibit the same spin configuration. In the opposite limit
of S = 1/2 quantum spins the non-magnetic phase was
found to survive in a remarkably large region J2/J1 ≤
0.22(3) according to PFFRG calculations [11]. Later,
variational Monte Carlo studies revealed a considerably
smaller extent of the magnetically disordered regime, oc-
curring only for J1/J2 ≤ 0.0295(30) [20]. Despite the nu-
merous indications of an extended non-magnetic regime
in the S = 1/2 model, already at S = 1 it is a pri-
ori unclear whether a magnetically disordered phase can
survive, since increasing the spin magnitude decreases
quantum fluctuations. Nevertheless, within PFFRG an
extended non-magnetic phase was found in the S = 1
case where the system did not show magnetic order up
to J2/J1 = 0.09(2) [11].
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Our goal in this paper is to examine the effect of sec-
ond neighbor couplings J2 in a S = 1 pyrochlore Heisen-
berg model in more detail, both at zero and finite tem-
peratures making use of recent methodological advances.
The S = 1 case is particularly relevant to experiments:
The compound NaCaNi2F7 realizes an (almost) isotropic
S = 1 pyrochlore Heisenberg model and does not exhibit
magnetic ordering down to 100 mK [23]. We apply two
very different approaches in our numerical studies, the
pseudo-Majorana functional renormalization group (PM-
FRG) technique [24, 25] and matrix-product-state meth-
ods (density-matrix purification and DMRG) [26–32]. It
has been shown that the PMFRG approach overcomes
the obstacle of the more standard (complex fermionic)
PFFRG, since the employed representation of spin oper-
ators in terms of Majorana fermions does not introduce
unphysical states for the S = 1/2 case and produces ac-
curate results at finite temperatures [25, 33]. However,
since an exact bilinear Majorana representation for S = 1
spins does not exist [34], the formalism used here cannot
avoid unphysical states. We demonstrate that the PM-
FRG can nevertheless be faithfully applied to spin-1 sys-
tems by shifting the unphysical states to higher energies
such that they do not affect finite-temperature results.

As a first benchmark, we address the finite-
temperature properties of the nearest-neighbor py-
rochlore Heisenberg model and find excellent agreement
for the specific heat and susceptibility within the two
methods. In the presence of the antiferromagnetic J2
interaction PMFRG predicts the nonmagnetic phase to
be stable up to J2/J1 ∼ 0.035(8) before k = 0 order
sets in. This is about one third of the previous esti-
mate J2/J1 ∼ 0.09(2) from PFFRG [35]. We argue that
the value from PMFRG can be considered more accurate
than the PFFRG estimate. The quality of the PMFRG
result is further underpinned by DMRG which locates the
phase transition in a similar region J2/J1 ∼ 0.02. Taken
together, the independent yet consistent identification of
the phase transition by two fundamentally different ap-
proaches provides sound evidence for the existence of a
small but finite non-magnetic ground state phase in the
S = 1 pyrochlore Heisenberg model. In general, our
studies demonstrate the capabilities of state-of-the-art
numerical methods in accurately treating even complex
interacting systems such as frustrated quantum spins on
complicated three-dimensional networks.

The paper is organized as follows. In Sec. II we
overview the basics of the pyrochlore Heisenberg model
and the methods applied in this paper. Section III
presents the results of our study where Sec. IIIA con-
siders thermodynamic properties of the J1-only model
while Sec. III B discusses the effects of the J2 coupling
on the system’s ground state properties. In Sec. III C we
compare and interpret our results in the light of previous
PFFRG studies. Finally, in Sec. IV our conclusions are
presented.

FIG. 1. Pyrochlore lattice with nearest neighbor bonds J1

shown in red and one representative second neighbor bond J2

in blue.

II. MODEL AND METHODS

A. Pyrochlore Heisenberg model

We consider the following Hamiltonian on the py-
rochlore lattice,

H = J1
∑
⟨i,j⟩

Si · Sj + J2
∑

⟨⟨i,j⟩⟩

Si · Sj , (1)

where Si is a spin-1 operator on site i and we use natural
units, J1 = 1, kB = 1 and ℏ = 1. Here, J1 denotes
the coupling on nearest neighbor pyrochlore bonds ⟨i, j⟩
and J2 is the coupling on second neighbor pyrochlore
bonds ⟨⟨i, j⟩⟩ as shown in Fig. 1. The pyrochlore lattice
is spanned by an fcc lattice with a tetrahedral crystal
basis defined by the vectors b0 = 0, bi =

1
2ai where the

fcc lattice vectors are given by a1 = 1
2 (1, 1, 0)

T , a2 =
1
2 (1, 0, 1)

T , a3 = 1
2 (0, 1, 1)

T . Thus every lattice point
can be expressed as Ri ≡ Rl,n1,n2,n3 = n1a1 + n2a2 +
n3a3 + bl, with integer n1, n2, n3 and l ∈ {0, 1, 2, 3}.

B. DMRG and density-matrix purification

Firstly, to study finite temperatures we use the density-
matrix purification technique. This approach relies on
the fact that the density matrix can be interpreted as
a partial trace of the Schmidt decomposition of an en-
larged system, which is itself in a pure state [28, 31].
This enlargement is done by adding auxiliary sites (an-
cillas) to the physical system, which need to be traced
out to obtain the density matrix. In this language, the
infinite temperature state can be written as a maximally
entangled state between each site and its own ancilla.
We obtain the density matrix at a given temperature
by performing imaginary time evolution on the physical
sites of the enlarged system and tracing out the ancilla
sites. To carry out the imaginary time evolution we use
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the time-dependent variational principle (TDVP) [36, 37]
with the two-site update and follow the steps described
in Ref. [38] to ensure that the TDVP does not produce
false results [39].

Secondly, we use the DMRG method [26, 27, 30–32] to
study the ground-state properties. This method relies on
the assumption that the wave function can be faithfully
represented by a matrix-product state form. The algo-
rithm optimizes the energy by local updates and becomes
exact if we allow that the matrices can be arbitrarily
large. We use the two-site DMRG as well as the single-
site variant with the subspace expansion to optimize the
wave function [40, 41].

