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The overlaps between integrable matrix product states (MPS) and Bethe states are important
in both the non-equilibrium statistical physics and the AdS/CFT duality. We present the general
MPS overlap formula. The result is a product of a ratio of Gaudin determinants and a prefactor.
The Gaudin determinants depend on the spin chain but not on the MPS. The MPS dependent
prefactor is given for all integrable MPS of the glN , oN and spN symmetric spin chains with arbitrary
representations.

I. INTRODUCTION

Over the past ten years, intensive research has
been carried out on the topic of integrable boundary
states. The overlaps between boundary and Bethe states
have important applications in two areas of theoretical
physics: non-equilibrium dynamics in statistical physics
and the AdS/CFT duality.

A major breakthrough in the last decade has been
the laboratory simulation of integrable statistical physics
models [1–3]. A common feature of these studies
is the experimental investigation of so-called quantum
quenches, where certain initial states (the ground state
of the pre-quenched system) are prepared and the re-
sulting finite-time dynamics are monitored. This has
launched an intensive theoretical investigation of the non-
equilibrium dynamics of integrable models [4, 5]. These
studies are based on the so-called Quench Action method,
which allows for the calculation of the long-term equilib-
rium state and the possibility of studying the time evo-
lution of specific initial states [6–8]. The Quench Action
method is based on explicit knowledge of the overlaps
between the initial state and the Bethe eigenstates. This
method has been successfully applied to a number of dif-
ferent models [9–12], but the investigated initial states
were the so-called two-site product states, which have
essentially minimal entanglement.

In parallel, the investigation of the AdS/CFT duality
with defects by integrability methods has begun. The
single-trace operators of the planar N = 4 super Yang-
Mills theory (N = 4 SYM) can be mapped to Bethe
states of an integrable spin chain at weak coupling [13].
It was found that the one-point functions of these single-
trace operators can be traced back to overlaps of matrix
product states (MPS) and Bethe states for the so-called
D3-D5 type domain wall defect of N = 4 SYM [14, 15].
These overlap formulas, which give the one-point func-
tions, have been determined in various limits [16–19].
This domain wall setup was also generalized to the ABJM
theory [20, 21]. Similar boundary states have been found
for other defects. In the presence of a giant graviton,
some correlation functions are also given by boundary
state overlaps in the N = 4 SYM [22] and in the ABJM

[23]. Boundary state overlaps also appear in the one-
point functions in the presence of Wilson- and ’t Hooft
lines [24, 25]. Most recently, integrable boundary states
and their overlaps have emerged in the investigation of
the Coulomb branch of N = 4 SYM [26]. The integrable
conformal defects in N = 4 SYM have also been clas-
sified [27]. The physical significance of these defects is
that they violate conformal [26] or supersymmetry [28]
in certain configurations, which can lead to more realistic
theories. Since for each of these examples the important
physical quantities can be described by overlaps between
boundary states and Bethe states, the investigation of
the overlap formulas is important.

Due to the above applications in statistical physics and
AdS/CFT duality, research on the overlaps of integrable
boundary and Bethe states has been initiated. The defi-
nition of integrable boundary states first appeared in the
context of 2d quantum field theories [29] and was later
generalized to spin chains [30, 31]. The first important
observation regarding the overlaps was that they are pro-
portional to the ratio of Gaudin determinants [32]. The
Gaudin determinants are universal, i.e., they do not de-
pend on the boundary state. The boundary state depen-
dent part of the overlap function is the prefactor preced-
ing the ratio. Later, this observation was used to con-
jecture overlap formulas [16, 33, 34]. There have been
only a few proofs [32, 35, 36], mainly focused on spin 1/2
XXX or XXZ spin chains. It was not clear how these
methods could be generalized to general spins or higher
rank symmetries. Later, a method based on the algebraic
Bethe Ansatz was developed to determine and prove the
overlap formulas of glN symmetric spin chains for any
representations and any two-site product states [37–39].
Although these results are extremely general, they do not
say anything about MPS overlaps. In terms of applica-
tions, the MPS overlaps are particularly important. For
quantum quenches, the ground state of the pre-quench
system can be approximated better with an MPS than
with a two-site product state. Even in the AdS/CFT
duality, the most interesting defects correspond to MPS
boundary states [15, 20, 28].

