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W Check for updates

Human tumors are diverse in their natural history and response to
treatment, which in part results from genetic and transcriptomic
heterogeneity. In clinical practice, single-site needle biopsies are used

to sample this diversity, but cancer biomarkers may be confounded by
spatiogenomic heterogeneity withinindividual tumors. Here we investigate
clonally expressed genes as a solution to the sampling bias problem by
analyzing multiregion whole-exome and RNA sequencing data for 450
tumor regions from 184 patients with lung adenocarcinoma in the TRACERXx
study. We prospectively validate the survival association of a clonal
expression biomarker, Outcome Risk Associated Clonal Lung Expression
(ORACLE), in combination with clinicopathological risk factors, and in
stage I disease. We expand our mechanistic understanding, discovering
that clonal transcriptional signals are detectable before tissue invasion,
actas amolecular fingerprint for lethal metastatic clones and predict
chemotherapy sensitivity. Lastly, we find that ORACLE summarizes the
prognosticinformation encoded by genetic evolutionary measures,
including chromosomal instability, as a concise 23-transcript assay.

Lung cancer is the leading cause of global cancer-related death'.
Non-small cell lung cancer (NSCLC) accounts for 85% of cases, of
which 50% are lung adenocarcinoma (LUAD)”. For patients with NSCLC,
tumor-node-metastasis (TNM) staging is the gold standard for clini-
cal prognostication and therapeutic decision-making. Although TNM
staging is clearly associated with survival, better predictors could be
found. Forexample, surgical resection is performed with curativeintent
inpatients with stagel disease, yet there is a 5-year mortality rate of 15%
in this population®. This indicates a need to address undertreatment
byidentifying high-risk stage [ tumors that may benefit from adjuvant
therapy*. Moreover, as computed tomography lung-cancer screening
programs are adopted, the proportion of stage | diagnoses increases
fromaround 15%to nearly 60% (ref. 5). Therefore, improving prognostic
accuracy in early-stage LUAD is an urgent and growing clinical need.
Transcriptomic biomarkers hold the translational potential of
capturing features of cancer cell aggressiveness to add a molecular

dimension to prognostication. Yet, despite two decades of research,
developing reliable expression biomarkers for LUAD remains a dif-
ficult task. Previously suggested biomarkers have failed to refine risk
prediction beyond established clinicopathological risk factors, par-
ticularly instage I disease®, and have exhibited poor reproducibility in
independent validation cohorts. This was showcased by the Director’s
Challenge Consortium study in which nine top research teams failed
to achieve these benchmarks’.

Previously, we quantified tumor sampling bias in the TRACERx
(TRAcking non-small cell lung Cancer Evolution through therapy (Rx))
lung study (NCT01888601). We observed that pervasive intratumor
heterogeneity (ITH) inlung cancer confounded prognostic signatures,
with30-40% of tumors yielding disparate prognostic scores depend-
ing upon where the biopsy needle was placed®. Proposed solutions
to the sampling bias issue for molecular biomarkers (Fig. 1a) include:
(1) bypassing sampling, by resecting the whole tumor then testing
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every part”'®; (2) sampling and pooling biopsies from different areas
of atumor to minimize artifacts from tumor heterogeneity (previous
authors have suggested that four biopsies would be sufficient for lung
tumors' or two biopsies for glioma'?); (3) homogenizing the entire
tumor, then performing one test on the resulting mixture®; and (4) our
previously developed strategy, identifying homogeneously (clonally)
expressed markers to sample and test one biopsy per tumor®.

Clonal expression biomarkers may be straightforward to imple-
ment clinically, as they are compatible with existing pathology work-
flows and cost-effective. Accordingly, we had designed the Outcome
Risk Associated Clonal Lung Expression (ORACLE) signature in TRAC-
ERx asamultiregionresearch cohort®. Inretrospective validation analy-
ses of more than 900 patients with LUAD, this biomarker maintained
prognostic significance and was associated with survival independent
of clinicopathological risk factors in a multivariable analysis®.

Here, we expand on our previous work by developing three lines
of analysis related to clonal expression biomarkers in LUAD. First, we
perform prospective validation of a molecular test based on cancer
evolutionary principles for patients with lung cancer. Second, we
expand our mechanistic understanding of clonal transcriptional signals
by charting them from tumor initiation to metastasis and evaluating
their association with chemosensitivity. Third, we examine the relation-
ship between clonal RNA alterations and previously described genetic
metrics of lung cancer evolution™ ™.

Results

Multiregion RNA-seq datafrom LUAD

Previously, we utilized datafrom the first 100 patients recruited into the
TRACERx study (TRACERX100 cohort, including 28 patients with stage
I-1IILUAD, 89 tumor regions) to quantify the RNA ITH of prognostic bio-
markersin LUAD®, Inthis work, we leverage multiregion RNA sequenc-
ing (RNA-seq) data from an expanded cohort of patients with stage
I-1II LUAD recruited prospectively in the TRACERX study (Extended
Data Fig. 1a). For the validation of ORACLE in an independent patient
cohort, we exclude patients profiled in our previous study toyield the
TRACERXx validation cohort, consisting of 369 tumor regions from158
patients. Separately, for additional exploratory analyses, we utilize
the full combined set of patients, termed the TRACERx exploratory
cohort, comprising 450 tumor regions from 184 patients. All primary
tumor regions were sampled from treatment-naive patients. ORACLE
risk scores were determined as described in the original publication®,
applying predefined model coefficients and risk-score cutoff (Methods
and Extended Data Fig. 1b).

Benchmarking tumor sampling bias

We prospectively assessed the tumor sampling bias of ORACLE,
benchmarking against comparable prognostic signatures. Tumor
sampling bias was quantified using four metrics in the TRACERx
validation cohort, restricting analysis to patients with multiregion
RNA-seq data available (333 tumor regions from 122 patients with
stage I-111 LUAD; Extended Data Fig. 1a). To benchmark ORACLE, six

RNA-seq-based prognostic signatures for LUAD were identified from
aliterature search and applied as described in their original publica-
tions (Methods and Supplementary Table 1): three signatures based
onimmune-related genes (Li et al.’®, Song et al."” and Jin et al.*°), one
Né-methyladenosine-related signature (Wang et al.”'), one ER-stress sig-
nature (Lietal.”?) and one signature derived from aberrantly expressed
protein-coding genes (Zhao et al.”).

First, the ORACLE signature was used to classify tumor regions
aseither highorlowrisk according to the predefined thresholds from
Biswas et al.’. Each tumor could then be classified as concordant-low
risk, concordant-high risk or discordant risk (Fig. 1a). For ORACLE,
discordant risk classification was observed in 19% (23/122) of tumors
compared with 25-44% across the other six signatures (Fig. 1b,c and
Extended Data Fig. 2a). We also assessed whether this observation was
affected by tumor stage (TNM 8th edition), finding that the discordant
risk frequency for ORACLE was not significantly associated with tumor
stage (chi-squared test, P=0.09; Extended Data Fig. 2b).

Second, we applied a hierarchical clustering method previously
used by us and others to quantify tumor sampling bias®** (Extended
DataFig. 3). In this analysis, a larger area under the curve (AUC) value
suggests more concordant classification of regions at the patient level.
ORACLE exhibited an AUC value of 0.76, ranking second highest out of
the sevensignatures (AUC values ranging from 0.22t0 0.77; Extended
Data Figs. 3 and 4a,b), with the Li et al.”® signature demonstrating a
marginally higher AUC value (0.77).

Third, we applied a method developed by Househam et al.” for
capturing the intratumor expression variability of individual genes,
with lower values indicating homogeneous expression (Extended
DataFig. 4c). By this metric, the genes comprising ORACLE exhibited
the lowest median value at 0.36 compared with values ranging from
0.49to1.3forthe other signatures (Extended Data Fig. 4d), indicating
greater stability in expression across tumor regions.

Lastly, motivated by the reliance on single tumor biopsiesin cur-
rent clinical practice, we applied a metric previously used to quantify
how many biopsies would be required to obtain a stable risk-score
estimate” (Extended Data Fig. 4€e). Using a threshold prespecified by
the authors of the original study?, the ORACLE signature reached a
stablerisk-score estimate at1.3 biopsies compared with 1.6-2.8 for the
other signatures (Extended Data Fig. 4f). This suggests that ORACLE
yields amore stable risk-score estimate from a single tumor biopsy.

In this prospective validation of tumor sampling bias, ORACLE
achieved the best mean rank (1.25) out of seven RNA-seq-based prog-
nosticsignatures for LUAD (range 4-6.25) across four metrics for tumor
sampling bias (Fig. 1d).

Prospective validation
Next, we focused on prospective assessment of the survival association
of ORACLE in the TRACERX validation cohort (n =158 patients with
stage I-11l LUAD; Extended Data Fig. 1a).