For both approaches we exploit the SU(2) symmetry of
the Hamiltonian, which enables a better compression of
the wave function. During the imaginary time evolution
we keep up to 10000 SU(2) states, while in our DMRG
simulations this is increased to 16000. We consider a 32-
site and a 48-site cluster with periodic boundary condi-
tions where the former respects all the point group sym-
metries of the fcc lattice. These clusters are mapped to
a one-dimensional topology with long-range interactions
so that the DMRG method can be applied. The geome-
try and mapping of the clusters are identical to those in
Ref. [42]. To extrapolate the energies towards the infinite
bond dimension limit we use the two-site variance as an
error measure [43]. For finite temperatures the extrapo-
lation of the specific heat and susceptibility is performed
as a function of the inverse bond dimension. In the pu-
rification approach, we calculate the heat capacity (per
site), CV from the derivative of the energy with respect
to temperature,

CV =
1

N

∂⟨H⟩β
∂T

= −β2 1

N

∂⟨H⟩β
∂β

, (2)

where N is the total number of sites, β is the inverse tem-
perature and ⟨. . . ⟩β means the average with respect to
the density-matrix at inverse temperature β. In practice,
the heat capacity CV is obtained by using the rightmost
expression in this equation and taking the derivative of
the cubic spline interpolation of the energy as a function
of the inverse temperature. Furthermore, the equal-time
spin structure factor S(q) is calculated via

S(q) =
1

N

∑
ij

⟨Si · Sj⟩β cos [q · (Ri −Rj)] , (3)

and the uniform susceptibility (per site), χ, is defined by

χ =
β

3N

∑
ij

⟨Si · Sj⟩β =
β

3
S(q = 0). (4)

C. PMFRG

As a complementary approach that is less affected by
finite-size effects, we employ the PMFRG. This method is

well suited for three dimensional frustrated magnets for
which it has proven both flexible and quantitatively re-
liable, and in particular allows for an unbiased detection
of phase transitions via finite-size scaling [24, 25, 44, 45].
The PMFRG uses a mapping of S = 1/2 spin oper-
ators onto three flavors of Majorana fermions satisfy-

ing {ηαi , η
β
j } = δijδ

αβ (with α, β ∈ {x, y, z}), such that

Sx
i = −iηyi η

z
i , and the other spin components follow by

cyclic permutations of x, y, z. Unlike other fermionic spin
representations, this Majorana rewriting has the advan-
tage that it does not introduce any unphysical states in
the Hilbert space which in particular allows for an appli-
cation at finite temperatures.
Although the PMFRG implements spin-1/2 operators

exactly, a spin-1 representation cannot be achieved with-
out the introduction of unphysical states [34]. Here, we
follow the approach of Ref. [46] where an effective higher
spin Seff is implemented by introducing 2Seff identical
replicas Sµ of spin-1/2 degrees of freedom on each site
where µ ∈ {1, 2, . . . , 2Seff} is the replica index. According
to the rules of addition of angular momenta this gener-
ates total spin quantum numbers on each site given by
S ∈ {Seff, Seff − 1, . . . , 0} for integer Seff. Unphysical
states with S < Seff can be excluded via a level repul-
sion term ∼ A(

∑
µ Sµ)

2 on each site (see the Appendix

for details) which for A < 0 acts as a ferromagnetic cou-
pling between the replica spin-1/2 sites and produces an
excitation gap ∼ |A| to unphysical states.
In the limit A → −∞, unphysical states lie at in-

finite energy and thus cannot be excited at any finite
temperature. However, PMFRG becomes inapplicable
in this limit since the involved approximations (trunca-
tion of flow equations for the fermionic vertex functions)
are valid only at temperatures that are not too small
compared to the relevant energy scales of the Hamilto-
nian J1, J2 and |A|. In practice, it is best to choose
A ∝ −T , which ensures that unphysical states remain
always suppressed while also keeping the ratio between
relevant energy scales of the Hamiltonian and the tem-
perature small. Using this approach, we find that the
temperature dependence of the heat capacity and sus-
ceptibility seem to converge around A/T ≈ −2.5 upon
varying A/T , see the Appendix. Precisely at this ratio
A/T ≈ −2.5 we also obtain perfect agreement with our
DMRG results.

After appropriately adjusting the level repulsion term,
the resulting interacting Majorana Hamiltonian is solved
via the standard FRG approach, in which an artificial
infrared cutoff Λ of Matsubara frequencies is introduced
in the bare Majorana propagator. Initially, at Λ = ∞,
the fermionic propagation is thus fully removed and the
system behaves trivially. To access the system’s evolu-
tion in Λ down to the physical limit Λ = 0, differential
flow equations for the fermionic one-particle irreducible
vertex functions are numerically solved as a function of
Λ. To obtain a finite set of differential equations, in the
standard one-loop truncation [45] effective interactions
between three or more spins are neglected, although such
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terms could in principle be generated during the renor-
malization group flow. An inclusion of certain contri-
butions of such effective three-spin interactions can be
achieved by a so-called two-loop truncation which can
also be generalized to multiloop schemes [45]. From the
viewpoint of perturbation theory, a truncation of flow
equations is generally justified for temperatures that are
not too small compared to the dominant interaction, here
given by J1.

From the two-particle vertex, we compute the equal-
time spin structure factor S(q) as defined in Eq. (3).
Other observables, such as the specific heat, are obtained
via numerical derivatives of the interacting free energy as
detailed in Ref. [24]. Within PMFRG, phase transitions
between magnetically ordered and paramagnetic phases
are typically identified via a critical scaling of the suscep-
tibility, or, alternatively, the correlation length ξ which
can be obtained from the equal-time spin structure factor
S(q) via

ξ =
L

2π

√
S(q⋆)

S(q⋆ + 2π
L eq⋆)

− 1. (5)

Here, L is the maximal distance beyond which spin cor-
relations are set to zero in the simulations and q⋆ is the
point in reciprocal space where S(q) is maximal which
corresponds to the wave vector of the magnetic order to
be probed. Furthermore, eq⋆ is a unit vector in recip-
rocal space that points towards the direction of deepest
descend away from q⋆. Crucially, a finite L has a similar
effect than a finite system size [47] such that precisely at
the critical temperature the correlation length behaves as
ξ ∼ L. This criterion is used to detect critical ordering
temperatures in numerical runs with varying T and L.

III. RESULTS

A. Finite-temperature properties of the nearest
neighbor model

In this subsection we address the finite-temperature
properties of the nearest neighbor pyrochlore Heisenberg
model, i.e., we set J2 = 0. The ground state of this
system was found to be non-magnetic in several previous
works [11, 12, 42]. The investigation here also serves as a
benchmark for the PMFRG method to check whether the
level-repulsion term can correctly eliminate contributions
from the unphysical states in thermodynamic quantities
such as the specific heat and the susceptibility. In Fig. 2
we show the results for these quantities obtained by the
purification approach and by PMFRG.

