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Abstract
Purpose  Accurate non-invasive prediction of histopathologic invasiveness and recurrence risk remains a clinical challenge 
in resectable non-small cell lung cancer (NSCLC). We developed and validated the Edge Proximity Score (EPS), a novel 
[18F]FDG PET/CT-based spatial imaging feature that quantifies the displacement of SUVmax relative to the tumor centroid 
and perimeter, to assess tumor aggressiveness and predict progression-free survival (PFS).
Methods  This retrospective study included 244 NSCLC patients with preoperative [18F]FDG PET/CT. EPS was computed 
from normalized SUVmax-to-centroid and SUVmax-to-perimeter distances. A total of 115 PET radiomics features were 
extracted and standardized. Eight machine learning models (80:20 split) were trained to predict lymphovascular invasion 
(LVI), visceral pleural invasion (VPI), and spread through air spaces (STAS), with feature importance assessed using SHAP. 
Prognostic analysis was conducted using multivariable Cox regression. A survival prediction model incorporating EPS was 
externally validated in the TCIA cohort. RNA sequencing data from 76 TCIA patients were used for transcriptomic and 
immune profiling.
Results  EPS was significantly elevated in tumors with LVI, VPI, and STAS (P < 0.001), consistently ranked among the top 
SHAP features, and was an independent predictor of PFS (HR = 2.667, P = 0.015). The EPS-based nomogram achieved AUCs 
of 0.67, 0.70, and 0.68 for predicting 1-, 3-, and 5-year PFS in the TCIA validation cohort. High EPS was associated with 
proliferative and metabolic gene signatures, whereas low EPS was linked to immune activation and neutrophil infiltration.
Conclusion  EPS is a biologically relevant, non-invasive imaging biomarker that may improve risk stratification in NSCLC.
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Introduction

Non-small cell lung cancer (NSCLC) is the leading pri-
mary lung malignancy and remains one of the most com-
mon causes of cancer-related death globally [1, 2]. Despite 
the development of new therapies, including targeted 
treatments and immunotherapy, the prognosis for patients 
diagnosed with NSCLC remains dismal. The five-year 
survival rates for those with advanced NSCLC range from 
about 6–15% [3]. Although early-stage NSCLC is poten-
tially curable with surgical resection, recurrence occurs 
in approximately 30–50% of patients, most commonly 
within the first three years after surgery [4]. Prognostic 
variability in NSCLC is influenced by several critical fac-
tors [5, 6]. The tumor-node-metastasis (TNM) staging 
system serves as the traditional basis for risk stratifica-
tion; it is increasingly recognized that this system alone 
does not capture the complete biological behaviors of the 
disease nor reliably predict recurrent disease, particularly 
in early-stage patients [7].

The invasive behavior of NSCLC is reflected in sev-
eral histopathologic patterns, notably visceral pleural 
invasion (VPI) and lymphovascular invasion (LVI), and 
it spreads through air spaces (STAS). Although these 
features involve anatomically distinct pathways, they 
share common biological characteristics associated with 
aggressive tumor progression [8, 9]. VPI occurs when 
tumor cells breach the elastic layer of the visceral pleura, 
a process often facilitated by degradation of the extra-
cellular matrix and cell changes, cell adhesion [10]. LVI 
refers to tumor cells within lymphatic or blood vessels 
and is frequently linked to epithelial–mesenchymal tran-
sition (EMT), which enhances cellular motility [11]. 
STAS, defined as the presence of tumor cell clusters 
within alveolar spaces beyond the main tumor margin, 
also indicates detachment and spread, and is associated 
with reduced intercellular adhesion and increased inva-
siveness [12, 13]. These invasion patterns frequently 
co-occur and have been independently associated with 
nodal metastasis, early recurrence, and worse survival 
outcomes [14], which shows their significance in prog-
nostication and postoperative risk stratification [15, 16].

