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Abstract

Purpose Accurate non-invasive prediction of histopathologic invasiveness and recurrence risk remains a clinical challenge
in resectable non-small cell lung cancer (NSCLC). We developed and validated the Edge Proximity Score (EPS), a novel
["*F]FDG PET/CT-based spatial imaging feature that quantifies the displacement of SUVmax relative to the tumor centroid
and perimeter, to assess tumor aggressiveness and predict progression-free survival (PFS).

Methods This retrospective study included 244 NSCLC patients with preoperative ['*F]FDG PET/CT. EPS was computed
from normalized SUVmax-to-centroid and SUVmax-to-perimeter distances. A total of 115 PET radiomics features were
extracted and standardized. Eight machine learning models (80:20 split) were trained to predict lymphovascular invasion
(LVI), visceral pleural invasion (VPI), and spread through air spaces (STAS), with feature importance assessed using SHAP.
Prognostic analysis was conducted using multivariable Cox regression. A survival prediction model incorporating EPS was
externally validated in the TCIA cohort. RNA sequencing data from 76 TCIA patients were used for transcriptomic and
immune profiling.

Results EPS was significantly elevated in tumors with LVI, VPI, and STAS (P<0.001), consistently ranked among the top
SHAP features, and was an independent predictor of PFS (HR=2.667, P=0.015). The EPS-based nomogram achieved AUCs
0f 0.67, 0.70, and 0.68 for predicting 1-, 3-, and 5-year PFS in the TCIA validation cohort. High EPS was associated with
proliferative and metabolic gene signatures, whereas low EPS was linked to immune activation and neutrophil infiltration.
Conclusion EPS is a biologically relevant, non-invasive imaging biomarker that may improve risk stratification in NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) is the leading pri-
mary lung malignancy and remains one of the most com-
mon causes of cancer-related death globally [1, 2]. Despite
the development of new therapies, including targeted
treatments and immunotherapy, the prognosis for patients
diagnosed with NSCLC remains dismal. The five-year
survival rates for those with advanced NSCLC range from
about 6—15% [3]. Although early-stage NSCLC is poten-
tially curable with surgical resection, recurrence occurs
in approximately 30-50% of patients, most commonly
within the first three years after surgery [4]. Prognostic
variability in NSCLC is influenced by several critical fac-
tors [5, 6]. The tumor-node-metastasis (TNM) staging
system serves as the traditional basis for risk stratifica-
tion; it is increasingly recognized that this system alone
does not capture the complete biological behaviors of the
disease nor reliably predict recurrent disease, particularly
in early-stage patients [7].

The invasive behavior of NSCLC is reflected in sev-
eral histopathologic patterns, notably visceral pleural
invasion (VPI) and lymphovascular invasion (LVI), and
it spreads through air spaces (STAS). Although these
features involve anatomically distinct pathways, they
share common biological characteristics associated with
aggressive tumor progression [8, 9]. VPI occurs when
tumor cells breach the elastic layer of the visceral pleura,
a process often facilitated by degradation of the extra-
cellular matrix and cell changes, cell adhesion [10]. LVI
refers to tumor cells within lymphatic or blood vessels
and is frequently linked to epithelial-mesenchymal tran-
sition (EMT), which enhances cellular motility [11].
STAS, defined as the presence of tumor cell clusters
within alveolar spaces beyond the main tumor margin,
also indicates detachment and spread, and is associated
with reduced intercellular adhesion and increased inva-
siveness [12, 13]. These invasion patterns frequently
co-occur and have been independently associated with
nodal metastasis, early recurrence, and worse survival
outcomes [14], which shows their significance in prog-
nostication and postoperative risk stratification [15, 16].