As we approach T ∼ 2 a maximum seems to be formed
in the heat capacity in agreement with the rotation-
invariant Green’s function method [12]. Since the heat
capacity peak occurs at temperatures on the order of the
coupling J1, the system turns into a strongly correlated
quantum magnet in this temperature region. This is also

C
V

0

0.1

0.2

T
100 101 102

𝜒

0

0.05

0.1

32-site cluster 
one-loop
two-loop

FIG. 2. Specific heat CV (upper panel) and uniform suscep-
tibility χ (lower panel) for the nearest neighbor pyrochlore
Heisenberg model (J2 = 0) from one-loop and two-loop PM-
FRG as well as from extrapolated purification for the 32-site
cluster.

indicated by the fact that the truncation error in the
imaginary time evolution grows rapidly up to O(10−2),
which renders the application of the purification tech-
nique at lower temperatures unreliable. The PMFRG
results are in remarkably good agreement with the ones
from the purification approach, especially for the two-
loop truncation scheme, which was previously found suit-
able for the S = 1/2 nearest neighbor pyrochlore Heisen-
berg model [25]. Note that in PMFRG the specific heat
is obtained via a numerical second derivative of the free
energy, and thus requires a numerically accurate solution
of the flow equations, making it prone to inaccuracies
from error propagation. Due to such effects we find a
slightly negative heat capacity at the highest tempera-
tures T ∼ 100, where the physical contribution of the
interaction correction to the free energy is vanishingly
small but the dominant interaction from the level repul-
sion A ∼ T is still considerable. Likewise, at the low-
est temperatures, T ≲ 0.3 errors from the truncation of
PMFRG flow equations also lead to an unphysical heat
capacity CV < 0. We have omitted data at such low tem-
peratures in Fig. 2. Nonetheless, the overall agreement
between the two very different methods serves as an indi-
cation that even for spin magnitudes S > 1/2, PMFRG
is a reliable approach to address finite-temperature prop-
erties.
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FIG. 3. DMRG ground-state energies per site for the 32-
and 48-site clusters (upper panel) and spin gap for the 32-site
cluster (lower panel). The spin gap is not calculated for the
48-site cluster due to large numerical costs. The error bars
are defined as half the distance between the best variational
energy and the extrapolated one.

B. Effect of the J2 coupling

As mentioned before, an antiferromagnetic next-
nearest neighbor coupling J2 enhances spin correlations
of so-called k = 0 type [11]. The corresponding clas-
sical k = 0 order has ferromagnetic spin arrangements
in each of the four sublattices of the pyrochlore lattice,
individually. On the other hand, the relative orienta-
tions of the four spins in each tetrahedron fulfill the spin
ice rule, which means that the sum of the four spins in
each tetrahedron vanishes. The k = 0 order manifests
in magnetic Bragg peaks in the spin structure factor at
q = (4π, 0, 0) and symmetry-equivalent points in the ex-
tended Brillouin zone. Our main goal in this subsection
is to identify and locate the phase boundary where J2
interactions drive k = 0 magnetic order in the S = 1
system.

First, we investigate the system’s ground-state proper-
ties using the DMRG technique. The extrapolated ener-
gies and the spin gap are shown in Fig. 3. The ground-
state energies exhibit a remarkably similar behavior to
the S = 1/2 case [20]: A shallow maximum emerges as
J2 is increased for both cluster sizes. This increase of
the ground-state energy upon switching on J2 indicates
that small second neighbor couplings first increase the
system’s frustration. A further increase of J2 leads to a
decreasing ground-state energy which signals a reduction
of frustration. Similarly, near the maximum a significant
drop in the spin gap is observed. Based on this observa-
tion, we may suspect that the ground-state wave function
undergoes a substantial change near J2 ∼ 0.02. This is
further confirmed by the equal-time spin structure fac-
tor S(q), [see Eq. (3)] shown in Fig. 4(a). One sees that
for small J2 ≲ 0.02 the equal-time spin structure factor

q z

− 8𝜋

0

8𝜋

J2 = 0.00625 J2 = 0.01875 J2 = 0.025

qx

− 8𝜋 0 8𝜋

q y

− 8𝜋

0

8𝜋

qx

− 8𝜋 0 8𝜋
qx

− 8𝜋 0 8𝜋

S(
q)

0

1

2

3

4

5

6

qy = qx

qz = 0

(a)

(b)

FIG. 4. (a) Equal-time spin structure factor S(q) from
DMRG [see Eq. (3)] in the [hhl]-plane (upper panel) and in
the [hl0]-plane (lower panel) for different values of J2 for the
32-site cluster using 12000 SU(2) states. Due to the high val-
ues of the peaks at q = (4π, 0, 0) in the bottom right subfigure
(cf. Fig. 5), a cutoff was applied according to the colorbar
to enhance the visibility of the other subfigures. (b) Patterns
of nearest neighbor spin correlations in the three degenerate
ground states of the non-magnetic phase at J2 ≲ 0.02 and of
the k = 0 magnetic phase at J2 ≳ 0.02 as found by DMRG.
In the non-magnetic phase blue bonds illustrate strong anti-
ferromagnetic (AFM) correlations (⟨SiSj⟩strong ∼ −1.42 for

J2 = 0.0125 in DMRG) while red bonds denote weak cor-
relations (⟨SiSj⟩weak ∼ −0.058 for J2 = 0.0125 in DMRG).
On the other hand, in the k = 0 magnetic phase blue bonds
illustrate ferromagnetic (FM) correlations (⟨SiSj⟩FM ∼ 0.75
for J2 = 0.05 in DMRG) while red bonds denote antiferro-
magnetic correlations (⟨SiSj⟩AFM ∼ −1.13 for J2 = 0.05 in
DMRG).

S(q) in the [hl0] plane depends only weakly on qy [left
panel of Fig. 4(a)], which was also observed for J2 = 0 in
a previous work [42]. The small dependence on py sug-
gests that the system consists of weakly correlated x-z
planes. An analysis of nearest neighbor correlations re-
veals that as for J2 = 0 in Ref. [42] the system forms lines
of strongly antiferromagnetically correlated spins along
the edges of the tetrahedra in the x-z plane. On the
other hand, the nearest neighbor bonds connecting these
lines are only weakly correlated resulting in effectively
decoupled x-z planes. These strongly and weakly corre-
lated nearest neighbor spins are illustrated by blue and
red bonds in Fig. 4(b), respectively, where the middle fig-
ure corresponds to the state with decoupled x-z planes.
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The existence of a plane of strong correlations indicates
a phase with broken C3 rotation symmetry around the
[111] axis. Thus, the ground state in this small-J2 regime
is three-fold degenerate corresponding to the selection of
either the x-y, x-z or y-z plane. The DMRG calculation
converges to one of these states, depending on the ran-
dom initial state. The other two partner states can be
found by consecutive optimizations with the additional
constraint that the state being optimized should be or-
thogonal to the previously optimized states [42].