We calculated hazard ratio (HR) values to compare ORACLE risk
classes: concordant-high versus concordant-low, and discordant

Fig. 1| Prospective validation of tumor sampling bias. a, The sampling bias
problemisillustrated for alung tumor. Here, a prognostic biomarker classifies
tumor regions as high risk (red) or low risk (blue). The diagnostic biopsy
samples from only one tumor region (indicated by square with region number).
Therefore, using the conventional strategy, the readout of molecular risk for
this patient will depend entirely on where the biopsy needle is placed. Four
tissue-based solutions to mitigate sampling bias are tabulated, comparing

their tissue and assay requirements. Sampling and testing ‘all’ tumor regions
bypasses the sampling problem, but this is the most expensive in terms of tissue
and technology costs. Amultibiopsy strategy, sampling a limited number of
regions (four regions have been suggested for lung cancer"), brings down the
cost while tending to capture intratumor variability. ‘Blending’ the entire tumor,
and applying one test to an aliquot from the homogenized mixture, has the same

cost as testing a single diagnostic biopsy but requires pathology access to the
full tumor. Intheory, the ‘clonal’ strategy is the most economical, providing a
stable molecular readout from a single diagnostic biopsy. Created in BioRender.
com.b, Adot plot showing the distribution of ORACLE risk scores in the TRACERX
validation cohort (n =122 patients with stage I-1ll LUAD with multiple regions
available). Patients were classified into concordant low-risk (blue), concordant
high-risk (red) and discordant risk (gray) groups by ORACLE. The association
between ORACLE risk class and TNM stages was tested by chi-squared goodness-
of-fit testin Extended Data Fig. 2b. ¢, Pie charts showing the percentages of risk
groups classified by ORACLE and the other six signatures. d, An overview of
prognostic signature ranking across four different metrics for tumor sampling
bias. The mean rank of all tumor sampling bias was calculated for each signature.
The name of each signature is indicated (with the number of signature genes).
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versus concordant-low. There was a clear association between ORA- We next examined whether the association between ORACLE
CLErisk class and overall survival (OS) (Fig. 2a; concordant-high versus  and survival was independent of known clinicopathological risk fac-
concordant-low HR 2.2 (95% confidence interval (Cl) 1.2-3.9), discord-  tors (sex, age, smoking pack-years, adjuvant treatment status, tumor
ant versus concordant-low HR 2.5 (95% CI1.3-4.9), P=0.0034). stage (TNM 8th edition) and histologic grade). Adjusted HR (HR-adj)
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Fig. 2| Prospective validation of survival association. a, A Kaplan-Meier plot
showing the OS association among patients at low risk (blue), high risk (red)
and discordant risk (gray) classified by ORACLE in the TRACERx validation
cohort (n=158 patients with stage I-11l LUAD). Statistical significance was tested
withatwo-sided log-rank test, P=0.0034.b, The prognostic value of ORACLE
adjusted for known clinicopathological risk factors in the TRACERx validation
cohort (n=158 patients with stage I-11l LUAD). Multivariable Cox analysis was
performed incorporating the ORACLE mean risk score, patient sex, patient age,
pack-years (smoking packs and duration), adjuvant treatment status, tumor
stage (TNM 8th edition) and histologic grade. Pvalues or baseline (Ref.) are
shown for each predictor in the last column. The center box indicating HR and

the error bars indicating 95% Cls are shown for each predictor on a natural log
scale.IMA, invasive mucinous adenocarcinoma. ¢, The distribution of prognostic
associations for ORACLE across simulation runs of a pseudo-single-biopsy
cohort. One region is randomly sampled for each tumor followed by a Cox
regression analysis of ORACLE risk score against OS. The density plot shows the
distribution of log-scaled HR values across 1,000 simulations. d, The prognostic
value of ORACLE for patients with stage I (TNM 8th edition) LUAD in the TRACERx
validation cohort (n =70). The Kaplan-Meier plots show the OS association
accordingto clinical staging (TNM 8th edition) (P = 0.43) and ORACLE
(P=0.003). Statistical significance was tested with a two-sided log-rank test.

values were calculated using a multivariable analysis in the TRACERx
validation cohort (n =158 patients with stage I-1Il LUAD; Extended Data
Fig.1a). ORACLE was used as a continuous risk measure, by calculating
the mean score across regions per tumor. The ORACLE risk score was
significantly associated with OS (HR-adj2.27 (95% C11.3-3.9), P= 0.004;
Fig. 2b) when adjusted for sex, age, smoking pack-years, adjuvant
treatment status, tumor stage (TNM 8th edition) and histologic grade.

Inclinical practice, typically only one biopsy is available per tumor
to determine molecular risk scores. We generated a pseudo-single
biopsy cohort to evaluate ORACLE in this context, by randomly sam-
pling one region per tumor, calculating the risk score for that region,
then testing the survival association. Running this simulation 1,000
times, the ORACLE risk score remained significantly associated with
OSacrossevery iteration (Fig. 2c, bootstrapped HR 2.2, bootstrapped
Cl1.42-3.42).

We also evaluated ORACLE specifically in patients with stage |
LUAD in the TRACERX validation cohort (n = 70 patients with stage |

LUAD), where a prognostic biomarker might have the greatest util-
ity for adjuvant therapy use’. Classifying these patients according
to the current clinical standard (TNM 8th edition, n =38 in stage IA,
n=32instage IB), tumor substaging criteria were not prognostically
informative (log-rank P = 0.43; Fig. 2d). By contrast, stratifying these
patientsinto ORACLE risk classes (concordant-low n = 56, discordant
n =35, concordant-high n=9) showed a significant association with
OS (log-rank P=0.003; Fig. 2d). The association between ORACLE
risk scoreand OS inthe stage I subgroup remained significant (HR-adj
5.48(95%Cl1.6-18.8), P= 0.007; Extended Data Fig. 5a) when adjusted
for sex, age, smoking pack-years, adjuvant treatment status, tumor
stage (TNM 8th edition) and histologic grade. We further compared
substaging classification with ORACLE risk class, finding that 8% (3/38)
of patients with stage IA and 19% (6/32) of patients with stage IB were
classified as ORACLE high risk (Extended Data Fig. 5b). To compare
the predictive utility of ORACLE with other prognostic signatures,
we calculated area under the receiver operating characteristic curve
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Table 1| AUROC and C index calculated for patients with
stage | LUAD (n =70) using survival endpoints for LUAD
RNA-seq prognostic signatures

Overallsurvival  Lung-cancer- Disease-free
specific survival survival
AUROC Cindex AUROC Cindex AUROC Cindex
ORACLE 0.726 0.705 0714 0741 0.588 0.587
Lietal. JAMA 0.715 07 0.553 0.603 0.661 0.66
Oncol. 2017
Song et al. Sci. 0.705 0.664 0.692 0.685 0.615 0.604
Rep. 2022
Zhao et al. 0.674 0.598 0.576 0.597 0.629 0.62
Lung Cancer
2020
Lietal. Sci. Rep. 0.615 0.595 0.635 0.654 0.546 0.529
2022
Wang et al. 0.61 0.598 0.642 0.626 0.607 0.592
Front. Immunol.
2022
Jinetal. 0.593 0.556 0.558 0.528 0.576 0.567
J. Immunol. Res.
2022

(AUROC) values, finding that the ORACLE risk score exhibited higher
concordance with OSinstagel disease (AUROC 0.73) than the other six
signatures (AUROC 0.59-0.72; Table 1). Lastly, a meta-analysis of four
microarray datasets”” %’ from other institutions revealed that ORACLE
risk score was significantly associated with survival outcome in the
stagelIsubgroup (HR3.4 (95% C12.2-5.4), P=2.8 x107%; Extended Data
Fig.5c), providing additional validation in external cohorts.

ORACLE as abiomarker of invasive and metastatic potential
Previously we had observed that ORACLE risk scores were significantly
higher in metastatic samples from patients with LUAD, suggesting
that ORACLE may serve as a signature for metastatic potential®. We
wished to extend this finding by investigating whether high-risk clonal
expression changes are present before tissue invasion and whether
the lethal disseminating clone is detectable in the transcriptome of
the primary tumor.

First, we tested whether ORACLE, as a lung cancer marker, pre-
dicted lung-cancer-specific survivalin the TRACERXx validation cohort
(n=158 patients with stage I-1Il LUAD). A significant association was
found between ORACLE risk class and lung-cancer-specific survival
(concordant-high versus concordant-low HR 2.1 (95% C10.9-4.6), dis-
cordantversus concordant-low HR3.1(95% Cl1.4-7.0), P= 0.011; Fig. 3a).
The association between ORACLE risk score and lung-cancer-specific
survival remained significant in a subgroup analysis of patients with
stage [ disease (log-rank P = 0.0028; Fig. 3b) and when controlling for
clinicopathological risk factors (HR-adj2.15 (95% Cl1.1-4.3), P= 0.03;
Extended DataFig.5d). ORACLE risk score was also abetter predictor of
lung-cancer-specific survivalinstage | LUAD (AUROC 0.71) compared
with the other six prognostic signatures (AUROC 0.55-0.69; Table 1).