In this letter we present the general overlap formula
(19) for integrable MPSs of rational spin chains. Every
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integrable MPS corresponds to a K-matrix which is a
representation of a reflection algebra. One can define
a series of commuting matrices (F -operators) from the
components of the K-matrix. The spectrum of the F -
operators completely defines the MPS overlap formula.
The definition of the F -operators depends only on the
reflection algebra. In the Supplemental Material [40], we
give the definitions of the F -operators for every reflection
algebra of the glN , oN or spN symmetric spin chains.
These results give the overlaps for all integrable MPS of
the glN , oN or spN symmetric spin chains with arbitrary
representations.

The derivation of the overlaps can be found in a sepa-
rate, more detailed paper [41]. For a broad class of MPSs
in glN spin chains, the proofs are fully rigorous, while in
the remaining cases the calculations involve some conjec-
tures; for details, see the End Matter.

II. INTEGRABLE SPIN CHAINS AND MATRIX
PRODUCT STATESSU

A. Definitions for integrable spin chains

In this letter, we do not focus on a particular model,
but instead work with a wide class of integrable spin
chains. A spin chain is given by a Hamiltonian H, which
acts on a Hilbert space H with a tensor product struc-
ture: H =

(
Cd

)J , where d is the dimension of the one-site
Hilbert space and J is the length of the spin chain. The
model is integrable if there exists a generating function
T (u) of the commuting charges that commutes with the
Hamiltonian

[H, T (u)] = 0. (1)

This generating function T (u) is called the transfer ma-
trix.

Let us introduce an auxiliary space CN . For integrable
spin chains with periodic boundary conditions, the trans-
fer matrix is

T (u) =

N∑
j=1

Tj,j(u), (2)

where Ti,j(u) are the entries of the monodromy matrix
for i, j = 1, . . . , N . We also introduce the matrix nota-
tion in the auxiliary space: T (u) =

∑
i,j ei,j ⊗ Ti,j(u) ∈

End(CN⊗H), where ei,j are the unit matrices of CN with
components (ei,j)a,b = δi,aδj,b. The monodromy matrix
satisfies the famous RTT -relation

R1,2(u− v)T1(u)T2(v) = T2(v)T1(u)R1,2(u− v), (3)

where R(u) ∈ End(CN ⊗ CN ) is the R-matrix and the
subscripts 1 and 2 label two copies of the auxiliary space.
The RTT -relation has two consequences: the R-matrix

must satisfy the Yang-Baxter equation

R1,2(u− v)R1,3(u)R2,3(v) = R2,3(v)R1,3(u)R1,2(u− v),
(4)

and the transfer matrix generates commuting operators

[T (u), T (v)] = 0. (5)

In this letter we investigate rational spin chains with
Lie-algebra symmetries glN , oN or spN . The gl(N) sym-
metric R-matrix is

R(u) = 1+
1

u
P, P =

N∑
i,j=1

ei,j ⊗ ej,i. (6)

The oN and spN symmetric R-matrices can be written
as

R(u) = 1+
1

u
P− 1

u+ κN
Q, Q =

N∑
i,j=1

θiθjei,j ⊗ eī,j̄ ,

(7)
where ī = N + 1− i and κN = N∓2

2 . The minus or plus
signs correspond to the oN or spN algebras, respectively.
For oN , θi = +1 and for spN , θi = sgn(i − N+1

2 ). The
monodromy matrices are representations of the Yangian
algebras Y (g) [42], where g = glN , oN or spN .