Increasing J2 we first observe an increasing dependence
on qy [middle panel of Fig. 4(a)] indicating growing corre-
lations between x-z planes. For J2 ≳ 0.02, however, the
pattern changes drastically with weight accumulating at
the wave vector q = (4π, 0, 0) [right panel of Fig. 4(a)].
We identify this as the onset of k = 0 magnetic order. At
this point several remarks are in order. As we consider a
finite system, spontaneous magnetization can not occur,
which is also consistent with the finite spin gap. More-
over, a real phase transition should only emerge in the
thermodynamic limit, however, this drastic relocation of
the weight is a clear precursor of a phase transition at
J2 ∼ 0.02.

Interestingly, the three-fold degeneracy of the non-
magnetic ground state observed for J2 ≲ 0.02 remains in
the k = 0 regime at J2 ≳ 0.02. Furthermore, the correla-
tions in these three states have a similar line-like pattern
as in the non-magnetic phase but with different signs and
strengths: The three states exhibit non-intersecting lines
of ferromagnetically correlated spins in either the x-y, x-z
or y-z plane while nearest neighbor correlations between
such lines are antiferromagnetic. Figure 4(b) also visu-
alizes these states, where the blue (red) lines now corre-
spond to ferromagnetic (antiferromagnetic) bonds. The
three states produce peaks in the spin structure factor at
the wave vectors q = (0, 0, 4π), (0, 4π, 0) and (4π, 0, 0),
respectively. Again, the selection depends on the initial
state in DMRG.

To put the transition at J2 ∼ 0.02 on a more quantita-
tive footing, the weight S(q = (4π, 0, 0)) at the ordering
wave vector is plotted as a function of J2 in Fig. 5. One
can clearly observe a significant increase in signal near
J2 ∼ 0.02, which marks the phase boundary in the finite
system.

A natural question is how representative our results are
for the thermodynamic limit. Unfortunately, due to the
enhanced growth of the Hilbert space compared to the
S = 1/2 case, it is not possible to consider larger clusters
reliably, thus a finite-size scaling of the quantities dis-
cussed above is not possible. To address this issue and to
corroborate our findings from DMRG, we use the com-
plementary PMFRG approach, which is less constrained
by finite size effects [33, 48].

Figure 6 shows the equal-time spin structure factor
S(q) in the non-magnetic phase at J2 = 0.01875 in com-
parison between PMFRG and DMRG. Since, by con-
struction, all symmetries of the Hamiltonian remain in-
tact within PMFRG, the DMRG data in Fig. 6 is sym-

0.00 0.01 0.02 0.03 0.04 0.05

J2

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

S
(4
π
,
0
,
0
)

FIG. 5. Spin structure factor S(q = (4π, 0, 0)) from DMRG
at the ordering wave vector of the k = 0 phase as a function
of J2 for the 32-site cluster, using 12000 SU(2) states.

FIG. 6. Spin structure factor S(q) for J2 = 0.01875 from
DMRG at T = 0 with symmetrized wavefunction (bottom
panel) and from PMFRG at T = 0.25 (top panel) for L = 10.
The left (right) plots show S(q) in the [hhl] ([hl0]) plane.

metrized to enable a direct comparison between both ap-
proaches. Also note that the DMRG result corresponds
to T = 0 while the PMFRG data is taken at the lowest
simulated temperature T = 0.25. Both methods agree
well on their prediction of dominant wave vectors, how-
ever, in DMRG the peaks in S(q) (which indicate the
proximity to the k = 0 ordered phase) are somewhat
more pronounced. This is likely an effect of the differ-
ent temperatures involved in the comparison, where the
finite temperature T = 0.25 used in PMFRG smears the
signal. On the other hand, PMFRG can efficiently de-
scribe fully translationally invariant systems, restricting
only the length of spin correlations (here, L = 10). If L is
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chosen to be larger than the physical correlation length,
this method provides a virtually infinite momentum res-
olution, which smoothes the more ‘grainy’ appearance of
the spin structure factor from DMRG. As a consequence,
remnants of the characteristic pinch-point pattern known
from the J1-only model become visible at q = (4π, 0, 0)
within PMFRG. However, due to the finite J2 coupling
a peak starts to grow out of the pinch-point center [11].

Upon increasing J2 we observe growing intensities of
the spin structure factor at the dominant wave vector
q = (4π, 0, 0) within PMFRG (not shown). In order to
rigorously determine the transition to the k = 0 ordered
phase in PMFRG we study the model for three different
values of the maximal correlation length L = 6, 10, 14 us-
ing the one-loop PMFRG scheme which was found to be
more suitable for resolving magnetic order than higher
loop-orders [25]. We find critical temperatures of a sec-
ond order phase transition via finite-size scaling of the
correlation length ξ [see Eq. (5)] which, at the critical
temperature Tc, scales as ξ/L = const., i.e., linear in
the numerically chosen maximum correlation distance L.
The critical temperatures Tc determined this way are
shown in Fig. 7 as a function of J2. Although tempera-
tures below T ≲ 0.3 cannot be resolved accurately due to
the effects of neglecting higher order vertices in the flow
equations, Tc shows a clear downward trend when low-
ering J2. The phase boundary Tc(J2) can be accurately
fitted by a parabolic curve which we extrapolate to ob-
tain an estimate for the phase boundary at T = 0, given
by J2 = 0.035(8). The error bars for the data points
in Fig. 7 are estimated from the maximal difference be-
tween pairwise crossing points of curves for different L
(see inset). The error of the T = 0 phase boundary is
estimated through extrapolations of the errorbars as dis-
played in the figure.

While the value J2 = 0.035(8) from PMFRG is some-
what larger than the critical coupling J2 ∼ 0.02 esti-
mated with DMRG, taking into account the uncertainties
of the extrapolation to T = 0 in PMFRG and the fact
that the DMRG result is obtained for a small spin clus-
ter, both critical couplings can still be regarded as con-
sistent. Particularly, the small critical J2 found in both
approaches indicates a high fragility of the non-magnetic
phase of the nearest neighbor model to second neighbor
couplings.

C. Discussion of previous PFFRG results

The position of the zero-temperature phase transition
at J2 = 0.035(8) identified by PMFRG in the previous
subsection differs considerably from the critical coupling
J2 = 0.09(2) found in Ref. [11] obtained by the similar
PFFRG approach. This raises the question why these
closely related approaches disagree so strongly in that
result. The following discussion provides an explanation,
points out precautions when using the PFFRG and de-
scribes how these methods should best be applied.