Positron emission tomography/computed tomogra-
phy (PET/CT) with 2-deoxy-2-[18F] fluoro-D-glucose 
([18F] FDG) is widely recommended for the initial stag-
ing of NSCLC and plays a central role in treatment plan-
ning and prognostic evaluation [17]. Radiomics, the 
high-throughput extraction of quantitative features from 
imaging data, emerges as a powerful marker in assessing 
tumor aggressiveness in NSCLC [18]. Studies have dem-
onstrated that texture, intensity, and shape-based features 
extracted from PET/CT scans can non-invasively predict 

tumor characteristics, including VPI [19], LVI [20], and 
STAS [21]. More recently, attention has turned to spatial 
imaging features that describe the geometric distribution 
of metabolic activity within the tumor. In NSCLC, the spa-
tial distance between maximum standardized uptake values 
(SUVmax) in different lesions has been shown to reflect 
tumor dissemination and metabolic heterogeneity, offering 
prognostic value [22]. Within individual tumors, two intra-
lesional spatial features, normalized distance from SUV-
max to the tumor centroid (nDmaxC) and the normalized 
distance to the tumor perimeter (nDmaxP), have demon-
strated significant prognostic relevance [23]. These features 
are robust across imaging parameters, complementary to 
conventional PET metrics, and have independent prognos-
tic value, effectively stratifying outcomes across different 
treatment settings [24]. However, relying on a single spa-
tial metric can be insufficient. For example, a large distance 
between SUVmax and the centroid does not always indicate 
proximity to the tumor edge. To address this limitation, we 
developed a novel composite parameter, the Edge Proximity 
Score (EPS), which integrates both nDmaxC and nDmaxP 
to capture peripheral metabolic activity better.

In this study, we aimed to evaluate EPS as a spatial imag-
ing biomarker in NSCLC by assessing its association with 
tumor invasiveness, recurrence risk, and key radiomic fea-
tures. We also explored its biological and clinical relevance 
through transcriptomic and immune profiling to gain mech-
anistic insights into the imaging phenotype and its potential 
application in risk stratification.

Materials and methods

This retrospective multicenter study included patients 
diagnosed with NSCLC who underwent surgical tumor 
resection at two institutions: the Vienna General Hospital 
(Vienna, Austria) and the National Korányi Institute of Pul-
monology (Budapest, Hungary), between January 1, 2010, 
and December 1, 2020. The study protocol was approved by 
the Institutional Review Board of the Medical University 
of Vienna (approval number: 1649/2016) and the Research 
Committee of the Hungarian Medical Research Council 
(approval number: 52614–4/2013/EKU), with waivers of 
informed consent granted due to the retrospective nature of 
the study.

Study sample

A total of 915 NSCLC patients from three centers, Vienna 
(n = 684), Budapest (n = 101), and The Cancer Imaging 
Archive (TCIA, n = 130) [25], were considered for inclusion 
(Fig. 1). Considering the differences in sample size, tumor 
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stage, and histologic subtype between the Vienna and Buda-
pest cohorts, we merged both institutional datasets into a 
single cohort to avoid confounding and ensure more robust 
and generalizable model development. All patients under-
went surgical resection of primary lung tumors in this study. 
Inclusion criteria were as follows: (a) Histopathologically 
confirmed NSCLC; (b) No prior antitumor therapy before 
surgery; (c) [18F]FDG PET/CT imaging acquired within 
8 weeks before surgery; (d) Complete clinical and histo-
pathologic data. Exclusion criteria included: (a) Receipt of 
neoadjuvant therapy (chemotherapy, radiotherapy, or immu-
notherapy before PET/CT or surgery); (b) Evidence of dis-
tant metastasis on imaging or intraoperative assessment; (c) 
Incomplete PET/CT imaging or missing clinical/pathologic 
data; and (d) Poor image quality unsuitable for radiomics 
analysis, including motion artifacts, low FDG uptake, or 
segmented tumor volumes < 64 voxels.

Clinical and pathologic data collection

Demographic and clinical variables included age, sex, smok-
ing status, history of chronic obstructive pulmonary disease, 
and AJCC TNM stage [26]. PET/CT imaging parameters, 
including SUVmax, SUVmean, metabolic tumor volume 
(MTV), and total lesion glycolysis (TLG), were recorded 
for all patients. Pathological data, including histological 
subtype, STAS, LVI, and VPI, were confirmed by an expe-
rienced pathologist (≥ 10 years of experience). Addition-
ally, the TCIA cohort provided another subset of patients 
with publicly available imaging and clinical data. Among 
these, 76 TCIA patients had matched RNA sequencing data. 
The primary clinical endpoint was progression-free sur-
vival (PFS), defined as the time (in months) from surgery to 
radiologically confirmed recurrence or last follow-up with-
out progression. Recurrence included any local, regional, 