Positron emission tomography/computed tomogra-
phy (PET/CT) with 2-deoxy-2-['®F] fluoro-D-glucose
(['®F] FDG) is widely recommended for the initial stag-
ing of NSCLC and plays a central role in treatment plan-
ning and prognostic evaluation [17]. Radiomics, the
high-throughput extraction of quantitative features from
imaging data, emerges as a powerful marker in assessing
tumor aggressiveness in NSCLC [18]. Studies have dem-
onstrated that texture, intensity, and shape-based features
extracted from PET/CT scans can non-invasively predict
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tumor characteristics, including VPI [19], LVI [20], and
STAS [21]. More recently, attention has turned to spatial
imaging features that describe the geometric distribution
of metabolic activity within the tumor. In NSCLC, the spa-
tial distance between maximum standardized uptake values
(SUVmax) in different lesions has been shown to reflect
tumor dissemination and metabolic heterogeneity, offering
prognostic value [22]. Within individual tumors, two intra-
lesional spatial features, normalized distance from SUV-
max to the tumor centroid (nDmaxC) and the normalized
distance to the tumor perimeter (nDmaxP), have demon-
strated significant prognostic relevance [23]. These features
are robust across imaging parameters, complementary to
conventional PET metrics, and have independent prognos-
tic value, effectively stratifying outcomes across different
treatment settings [24]. However, relying on a single spa-
tial metric can be insufficient. For example, a large distance
between SUVmax and the centroid does not always indicate
proximity to the tumor edge. To address this limitation, we
developed a novel composite parameter, the Edge Proximity
Score (EPS), which integrates both nDmaxC and nDmaxP
to capture peripheral metabolic activity better.

In this study, we aimed to evaluate EPS as a spatial imag-
ing biomarker in NSCLC by assessing its association with
tumor invasiveness, recurrence risk, and key radiomic fea-
tures. We also explored its biological and clinical relevance
through transcriptomic and immune profiling to gain mech-
anistic insights into the imaging phenotype and its potential
application in risk stratification.

Materials and methods

This retrospective multicenter study included patients
diagnosed with NSCLC who underwent surgical tumor
resection at two institutions: the Vienna General Hospital
(Vienna, Austria) and the National Kordnyi Institute of Pul-
monology (Budapest, Hungary), between January 1, 2010,
and December 1, 2020. The study protocol was approved by
the Institutional Review Board of the Medical University
of Vienna (approval number: 1649/2016) and the Research
Committee of the Hungarian Medical Research Council
(approval number: 52614—4/2013/EKU), with waivers of
informed consent granted due to the retrospective nature of
the study.

Study sample

A total of 915 NSCLC patients from three centers, Vienna
(n=684), Budapest (n=101), and The Cancer Imaging
Archive (TCIA, n=130) [25], were considered for inclusion
(Fig. 1). Considering the differences in sample size, tumor
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Patients underwent pulmonary resection for NSCLC
from Austria and Hungary (n=785)

Inclusion criteria:
1.Histopathologically confirmed NSCLC
2 Available clinical and histopathologic data

3.Preoperative '®F-FDG PET/CT within 8 weeks before surgery

4.No prior antitumor therapy

TCIA TCGA-NSCLC
dataset (n=130)

Exclusion criteria: Exclusion criteria:
1.Receipt of heoadjuvant therapy Excluded: 1.Missing of preoperative
2 Evidence of distant metastasis on 1.n=41 PET/CT (n = 30)
imaging before surgery 2.n =315 2.Poor registration quality
3.Incomplete or missing PET/CT data 3.n=12 (n=16)
4.Poor image quality or incomplete 4.n=43 3.Poor registration quality
histopathology Patients without mMRNA
data (n = 8)
A 4
Invasive prediction
cohort (n =244) g Final
cohort | Outcome Outcome cohort | | TCIA set
l Random division l i prediction (n=244) (n =A76)
Training set Test set ; : Bioinformatic
(n =195) (n = 49) s analysis
STAS(+) = 68 STAS(+) = 17
LVI(+) = 82 LVI(+) = 22
VPI(+) = 57 VPI(+) =13

Fig. 1 Study design and patient selection workflow. Bioinformatic
analysis refers to transcriptomic profiling, pathway enrichment analy-
sis, and immune cell infiltration evaluation. NSCLC, non—small cell

stage, and histologic subtype between the Vienna and Buda-
pest cohorts, we merged both institutional datasets into a
single cohort to avoid confounding and ensure more robust
and generalizable model development. All patients under-
went surgical resection of primary lung tumors in this study.
Inclusion criteria were as follows: (a) Histopathologically
confirmed NSCLC; (b) No prior antitumor therapy before
surgery; (c) ['"®FJFDG PET/CT imaging acquired within
8 weeks before surgery; (d) Complete clinical and histo-
pathologic data. Exclusion criteria included: (a) Receipt of
neoadjuvant therapy (chemotherapy, radiotherapy, or immu-
notherapy before PET/CT or surgery); (b) Evidence of dis-
tant metastasis on imaging or intraoperative assessment; (c)
Incomplete PET/CT imaging or missing clinical/pathologic
data; and (d) Poor image quality unsuitable for radiomics
analysis, including motion artifacts, low FDG uptake, or
segmented tumor volumes <64 voxels.