Let τ(u|ū) and |ū⟩ be the eigenvalues and eigenvectors
of the transfer matrix T (u), where the set ū ≡

{
ūj
}n

j=1

consists of subsets ūj =
{
ujk

}rj

k=1
, and each ujk denotes a

Bethe root. The n is the rank of the symmetry algebra
(n for gln+1, o2n+1, sp2n and o2n). The Bethe root uµk
corresponds to the rapidity of a type a quasi-particle, and
it must satisfy the Bethe equation [43]

αµ(u
µ
k)

n∏
ν=1

rb∏
l=1

uµk − uνl − i
2Cµ,ν

uµk − uνl + i
2Cµ,ν

= −1. (8)

The coefficients Cµ,ν are the inner products of the simple
roots of the corresponding algebra [40]. The functions
αµ(u) depend on the representations of the Hilbert space
(and the inhomogeneities for inhomogeneous chains). A
set of the Bethe roots ūµ corresponds to a node µ of the
Dynkin diagram for µ = 1, . . . , n, see figure 1.

B. Integrable matrix product states

For even J let us define the following MPS

⟨MPS| =∑
i1,...,iJ

Tr
[
ψ
(J/2)
iJ−1,iJ

. . . ψ
(1)
i1,i2

]
⟨i1, i2, . . . , iJ−1, iJ |, (9)

where ψ(k)
i,j ∈ End(CdB ) for i, j = 1, . . . , d, k = 1, . . . , J/2

and dB is the boundary (or bond) dimension. The ma-
trices ψ(k)

i,j can differ (i.e. ψ
(k)
i,j ̸= ψ

(l)
i,j) for inhomoge-

neous chains, but they are given by the same functions
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Figure 1. Dynkin diagrams (first row gln+1, second row o2n+1

or sp2n, third row o2n). In the right, the blue arrows show
the non-trivial involutions ρ which correspond to achiral PS.

as ψ(k)
i,j ≡ ψi,j(θk), where θk-s are the inhomogeneities.

For homogenous chains it may happen that ψ(k)
i,j = ωjωi,

in which case the MPS can also be defined for chains of
even or odd length:

⟨MPS| =
∑

i1,...,iJ

Tr [ωiJ . . . ωi1 ] ⟨i1, i2, . . . , iJ−1, iJ |. (10)

We also define states by ”cutting the trace”

⟨Ψα,β | =∑
i1,...,iJ

(
ψ
(J/2)
iJ−1,iJ

. . . ψ
(1)
i1,i2

)
α,β

⟨i1, i2, . . . , iJ−1, iJ |, (11)

where α, β = 1, . . . , dB are indices of the boundary space.
The MPS is integrable if the states ⟨Ψα,β | satisfy theKT -
relation [38, 44]∑
k,γ

Kα,γ
i,k (u)⟨Ψγ,β |Tk,j(u) =

∑
k,γ

⟨Ψα,γ |T̂i,k(−u)Kγ,β
k,j (u),

(12)
where the coefficients Kα,β

i,j (u) ∈ C define the K-matrix
Ki,j(u) =

∑
α,β K

α,β
i,j (u)eBα,β ∈ End(CdB ), K(u) =∑

i,j ei,j ⊗Ki,j(u) ∈ End(CN ⊗ CdB ). Here, (eBα,β)a,b =
δα,aδβ,b are the elementary matrices of the boundary
space CdB . We also define the notation ⟨Ψ| ∈ H∗ ⊗
End(CdB ), which is a covector in the Hilbert space and a
matrix in the boundary space: ⟨Ψ| =

∑
α,β⟨Ψα,β | ⊗ eBα,β .

Using this matrix notation in the boundary space, the
KT -relation takes the compact form:

K(u)⟨Ψ|T (u) = ⟨Ψ|T̂ (−u)K(u). (13)

Here, the tensors K(u), ⟨Ψ| or T (u) act trivially on the
Hilbert, auxiliary or the boundary spaces, respectively.