Next, to track the transition from normal tissue to cancer, we
examined ORACLE risk scores across eight histological stages (n=77
patients, including 27 normal tissues, 15 hyperplasia, 15 metaplasia,
13 mild dysplasia, 13 moderate dysplasia, 12 severe dysplasia, 13 carci-
nomainsitu (CIS) and 14 squamous cell carcinoma (SCC))*°. Charting
ORACLE risk scores by developmental stages revealed an increase in
expression from normal to metaplasia (linear mixed-effects model
P=0.0083; Fig.3c).

We evaluated whether a lethal disseminating phenotype could
be detected in the transcriptome of primary tumor regions harbor-
ing a metastatic subclone. Leveraging paired primary-metastasis

phylogenies™ within the TRACERx exploratory cohort, we super-
imposed ORACLE risk scores onto metastatic competence at the
level of tumor regions (53 tumor regions from n =17 patients with
stage I-11l LUAD with paired metastasis-seeding regions (22) and
non-metastasis-seeding regions (31)). In this analysis, seeding regions
displayed significantly higher ORACLE risk scores than nonseeding
regions (linear mixed-effects model P=0.03; Fig. 3d). To examine
whether ORACLE risk was informative for predicting early systemic dis-
semination, we assessed the time torelapse or death using disease-free
survival (DFS) inthe TRACERx validation cohort (n =158 patients with
stage I-1Il LUAD). A significant association was found between ORA-
CLE risk class and DFS (concordant-high versus concordant-low HR
2.3 (95% Cl1.2-4.2), discordant versus concordant-low HR 1.7 (95% CI
1.0-2.9), P=0.015; Fig. 3e). We also performed a subgroup analysis
finding that ORACLE risk class was significantly associated with DFS
in patients with stage I disease (P = 0.025, Fig. 3f; ORACLE AUROC 0.59,
other signatures AUROC values 0.55-0.66; Table 1). The association
between ORACLE risk score and DFS was not significant when adjusted
for clinicopathologicalrisk factors (HR-adj1.3 (95% C10.8-2.0), P=0.3;
Extended DataFig. 5e). Relapse rates at 5 year follow-up were higher for
concordant-high (37%,13/35) and discordant (52%, 12/23) risk classes
than for the concordant-low (29%, 29/100) group (Fig. 3e). Notably,
the rate of progression was more rapid in the high-risk (median DFS
1.8 years) and discordant-risk groups (median DFS 0.99 years) com-
pared with the low-risk group (median DFS not reached).

Overall, these data indicate that high-risk clonal expression
changes are present in preinvasive lesions, remain detectable in pri-
mary tumors thatachieve early systemic dissemination and can serve
asamolecular fingerprint for the lethal metastasizing subclone.

ORACLE delineates chemosensitive cells
Predicting patient benefit from adjuvant chemotherapy is a major chal-
lenge in early-stage NSCLC*>**. We therefore investigated the utility of
ORACLE foridentifying chemosensitivity in treatment-naive patients.
First, we examined the relationship between ORACLE risk score
and sensitivity to cytotoxic or targeted chemotherapies by leveraging
drug sensitivity screening data in the Genomics of Drug Sensitivity
in Cancer (GDSC) database®, which are linked to transcriptomic
profiles for LUAD celllines in the Cancer Cell Line Encyclopedia®. Cell
lines and compounds with missing data were filtered (Methods and
Extended DataFig. 6a). For each compound, we ranked LUAD cell lines
accordingto ORACLE risk score, then examined the correlation with
drugresponse determined by half-maximalinhibitory concentration
(ICso) (Extended Data Fig. 6b); multiple-testing correction was not
applied for this exploratory analysis. Focusing on the 17 the US Food
and Drug Administration (FDA)-approved drugs for NSCLC, only cis-
platin was significantly correlated with efficacy in ORACLE high-risk
celllines (Fig. 4a, P = 0.045, Spearman coefficient 0.33). Furthermore,
across all compounds screened, responses to 23 drugs positively
correlated with ORACLE risk score. GSK1904529A, a small molecule
inhibiting insulin-like growth factor-1receptor (IGF-1R) harbored the
strongest association with ORACLE risk score (P=0.0089, Spearman
coefficient 0.42). Notably, the main mechanism of GSK1904529A is
cell cycle arrest® and we have previously observed cell cycle genes
tobe enriched among clonal transcriptional signals®. Only one drug,
a B-Raf serine-threonine kinase (BRAF) inhibitor KINO01-206, was
negatively correlated with ORACLE risk score (P=0.0045, Spearman
coefficient —0.46; Fig. 4a and Extended Data Fig. 6b). By catego-
rizing therapeutic compounds on the basis of targeted pathways,
we identified four pathways—hormone-related, chromatin histone
methylation, DNAreplication and genome integrity—where all com-
pounds exhibited positive correlation with ORACLE risk. By contrast,
compoundsinvolvedininhibition of epidermal growth factor recep-
tor (EGFR) signaling tended to display a negative correlation with
ORACLE risk (Fig. 4b).
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Fig. 3| ORACLE as a marker of invasive and metastatic potential. a,b, Kaplan-
Meier plots showing the lung-cancer-specific survival association among
patients at low risk (blue), high risk (red) and discordant risk (gray) classified

by ORACLE in the TRACERX validation cohort (n =158 patients with stage I-1I1
LUAD, P=0.011) (a) and in stage I subgroup (n = 70 patients with stage | LUAD,
P=0.0028) (b). Statistical significance was tested with a two-sided log-rank test.
¢, ORACLE risk scores in 8 histological stages in a published dataset of preinvasive
lung lesions (122 biopsies from 77 patients). Each histological stage was further
grouped into different lesion grades according to the original article (Methods).
The statistical significance was assessed by a linear mixed-effects model setting
histological stages as fixed effect and accounting for individual patients as
arandom effect. No correction was made for multiple comparisons among
developmental stages. Metaplasia versus normal stage, P= 0.0083; SCC versus
metaplasia, P=0.098.d, ORACLE risk scores compared between primary regions

seeding and nonseeding metastatic clones determined by the phylogenies in the
TRACERXx exploratory cohort (n =17 tumorsincluding 22 seeding regions and 31
nonseeding regions). The statistical significance was tested with a linear mixed-
effects model using primary tumor regions as a fixed effect and accounting for
individual patients as arandom effect, P= 0.03. e, AKaplan-Meier curve showing
the DFS of ORACLE in the TRACERXx validation cohort (n =158 patients, with

54 of them having relapse). The percentages of patients developing relapse in
each ORACLE risk class are annotated. Statistical significance was tested with a
two-sided log-rank test. f, AKaplan-Meier curve showing the DFS of ORACLE in
stage I subgroup (n =70 patients with stage | LUAD). The statistical significance
was tested by a two-sided log-rank test. For c and d, the center line of the boxplot
indicates the median and the box spans from the 25th to 75th percentile. The
lower and upper whiskers define the 5th and 95th percentiles, respectively.

To test whether adjuvant chemotherapy modulates the prog-
nostic information captured by ORACLE, we divided patients from
the TRACERXx validation cohort into two subgroups according to
their adjuvant treatment status (n =102 non-adjuvant-treated, n =56
adjuvant-treated; patients with stage I-11l LUAD) and then stratified
by ORACLE risk class (Fig. 4c). In the non-adjuvant-treated subgroup,
a significant difference in OS rates was observed between ORACLE
concordant-highrisk patients (5-year OSrate 36%) and concordant-low
risk patients (5-year OS rate 70%) (Cox regression P=0.0001, HR 4.0
(95% C11.9-8.3)). By contrast, in the adjuvant-treated subgroup, there
was no difference in OS rates between ORACLE concordant-high risk
patients (5-year OSrate 69%) and concordant-low risk patients (5-year
OS rate 60%) (Cox regression P= 0.8, HR 0.9 (95% CI 0.3-2.5)). This
result, wherein ORACLE high-risk classification was more discrimina-
tory among patients who did not receive adjuvant therapy, remained

consistent when controlling for nodal status in this cohort of patients
(Extended DataFig. 7).

Taken together, these in vitro drug screen data and exploratory
clinical data suggest that ORACLE high-risk LUAD tumors may be sensi-
tive to platinum chemotherapy agents.