lung cancer; VPI, visceral pleural invasion; STAS, spread through air
spaces; LVI, lymphovascular invasion; TCIA, The Cancer Imaging
Archive; TCGA, The Cancer Genome Atlas

Clinical and pathologic data collection

Demographic and clinical variables included age, sex, smok-
ing status, history of chronic obstructive pulmonary disease,
and AJCC TNM stage [26]. PET/CT imaging parameters,
including SUVmax, SUVmean, metabolic tumor volume
(MTV), and total lesion glycolysis (TLG), were recorded
for all patients. Pathological data, including histological
subtype, STAS, LVI, and VPI, were confirmed by an expe-
rienced pathologist (>10 years of experience). Addition-
ally, the TCIA cohort provided another subset of patients
with publicly available imaging and clinical data. Among
these, 76 TCIA patients had matched RNA sequencing data.
The primary clinical endpoint was progression-free sur-
vival (PFS), defined as the time (in months) from surgery to
radiologically confirmed recurrence or last follow-up with-
out progression. Recurrence included any local, regional,
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or distant disease progression based on CT and/or PET/CT.
Biopsy of recurrent lesions was not routinely required and
was only performed when imaging was equivocal or histo-
logic confirmation was necessary for treatment decisions.
All patients had a minimum follow-up duration of one year.
Patient characteristics are summarized in Table 1.

Image preprocessing and feature extraction

["®F]FDG PET/CT scans were obtained from two centers
(Vienna and Budapest) using institutional standard proto-
cols aligned with EANM/EARL guidelines [27]. Tumors
were segmented semi-automatically using a 40% SUVmax
threshold. Images were resampled and normalized before
radiomic feature extraction. A total of 115 PET radiomic
features were extracted following IBSI guidelines [28].
Two spatial features, nDmaxC and nDmaxP, were used to
derive the EPS, which quantifies the spatial shift of SUV-
max within the tumor (Supplementary Fig. 1A). It was
defined as:

nDmaxC — nDmaxP
nDmaxC + nDmax P

FEdge Proximity Score =

A higher EPS reflects SUVmax localization toward the
tumor edge. Patients were stratified using a geometrically
defined and biologically interpretable cutoff (EPS>0 vs. <
0), where 0 represents equal proximity of SUVmax to the
tumor centroid and perimeter. Full preprocessing and fea-
ture extraction details are provided in the Supplementary
Methods.

Following an 80:20 training—validation split, radiomic
features were standardized, and the 20 features were
selected using the minimum redundancy maximum rel-
evance (MRMR) algorithm. Eight machine learning mod-
els were applied to predict LVI, VPI, and STAS. Feature
importance was ranked using SHAP analysis [29, 30]. To
assess model robustness, we additionally performed five-
fold cross-validation on the full dataset, as detailed in the
Supplementary Methods.

Outcome prediction and exploring biological
functions

The prognostic value of EPS was assessed using univari-
able and multivariable Cox regression based on the final
patient cohort. Patients were stratified into high-risk
(EPS>0) and low-risk (EPS<0) groups using a geo-
metrically defined cutoff. PFS was analyzed using Cox
regression and Kaplan—-Meier (KM) survival curves. A
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Table 1 Baselines of patient characteristics and PET parameter dis-

tribution

Clinicopathologic Final cohort 244 TCIA set 76
characteristics patients n (%) patients n (%)
Age, median (IQR) 64.5 (59, 70) 69.7 (61, 77)
Gender, n (%)

Female 144 (59%) 63 (82.9%)
Male 100 (41%) 13 (17.1%)
Smoking history, n (%)

Non-smoker 68 (27.9%) 12 (15.8%)
Smoker 176 (72.1%) 64 (84.2%)
COPD status, n (%) NA

Negative
Positive

T stage, n (%)
T1+T2
T3+T4

N stage, n (%)
NO

NI+N2
Stage*, n (%)
I

I

III

Histology subtype, n (%)

ADC

SCC

VPL, n (%)
Negative
Positive
LVI, n (%)
Negative
Positive
STAS, n (%)
Negative
Positive
Recurrence, n (%)
Yes