Fig. 1  Study design and patient selection workflow.  Bioinformatic 
analysis refers to transcriptomic profiling, pathway enrichment analy-
sis, and immune cell infiltration evaluation. NSCLC, non–small cell 

lung cancer; VPI, visceral pleural invasion; STAS, spread through air 
spaces; LVI, lymphovascular invasion; TCIA, The Cancer Imaging 
Archive; TCGA, The Cancer Genome Atlas
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or distant disease progression based on CT and/or PET/CT. 
Biopsy of recurrent lesions was not routinely required and 
was only performed when imaging was equivocal or histo-
logic confirmation was necessary for treatment decisions. 
All patients had a minimum follow-up duration of one year. 
Patient characteristics are summarized in Table 1.

Image preprocessing and feature extraction

[18F]FDG PET/CT scans were obtained from two centers 
(Vienna and Budapest) using institutional standard proto-
cols aligned with EANM/EARL guidelines [27]. Tumors 
were segmented semi-automatically using a 40% SUVmax 
threshold. Images were resampled and normalized before 
radiomic feature extraction. A total of 115 PET radiomic 
features were extracted following IBSI guidelines [28]. 
Two spatial features, nDmaxC and nDmaxP, were used to 
derive the EPS, which quantifies the spatial shift of SUV-
max within the tumor (Supplementary Fig.  1A). It was 
defined as:

Edge Proximity Score = nDmaxC − nDmaxP

nDmaxC + nDmaxP

A higher EPS reflects SUVmax localization toward the 
tumor edge. Patients were stratified using a geometrically 
defined and biologically interpretable cutoff (EPS > 0 vs. ≤ 
0), where 0 represents equal proximity of SUVmax to the 
tumor centroid and perimeter. Full preprocessing and fea-
ture extraction details are provided in the Supplementary 
Methods.

Following an 80:20 training–validation split, radiomic 
features were standardized, and the 20 features were 
selected using the minimum redundancy maximum rel-
evance (mRMR) algorithm. Eight machine learning mod-
els were applied to predict LVI, VPI, and STAS. Feature 
importance was ranked using SHAP analysis [29, 30]. To 
assess model robustness, we additionally performed five-
fold cross-validation on the full dataset, as detailed in the 
Supplementary Methods.

Outcome prediction and exploring biological 
functions

The prognostic value of EPS was assessed using univari-
able and multivariable Cox regression based on the final 
patient cohort. Patients were stratified into high-risk 
(EPS > 0) and low-risk (EPS ≤ 0) groups using a geo-
metrically defined cutoff. PFS was analyzed using Cox 
regression and Kaplan–Meier (KM) survival curves. A 

Table 1  Baselines of patient characteristics and PET parameter dis-
tribution
Clinicopathologic 
characteristics

Final cohort 244 
patients n (%)

TCIA set 76 
patients n (%)

Age, median (IQR) 64.5 (59, 70) 69.7 (61, 77)
Gender, n (%)
 Female 144 (59%) 63 (82.9%)
 Male 100 (41%) 13 (17.1%)
Smoking history, n (%)
 Non‐smoker 68 (27.9%) 12 (15.8%)
 Smoker 176 (72.1%) 64 (84.2%)
COPD status, n (%) NA
 Negative 115 (47.1%) -
 Positive 103 (42.2%) -
T stage, n (%)
 T1+T2 185 (75.8%) 63 (82.9%)
 T3+T4 59 (24.2%) 13 (17.1%)
N stage, n (%)
 N0 141 (57.8%) 59 (77.6%)
 N1+N2 103 (42.2%) 17 (22.4%)
Stage*, n (%)
 I 92 (37.7%) 32 (42.1%)
 II 97 (39.8%) 34 (44.7%)
 III 55 (22.5%) 10 (13.2%)
Histology subtype, n (%)
 ADC 178 (73.0%) 55 (75.3%)
 SCC 66 (27.0%) 18 (24.7%)
VPI, n (%)
 Negative 174 (71.3%) 53 (72.6%)
 Positive 70 (28.7%) 20 (27.4%)
LVI, n (%) NA
 Negative 140 (57.4%) -
 Positive 104 (42.6%) -
STAS, n (%) NA
 Negative 159 (65.2%) -
 Positive 85 (34.8%) -
Recurrence, n (%)
 Yes 103 (42.2%) 24 (31.6%)
 No 141 (57.8%) 52 (68.4%)
nDmaxC, median (IQR) 0.49 (0.32, 0.69) 0.31 (0.221, 0.50)
nDmaxP, median (IQR) 0.20 (0.15, 0.36) 0.32 (0.18, 0.46)
EPS, median (IQR) 0.34 (0.06, 0.59) 0.52 (−0.22, 0.30)
Tumor SUVmax, median 
(IQR)