J2

0 0.1 0.2

T c

0

0.2

0.4

0.6

0.8 J2
PMFRG = 0.035(8)

J2
DMRG = 0.02

J2
PFFRG = 0.09 (Phys. Rev. X 9, 011005)

L = 6
L = 10
L = 14

T
0.5 0.75 1

𝜉/
L

0.06

0.08

0.1

0.12

FIG. 7. J2 dependence of the critical temperature Tc, ob-
tained via a scaling collapse of the correlation length ξ ∼ L
calculated with one-loop PMFRG. As an example, the inset
shows the scaling collapse for the red data point in the main
panel for maximal correlation distances L = 6, 10, 14. Er-
ror bars are estimated from the maximum deviation between
crossing points of different curves. The gray dashed line is
an extrapolation of the phase transition to T = 0 using a
parabolic fit, where the vertical black dashed line highlights
the T = 0 critical J2 coupling obtained this way. The vertical
blue line indicates the critical J2 coupling from DMRG and
the vertical red dashed line is the result from Ref. [11].

To start, it is worth explaining several properties
of the PFFRG and how this method detects quantum
phase transitions between magnetically ordered and dis-
ordered phases. The PFFRG expresses spin operators in
terms of complex fermionic auxiliary particles, so-called
Abrikosov fermions, which introduce unphysical states.
While at T = 0, the impact of unphysical states is usu-
ally found to be mild, at finite temperatures their con-
tributions grow such that a meaningful application of
the PFFRG is restricted to T = 0 (unless a projection
via the Popov-Fedotov method is applied [49]). Thus,
a finite-temperature phase transition can never be di-
rectly observed in PFFRG but instead reveals itself at
finite cutoff Λ > 0 at T = 0. However, while Λ shares
some properties with the temperature T , its artificial na-
ture complicates the physical interpretation of results at
finite Λ. For example, it is currently unclear whether
critical scaling in the system size L is generally expected
at finite Λ. Hence, the usual approach to nevertheless
identify the onset of magnetic order for given coupling
parameters at finite Λ and T = 0 within PFFRG is to
search for instability features of the susceptibility as a
function of Λ, such as kinks or peaks. This identification
of long-range order, however, gets increasingly difficult
if one approaches a quantum critical point from the or-
dered side, since kinks get less pronounced, shift to lower
Λ and continuously disappear. Furthermore, at low Λ the
PFFRG becomes increasingly inaccurate (for the same
intrinsic methodological reason why PMFRG becomes
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uncontrolled at low T ) and the existence or absence of
weak instability features may sensitively depend on de-
tails of the implementation such as the chosen frequency
mesh. As an example, Fig. 13 of Ref. [11] illustrates these
difficulties in precisely locating zero-temperature phase
boundaries in PFFRG, where a kink in the susceptibility
flow of the nearest neighbor pyrochlore Heisenberg model
continuously disappears when the spin magnitude S is
decreased. Usually, in PFFRG the extent of a magnet-
ically ordered zero-temperature phase is determined by
the coupling parameter regime in which kinks in the Λ
flow of the susceptibility are explicitly visible (although
sometimes only faintly visible). The phase boundaries
obtained this way (such as the critical second neighbor
coupling J2 = 0.09(2) of the S = 1 J1-J2 pyrochlore
Heisenberg model obtained in Ref. [11]), might, however,
underestimate the extent of ordered phases because there
could be a parameter window where magnetic order ex-
ists, but the instability features are too faint to be visible
in the susceptibility or the methodological limitations at
small Λ, coarse frequency meshes and finite system sizes
prevent their observation.

Let us compare this situation with the more quanti-
tative method of locating a T = 0 phase transition in
PMFRG where a finite size scaling and an extrapolation
to T = 0 is employed. The phase diagram in Fig. 7 shows
that a phase transition into a k = 0 magnetic regime is
only explicitly observed via critical scaling for J2 ≳ 0.12,
while for smaller J2 the methodological limitations at low
T or the actual absence of order prevent a direct detec-
tion of a phase transition. If the extent of the k = 0 or-
dered phase is only determined from the J2 regime where
a transition is directly visible (via a susceptibility kink in
PFFRG or via critical scaling in PMFRG) the two values
J2 = 0.09(2) in PFFRG and J2 = 0.12 in PMFRG are
actually not so different. This indicates that the compe-
tition between magnetic order phenomena and magnetic
disorder fluctuations might be described quite similarly
in both approaches. A crucial difference, however, is that
the more quantitative approach of detecting phase tran-
sitions in PMFRG allows an extrapolation to T = 0,
and thus provides access to actual quantum phase tran-
sitions. Note that an analogous procedure in PFFRG,
i.e., an extrapolation of kink-like instability features to
Λ = 0 would be considerably harder, since the Λ posi-
tions of weak kinks often depend sensitively on details
of the implementation (precise choice of the frequency
grid).

To summarize this discussion, the much larger zero-
temperature critical J2 coupling from PFFRG compared
to PMFRG does not necessarily indicate that PFFRG
intrinsically underestimates magnetic order. Rather, the
usual approach of identifying a quantum phase transition
from PFFRG susceptibility data is inaccurate and can
make magnetically ordered phases appear smaller than
they actually are. Therefore, zero-temperature phase
boundaries from PFFRG are only rough estimates and
the obtained sizes of magnetically ordered regimes can

be understood as lower bounds for the actual extents of
these phases. The results in this paper also show how
PMFRG solves this problem via extrapolations of phase
boundaries to T = 0, giving rise to more accurate posi-
tions of quantum phase transitions.

IV. CONCLUSIONS

We investigated the S = 1 antiferromagnetic Heisen-
berg model on the pyrochlore lattice with first (J1) and
second neighbor (J2) interactions. Our studies make
use of matrix-product-state based techniques and PM-
FRG, two very different approaches with complemen-
tary strengths and capabilities. While DMRG is re-
stricted to finite spin clusters, it has direct access to
actual wave functions and is applicable at T = 0. On
the other hand, the PMFRG can approach the thermo-
dynamic limit, however, it is restricted in the quantities
it can calculate (mostly spin correlations) and becomes
less accurate at low temperatures. Combining the differ-
ent strengths of both approaches we develop a consistent
phase diagram of the S = 1 J1-J2 pyrochlore Heisen-
berg model. For small J2 ≲ 0.02, the system shows non-
magnetic behavior. In this regime, DMRG finds that
the three-fold degeneracy of the ground state that was
previously identified at J2 = 0 persists at finite J2. Fur-
thermore, the system is found to exhibit weakly coupled
spin chains located in one of the three cubic faces, break-
ing the three-fold rotation symmetry around the [111]
axis. Investigating this phase with PMFRG, the large
accessible system sizes and enhanced momentum resolu-
tion allow us to observe remnants of pinch-points in the
spin structure factor, which, however, due to the finite
J2 coupling, are superimposed by a peak indicating the
proximity to an ordered phase. Around J2 ∼ 0.02 DMRG
finds a drastic change of the spin correlations indicated
by the emergence of a sharp peak in the spin structure
factor at q = (4π, 0, 0) suggesting the onset of k = 0
magnetic order. PMFRG confirms this phase transition
in a similar regime at J2 = 0.035(8) by extrapolating a
finite temperature transition to T = 0. Interestingly, our
DMRG results in the magnetically ordered phase also in-
dicate a three-fold ground state degeneracy and line-like
patterns of spin correlations in one of the cubic faces,
similar to the non-magnetic phase.
Besides the physical insights into the S = 1 antifer-