No

nDmaxC, median (IQR)
nDmaxP, median (IQR)

EPS, median (IQR)

115 (47.1%)
103 (42.2%)

185 (75.8%)
59 (24.2%)

141 (57.8%)
103 (42.2%)

92 (37.7%)
97 (39.8%)
55 (22.5%)

178 (73.0%)
66 (27.0%)

174 (71.3%)
70 (28.7%)

140 (57.4%)
104 (42.6%)

159 (65.2%)
85 (34.8%)

103 (42.2%)
141 (57.8%)

0.49 (0.32, 0.69)
0.20 (0.15, 0.36)
0.34 (0.06, 0.59)

63 (82.9%)
13 (17.1%)

59 (77.6%)
17 (22.4%)

32 (42.1%)
34 (44.7%)
10 (13.2%)

55 (75.3%)
18 (24.7%)

53 (72.6%)
20 (27.4%)
NA

NA

24 (31.6%)
52 (68.4%)

0.31 (0.221, 0.50)
0.32 (0.18, 0.46)
0.52 (-0.22, 0.30)

Tumor SUVmax, median  9.5628 (5.84, 2.1027 (0.65,
(IQR) 17.87) 2.48)

Tumor MTYV, median 16.126 (6.10, 15.734 (6.79,
(IQR) 48.05) 46.55)
Tumor TLG, median 68.115 (16.98, 8.4152 (2.96,
(IQR) 289.4) 24.44)
Tumor SUVmean, median 3.9735 (2.53, 6.13) 1.5185 (0.34,
(IQR) 0.86)

ADC adenocarcinoma, SCC squamous cell carcinoma, COPD
Chronic obstructive pulmonary disease, MTV metabolic tumor vol-
ume, TLG total lesion glycolysis, V'PI visceral pleural invasion, LVI
lymphovascular invasion, STAS spread through air spaces, /OR inter-
quartile range. NA, not applicable. ¥Based on TNM 8th edition
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prognostic nomogram was constructed using independent
Cox predictors and validated in the TCIA cohort. Time-
dependent area under the curve (AUC) and calibration
curves were used to evaluate model performance. Tran-
scriptomic and immune cell infiltration analyses were per-
formed on a subset of TCIA patients with available RNA
sequencing data. Full analysis details are provided in the
Supplementary Methods.

Statistical analyses

Continuous variables were summarized as medians with
interquartile ranges (IQRs), and categorical variables as
counts and percentages. The Mann-Whitney U test was
used for comparisons of continuous variables between
groups. Spearman correlation was used to assess asso-
ciations between EPS and selected radiomic features.
Machine learning model performance for predicting LVI,
VPI, and STAS was evaluated using AUC, sensitivity, and
specificity. Feature importance was assessed using SHAP.
Prognostic analysis for PFS was conducted using univari-
able and multivariable Cox regression, with hazard ratios
(HRs) and 95% confidence intervals (Cls) reported. Fol-
low-up time was estimated using the reverse KM method.
A prognostic nomogram was constructed using indepen-
dent predictors identified in the final multivariable Cox
model and externally validated in the TCIA cohort. Dis-
criminative performance was evaluated using time-depen-
dent AUC at 1-, 3-, and 5-year PFS. All analyses were
performed using R (version 4.1.0) and Python (version
3.6). A two-sided P value<0.05 was considered statisti-
cally significant.

Results
Patient characteristics

Out of 785 screened NSCLC patients, 244 were included in
the final cohort (Fig. 1). Baseline characteristics of the final
and TCIA cohorts are summarized in Table 1. The median
age was 64.5 years; 59% were female; and most had early-
stage tumors (T1-T2: 75.8%; NO: 57.8%) and a smoking
history (72.1%). Adenocarcinoma was the predominant
histology (73%), with frequent presence of VPI (28.7%),
LVI (43.6%), and STAS (34.8%). Recurrence occurred in
42.2% of the final cohort (median follow-up: 102 months)
and 31.6% in TCIA (median: 41 months). EPS and its com-
ponents (nDmaxC and nDmaxP) were significantly associ-
ated with LVI, VPI, and STAS (all P<0.0001). EPS and
nDmaxC were higher, and nDmaxP lower, in NSCLC with

invasive features (Supplementary Fig. 1B-D). EPS showed
weak correlation with conventional PET features and
radiomics (|r| < 0.5), supporting its distinct spatial contribu-
tion (Supplementary Fig. 2).