9.5628 (5.84, 
17.87)

2.1027 (0.65, 
2.48)

Tumor MTV, median 
(IQR)

16.126 (6.10, 
48.05)

15.734 (6.79, 
46.55)

Tumor TLG, median 
(IQR)

68.115 (16.98, 
289.4)

8.4152 (2.96, 
24.44)

Tumor SUVmean, median 
(IQR)

3.9735 (2.53, 6.13) 1.5185 (0.34, 
0.86)

ADC adenocarcinoma, SCC squamous cell carcinoma, COPD 
Chronic obstructive pulmonary disease, MTV metabolic tumor vol-
ume, TLG total lesion glycolysis, VPI visceral pleural invasion, LVI 
lymphovascular invasion, STAS spread through air spaces, IQR inter-
quartile range. NA, not applicable. *Based on TNM 8th edition
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invasive features (Supplementary Fig. 1B–D). EPS showed 
weak correlation with conventional PET features and 
radiomics (|r| < 0.5), supporting its distinct spatial contribu-
tion (Supplementary Fig. 2).

Predictive performance of radiomic models

The predictive performance of eight machine learning clas-
sifiers for identifying STAS, LVI, and VPI status in the 20% 
validation cohort is summarized in Fig. 2 and Supplemen-
tary Table 1. For STAS prediction (Fig.  2A), the support 
vector machine (SVM) achieved the highest performance 
(AUC = 0.73, 95% CI: 0.59–0.87). The extreme gradient 
boosting (XGBoost) yielded the best discriminative ability 
for LVI (AUC = 0.61, 95% CI: 0.44–0.77; Fig. 2B), while 
SVM performed best for VPI classification (AUC = 0.74, 
95% CI: 0.55–0.93; Fig. 2C). SHAP analysis identified the 
EPS among the top five contributors to model predictions 
across all endpoints (Fig. 2D–F). To further evaluate model 
performance, we also conducted five-fold cross-validation 
using the full dataset. The results are presented in Supple-
mentary Fig. 3.

Prognostic stratification

EPS was evaluated as a predictor of PFS using Cox regression 
(Supplementary Fig. 4A–B). In univariable analysis, EPS 
was significantly associated with shorter PFS (HR = 7.650; 
95% CI: 3.893–15.036; P < 0.001), along with age, TNM 
stage, MTV, VPI, and other clinical variables (P < 0.05). In 
multivariable analysis, EPS remained an independent pre-
dictor (HR = 2.667; 95% CI: 1.205–5.935; P = 0.015), along 
with TNM stage (HR = 2.927; P = 0.018), VPI (HR = 1.628; 
P = 0.030), age (HR = 0.975; P = 0.030), and tumor MTV 
(HR = 1.005; P = 0.041). nDmaxC (HR = 1.682; P = 0.207) 
and nDmaxP (HR = 0.303; P = 0.222) were not significant 
when tested separately (Supplementary Fig. 4C–D).

A prognostic nomogram was constructed based on the 
independent predictors identified in the multivariable Cox 
model from the training (final) cohort (Fig.  3A). Calibra-
tion plots showed good agreement between predicted and 
observed 1-, 3-, and 5-year PFS in both the training (final) 
and validation (TCIA) cohorts (Fig.  3B–C). In the TCIA 
validation cohort, EPS yielded AUCs of 0.63 (95% CI: 
0.47–0.78), 0.62 (95% CI: 0.49–0.75), and 0.63 (95% CI: 
0.50–0.77) for 1-, 3-, and 5-year PFS, respectively. The 
nomogram achieved AUCs of 0.67 (95% CI: 0.52–0.83), 
0.70 (95% CI: 0.57–0.83), and 0.68 (95% CI: 0.53–0.83) 
(Fig.  3D–E and Supplementary Table 2). KM analysis 
showed significantly worse PFS in high-risk (EPS > 0) 
patients in both cohorts (final: P < 0.0001; TCIA: P = 0.021; 

prognostic nomogram was constructed using independent 
Cox predictors and validated in the TCIA cohort. Time-
dependent area under the curve (AUC) and calibration 
curves were used to evaluate model performance. Tran-
scriptomic and immune cell infiltration analyses were per-
formed on a subset of TCIA patients with available RNA 
sequencing data. Full analysis details are provided in the 
Supplementary Methods.