romagnetic Heisenberg model on the pyrochlore lattice
which our paper provides, we also discuss several im-
portant methodological aspects of the applied methods.
Particularly, our studies demonstrate that the (unavoid-
able) unphysical spin states of a S = 1 pseudo Majorana
model can be effectively eliminated in PMFRG via level
repulsion terms. The accuracy of this approach is con-
firmed by the excellent agreement with finite temperature
heat capacity and susceptibility data at J2 = 0 obtained
by the density-matrix purification approach. Finally, we
explain discrepancies with earlier PFFRG results for the
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same model and argue that our current findings can be
considered more accurate.
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Appendix. GENERALIZATION OF PMFRG TO
ARBITRARY SPIN MAGNITUDES S

A. Spin representation

Although the implementation of higher spin magni-
tudes S was previously shown in the context of PF-
FRG [46], the present case requires further considera-
tions which we now discuss in detail. The SO(3) Ma-
jorana representation employed in PMFRG is applica-
ble only for spin-1/2 operators. Ideally, the solution for
S > 1/2 would be to find a representation of spin-S op-
erators in terms of Majorana fermions, which does not
introduce any unphysical states. However, such a repre-
sentation exists only for S = 1/2 and S = 3/2, whereas
for all other spin magnitudes unphysical sectors cannot
be avoided [34]. Thus, in the present S = 1 case we follow
the approach of Ref. [46] that introduces various copies
(replicas) of spin-1/2 degrees of freedom on each site but
that also inevitably involves unphysical states that need
to be dealt with.

Specifically, our approach of implementing an effective
spin quantum number Seff amounts to introducing 2Seff

spin-1/2 operators Siµ on each site i such that

Si,eff =

2Seff∑
µ=1

Siµ , (A6)

where µ ∈ {1, 2, . . . , 2Seff} is the additional replica index.
Here and in the following, we use the convention that
Siµ refers to a spin-1/2 operator, corresponding to the
µ-th replica spin located on site i whereas operators that
implement higher spins Seff are denoted Si,eff.
Thus, the effective model treated in PMFRG model

results from replacing spin operators by Si,eff according

FIG. 8. Illustration of two effective spin-3/2 degrees of free-
dom, each composed of three spin-1/2 replicas, interacting
with each other. The spin replicas Si1 , Si2 , Si3 are fully equiv-
alent and colored differently only for visual clarity. The grey
arrow indicates an exemplary permutation of replicas which
leaves the model invariant.

to Eq. (A6) giving rise to a Hamiltonian in terms of spin-
1/2 operators,

H =
∑
(i,j)

∑
µ,ν

JijSiµ · Sjν +A
∑
i

(∑
µ

Siµ

)2

≡
∑
(i,j)

∑
µ,ν

Jiµ;jνSiµ · Sjν , (A7)

where (i, j) denotes pairs of sites i ̸= j (summed over
only once). To tune the energy of unphysical states, we
add a level repulsion term ∼ A on the right hand side of
the first line of Eq. (A7): For A < 0, the Hilbert space
sector where the addition of angular momenta realizes
the largest spin quantum number Seff is energetically fa-
vored over (unphysical) states with smaller spin quantum
numbers S < Seff. Furthermore, in the second line of
Eq. (A7) we combine the original couplings Jij and the
level repulsion A into a joint interaction constant Jiµ;jν
which now depends on site indices i, j and replica indices
µ, ν.
The replica construction is depicted in Fig. 8 for the

case of two interacting Seff = 3/2 spins. Colored circles
correspond to S = 1/2 replicas which are coupled to each
other locally with the ferromagnetic coupling A and non-
locally via the exchange interaction Jij . Strictly speak-
ing, this mapping is only exact in the limit A → −∞,
which, however, cannot be treated within PMFRG. This
is due to the fact that the approximation of neglecting
higher vertices in PMFRG breaks down if the effective
interaction becomes too large compared to the tempera-
ture. In practice, it is sufficient to choose A to be propor-
tional to the temperature, A = −γT , such that unphys-
ical states are always gapped out, while A is still small
enough to avoid methodological challenges. Below, we
will determine the best parameter γ in the present S = 1
case.

B. Flow equations and correlation functions

In PMFRG, we thus simulate the model in Eq. (A7),
i.e., a system of 2SeffN spin-1/2 degrees of freedom Siµ
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that are labelled by a site index i and a replica index µ.
At first glance treating this model may look like a consid-
erable increase in numeric complexity since the number
of bonds with a coupling Jij increases by a factor (2Seff)

2

relative to a genuine spin-1/2 model in which the replica
index takes only a single value µ = 1 (i.e., no different
replicas exist). However, below we will see that the intro-
duction of replicas has virtually no impact on numerical
performance due to a large number of symmetries in the
replica index.

The central object to be calculated in PMFRG is the
vertex function Γf ;iµ;jν (s, t, u) corresponding to the effec-
tive interaction between sites/replicas iµ and jν , where
f corresponds to the flavor combination, e.g. xyxy [24]
and s, t, u are Matsubara frequencies. At the initial cut-
off scale Λ → ∞ the vertex function is determined by the
bare couplings Jiµ;jν . Since an efficient PMFRG imple-
mentation only considers symmetry-inequivalent vertex
functions Γf ;iµ;jν (s, t, u), the first step is to determine all
independent site/replica arguments (iµ, jν) that have to
be taken into account. As illustrated in Fig. 8, replicas
µ, positioned on the same site i, are equivalent, implying
an invariance of the system under local permutations of
replicas iµ → iµ′ . Thus, the site/replica arguments of
vertex functions (iµ, jν) can be divided into three equiv-
alence classes of bonds denoted (i1, j1), (i1, i1), (i1, i2)
where each of the three bonds corresponds to a represen-
tative element in each class. The three classes are defined
by

(iµ, jν) =


(i1, j1), i ̸= j

(i1, i1), i = j and µ = ν

(i1, i2), i = j and µ ̸= ν

. (A8)

The first (i1, j1) and second bond (i1, i1) are the inter-site
and onsite bonds already known from a genuine spin-1/2
model. On the other hand, the last bond (i1, i2) between
two different replicas on the same physical site i does not
exist in the genuine spin-1/2 case. Notably, apart from
additional factors in the flow equation as discussed be-
low, the introduction of replicas only amounts to the con-
sideration of the additional symmetry-inequivalent bond
(i1, i2) regardless of the value of Seff which explains the
negligible costs of our replica construction.