ORACLE as asummary metric of lung cancer evolution

To explore the underpinnings of clonal expression signals, we evalu-
ated clinicopathological correlates in the TRACERx exploratory cohort
(n=184 patients with stage I-1ll LUAD, Extended Data Fig. 1a; Methods).
The mean ORACLE risk score was calculated as asummary measure per
tumor, for use inmultiple linear regression analyses. We identified two
clinicopathological features that were significantly associated with
ORACLE risk scores: tumor stage Ill (P= 0.002), as shown previously®,
and Ki67 (P=0.0009; Fig. 5a).
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Fig. 4| ORACLE delineates chemosensitive cells. a, A volcano plot showing

the correlation between ORACLE risk scores and the sensitivity to anticancer
drugs available from the GDSC database (n = 37 LUAD cell lines; 359 compounds;
Methods). The analysis was performed using Spearman correlation with the
coefficient (p) labeled on the x axis and the Pvalue labeled on the y axis. Drugs
labeled inred indicate a significant association with ORACLE risk scores. FDA-
approved drugs for NSCLC are annotated and circled with black color. b, A dot
plot showing the distribution of Spearman coefficients for drugs categorized
according to their targeting pathways. The targeting pathways for each drug

(359 compounds) were obtained from the GDSC database**. Drugs showing
significant association with ORACLE risk scores are labeled in red. The center

line of the boxplot indicates the median, and the box spans from the 25th to 75th
percentile. The lower and upper whiskers define the 5th and 95th percentiles,
respectively. c, Kaplan-Meier curves of ORACLE as a predictive marker for
response to adjuvant therapies, dividing patients by the adjuvant treatment status
inthe TRACERX validation cohort (n =102 without adjuvant therapy, n = 56 with
adjuvant therapy). The statistical significance was tested with a two-sided log-rank
test, no adjuvant therapy P=0.00031and with adjuvant therapy P= 0.0087.

We next examined genetic features defined in the TRACERx
study™: whole-genome doubling (WGD) events, chromosomal
complexity (fraction of loss of heterozygosity, FLOH), somatic
copy-number alteration (SCNA)-ITH, and clonal and subclonal

mutations in driver genes. The mean ORACLE risk score per tumor
significantly correlated with SCNA-ITH (P= 0.02), FLOH (P=0.01) and
the number of clonal driver mutations (P= 0.009; Fig. 5aand Extended
DataFig.8).
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Fig. 5| ORACLE as asummary metric of lung cancer evolution.

a, Clinicopathological and genetic correlates with ORACLE magnitude in

the TRACERX exploratory cohort (n =184 patients with stage I-1[ LUAD).
Amultiple linear model was applied separately for clinicopathological or genetic
features (Methods). #Biopsy, number of biopsies. Each predictor is shownin

the column with its model coefficient represented by color scales and labeled
with significance (*P < 0.05, **P < 0.01, ***P < 0.005). For categorical variables
including female, ex-smoker and smoker, stage Il and stage 11, the references are
male, non-smoker and stage |, respectively. No correction was made for multiple
comparisons. b, The OS association of six biomarkers identified in the TRACERx

study'* was examined in the TRACERx exploratory cohort (n =111 patients with
stage I-1Il LUAD with all biomarker data available). Multivariable Cox analysis
was performed on ORACLE, recent subclonal expansion, SCNA-ITH, subclonal
WGD, detection of preoperative ctDNA status and STAS, adjusted for known
clinicopathological risk factors. Pvalues or baseline (Ref.) are shown for each
predictorin the last column. The center box indicating HR and the error bars
indicating 95% Cls are shown for each predictor on a natural log scale.

¢, The percentages of variation of survival outcome explained by the six
TRACERx biomarkers were examined by a generalized linear model.

To contextualize ORACLE-associated somatic alterations to spe-
cificdriver genes, we compared frequencies of each driver at gene level
between low-risk (n =308) and high-risk (n = 142) tumor regionsin the
TRACERX exploratory cohort (n =184 patients with stage I-11l LUAD).
ORACLE high-risk tumor regions were enriched (P < 0.05, odds ratio
(OR) >1) in clonal mutations occurring in eight driver genes (PTPRB,
TP53, MGA, KEAP1, SETD2, NOTCH2, ARIDIA and NRAS) and depleted
(P<0.05, OR <1) in tumor regions with clonal mutations of EGFR or
STK11 genes (Extended Data Fig. 9a,b). Performing the same analysis
for subclonal SNVs in driver genes revealed FATI gene enrichment in
ORACLE high-risk regions (P=0.03, OR 5.6), possibly due to this gene’s
putative role in maintaining genome integrity”.

As ORACLE risk scorereflected chromosomalinstability and com-
plexity, we wished to identify recurrent SCNA events using GISTIC2.0%®
to compare positive-selection scores (G score) between ORACLE con-
cordant high-risk and low-risk patients in the TRACERx exploratory
cohort (n=158 patients with stage I-1Il LUAD with concordant high- or
low-risk classification, Extended Data Fig. 1a; Methods). Identifying
cytobands associated with ORACLE high-risk (G-score difference >0,
false discovery rate g < 0.05), significant enrichment was observed
for 14 amplifications (Extended Data Fig. 9¢): 1922, 8q22.3, 8q24.11-
13, 8q24.21-23, 8q24.3,14q12,19q12 and 19q13.11-13. These amplified
chromosome arms include the NKX2-1 gene (which encodes thyroid

transcription factor 1(TTF1) anestablished histopathology marker for
LUAD) as well as MDM4, MYC, CCNE1 and AKT2. Significant enrichment
was also observed for ten cytoband deletions (8p23.1, 8p22, 8p21.3-1,
8p12,9p24.3and 20p12.3-1), including FGFR1, CDKN2A and PAX5 genes
(Extended DataFig. 9c).

Six biomarkers have beenidentified as associated with survivalin
the TRACERXx study: recent subclonal expansion', subclonal WGD™,
preoperative circulating tumor DNA (ctDNA)", SCNA-ITH', spread
through airway spaces (STAS)", and ORACLE®. We performed mul-
tivariable analysis to quantify the comparative prognostic informa-
tion between these biomarkers, including clinical risk factors in the
TRACERXx exploratory cohort (n =111 patients with stage I1-11l LUAD
with allbiomarker data available). Three biomarkers remained signifi-
cantly associated with OS (Fig. 5b): ORACLE (P=0.008,HR 2.06), STAS
(P=0.023,HR2.2) and preoperative ctDNA (P=0.025,HR 2.27). We also
calculated the percentage variance explained (PVE) encoded by each
of these six biomarkers to examine the dynamics of their prognostic
association (Fig. 5¢). This analysis showed that ORACLE risk score was
responsible for the greatest variance in OS outcomes in the first year
after LUAD diagnosis (PVE16.7%) and remained informative (PVE range
6.1-9.7%) alongside ctDNA and STAS over a 5-year follow-up period.

Overall, these results suggest that clonal expression signals corre-
spondto single-nucleotide variants (SNVs) and SCNAs occurring early
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in tumor evolution. Further, genetic evolutionary metrics previously
identified in the TRACERx study (SCNA-ITH, FLOH and clonal drivers)
were captured by ORACLE as asimple 23-transcript assay. Lastly, ORA-
CLE, preoperative ctDNA and STAS encoded complementary forms of
prognostic information.

Discussion

Tissue biopsy is the gold standard for cancer diagnosis. The typical
single-site needle biopsy samples less than 1% of the primary tumor
mass”, failing to capture the full extent of genetic and transcriptomic
ITH within individual tumors'*’, To address this sampling bias prob-
lem, we previously reported the development of a clonal expression
biomarker (ORACLE), which is associated with OS outcomes in retro-
spective cohorts®.

Here, we prospectively evaluated ORACLE, recognizing cancer as
anevolutionary disease to refine molecular prognostication in patients
withNSCLC.Inacomparisonagainst existing LUAD RNA-seq prognostic
signatures, ORACLE was prospectively validated as the top-ranked
signature across four metrics for tumor sampling bias. Importantly,
the association between ORACLE and OS was prospectively validated,
remaining significant in multivariable analysis with known clinico-
pathologicalrisk factors and in asubgroup analysis of stage | disease.

We wished to gaina deeper understanding of the clinical utility of
ORACLE. Simulation of a pseudo-single biopsy cohort suggested that
ORACLE remains informative in the clinical setting where tissue sam-
ples for molecular tests are usually limited*°. The association between
ORACLE and clinical outcomes was significant for lung-cancer-specific
survivaland DFS. Asan RNA marker, ORACLE complemented the use of
liquid biopsy (ctDNA) and pathology (STAS) markers to predict 5-year
survival outcomes.

Lastly, we uncovered mechanism-based insights into ORACLE.
Clonaltranscriptional signals were ‘hard-wired’ through the acquisition
of SNVs and SCNAs occurring early in tumor evolution and also delin-
eated metastatic seeding from nonseeding primary tumor regions.
These data may suggest that clonal expression biomarkers might be
further developed to stratify preinvasive lesions for early interven-
tion before systemic dissemination*"*2, ORACLE also correlated with
genetic measures of chromosomalinstability and complexity. This may
explain the observed relationship between ORACLE and sensitivity
to chemotherapy agents (in particular, cisplatin), as chromosomally
unstable tumors are hypothesized to be prone to genomic catastrophe
and, hence, optimal for cytotoxic therapy®. Indeed, recent data sup-
port the utility of chromosomal instability signatures for predicting
chemotherapy treatment response**.