Statistical analyses

Continuous variables were summarized as medians with 
interquartile ranges (IQRs), and categorical variables as 
counts and percentages. The Mann-Whitney U test was 
used for comparisons of continuous variables between 
groups. Spearman correlation was used to assess asso-
ciations between EPS and selected radiomic features. 
Machine learning model performance for predicting LVI, 
VPI, and STAS was evaluated using AUC, sensitivity, and 
specificity. Feature importance was assessed using SHAP. 
Prognostic analysis for PFS was conducted using univari-
able and multivariable Cox regression, with hazard ratios 
(HRs) and 95% confidence intervals (CIs) reported. Fol-
low-up time was estimated using the reverse KM method. 
A prognostic nomogram was constructed using indepen-
dent predictors identified in the final multivariable Cox 
model and externally validated in the TCIA cohort. Dis-
criminative performance was evaluated using time-depen-
dent AUC at 1-, 3-, and 5-year PFS. All analyses were 
performed using R (version 4.1.0) and Python (version 
3.6). A two-sided P value < 0.05 was considered statisti-
cally significant.

Results

Patient characteristics

Out of 785 screened NSCLC patients, 244 were included in 
the final cohort (Fig. 1). Baseline characteristics of the final 
and TCIA cohorts are summarized in Table 1. The median 
age was 64.5 years; 59% were female; and most had early-
stage tumors (T1–T2: 75.8%; N0: 57.8%) and a smoking 
history (72.1%). Adenocarcinoma was the predominant 
histology (73%), with frequent presence of VPI (28.7%), 
LVI (43.6%), and STAS (34.8%). Recurrence occurred in 
42.2% of the final cohort (median follow-up: 102 months) 
and 31.6% in TCIA (median: 41 months). EPS and its com-
ponents (nDmaxC and nDmaxP) were significantly associ-
ated with LVI, VPI, and STAS (all P < 0.0001). EPS and 
nDmaxC were higher, and nDmaxP lower, in NSCLC with 
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upregulated in the high-risk group were predominantly 
involved in pyruvate metabolism, fatty acid degradation, 
and glycolysis/gluconeogenesis (Fig. 4B). Gene set enrich-
ment analysis (GSEA) using Hallmark gene sets further 
indicated enrichment of proliferation-related pathways 
(G2M checkpoint, E2F targets, MYC signaling) in high-
risk group, whereas immune-related pathways (interferon 
α/γ response, IL6-JAK-STAT3, and TNF-α/NF-κB signal-
ing) were downregulated (Fig.  4C–E). Given the immune 
signature in low-risk group, we profiled immune infiltration 
using single-sample gene set enrichment analysis (ssGSEA) 
and microenvironment cell populations (MCP)-counter. The 
low-risk group showed higher infiltration of neutrophils, 
immature dendritic cells, NK cells, eosinophils, and mast 
cells (P < 0.05; Supplementary Fig. 6A and Supplementary 

Fig. 4B; Supplementary Fig. 5A). EPS stratified prognosis 
within stage I and stage II-III subgroups (P < 0.0001 and 
P = 0.0099, respectively), supporting its added value beyond 
TNM staging (Supplementary Fig. 5C–D).

Biological functions associated with EPS status

To explore the biological underpinnings of the EPS, we ana-
lyzed RNA sequencing data from 76 NSCLC patients in the 
TCIA dataset, comparing high-risk (EPS > 0) and low-risk 
(EPS ≤ 0) group. We identified 42 differentially expressed 
genes (27 upregulated, 15 downregulated; adjusted P < 0.05; 
Fig.  4A). Functional enrichment analysis of these DEGs 
using Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways revealed that genes 

Fig. 2  Comparative analysis of machine learning classifiers for pre-
dicting histopathologic features in NSCLC. Radiomics-based models 
were developed to predict the presence of STAS, LVI, VPI using eight 
supervised machine learning classifiers, including XGBoost, logistic 
regression, LightGBM, random forest, AdaBoost, decision tree, MLP, 
and SVM. Panels A–C present the classification performance of each 
model in the independent validation cohort, measured by the area 
under the receiver operating characteristic curve, for STAS (A), LVI 