There are two types of KT -relation: the uncrossed
KT -relation, where T̂ = T , and the crossed KT -relation
[38, 41], where

N∑
k=1

T̂k,i(u)Tk,j(u) = λ1(u)λ1(−u)δi,j1. (14)

Here, we used the pseudo-vacuum eigenvalue T1,1(u)|0⟩ =
λ1(u)|0⟩ [45]. Assuming the K-marix is invertible, the

g h KT-relation PS n+

glN
oN or spN crossed chiral N − 1

glM ⊕ glN−M uncrossed achiral
⌊
N
2

⌋
o2n+1 oM ⊕ o2n+1−M uncrossed chiral n

sp2n
sp2m ⊕ sp2n−2m uncrossed chiral n

gln uncrossed chiral n

o2n
oM ⊕ o2n−M uncrossed chiral/achiral n/(n− 1)

gln uncrossed chiral/achiral n/(n− 1)

Table I. The reflections algebras Y (g, h) and the correspond-
ing PS. For Y (o2n, gln), the PS is chiral/achiral when n is
even/odd. For Y (o2n, oM ⊕ o2n−M ), the PS is chiral/achiral
when n − M is even/odd. For chiral or achiral o2n PS, the
value of n+ is n or n− 1, respectively.

condition

⟨MPS|T (u) = ⟨MPS|T̂ (−u), (15)

follows from the KT -relation.
Another consequence of the KT -relation is that the

K-matrix satisfies the reflection equation [38, 41]

R1,2(u− v)K1(−u)R̄1,2(u+ v)K2(−v) =
K2(−v)R̄1,2(u+ v)K1(−u)R1,2(u− v), (16)

where

R̄1,2(u) =

{
R1,2(u), for the uncrossed KT,
Rt2

1,2(−u), for the crossed KT.
(17)

The reflection equation defines reflection algebra with
generators K(u). Let us consider its series expansion

K(u) = U ⊗ 1+ u−1
N∑

i,j=1

ei,j ⊗ k
(1)
i,j +O(u−2), (18)

where U ∈ Aut(CN ) and k
(1)
i,j ∈ End(CdB ). The matrices

k
(1)
i,j generate a Lie-subalgebra h [46], and the K-matrix

is a representation of the twisted Yangian Y (g, h) [47–50].
The reflection equation and the explicit form of U define
the twisted Yangian [41]. The classification of twisted
Yangians is shown in Table I. This Lie-subalgebra h is
also the symmetry algebra of both the K-matrix and the
MPS.

III. EXACT OVERLAPS OF INTEGRABLE MPS

A. Pair structures

We now continue with the discussion of overlaps be-
tween the integrable MPSs and on-shell Bethe states.
The integrability condition (15) is equivalent to non-
trivial selection rules for the on-shell overlaps: the over-
lap is non-vanishing only when the Bethe roots exhibit
pair structures (PS), i.e. ūj = −ūρ(j) for j = 1, . . . , n.
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The ρ is an involution of the Dynkin-diagram. If ρ is
trivial (i.e., ρ(j) = j for all j), the PS is called chiral.
If ρ is non-trivial, the PS is achiral [18]. There are two
cases for non-trivial ρ: for glN , ρ(j) = N − j; for o2n,
ρ(n − 1) = n, ρ(n) = n − 1 and ρ(j) = j for j < n − 1
(see figure 1). For o2n+1 and sp2n, there is no non-trivial
involution, so only chiral PS is possible.

A set of Bethe roots ūj is chiral if ρ(j) = j. The achiral
PS can include chiral subsets. For achiral gl2n PS, node
n is chiral, and for achiral o2n PS, nodes 1, . . . , n− 2 are
chiral. For simplicity, we focus on the states where every
chiral set contains an even number of elements. For the
odd cases see the Supplemental Material [40].