Predictive performance of radiomic models

The predictive performance of eight machine learning clas-
sifiers for identifying STAS, LVI, and VPI status in the 20%
validation cohort is summarized in Fig. 2 and Supplemen-
tary Table 1. For STAS prediction (Fig. 2A), the support
vector machine (SVM) achieved the highest performance
(AUC=0.73, 95% CI: 0.59-0.87). The extreme gradient
boosting (XGBoost) yielded the best discriminative ability
for LVI (AUC=0.61, 95% CI: 0.44-0.77; Fig. 2B), while
SVM performed best for VPI classification (AUC=0.74,
95% CI: 0.55-0.93; Fig. 2C). SHAP analysis identified the
EPS among the top five contributors to model predictions
across all endpoints (Fig. 2D-F). To further evaluate model
performance, we also conducted five-fold cross-validation
using the full dataset. The results are presented in Supple-
mentary Fig. 3.

Prognostic stratification

EPS was evaluated as a predictor of PFS using Cox regression
(Supplementary Fig. 4A—B). In univariable analysis, EPS
was significantly associated with shorter PFS (HR=7.650;
95% CI: 3.893-15.036; P<0.001), along with age, TNM
stage, MTV, VPI, and other clinical variables (P<0.05). In
multivariable analysis, EPS remained an independent pre-
dictor (HR=2.667; 95% CI: 1.205-5.935; P=0.015), along
with TNM stage (HR=2.927; P=0.018), VPI (HR=1.628;
P=0.030), age (HR=0.975; P=0.030), and tumor MTV
(HR=1.005; P=0.041). nDmaxC (HR=1.682; P=0.207)
and nDmaxP (HR=0.303; P=0.222) were not significant
when tested separately (Supplementary Fig. 4C-D).

A prognostic nomogram was constructed based on the
independent predictors identified in the multivariable Cox
model from the training (final) cohort (Fig. 3A). Calibra-
tion plots showed good agreement between predicted and
observed 1-, 3-, and 5-year PFS in both the training (final)
and validation (TCIA) cohorts (Fig. 3B—C). In the TCIA
validation cohort, EPS yielded AUCs of 0.63 (95% CI:
0.47-0.78), 0.62 (95% CI: 0.49-0.75), and 0.63 (95% CI:
0.50-0.77) for 1-, 3-, and 5-year PFS, respectively. The
nomogram achieved AUCs of 0.67 (95% CI: 0.52-0.83),
0.70 (95% CI: 0.57-0.83), and 0.68 (95% CI: 0.53-0.83)
(Fig. 3D-E and Supplementary Table 2). KM analysis
showed significantly worse PFS in high-risk (EPS>0)
patients in both cohorts (final: P<0.0001; TCIA: P=0.021;
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Fig. 2 Comparative analysis of machine learning classifiers for pre-
dicting histopathologic features in NSCLC. Radiomics-based models
were developed to predict the presence of STAS, LVI, VPI using eight
supervised machine learning classifiers, including XGBoost, logistic
regression, LightGBM, random forest, AdaBoost, decision tree, MLP,
and SVM. Panels A—C present the classification performance of each
model in the independent validation cohort, measured by the area
under the receiver operating characteristic curve, for STAS (A), LVI

Fig. 4B; Supplementary Fig. 5SA). EPS stratified prognosis
within stage I and stage II-III subgroups (P<0.0001 and
P=0.0099, respectively), supporting its added value beyond
TNM staging (Supplementary Fig. 5C-D).

Biological functions associated with EPS status

To explore the biological underpinnings of the EPS, we ana-
lyzed RNA sequencing data from 76 NSCLC patients in the
TCIA dataset, comparing high-risk (EPS>0) and low-risk
(EPS<0) group. We identified 42 differentially expressed
genes (27 upregulated, 15 downregulated; adjusted P<0.05;
Fig. 4A). Functional enrichment analysis of these DEGs
using Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways revealed that genes
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(B), and VPI (C). Panels D-F display the corresponding SHAP sum-
mary plots, which illustrate the relative importance of the 20 mRMR-
selected radiomic features used for model predictions of STAS (D),
LVI (E), and VPI (F), ranked by their mean absolute SHAP values.
LVI, lymphovascular invasion; MLP, multilayer perceptron; NSCLC,
non—small cell lung cancer; VPI, visceral pleural invasion; STAS,
spread through air spaces; SVM, support vector machine; SHAP,
Shapley additive explanations