(B), and VPI (C). Panels D–F display the corresponding SHAP sum-
mary plots, which illustrate the relative importance of the 20 mRMR-
selected radiomic features used for model predictions of STAS (D), 
LVI (E), and VPI (F), ranked by their mean absolute SHAP values. 
LVI, lymphovascular invasion; MLP, multilayer perceptron; NSCLC, 
non–small cell lung cancer; VPI, visceral pleural invasion; STAS, 
spread through air spaces; SVM, support vector machine; SHAP, 
Shapley additive explanations
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Discussion

This study presents and validates the EPS, a novel PET-
based spatial imaging feature that quantifies SUVmax 

Table 3). MCP-counter confirmed greater abundance of 
neutrophils (P = 0.030), endothelial cells, monocytic lin-
eages, and myeloid dendritic cells (Supplementary Fig. 6B 
and Supplementary Table 4).

Fig. 3  Nomogram for progression-free survival prediction and calibra-
tion in the training (Final) and validation (TCIA) Cohorts. (A) Nomo-
gram constructed using the training (final) cohort to predict 1-, 3-, and 
5-year PFS based on age, TNM stage, MTV, VPI, and the EPS. Each 
variable contributes to a point total, which maps to predicted PFS 
probabilities. Calibration plots evaluating nomogram performance in 
the training (final) cohort (B) and the validation (TCIA) cohort (C). 
The x-axis represents nomogram-predicted PFS probabilities; the 

y-axis shows the actual observed survival derived from Kaplan–Meier 
estimates. Vertical bars indicate 95% confidence intervals. Time-
dependent AUC curves comparing the prognostic performance of the 
nomogram, EPS, TNM stage, MTV, VPI, and age for predicting 1-, 
3-, and 5-year PFS in the training (final) cohort (D) and the validation 
(TCIA) cohort (E). PFS, progression-free survival; MTV, metabolic 
tumor volume; VPI, visceral pleural invasion; EPS, Edge Proximity 
Score. AUC, area under the curve
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and breast cancer, and their 3D extensions (NHOC and 
NHOP) were further validated in advanced NSCLC [26]. 
EPS builds upon these concepts by integrating both cen-
troid- and perimeter-based distances into a composite 
metric, enhancing its robustness in capturing spatial meta-
bolic asymmetry. While both nDmaxC and nDmaxP were 
individually associated with histopathologic invasiveness, 
neither consistently ranked among the top features across 
machine learning models for different endpoints, nor were 
they independently prognostic in multivariable Cox mod-
els, emphasizing the additive value of their combination. In 
multivariable Cox regression, EPS remained an indepen-
dent predictor of PFS alongside MTV [31], VPI [32], and 
age [33] all of which are established prognostic markers in 
NSCLC. In the TCIA validation cohort, the prognostic per-
formance of EPS alone was slightly lower than that of TNM 
stage, yet EPS still added complementary information. To 

displacement toward the tumor edge. In a multi-center 
cohort of resectable NSCLC, EPS was significantly asso-
ciated with invasive histopathologic features (STAS, VPI, 
LVI; all P < 0.0001) and ranked among the top predictors 
in machine learning models. EPS remained an independent 
prognostic factor for PFS (P = 0.015) and stratified out-
comes even within TNM stage subgroups. Transcriptomic 
and immune profiling further revealed that EPS captures 
biologically distinct tumor phenotypes: tumors with high 
EPS were enriched in metabolic and proliferative pathways, 
while low EPS tumors exhibited immune-related activity, 
including interferon signaling and cytokine response.