The PS halves the degrees of freedom: half of the Bethe
roots can be expressed in terms of the other half. More
precisely, the full set decomposes as: ū = ū+ ∪ ū−, with
ū+ ∩ ū− = ∅ and ū− = −ū+. Let n+ be the number of
sets in ū+.

The physical interpretation of the overlaps is the anni-
hilation of quasi-particles at the temporal boundary. The
PS implies that the quasi-particles annihilate in pairs.
The chiral PS indicates that the boundary preserves par-
ity symmetry (P), while an achiral PS implies that a
quasi-particle annihilates with its anti-particle of oppo-
site rapidity, meaning the MPS preserves CP symmetry.
The residual symmetry h determines the PS (see table I),
and its derivation can be found in Appendix B of [18].

B. Overlap formula

The on-shell overlaps are given by

⟨MPS|ū⟩√
⟨ū|ū⟩

=

 dB∑
k=1

βk

n+∏
j=1

F̃ (j)
k (ū+,j)


︸ ︷︷ ︸

MPS dep.

×
√

detG+

detG−︸ ︷︷ ︸
Bethe state dep.

.

(19)
The overlap formula consists of two parts. The ratio of
Gaudin determinants (G±) is independent of the MPS. It
depends only on the Bethe roots. The Gaudin determi-
nants are defined in the Supplementary Material [40] and
have also appeared in several previous works [32, 38, 39].

The prefactor is the MPS dependent part. We intro-
duced the shorthand notation F̃ (j)

k (v̄) =
∏

vl∈v̄ F̃
(j)
k (vl)

where F̃ (j)
k (u) are functions defined for j = 1, . . . , n+

and k = 1, . . . , dB . These functions depend only on the
K-matrix and not on the specific representation of the
Hilbert space. For each twisted Yangian Y (g, h), there
exists a commuting subalgebra generated by operators
F(j)(u) for j = 1, . . . , n+. These F -operators can be
expressed in terms of the components of the K-matrix.
Since they commute, they can be simultaneously diago-
nalized, and their eigenvalues yield the functions F̃ (j)

k (u).
The prefactor also includes coefficients βk ∈ C for

k = 1, . . . , dB , which are the eigenvalues of the pseudo-
vacuum overlap operator B = ⟨Ψ|0⟩, which commutes

with the F -operators.

C. Physical interpretation

The prefactor represents the amplitude of the quasi-
particles, while the Gaudin determinants account for the
finite-size corrections. If dB = 1, the prefactor reduces to
a product of two-particle amplitudes F̃ (j)(u). If dB > 1,
the MPS corresponds to a superposition of dB differ-
ent boundaries. For the k-th boundary, the two-particle
amplitudes are F̃ (j)

k (u), and the total amplitude is a
weighted sum over boundaries. This can also be inter-
preted as a thermal sum if βk → e−βϵk . For each ϵk is
the energy of a state in the pre-quench system. From
each such state, quasi-particles are emitted with ampli-
tude

∏
j F̃

(j)
k (ū+,j). Thus, the MPS can be interpreted

as a thermal state of the pre-quench system.

D. Example Y (glN , oN )

We now provide the explicit form of the functions
F̃ (j)

k (u) for the reflection algebra Y (glN , oN ). The non-
vanishing overlaps, chiral PS is required, in which case
n+ = N − 1, and thus we have N − 1 F -operators.