Future workinlarger cohorts will testif ORACLE canintegrate with
substaging criteriato refinerisk stratification within stage I disease and
tovalidatealink between ORACLE and chemosensitivity. Breast cancer
trials have prospectively evaluated the use of RNA markers to refine risk
stratification for chemotherapy, thereby reducing overtreatment**°,
Asimilarapproach, designing arandomized phase Il trial comparing
observation versus chemotherapy or closer surveillance for ORACLE
high-risk tumors, may similarly move the needle for precision diag-
nostics in lung cancer (Extended Data Fig. 10). Moreover, the future
development of a clinical-grade RNA assay* " may bypass the limita-
tions of RNA-seq as a research-grade technology to enable real-time
clinical implementation*s.

Future work might also extend the utility of clonal expression
biomarkers beyond prognosticationin LUAD. We note that the method
reported in our original study to derive clonally expressed genes® has
successfully transferred to other cancer types* . In addition, multi-
region analyses suggest that existing expression-based predictive bio-
markers for checkpointimmunotherapy are subject to tumor sampling
bias®*. This may suggest that deriving a clonal expression biomarker
capturing the immuno-oncological status of a patient with NSCLC
could help refine prediction ofimmune checkpoint blockade efficacy™.

ORACLE has been designed as a pragmatic solution to the sam-
pling bias problem, applied to ‘bulk’ RNA extracted from single-site
needle samples in the clinical setting. It has been suggested that, for
asubset of tumors, prognosis is inherently difficult to predict due to
low-penetrant subclones that are undetectable in bulk profiling®.
For accurate diagnostic classification in these cases, identifying the
lethal subclone may require multiregion”~’ or single-cell®® sampling
strategies.

Methods

TRACERX cohort, sample collection and sequencing

The TRACERX study (NCT01888601) is a prospective observational
cohort study aimingto transform our understanding of NSCLC; it has
been approved by an independent research ethics committee (NRES
Committee London) (13/LO/1546). Written informed consent was
mandatory and obtained from all participants. The cohort used in
this study consists of the first 421 patients who had multiple regions
sampled from the same tumor to obtain DNA and RNA profiles for
subsequent analyses. Sex and gender were not considered in the study
design, the cohort comprised 233 (55%) men and 188 (45%) women,
andallavailableindividuals wereincluded in each analysis. The TRAC-
ERx421 cohort (1,644 tumor regions from n = 421 patients), as previ-
ously reported™, was accessed for this study, with cohort selection as
follows (Extended Data Fig. 1a). Including patients with NSCLC with
RNA-seq data available yielded the TRACERx NSCLC RNA-seq cohort
(745 tumor regions from n =299 patients). Excluding LUSC tumors (295
regions fromn =117 patients) and synchronous primary tumors (n =4
patients, ‘tumor1’ IDs were included and ‘tumor 2’ IDs were excluded")
yielded the TRACERX LUAD exploratory cohort (450 tumor regions
from n =184 patients). To obtain an independent validation cohort,
patients that were analyzed in the previous training cohort® (81 tumor
regions from n =26 patients with stage I-1ll LUAD; the number diverges
from the original study (n =28 patients, 89 regions)® due to sample
dropout withupdated TRACERX421 pipeline and cohort criteria) were
excluded, yielding the TRACERx LUAD validation cohort (369 tumor
regions from n =158 patients). DNA and RNA was extracted using All-
Prep DNA/RNA Mini Kit (Qiagen). Extracted DNA and RNA was assessed
for integrity by TapeStation (Agilent Technologies). Whole-exome
sequencing was performed on Illumina HiSeq 4000 or HiSeq 2500
platforms. Whole-RNA (RiboZero-depleted) paired-end sequencing
was performed using anIlllumina HiSeq 4000 platform. RSEM package
(version 1.3.3) was used to quantify transcript counts and transcript
per million (TPM) values™""*"* Genes with expression value less than
1TPMin at least 20% of samples were filtered out. The counts were
normalized by variance-stabilizing transformation by the DESeq2
package (version1.42.0)°'.

Calculating ORACLE risk scores

ORACLE risk scores were calculated as described in the original publi-
cation®. For each sample, each of the 23 signature genes was weighted
by the model coefficient developed in the training cohort, then these
values were summed to derive a risk score. ORACLE risk scores were
then dichotomized using a previously defined risk-score threshold
(10.199) to classify samples into low- or high-risk groups. The model
coefficients are specified in Supplementary Table 5 of the original
publication®.

Batch correction for RNA-seq preprocessing pipeline versions

The computational pipeline for generating TRACERx RNA-seq data has
been updated to the Nextflow pipeline* compared with the original
pipeline usedin the previous study®. Therefore, the count values of the
same samples generated by the two pipelines are technically different.
Toensure the same baseline and compatibility of a predefined ORACLE
risk-score cutoff with the current cohort, we performed abatch correc-
tion. Alinear regression model was fit between the ORACLE risk score
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of shared samples generated from the original and current pipelines
(85 tumor regions in 27 patients). This yielded a conversion formula,
and the ORACLE risk score was corrected as shown below (Extended
DataFig.1b).

Corrected risk scores = risk scores x 1.04 — 0.081

Identification of LUAD RNA-seq prognostic signatures

Two RNA-seq prognostic signatures were identified in the previous
study®. Of those, the TPM-based signature, Li et al.’, was selected for
the analysis. Here, we used the same method asin the previous study to
furtheridentify five RNA-seq signatures'® . In brief, articles describing
RNA-seq prognostic signatures for LUAD were identified by literature
searching on PubMed and were manually reviewed. Only signatures
with afulllist of genes and model coefficients specified in the articles
were included for subsequent analyses.

Tumor sampling bias metrics
Four metrics were used to measure tumor sampling bias across RNA-seq
prognostic signatures:

(1) Thediscordant rate was calculated as the percentage of
patients who had regions classified as both high risk and low
risk within a tumor.

(2) The clustering concordance was calculated as described by
Gyanchandani et al.?*. Tumor regions were clustered on the
basis of the gene expression of a given prognostic signature
using Manhattan distance and the Ward.D2 method. The con-
cordant rate was quantified by the percentage of patients with
all regions falling in the same cluster. This analysis was iterated
from1to 122 clusters (the maximum number of clusters was
set as the total number of patients in the multiregion TRACERx
validation cohort).

(3) Foragivensignature gene, the expression variability was quan-
tified as the standard deviation of expression among tumor re-
gions from each patient. The mean variability per signature was
calculated as the average expression variability across patients
in the TRACERX validation cohort.

(4) Bachtiary et al.”® previously developed a method to quantify
total expression heterogeneity. In brief, the expression variance
(0* within an individual tumor (w) was calculated (¢>w), then
averaged across all tumors in the cohort. The mean within
tumor expression variance was inversly related to the number

of biopsies (k), denoted as W =127 The total variance (7) per

k(biopsies) *
gene expression signature was summarized as the sum of mean
variance within tumor (W) and the variance between tumors
(B=d’b). The W-to-Tratio (W/T) measures the ITH per signa-
ture, with kequal to one to ten biopsies investigated in this
analysis.

Survival analyses

OSwasused as the primary outcome for prospective validation of sur-
vival association. Itis defined as the time fromregistration to death or
censoring. Lung-cancer-specific survival was used to measure the time
fromregistrationto death caused by lung cancer. DFSis defined as the
time from registration to radiologically confirmed recurrence of the
primary tumor or death or censoring. Intrathoracic relapses (n =24),
extrathoracicrelapses (n = 14) or both (n =16) were included in our data-
set. Two patients with LUAD (CRUKO0511and CRUK0512) involvedin the
analysis for time to relapse were censored at the time of the diagnosis
of new primary cancer owing to uncertainty of whether the subsequent
recurrence was from the first primary or the new primary cancer. For
patients withmultiple synchronous primary LUAD tumors, the average
value of genetic metrics was calculated. The HR and P value adjusted

for age, sex, smoking pack-years, adjuvant treatment, tumor stage
(TNM 8th edition) and histologic grade in multivariable Cox regres-
sion analyses, and log-rank Pvalue between group comparisons were
calculated using the survival R package (version 3.5). Kaplan-Meier
curves were plotted using the survminer R package (version 0.4.9),
whereas the results of multivariable Cox regression analyses were plot-
ted using the forestplot R package (version 3.1.3). All survival analyses
were performed on patients with all data available.

Meta-analysis of ORACLE prognostic values in microarray
cohorts of patients with stage ILUAD

Microarray and clinical data were downloaded from GSE50081,
GSE31210, GSE30219 and GSE68465 for a total of 580 patients with
stage I LUAD enrolled in Shedden et al.’, Der et al.”, Okayama et al.®
and Rousseaux et al.”” cohorts. The prognostic value of the ORACLE
risk score was tested across four cohorts using the coxph function
in the survival package (version 3.5). In the Der et al., Okayama et al.
and Rousseaux et al. cohorts, 22 out of 23 genes were available, and
in the Shedden et al. cohort, 19 out of 23 genes were available for
analysis. The meta-analysis was performed using the rmeta R pack-
age (version 3.0).