Previous studies have highlighted the prognostic rel-
evance of spatial PET features such as the normalized 
hotspot-to-centroid distance (NHOC) and normalized 
SUVmax-to-perimeter distance (nSPD) [23, 25]. These 
metrics have been associated with poor outcomes in lung 

Fig. 4  Functional differences between low- and high-risk groups 
based on Edge Proximity Score using RNA sequencing data (n = 76, 
TCIA set). (A) Volcano plot displaying differentially expressed genes 
between high- and low-risk groups. Significantly upregulated genes 
in the high-risk group are shown in red (n = 27), while downregulated 
genes in the low-risk group are shown in blue (n = 15). (B) Bubble 
plot showing enriched Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) terms among the differentially 
expressed genes. Dot size indicates the ontology source (MF = molec-

ular function; KEGG = pathway), and color represents adjusted p-val-
ues (P.adj, FDR corrected). (C) Hallmark gene set enrichment analy-
sis reveals significantly enriched biological pathways in the high-risk 
group (red, positive normalized enrichment score [NES]) and low-risk 
group (blue, negative NES). (D, E) Gene set enrichment plots illustrate 
hallmark pathways upregulated in the high-risk group (D) and in the 
low-risk group (E), with the x-axis representing the rank in the ordered 
dataset and the y-axis showing the enrichment score
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prospective studies with harmonized imaging protocols are 
warranted to confirm its clinical utility and generalizability.

Conclusion

This study presents the EPS, a novel spatial PET-based 
radiomic feature that captures SUVmax displacement within 
tumors, as a robust prognostic biomarker in resectable 
NSCLC. The score demonstrated independent prognostic 
value for PFS and reflected distinct biological states, with 
high EPS associated with metabolic and proliferative activ-
ity, and low EPS linked to immune-inflamed tumor pheno-
types. Transcriptomic and immune cell profiling support 
the biological interpretability of this imaging feature, high-
lighting its potential role in non-invasive risk stratification. 
Future work should focus on validating the EPS in larger 
prospective cohorts and assessing its value in guiding immu-
notherapy selection and multimodal treatment strategies.
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improve clinical applicability, we constructed a multivari-
able nomogram incorporating EPS along with TNM stage, 
MTV, VPI, and age. The nomogram demonstrated superior 
performance and calibration compared to individual predic-
tors, supporting its utility for individualized PFS risk pre-
diction. Stratification using a geometrically defined cutoff 
(EPS = 0), representing equal proximity to tumor centroid 
and edge, further distinguished high-risk patients across 
cohorts. Although this cutoff is not biologically validated, it 
is conceptually motivated: EPS = 0 reflects equal proximity 
of SUVmax to the tumor centroid and edge. This midpoint 
is consistent with prior spatial imaging biomarkers, such as 
NHOC and NHOP, which have similarly demonstrated that 
peripheral SUVmax localization is associated with more 
aggressive tumor phenotypes.

Although spatial imaging features have previously been 
associated with prognosis in NSCLC, their biological rel-
evance has remained unexplored. To address this, we per-
formed transcriptomic and immune profiling to explore 
the EPS. Functional enrichment analyses revealed that 
tumors with high EPS were enriched in glycolysis, pyru-
vate metabolism, and fatty acid degradation–pathways 
commonly associated with metabolic reprogramming and 
tumor aggressiveness [34–36]. Hallmark gene sets further 
indicated upregulation of G2M checkpoint, E2F targets, and 
MYC signaling in high EPS tumors, reflecting enhanced 
proliferation and cell cycle dysregulation [37, 38]. In con-
trast, low EPS showed enrichment of immune-related path-
ways, including interferon signaling, IL6-JAK-STAT3, and 
TNF-α/NF-κB [39, 40], along with higher infiltration of neu-
trophils, NK cells, monocytic lineages, and dendritic cells 
as confirmed by ssGSEA and MCP-counter. These findings 
suggest that EPS captures biologically distinct tumor states, 
with low EPS identifying a potentially immune-inflamed 
phenotype. Notably, neutrophils, known for their dual N1 
(anti-tumor) and N2 (pro-tumor) phenotypes, may in this 
setting reflect a more N1-skewed response, supported by 
the concurrent enrichment in interferon-driven immunity 
[41]. These transcriptomic and cellular profiles support its 
relevance for patient stratification in NSCLC.

This study has limitations. The retrospective design may 
introduce selection bias and incomplete data. Imaging was 
acquired across two institutions using different scanners, 
potentially impacting radiomic reproducibility. However, 
EPS appeared robust to such variability, particularly com-
pared to high-frequency texture features. Although major 
motion artifacts were excluded, residual respiratory motion 
may influence measurements; future phantom-based stud-
ies could address this. Transcriptomic analysis was limited 
to a publicly available subset (n = 76), which may reduce 
statistical power. Finally, although EPS showed consistent 
prognostic value across internal and external cohorts, larger 
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