We now make use of the equivalence classes to deter-
mine the flow equations for arbitrary Seff. To this end,
we consider an exemplary term on the right hand side
of the flow equation for dΓf ;ij(s, t, u)/dΛ in Eq. (51) of
Ref. [24] which, before the introduction of replicas, has
the form

Xij =
∑
k

Γ
(L)
ki Γ

(R)
kj Pkk. (A9)

Equation (A9) is written in a strongly condensed form:
As frequency indices and Majorana flavors x, y, z are
irrelevant for our discussion, they are omitted in the
bubble propagator Pii ≡ −SΛ

i (ω)G
Λ
i (ω

′) where SΛ
i (ω)

is the single-scale propagator and GΛ
i (ω

′) is the fully

dressed single-particle propagator. Likewise, to sup-
press frequency and flavor indices, we use dummy la-

bels for vertices Γ
(L)
ij and Γ

(R)
ij to refer to arbitrary left

and right vertices as appearing in each term of the flow

equations in Eq. (51) of Ref. [24], for example Γ
(L)
ij =

ΓΛ
a,ij(s, ω + ω1, ω + ω2) in Eq. (51a) of Ref. [24].
Upon introducing the spin-1/2 replicas by splitting the

sum over k as
∑

k →
∑

k

∑2Seff

µ=1 , we reorganize and group
the terms in the summation over µ according to the
equivalence classes in Eq. (A8). We note that due to
the aforementioned permutation symmetry in the replica
index µ, we may write the propagator as Giµ = Gi1 ≡ Gi

and thus Piµ,iµ ≡ Pi,i. Hence, Eq. (A9) in the class of
bonds (i1, j1) becomes

Xi1j1 =
∑
kµ

Γ
(L)
kµ,i1

Γ
(R)
kµ,j1

Pkµ,kµ

= 2Seff

∑
k ̸=i,j

Γ
(L)
k1,i1

Γ
(R)
k1,j1

Pk,k

+ Γ
(L)
i1,i1

Γ
(R)
i1,j1

Pi,i + Γ
(L)
j1,i1

Γ
(R)
j1,j1

Pj,j

+ (2Seff − 1)
(
Γ
(L)
i1,i2

Γ
(R)
i1,j1

Pi,i + Γ
(L)
j1,i1

Γ
(R)
j1,j2

Pj,j

)
.

(A10)

The first term is equivalent to the non-local contribu-
tions in the genuine spin-1/2 case, rescaled by a factor
2Seff accounting for all replicas. On the other hand, the
newly introduced bond (i1, i2) requires us to add the last
line in Eq. (A10). It can be seen that in the special case
Seff = 1/2, when no replicas are introduced, this expres-
sion reduces back to Eq. (A9). In the same way we obtain
for the bonds (i1, i1) and (i1, i2):

Xi1,i1 = 2Seff

∑
k ̸=i

Γ
(L)
k1,i1

Γ
(R)
k1,i1

Pk,k

+ Γ
(L)
i1,i1

Γ
(R)
i1,i1

Pi,i + (2Seff − 1)
(
Γ
(L)
i1,i2

Γ
(R)
i1,i2

Pi,i

)
(A11)

and

Xi1,i2 = 2Seff

∑
k ̸=i

Γ
(L)
k1,i1

Γ
(R)
k1,i1

Pk,k

+
(
Γ
(L)
i1,i1

Γ
(R)
i1,i2

+ Γ
(L)
i1,i2

Γ
(R)
i1,i1

+ (2Seff − 2)Γ
(L)
i1,i2

Γ
(R)
i1,i2

)
Pi,i. (A12)

The site summation for the self energy similarly changes
through the introduction of replicas and its terms, are
the same as found for Xi1,i1 , see [24]. It is worth em-
phasizing again that the only additional terms compared
to a genuine spin-1/2 model are those containing vertex
functions on (i1, i2) bonds. Hence, for a PMFRG im-
plementation of models with higher spins S > 1/2 one
can copy most terms from a spin-1/2 code while only the
terms with (i1, i2) bonds need to be added manually [51].
Ultimately, the object of interest are spin correlators

χij ≡ ⟨Si,eff · Sj,eff⟩. Since the PMFRG only returns
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replica correlators ⟨Siµ · Sjν ⟩, we obtain χij via replac-
ing Si,eff by its definition in Eq. (A6) and expanding the
replica summation. Again, we use the equivalence classes
in Eq. (A8) to simplify the expression. For non-local cor-
relators i ̸= j, all terms in the sum are equal and thus we
obtain a simple prefactor (2Seff)

2. For local correlators
i = j we distinguish between contributions from two dif-
ferent replicas ⟨Si1 ·Si2⟩ and contributions from identical
replicas ⟨Si1 · Si2⟩:

χi,j ̸=i = (2Seff)
2⟨Si1 · Sj1⟩ (A13)

χi,i = 2Seff⟨Si1 · Si1⟩+ 2Seff(2Seff − 1)⟨Si1 · Si2⟩
(A14)

As the heat capacity is determined from PMFRG via
derivatives of the interacting free energy, we also adjust
this quantity to be

fint → 2Sefffint. (A15)

C. Benchmarking

As a first check of our implementation, we consider the
exactly solvable systemH = JS1,eff·S2,eff of two interact-
ing S = 3/2 spins S1,eff and S2,eff with an antiferromag-
netic Heisenberg coupling J > 1. We note that despite its
small Hilbert space, this model poses the same (or even
larger) challenges to our diagrammatic approach than
real many-body systems. In fact, PMFRG is most suited
for systems of higher dimensions due to its inclusion of
mean-field contributions [45]. Consequently, studying
the two-site Heisenberg dimer is a suitable test for the
worst-case performance of our method. The Hamiltonian
of this system treated via replicas µ = 1, 2, 3 is

H = J

3∑
µ=1

3∑
ν=1

S1µ · S2ν +A

2∑
i=1

(
3∑

µ=1

Siµ

)2

, (A16)

where we set J = 1 in the following. In Fig. 9 we present
results for the static local spin correlator χ11(iν = 0) and
the static non-local spin correlator χ12(iν = 0) defined
by