upregulated in the high-risk group were predominantly
involved in pyruvate metabolism, fatty acid degradation,
and glycolysis/gluconeogenesis (Fig. 4B). Gene set enrich-
ment analysis (GSEA) using Hallmark gene sets further
indicated enrichment of proliferation-related pathways
(G2M checkpoint, E2F targets, MYC signaling) in high-
risk group, whereas immune-related pathways (interferon
o/y response, IL6-JAK-STAT3, and TNF-0/NF-kB signal-
ing) were downregulated (Fig. 4C—E). Given the immune
signature in low-risk group, we profiled immune infiltration
using single-sample gene set enrichment analysis (ssSGSEA)
and microenvironment cell populations (MCP)-counter. The
low-risk group showed higher infiltration of neutrophils,
immature dendritic cells, NK cells, eosinophils, and mast
cells (P<0.05; Supplementary Fig. 6A and Supplementary
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Fig.3 Nomogram for progression-free survival prediction and calibra-
tion in the training (Final) and validation (TCIA) Cohorts. (A) Nomo-
gram constructed using the training (final) cohort to predict 1-, 3-, and
S-year PFS based on age, TNM stage, MTV, VPI, and the EPS. Each
variable contributes to a point total, which maps to predicted PFS
probabilities. Calibration plots evaluating nomogram performance in
the training (final) cohort (B) and the validation (TCIA) cohort (C).
The x-axis represents nomogram-predicted PFS probabilities; the

Table 3). MCP-counter confirmed greater abundance of
neutrophils (P=0.030), endothelial cells, monocytic lin-
eages, and myeloid dendritic cells (Supplementary Fig. 6B
and Supplementary Table 4).

y-axis shows the actual observed survival derived from Kaplan—-Meier
estimates. Vertical bars indicate 95% confidence intervals. Time-
dependent AUC curves comparing the prognostic performance of the
nomogram, EPS, TNM stage, MTV, VPI, and age for predicting 1-,
3-, and 5-year PFS in the training (final) cohort (D) and the validation
(TCIA) cohort (E). PFS, progression-free survival; MTV, metabolic
tumor volume; VPI, visceral pleural invasion; EPS, Edge Proximity
Score. AUC, area under the curve

Discussion

This study presents and validates the EPS, a novel PET-
based spatial imaging feature that quantifies SUVmax
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Fig. 4 Functional differences between low- and high-risk groups
based on Edge Proximity Score using RNA sequencing data (n=76,
TCIA set). (A) Volcano plot displaying differentially expressed genes
between high- and low-risk groups. Significantly upregulated genes
in the high-risk group are shown in red (n = 27), while downregulated
genes in the low-risk group are shown in blue (n = 15). (B) Bubble
plot showing enriched Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) terms among the differentially
expressed genes. Dot size indicates the ontology source (MF = molec-

displacement toward the tumor edge. In a multi-center
cohort of resectable NSCLC, EPS was significantly asso-
ciated with invasive histopathologic features (STAS, VPI,
LVI; all P<0.0001) and ranked among the top predictors
in machine learning models. EPS remained an independent
prognostic factor for PFS (P=0.015) and stratified out-
comes even within TNM stage subgroups. Transcriptomic
and immune profiling further revealed that EPS captures
biologically distinct tumor phenotypes: tumors with high
EPS were enriched in metabolic and proliferative pathways,
while low EPS tumors exhibited immune-related activity,
including interferon signaling and cytokine response.
Previous studies have highlighted the prognostic rel-
evance of spatial PET features such as the normalized
hotspot-to-centroid distance (NHOC) and normalized
SUVmax-to-perimeter distance (nSPD) [23, 25]. These
metrics have been associated with poor outcomes in lung
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ular function; KEGG = pathway), and color represents adjusted p-val-
ues (P.adj, FDR corrected). (C) Hallmark gene set enrichment analy-
sis reveals significantly enriched biological pathways in the high-risk
group (red, positive normalized enrichment score [NES]) and low-risk
group (blue, negative NES). (D, E) Gene set enrichment plots illustrate
hallmark pathways upregulated in the high-risk group (D) and in the
low-risk group (E), with the x-axis representing the rank in the ordered
dataset and the y-axis showing the enrichment score