We begin by defining a series of nested K-matrices

K
(k+1)
a,b (u) = K

(k)
a,b(u)−K

(k)
a,k(u)

[
K

(k)
k,k(u)

]−1

K
(k)
k,b(u),

(20)
starting from the initial condition K(1) ≡ K. The F -
operators are then constructed as

F(k)(u) =
[
K

(k)
k,k(u)

]−1

K
(k+1)
k+1,k+1(u), (21)

for k = 1, . . . , N − 1. These operators generate a com-
muting subalgebra and also commute with the operator
B = ⟨Ψ|0⟩, i.e.,[

F(k)(u),F(l)(v)
]
=

[
F(k)(u),B

]
= 0, (22)

for all k, l = 1, . . . , N − 1. As a result, they can be
simultaneously diagonalized

F(k)(u) = Adiag(F (k)
1 (u), . . . ,F (k)

dB
(u))A−1,

B = Adiag(β1, . . . , βdB
)A−1,

(23)

where A is an invertible matrix in the boundary space.
Finally, the F̃ (j)

k (u) functions of the overlap formula (19)
are

F̃ (k)
j (u) = F (k)

j (iu− k/2)

√
u2

u2 + 1/4
. (24)

This result provides the overlap formulas for any rep-
resentation of the reflection algebra Y (glN , oN ). The def-
initions for the other reflection algebras (listed in Table
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I) are structurally similar but technically more involved.
The technical details of these definitions do not directly
contribute to the understanding of the main results of the
letter, so we present them in the Supplementary Material
[40].

IV. HOW TO APPLY THE FORMULA

Although the final result is quite general, its applica-
tion is non-trivial. In this section, we outline the steps
required to apply the overlap formula (19). A typical
scenario involves an integrable spin chain with a given
MPS, and the goal is to determine whether the MPS is
integrable. If integrability is confirmed, the next step is
to construct the corresponding overlap formula.

We assume that the monodromy matrix is known,
satisfies the RTT relation (3), and commutes with the
Hamiltonian of the model (1). For glN symmetric mod-
els, the inverse monodromy matrix (14) may also be re-
quired.

1. Deciding on integrability. To check whether the
MPS is integrable, we use the condition (15), typically
for small spin chain lengths [51]. Note that the spectral
parameter of the monodromy matrix can be shifted, i.e.,
T (u− a) also satisfies (3), (1). Therefore, it may happen
that only a shifted version of the integrability condition

⟨MPS|T (u) = ⟨MPS|T̂ (−u+ b) (25)

is satisfied in the initial convention. In such cases,
we simply redefine the monodromy matrix as T (u) →
T (u+ b/2) to recover (15). In the glN case, we must also
determine whether the uncrossed or crossed equation is
satisfied.

2. Finding the K-matrix. Once integrability is con-
firmed, the next step is to solve the KT-relation (15) to
find the K-matrix. This can be done using the shortest
possible spin chain (J = 1 or 2). Solving the KT -relation
is straightforward, as it is linear in K(u).

3. Identifying the reflection algebra Next, identify the
twisted Yangian Y (g, h) associated with the K-matrix.
This can be done by identifying the symmetry algebra of
either the MPS or the K-matrix.

4. Rotating the K-matrix. (if necessary) In some
cases, the MPS may be in the ”wrong direction” for apply-
ing the overlap formula. Specifically, the formulas for the
F -operators (20),(21) assume that certain components of
the K-matrix are invertible. If this is not the case, we
can apply a group transformation g ∈ G = exp(g) to
rotate the K-matrix:

⟨Ψg
α,β | = ⟨Ψα,β |∆(g),

Kg(u) =
(
ĝ−1 ⊗ 1

)
K(u) (g ⊗ 1) ,

(26)

where ĝ = g except in the crossed glN case, where ĝ =

(gt)
−1. The group action on the Hilbert space is given by

the coproduct ∆(g). This transformation preserves the
KT -relation. Our goal is to find a group element of the
form g(φ) = exp(φx) with x ∈ g andφ ∈ C such that the
F -operators are well defined. The remaining steps are
then performed using the rotated K-matrix Kg(φ) (if the
rotation is necessary), and the limit φ → 0 is taken at
the end.

5. Calculating of the F-operators With the K-matrix
and the associated reflection algebra Y (g, h) identified,
we compute the F -operators and the corresponding func-
tions F̃ (j)

k (u) using the definitions provided in the Sup-
plemental Materials [40] for each case of Y (g, h).