Preinvasive lung squamous cell carcinogenesis dataset

Gene expression data published by Mascaux et al.*° were downloaded
fromthe Gene Expression Omnibus for 77 patients with lung squamous
carcinogenesis (GSE33479). Eight histological stages were identified
by the authors, including 27 normal tissues, 15 hyperplasia, 15 meta-
plasia, 13 mild dysplasia, 13 moderate dysplasia, 12 severe dysplasia,
13 CIS and 14 SCC. This was further summarized as four molecular
steps of progression according to the authors, that is, (1) normal and
hyperplasiatissues, (2) low-gradelesionsincluding progression from
metaplasia to moderate dysplasia, (3) high-grade lesions compris-
ing severe dysplasia and CIS, and (4) the formation of SCC. A linear
mixed-effects model was performed using the ORACLE risk score as the
response variable and samples as the fixed effect, setting each patient
astherandom effect. No correction was made for multiple comparisons
among developmental stages.

ORACLE risk score compared between seeding and
nonseeding regions

The ORACLE risk score was calculated for each primary tumor
region and compared between seeding and nonseeding regions
by a linear mixed-effects model setting each tumor as a random
effect. Seeding regions were defined as primary tumor regions that
contain a most recent shared clone between the primary tumor and
metastasis™.

Invitro drugsensitivity screening

The ORACLE risk score was calculated using expression data for cancer
cell lines provided in DepMap (version 22Q1), subsetting for LUAD
cell lines for subsequent analyses. Drug sensitivity (ICs,) data were
derived from the GDSC database for 396 compounds and 54 LUAD
celllines (Cancer Cell Line Encyclopedia)®***. We filtered out cell lines
with data for fewer than 50 compounds and removed compounds
with data missing for more than 5 cell lines, leaving 37 cell lines and
359 compounds for subsequent analysis (Extended Data Fig. 6a). To
determine the model for assessing association between drug sensitivity
and ORACLE, we examined the distribution of ICy, values, resulting in
nonnormal distributions. Therefore, aSpearman correlation test was
applied to the IC5, and ORACLE risk score to determine significance
(P<0.05)foreachdrugacrossthe celllines. No correction was made for
multiple comparisons. A list of drugs approved by the FDA for NSCLC
was obtained from the National Cancer Institute (https://www.cancer.
gov/about-cancer/treatment/drugs/lung). The targeting pathway was
derived from the GDSC annotation.
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Determinants for ORACLE magnitude

ORACLE magnitude was defined as the mean risk score among regions
for a given tumor. To identify the associated determinants, multiple
linear regression models were applied separately for clinicopathologi-
cal and genetic features in the TRACERX exploratory cohort. Clinico-
pathological features include patient age, sex, the number of tumor
biopsies, tumor stage (TNM version 8), smoking status, tumor volume
and Ki67 score. Genetic features including WGD events, FLOH and
tumor evolutionary metrics (SCNA-ITH, clonal and subclonal muta-
tionsindriver genes, and recent subclonal expansion) were identified
inthe TRACERx study™.

Clinical outcome variance explained by TRACERx biomarkers
To investigate how much variance of clinical outcome was explained
by TRACERx biomarkersincluding SCNA-ITH, WGD, recent subclonal
expansion, detection of preoperative ctDNA, STAS and ORACLE, we
applied ageneralized linear model treating the survival status atagiven
follow-up year as a response variable. Within the chosen follow-up
time, patients with censored status were removed, keeping patients
who had either a death event or no event. The variance explained was
calculated using the PseudoR2 function in the DescTools R package
(version 0.99.51).

Enrichment of somatic mutation in NSCLC driver genes

Alist of SNVs in driver genes for NSCLC was collated in the TRACERX
study™. For each SNV at the gene level, the enrichment was calculated
using the frequency of mutations and was compared using atwo-sided
Fisher’s exact test at regional level. The OR was taken at the natural
log scale. No correction was made for the multiple comparisons in
this analysis.

Identification of recurrent SCNAs
Thegenomicregionsthatrepresented arecurrent SCNA wereidentified
using GISTIC2.0 (version 2.0.23)*%. The copy number of achromosomal
segment was normalized against the sample mean ploidy and taken
as the input for GISTIC2.0 to identify genomic regions with recurrent
amplification or deletion. Amplification and deletion were defined as
normalized copy number >log,(2.5/2) and <log,(1.5/2), respectively.
Foragivengenomicregion, the SCNA positive-selection score (G score)
was obtained separately for patient cohorts with ORACLE low-risk and
high-risk tumors; then, a G-score difference was calculated between the
cohorts. A positive G-score difference (>0) with g value <0.05 indicated
astatistically significant positive selection at the loci.

Statistical analysis

Allstatistical tests were performed using R (version 4.3.2). Tests involv-
ing correlation were performed using cor.test with the Pearson or
Spearman method. Tests involving the comparisons of distributions
were performed using wilcox.test with atwo-sided Wilcoxon rank-sum
test or using the Ime function in the nlme R package (version 3.1) with
a linear mixed-effects regression analysis. Fisher’s exact tests using
fisher.test or chi-squared test using chisq.test were applied to count
data to compare frequencies. HRs and P values for ORACLE adjusted
for clinicopathological factors were calculated using multivariable Cox
proportional hazards models. Two-sided log-rank tests were performed
for the comparisons between groups in the Kaplan-Meier curves.
For all analyses, the number of data points included was plotted or
annotated in the corresponding figures and all statistical tests were
two-sided unless otherwise specified. P < 0.05 was considered as statis-
tically significant unless otherwise specified. The R packages tidyverse
(version 2.0.0) and readxl (version 1.4.3) were used for data handling.
The plotting was performed using ggplot2 (version 3.5.1), ggalluvial
(version 0.12.5), ggrepel (version 0.9.4), ComplexHeatmap (version
2.18.0), pheatmap (version 1.0.12), cowplot (version 1.1.1), gridExtra
(version2.3), scales (version1.3.0), RColorBrewer (version1.1), viridis

(version 0.6.4), circlize (version 0.4.15), wesanderson (version 0.3.7)
and colorspace (version 2.1).

Statistics and reproducibility

No statistical method was used to predetermine sample sizes of the vali-
dation and exploratory cohorts. All available samples that passed the
quality-check filters of sequencing datawere included in our analyses.
Data collection and analysis were not performed blind to the condi-
tions of the study. Our study did not include group assignments and,
thus, randomizationis notapplicable. Data distribution was assumed
tobe normal, but this was not formally tested. Further information on
researchdesignisavailablein the Nature Research Reporting Summary
linked to this article.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The RNA-seq data (in each case from the TRACERx study) used during
this study have been deposited at the European Genome-phenome
Archive, which is hosted by the European Bioinformatics Institute
and the Centre for Genomic Regulation, under accession code
EGAS00001006517. Access is controlled by the TRACERx data access
committee. Details on how to apply for access are available at the linked
page. Previously published preinvasive lesion data are available under
accession code GSE33479. Four microarray cohorts used for survival
validation of ORACLE were available under accession codes GSE68465,
GSE50081, GSE31210 and GSE30219. Source data are provided with
this paper.

Code availability

No new code was developed in our study. Codes for processing data
and generating figures are available via GitHub at https://github.com/
dhruvabiswas/tracerx-oracle2.
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Extended DataFig. 1| An overview of the TRACERXx study. a, An overview of
cohorts utilized in this study. A total of 421 NSCLC patients were enrolled in

the TRACERx study (NCT01888601) where we focused on patients with LUAD
to performanalyses on LUAD prognostic signatures. Patients involved in the
training dataset published previously® were removed, yielding the prospective
validation cohort (n =158). Other analyses for discovery were performed on the
exploratory cohortincluding 184 LUAD patients. Patients with multiple regions

ORACLE risk-score (uncorrected)

available were included in certain analyses where specified in the text. b, Batch
correction of ORACLE risk score using shared samples (85 regions from 27
patients) between previously published data and current data generated froman
updated computational pipeline. A dot plot showing the risk scores between two
dataversions and risk scores were corrected using the linear regression formula.
The Pvalue (P=1.6x10"") was tested using a linear regression model and the
coefficient of determination (R?) was shown in the graph.
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Extended Data Fig. 2| Discordance percentages of published RNA-seq
prognosticsignatures. a, Dot plots showing the distribution of risk scores for
six published RNA prognostic signatures'® > in the TRACERx validation cohort
(n=122stage I-1ll LUAD patients with multiregion RNA-seq data available).