and breast cancer, and their 3D extensions (NHOC and
NHOP) were further validated in advanced NSCLC [26].
EPS builds upon these concepts by integrating both cen-
troid- and perimeter-based distances into a composite
metric, enhancing its robustness in capturing spatial meta-
bolic asymmetry. While both nDmaxC and nDmaxP were
individually associated with histopathologic invasiveness,
neither consistently ranked among the top features across
machine learning models for different endpoints, nor were
they independently prognostic in multivariable Cox mod-
els, emphasizing the additive value of their combination. In
multivariable Cox regression, EPS remained an indepen-
dent predictor of PFS alongside MTV [31], VPI [32], and
age [33] all of which are established prognostic markers in
NSCLC. In the TCIA validation cohort, the prognostic per-
formance of EPS alone was slightly lower than that of TNM
stage, yet EPS still added complementary information. To
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improve clinical applicability, we constructed a multivari-
able nomogram incorporating EPS along with TNM stage,
MTYV, VPI, and age. The nomogram demonstrated superior
performance and calibration compared to individual predic-
tors, supporting its utility for individualized PFS risk pre-
diction. Stratification using a geometrically defined cutoff
(EPS=0), representing equal proximity to tumor centroid
and edge, further distinguished high-risk patients across
cohorts. Although this cutoff is not biologically validated, it
is conceptually motivated: EPS=0 reflects equal proximity
of SUVmax to the tumor centroid and edge. This midpoint
is consistent with prior spatial imaging biomarkers, such as
NHOC and NHOP, which have similarly demonstrated that
peripheral SUVmax localization is associated with more
aggressive tumor phenotypes.

Although spatial imaging features have previously been
associated with prognosis in NSCLC, their biological rel-
evance has remained unexplored. To address this, we per-
formed transcriptomic and immune profiling to explore
the EPS. Functional enrichment analyses revealed that
tumors with high EPS were enriched in glycolysis, pyru-
vate metabolism, and fatty acid degradation—pathways
commonly associated with metabolic reprogramming and
tumor aggressiveness [34—36]. Hallmark gene sets further
indicated upregulation of G2M checkpoint, E2F targets, and
MYC signaling in high EPS tumors, reflecting enhanced
proliferation and cell cycle dysregulation [37, 38]. In con-
trast, low EPS showed enrichment of immune-related path-
ways, including interferon signaling, IL6-JAK-STAT3, and
TNF-a/NF-xB [39, 40], along with higher infiltration of neu-
trophils, NK cells, monocytic lineages, and dendritic cells
as confirmed by ssGSEA and MCP-counter. These findings
suggest that EPS captures biologically distinct tumor states,
with low EPS identifying a potentially immune-inflamed
phenotype. Notably, neutrophils, known for their dual N1
(anti-tumor) and N2 (pro-tumor) phenotypes, may in this
setting reflect a more N1-skewed response, supported by
the concurrent enrichment in interferon-driven immunity
[41]. These transcriptomic and cellular profiles support its
relevance for patient stratification in NSCLC.

This study has limitations. The retrospective design may
introduce selection bias and incomplete data. Imaging was
acquired across two institutions using different scanners,
potentially impacting radiomic reproducibility. However,
EPS appeared robust to such variability, particularly com-
pared to high-frequency texture features. Although major
motion artifacts were excluded, residual respiratory motion
may influence measurements; future phantom-based stud-
ies could address this. Transcriptomic analysis was limited
to a publicly available subset (n=76), which may reduce
statistical power. Finally, although EPS showed consistent
prognostic value across internal and external cohorts, larger

prospective studies with harmonized imaging protocols are
warranted to confirm its clinical utility and generalizability.

Conclusion

This study presents the EPS, a novel spatial PET-based
radiomic feature that captures SUVmax displacement within
tumors, as a robust prognostic biomarker in resectable
NSCLC. The score demonstrated independent prognostic
value for PFS and reflected distinct biological states, with
high EPS associated with metabolic and proliferative activ-
ity, and low EPS linked to immune-inflamed tumor pheno-
types. Transcriptomic and immune cell profiling support
the biological interpretability of this imaging feature, high-
lighting its potential role in non-invasive risk stratification.
Future work should focus on validating the EPS in larger
prospective cohorts and assessing its value in guiding immu-
notherapy selection and multimodal treatment strategies.
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