χij(iν = 0) =

∫ β

0

dτ⟨Sz
i,eff(τ)S

z
j,eff(0)⟩, (A17)

where τ is the imaginary time. Shown in Fig. 9 are three
different choices of the level repulsion A. For small level
repulsion |A| = 0.1 ≪ J ≡ 1, we observe good agreement
between the exact results for the spin-3/2 dimer before
and after the introduction of replicas (i.e., without and
with unphysical S = 1/2 states) at low temperatures.
This is expected since the ground state of an unfrustrated
spin system typically lies in the sector with maximal (ef-
fective) spin as the interaction energy ∼ S1,eff · S2,eff is
largest in this case. It can be seen that PMFRG agrees
remarkably well with the exact result of the replica sys-
tem in Eq. (A16) (dashed line). At higher temperatures,
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FIG. 9. Spin correlations of the S = 3/2 Heisenberg dimer
for different choices of the level repulsion, A = −0.1, A =
−2, A = −1.5T , from top to bottom. The solid black (red)
line indicates the exact solution of the local correlator χ11

(non-local correlator χ12). The dashed lines correspond to
the exact solution after the introduction of replica spins [see
Fig. 8], i.e., in the presence of unphysical S = 1/2 spin states.
Squares indicate results from PMFRG.

the effect of unphysical states becomes visible since the
excitation gap to such states, determined by A, is too
small to suppress their impact on physical observables.
Conversely, for a larger level repulsion of A = −2, we
observe good agreement between PMFRG and the exact
result at higher temperatures as the unphysical states are
further shifted to higher energies. However, at low tem-
peratures, methodological difficulties arise because the
dominant energy scale in the Hamiltonian (now given by
A), also sets the temperature scale T ∼ |A| below which
results can become inaccurate. The solution to this prob-
lem is to introduce a level repulsion A = −γT that scales
linearly in temperature, as shown in the bottom panel
of Fig. 9. There we find that the value γ = 1.5 max-
imizes the agreement between PMFRG and the exact
result both at high and low temperatures.

Finally, we determine the optimal value γ for the near-
est neighbor pyrochlore model. In this case, we use
DMRG data to benchmark our PMFRG results. Even
though DMRG cannot access temperatures below T ∼ 2,
the regime T ≳ 2 is still suitable for our benchmarks,
since the effects of unphysical states are more pronounced



12

C
V

0

0.1

0.2

0.3

0.4
one-loop two-loop

T
100 101 102

𝜒

0

0.05

0.1

T
100 101 102

A = − 0.1T
A = − 2.5T
DMRG 

FIG. 10. Specific heat (top panel) and uniform susceptibil-
ity (bottom panel) obtained from PMFRG in the standard
one-loop truncation (left) and two-loop truncation (right) as
a function of temperature for different choices of the level
repulsion A = −γT ranging from γ = 0.1 (blue lines) to
γ = 2.5T (red lines). The values of γ for the thin gray lines
in between are γ = 0.2, 0.5, 1, 1.5, 2. The black lines denote
the DMRG result.

at higher temperatures. In Fig. 10 we show the spe-

cific heat capacity CV and the uniform susceptibility χ a
function of temperature for varying values of γ. At the
smallest level repulsion γ = 0.1, the effects of unphysical
states are still clearly visible from the deviation between
the PMFRG result (blue curve) and the DMRG result
(black curve). As the level repulsion is increased, the
PMFRG results first undergo significant changes, in par-
ticular the specific heat. However, for γ ≳ 1 the changes
become smaller upon varying γ and we observe conver-
gence around γ = 2. The agreement with DMRG is
best at γ = 2.5 (red curve) which is also used for our
PMFRG results in the main text. We note that for the
conventional one-loop truncation, the specific heat and
the susceptibility from PMFRG show a slightly enhanced
deviation from the DMRG results at the lowest temper-
atures T ∼ 2 accessible within DMRG. As discussed in
Ref. [25], this can be remedied by a two-loop truncation
of the vertex flow equations, which significantly decreases
these deviations. In principle, the ideal choice of γ can
change upon increasing J2. However the excitation gap
to unphysical states at constant γ and increasing J2 is
expected to increase as a result of the decreasing frus-
tration. Hence, the constant value γ = 2.5 should also
properly eliminate the impact of unphysical states for
J2 > 0.
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[6] A. M. Läuchli, J. Sudan, and R. Moessner, s = 1
2
kagome

heisenberg antiferromagnet revisited, Phys. Rev. B 100,
155142 (2019).

[7] J. H. Kim and J. H. Han, Chiral spin states in the py-
rochlore heisenberg magnet: Fermionic mean-field theory
and variational monte carlo calculations, Phys. Rev. B
78, 180410 (2008).

[8] R. Sobral and C. Lacroix, Order by disorder in the py-
rochlore antiferromagnets, Solid State Communications
103, 407 (1997).

[9] B. Canals and C. Lacroix, Quantum spin liquid: The
heisenberg antiferromagnet on the three-dimensional py-
rochlore lattice, Phys. Rev. B 61, 1149 (2000).

[10] V. R. Chandra and J. Sahoo, Spin- 1
2
heisenberg antifer-

romagnet on the pyrochlore lattice: An exact diagonal-
ization study, Phys. Rev. B 97, 144407 (2018).

[11] Y. Iqbal, T. Müller, P. Ghosh, M. J. P. Gingras, H. O.
Jeschke, S. Rachel, J. Reuther, and R. Thomale, Quan-
tum and Classical Phases of the Pyrochlore Heisenberg
Model with Competing Interactions, Phys. Rev. X 9,
011005 (2019).

[12] P. Müller, A. Lohmann, J. Richter, and O. Derzhko,
Thermodynamics of the pyrochlore-lattice quantum
Heisenberg antiferromagnet, Phys. Rev. B 100, 024424
(2019).

[13] H. Tsunetsugu, Theory of antiferromagnetic Heisenberg
spins on a breathing pyrochlore lattice, Prog Theor Exp
Phys 2017, 10.1093/ptep/ptx023 (2017).

[14] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents,
Quantum Excitations in Quantum Spin Ice, Phys. Rev.
X 1, 021002 (2011).

[15] J. G. Rau and M. J. Gingras, Frustrated quan-
tum rare-earth pyrochlores, Annual Review
of Condensed Matter Physics 10, 357 (2019),
https://doi.org/10.1146/annurev-conmatphys-022317-
110520.

[16] O. Derzhko, T. Hutak, T. Krokhmalskii, J. Schnack, and
J. Richter, Adapting planck’s route to investigate the
thermodynamics of the spin-half pyrochlore heisenberg
antiferromagnet, Phys. Rev. B 101, 174426 (2020).

[17] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske,
and K. W. Godfrey, Geometrical Frustration in the Ferro-
magnetic Pyrochlore Ho2Ti2O7, Physical Review Letters
79, 2554 (1997).

[18] C. Castelnovo, R. Moessner, and S. Sondhi, Spin Ice,
Fractionalization, and Topological Order, Annual Review
of Condensed Matter Physics 3, 35 (2012).
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