Patients were classified into concordant low- (blue), concordant high- (red) and

0 0
Stage | Stage Il Stage Il Stage | Stage I Stage Il Stage | Stage |l Stage Il

TNM stage

discordant-risk (gray) groups by each signature using median value as a cutoff.
b, Bar plots show the percentages of risk groups classified by ORACLE risk class
and the six signatures across stage I to stage Ill. The differences of discordant risk
frequencies among tumor stages were examined using chi-squared goodness-of-
fittest.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Clustering concordance of published RNA-seq
prognostic signatures. A previously used hierarchical clustering method®**
applied on the six published prognostic signaturesisillustrated. The
dendrogram and heatmap shows the clustering of tumor regions. The discordant
rate (gray) was calculated as the percentage of patients with tumor regions falling

into different clusters. The analysis was iterated from 1to 122 clusters which is the
maximum patient number included in this cohort. The percentage of discordant
clustering was illustrated when cutting the dendrograminto 2,10 and 60
clusters. a, Lietal.s signature b, Wang et al.’s signature ¢, Zhao et al.’s signature

d, Songetal’ssignaturee, Jinetal.s signaturef, Li, Feng et al’s signature.
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Extended Data Fig. 4 | Established metrics for quantifying tumor sampling
bias. a, The hierarchical clustering of ORACLE genes using methods described
in Extended dataFig. 3.isshown.b, The area under the curve was calculated

to represent concordant rate derived from hierarchical clustering method for
ORACLE and the six published prognostic signatures. This analysis was run for 1
(100% concordant rate) to 122 clusters (the maximum number of clusters could
be obtained for the cohort). Dashed line indicates the number of clusters cut

in Extended data Fig. 3. ¢, Amethod developed by Househam et al.” examining
the expression variability. The heatmap shows the gene-wise standard deviation
of expression across tumor regions per patient. The average of expression
variability is annotated on the left. d, Box plot represents the distribution of
mean expression variability across the signature genes for ORACLE and the six
other RNA signatures in the TRACERXx validation cohort (n =122 patients with 333
tumor regions). Color for each signature is labeled as the same in panel c. The
statistical significance was tested using a two-sided Wilcoxon rank-sum test. The
center line of the boxplot indicates median and the box spans from 25th to 75th

percentile. The lower and upper whiskers define the 5Sth and 95th percentiles,
respectively.Jinetal., 2022, P=0.045; Lietal.,2017, P= 0.00012; Wanget al.,
2022,P=0.4;Songetal., 2022, P=0.56; Lietal., 2022, P=3.9x10%; Zhaoet al.,
2020, P=4.5x10"? compared with ORACLE. e, Estimation of minimum biopsy
number needed to obtain a stable risk score using an algorithm developed by
Bachtiary etal.”®. Vertical lollipop plot represents the variance of ORACLE risk
score within anindividual tumor. The average value of variance within tumors
divided by a certain number of biopsies (k) was summarized as W. The horizontal
dashed line shows the variance between tumors involved in this cohort which is
denoted as B. Theratio of Wto the total variance (7) measures the stability of risk
scores for a given signature. This method was applied to the other six signatures.
f, Line plot represents the W/T per signature from one to ten biopsies. The
threshold of 0.15 (horizontal dashed line) predefined in the original publication®
determined the intersection with the best fit line, yielding the least biopsies
required to obtain astable risk score.

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00883-1

A

ORACLE | Mean p—————a—4 0.007
Sex Male [ Ref
Female } 4 0.3
Age - 0.002
5 Pack years [ ] 0.4
§ Adjuvant | No ' Ref
& treatment | vyes } - {| 0.7
TNM 1A [ Ref
stage B w1 04
IMA n Ref
Histologic " .
grade Grade 2 t 4 0.5
Grade 3 } § 04
L) L) L) L) L) L) U
012 025 050 10 20 40 80 160
Hazard ratio
P |
5 Deretal.2’ —, 0.1
.g 1
6 Okayama et al.2® i {7} 0.002
= |
§ Rousseaux et al.2® L ) 0.0002
é-‘ Shedden et al.” —— 0.005
Overall i & 2.8x10°
M f T T T T T ]
05 1 2 4 8 16 32 64
Hazard ratio
ORACLE Mean —a— 03
Sex Male Ref
Female 0.9
Age 0.006
S
L Packyears 07
[
o Adjuvant No Ref
treatment Yes s 03
TNM | [ | Ref
stage I —a— 0.04
1} —=&—] 001

050 1.0 20 4.0
Hazard ratio

Extended Data Fig. 5| Prospective validation of survival association in stage
ILUAD and using lung-cancer-specific survival and DFS. a, Prognostic value
of ORACLE in predicting the OS in stage | subgroup (n = 70 patients with stage
1LUAD) adjusted for known clinicopathological risk factors. Multivariable Cox
analysis was performed incorporating the ORACLE mean risk score, patient sex,
patient age, pack years (smoking packs and duration), adjuvant treatment status,
tumor stage (TNM 8th edition) and histologic grade. The center box indicating
hazard ratio and the error barsindicating 95% confidence intervals are shown
for each predictor on a natural log scale. b, The percentages of stage I patients
that transit from standard clinical substaging (TNM 8th edition) to ORACLE risk
classification. The patients in the TRACERX validation cohort (n = 70 stage | LUAD
patients) were stratified by tumor stage into stage IA (n = 38) and stage IB (n =32)
ontheleftand classified by ORACLE as concordant low- (n = 56), concordant
high- (n=9) and discordant risk (n = 5) groups on the right. The color shows the
transition from stage 1to ORACLE low- (blue), high- (red) and discordant-risk
(gray) groups. ¢, Prognostic value of ORACLE in a meta-analysis across four
independent cohorts of patients with LUAD (n = 580 patients with stage I LUAD).
Univariate Cox analysis was performed in four microarray datasets (Shedden et
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al.’, Der etal.”, Okayama et al.”® and Rousseaux et al.””). The center box indicating

hazard ratio and the error barsindicating 95% confidence intervals are shown

for each predictor ona natural log scale. The diamond indicates the hazard

ratio for the meta-analysis of the four microarray cohorts. d, Prognostic value

of ORACLE in predicting the lung-cancer-specific death adjusted for known
clinicopathological risk factors in the TRACERXx validation cohort (n =158 stage
I-III LUAD patients). Multivariable Cox analysis was performed incorporating the
ORACLE meanrisk score, patient sex, patient age, pack years (smoking packs and
duration), adjuvant treatment status and tumor stage (TNM 8th edition). The
center box indicating hazard ratio and the error bars indicating 95% confidence
intervals are shown for each predictor on anatural log scale. e, Prognostic value
of ORACLE in predicting the DFS adjusted for known clinicopathological risk
factorsin the TRACERx validation cohort (n =158 stage I-1ll LUAD patients).
Multivariable Cox analysis was performed incorporating the ORACLE mean

risk score, patient sex, patient age, pack years (smoking packs and duration),
adjuvant treatment status and tumor stage (TNM 8th edition). The center box
indicating hazard ratio and the error bars indicating 95% confidence intervals are
shown for each predictor on anatural log scale.
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Extended Data Fig. 6 | Anticancer drugscreening in vitro. a, Flow diagram
represents the steps for filtering cell lines and compounds obtained from GDSC

and CCLE database®** with missing data (n = 54 LUAD cell lines; 396 compounds).

Celllines with more than 50 compound data missing were first removed, yielding
37 celllines. Compounds with more than 5 cell line data missing were then

removed, yielding 359 compounds. b, The association of ORACLE risk score and
anticancer drug response determined by half-maximal inhibitory concentration
(ICs,). Drugs with significant association (see Fig. 4a) are shownin this figure.
Spearman correlation coefficients and P values are shown for each compound.
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Extended Data Fig. 9| Somatic mutations and copy number alterations
underlying clonal expression magnitude. a, Frequencies of clonal (left) and
subclonal (right) driver mutations at gene level compared between high-and
low-risk tumor regions in the TRACERx exploratory cohort (n =142 high-risk
and n =308 low-risk tumor regions from 184 patients with stage I-1ll LUAD). The
scatter plot shows the odds ratio obtained by a two-sided Fisher’s exact test for

eachgene mutation. A Pvalue of 0.05 was indicated by the horizontal dashed line.

b, Oncoprint shows the frequencies of clonal mutations in 10 driver genes that
were enriched in ORACLE low-risk and high-risk groups. The column represents
the regions across patient tumors in the TRACERx exploratory cohort (n =184

patients with stage I-IIl LUAD with 450 region samples). ¢, The genome-wide
SCNAs identified using GISTIC2.0 (Methods). For a given genome region, the
G-score difference was calculated between ORACLE low-risk and high-risk
cohortstoidentify loci with positive selection. The plot shows the false-discovery
rate (g value) of the G score in the high-risk cohort. Chromosome segments with
significant positive selection (G-score difference >0 and g value < 0.05) are shown
inred for amplification and blue for deletion. Vertical dashed lines indicate the
threshold of a false-discovery rate (g value) equal to 0.05. The driver SCNAs,
aslisted in our previous study™, located in the chromosome arm harboring
detected cytobands are highlighted.
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The RNA-seq data (in each case from the TRACERx study) used during this study have been deposited at the European Genome—phenome Archive, which is hosted
by the European Bioinformatics Institute and the Centre for Genomic Regulation, under the accession codes EGAS00001006517. Access is controlled by the
TRACERx data access committee. Details on how to apply for access are available at the linked page. Previously published preinvasive lesion data are available under
accession code GSE33479. Four microarray cohorts used for survival validation of ORACLE were available under accession codes GSE68465, GSE50081, GSE31210,
and GSE30219.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender were not considered in the study design, the cohort comprised 233 (55%) males and 188 (45%) females and
all available individuals were included in each analysis.

Reporting on race, ethnicity, or No race-based analysis was performed. No socially relevant categorization variables or terms used.
other socially relevant
groupings

Population characteristics Only lung adenocarcinoma patients (184 patients) from the TRACERx study were included in the analysis of this study. There
were 94 male and 90 female lung adenocarcinoma patients in the TRACERx study, with a median age of 68. The cohort is
predominantly early-stage: 1a(45), I1b(38), l1a(8), 11b(42), l11a(38), 1lIb(13). Sixty-three had no adjuvant treatment and 121 had
adjuvant therapy.

Please note that the study started recruiting patients in 2016, when TNM version 7 was standard of care. The up-to-date
inclusion/exclusion criteria now utilizes TNM version 8.

TRACERx inclusion and exclusion criteria

Inclusion Criteria:

_Written Informed consent

_Patients 218 years of age, with early stage I-1IIB disease (according to TNM 8th edition) who are eligible for primary surgery.
_Histopathologically confirmed NSCLC, or a strong suspicion of cancer on lung imaging necessitating surgery (e.g. diagnosis
determined from frozen section in theatre)

_Primary surgery in keeping with NICE guidelines planned

_Agreement to be followed up at a TRACERx site

_Performance status O or 1

_Minimum tumor diameter at least 15mm to allow for sampling of at least two tumour regions (if 15mm, a high likelihood of
nodal involvement on pre-operative imaging required to meet eligibility according to stage, i.e. TIN1-3)

Exclusion Criteria:

_Any other* malignancy diagnosed or relapsed at any time, which is currently being treated (including by hormonal therapy).
_Any other* current malignancy or malignancy diagnosed or relapsed within the past 3 years**.

*Exceptions are: non-melanomatous skin cancer, stage 0 melanoma in situ, and in situ cervical cancer

**An exception will be made for malignancies diagnosed or relapsed more than 2, but less than 3, years ago only if a
preoperative biopsy of the lung lesion has confirmed a diagnosis of NSCLC.

_Psychological condition that would preclude informed consent

_Treatment with neo-adjuvant therapy for current lung malignancy deemed necessary

_Post-surgery stage IV

_Known Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) or syphilis infection.
_Sufficient tissue, i.e. a minimum of two tumor regions, is unlikely to be obtained for the study based on pre-operative
imaging
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_There is insufficient tissue

_The patient is unable to comply with protocol requirements

_There is a change in histology from NSCLC following surgery, or NSCLC is not confirmed during or after surgery.
_Change in staging to llIC or IV following surgery

_The operative criteria are not met (e.g. incomplete resection with macroscopic residual tumors (R2)). Patients with
microscopic residual tumors (R1) are eligible and should remain in the study

_Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy is administered.

Recruitment When patients are initially diagnosed with stage I-1ll lung cancer and then referred for surgical resection, a research nurse
identifies them on a clinic/operating list. The patient has an initial eligibility assessment and then provided with written
information about the TRACERx study and he/she can ask the research nurse any questions.

Patients have to agree to provide serial blood samples whenever they attend clinic for routine blood sampling, so this
represents the only main potential self-selecting bias (i.e. only patients willing to do this would participate). However, it is
unclear how this would affect the biomarker analyses. Also, the gender and ethnicity characteristics are in line with patients
seen in routine practice.

Inclusion and exclusion criteria are summarised above.
Informed consent for entry into the TRACERx study was mandatory and obtained from every patient.

Ethics oversight The study was approved by the NRES Committee London with the following details:
Study title: TRAcking non small cell lung Cancer Evolution through therapy (Rx)
REC reference: 13/L0O/1546
Protocol number: UCL/12/0279
IRAS project ID: 138871

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No statistical methods were used to predetermine sample size. The sample size of 184 lung adenocarcinoma patients that passed quality
check filters for RNA represents the half-way point of the TRACERx longitudinal study. In total, 158 patients (369 tumour regions), excluding
those profiled in previous training study, were included in the validation analysis. 184 patients (450 tumour regions) were included in
exploratory analysis.

Data exclusions  Data was excluded only on the basis of:
- Non-elegibility for the TRACERx clinical trial due to failure of the patient's data to comply with the study protocol (see below)

- The sequenced data did not pass our quality check filters

Replication TRACERX is a prospective longitudinal study. As such, the results shown here are not the result of an experimental set up. This study reflects
hypothesis generating analysis.

Randomization  Thisis not relevant to the study, as samples were split into high- and low-risk groups using prognostic gene expression signatures.

Blinding Blinding was not relevant to the study, as there were no control and treatment arms involved.
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Clinical trial registration

Study protocol

Data collection

Outcomes

Plants

TRACERx Lung https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent Research Ethics Committee, 13/
LO/1546

https://clinicaltrials.gov/study/NCT01888601

Clinical and pathological data is collected from patients during study follow up at the time of and immediately after clinic visit - this
period is a minimum of five years. Data collection is overseen by the sponsor of the study (Cancer Research UK & UCL Cancer Trials
Centre) and takes place in outpatient respiratory, surgical or oncology clinics at hospital sites where the study is approved and are
local to the patient across the United Kingdom. Source data files are maintained by the research team and entered electronically on a
centralised database called MACRO that is overseen and governed by the Clinical Trial Centre. Recruitment started in 2014 and is still
ongoing (in London and Manchester).

The main clinical outcomes are:

Overall survival — measured from the time of study registration to date of death from any cause.

Lung-cancer-specific survival — measured from the time of study registration to death caused by lung cancer.

Disease-free survival (DFS) — measured from the time of study registration to date of first lung recurrence or death from any cause.
Patients who do not have these events are censored at the date last known to be alive (including patients who developed a new
primary tumour that has been shown biologically to not be linked to the initial primary lung tumour).

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. o ) )
Describe-any-authentication-procedures for-eachseed stock used-or-novel-genotype generated.-Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

>
QD
Y
(e
=
)
§o;
o)
=
o
=
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L




	Prospective validation of ORACLE, a clonal expression biomarker associated with survival of patients with lung adenocarcino ...
	Results

	Multiregion RNA-seq data from LUAD

	Benchmarking tumor sampling bias

	Prospective validation

	ORACLE as a biomarker of invasive and metastatic potential

	ORACLE delineates chemosensitive cells

	ORACLE as a summary metric of lung cancer evolution


	Discussion

	Methods

	TRACERx cohort, sample collection and sequencing

	Calculating ORACLE risk scores

	Batch correction for RNA-seq preprocessing pipeline versions

	Identification of LUAD RNA-seq prognostic signatures

	Tumor sampling bias metrics

	Survival analyses

	Meta-analysis of ORACLE prognostic values in microarray cohorts of patients with stage I LUAD

	Preinvasive lung squamous cell carcinogenesis dataset

	ORACLE risk score compared between seeding and nonseeding regions

	In vitro drug sensitivity screening

	Determinants for ORACLE magnitude

	Clinical outcome variance explained by TRACERx biomarkers

	Enrichment of somatic mutation in NSCLC driver genes

	Identification of recurrent SCNAs

	Statistical analysis

	Statistics and reproducibility

	Reporting summary


	Acknowledgements

	Fig. 1 Prospective validation of tumor sampling bias.
	Fig. 2 Prospective validation of survival association.
	Fig. 3 ORACLE as a marker of invasive and metastatic potential.
	Fig. 4 ORACLE delineates chemosensitive cells.
	Fig. 5 ORACLE as a summary metric of lung cancer evolution.
	Extended Data Fig. 1 An overview of the TRACERx study.
	Extended Data Fig. 2 Discordance percentages of published RNA-seq prognostic signatures.
	Extended Data Fig. 3 Clustering concordance of published RNA-seq prognostic signatures.
	Extended Data Fig. 4 Established metrics for quantifying tumor sampling bias.
	Extended Data Fig. 5 Prospective validation of survival association in stage I LUAD and using lung-cancer-specific survival and DFS.
	Extended Data Fig. 6 Anticancer drug screening in vitro.
	Extended Data Fig. 7 Prediction of adjuvant therapy response.
	Extended Data Fig. 8 The association of ORACLE with genetic evolutionary metrics.
	Extended Data Fig. 9 Somatic mutations and copy number alterations underlying clonal expression magnitude.
	Extended Data Fig. 10 Future applicability of ORACLE in clinical practice.
	Table 1 AUROC and C index calculated for patients with stage I LUAD (n = 70) using survival endpoints for LUAD RNA-seq prognostic signatures.