V. CONCLUSIONS AND OUTLOOK

In this letter we presented the exact overlap formula
(19) for all integrable MPS in glN , oN and spN sym-
metric spin chains with arbitrary representations. For
each MPS, there is a corresponding K-matrix, which is a
representation of a reflection algebra. The K-matrix de-
fines a series of commuting matrices—the F-operators—
whose spectrum determines the MPS overlap formula. In
the Supplementary Material [40], we introduced the F -
operators for the reflections algebras associated with glN ,
oN and spN symmetric spin chains.

The formula has been rigorously proven for the twisted
Yangians Y (glN , oN ) and Y (glN , gl⌊N

2 ⌋ ⊕ gl⌈N
2 ⌉). The

proof is detailed in [41], where strong evidence is also
provided for the validity of the formula in other cases. In
the End Matter, we briefly summarize the proof strategy
and the additional checks performed.

A promising direction for future research is the exten-
sion of these results to graded spin chains, such as those
with gl(M |N) or osp(M |2n) symmetry, or the Hubbard
model. It is also likely that the formulas can be general-
ized to the trigonometric cases.

An alternative approach to computing MPS overlaps
is based on dressing formulas [44]. While dressing for-
mulas have the advantage of being applicable under gen-
eral twists, they must be computed separately for each
representation of the reflection algebra. In contrast, the
formulas presented in this letter are universal—they hold
for all representations.
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END MATTER

The main result (19) has been proven for MPSs as-
sociated with the reflection algebras Y (glN , oN ) and
Y (glN , gl⌊N

2 ⌋ ⊕ gl⌈N
2 ⌉) [41]. In the remaining cases,

strong arguments and numerical checks support the va-
lidity of the formula. In the End Matter, we briefly out-
line the proof and present additional verifications.

The proof described in [41] is essentially a generaliza-
tion of the proof for the case dB = 1 presented earlier in
[38]. For simplicity, let us start with gl2 spin chains. In
this case, the monodromy matrix is 2×2 in the auxiliary
space, and during the use of the algebraic Bethe Ansatz,
the components are usually denoted as follows

T (u) =

(
A(u) B(u)
C(u) D(u)

)
. (27)

The pseudovacuum is the highest-spin state, which is an-
nihilated by the C-operator, i.e., C(u)|0⟩ = 0. Bethe
states can be generated from the pseudovacuum by ap-
plying B-operators

|ū⟩ = B(u1) . . . B(ur)|0⟩. (28)

Using the RTT -relation (3), one can compute how the
operators A,B,C and D act on off-shell Bethe states,
and the results can be expressed as linear combinations
of new off-shell Bethe states. The key point is that the
B-operator increases, the C-operator decreases, and the
A- and D-operators do not change the number of Bethe
roots. The main advantage of the KT -relation (13) is
that it allows us to obtain a recursion relation for the
off-shell overlaps ⟨Ψ|ū⟩. This works as follows. The KT -
relation is a 2 × 2 matrix in the auxiliary space, and we
can take its (2, 2) component:

K2,1(z)⟨Ψ|B(z) +K2,2(z)⟨Ψ|D(z) =

⟨Ψ|D(−z)K2,2(z) + ⟨Ψ|C(−z)K1,2(z). (29)

Assuming that the matrix K2,1(z) is invertible, the action
of the B-operator on ⟨Ψ| can be expressed in terms of the
actions of the D- and C-operators. This means that in
the overlap ⟨Ψ|ū⟩ one of the B-operators can be replaced
by D- and C-operators. Since the action of D- and C-
operators on a Bethe state can be expressed in terms
of Bethe states with the same or fewer Bethe roots, the
off-shell overlaps ⟨Ψ|ū⟩ can ultimately be expressed in
terms of overlaps with fewer Bethe roots, i.e., we obtain a
recursion relation. This recursion relation is very similar
to the one obtained for the scalar product of Bethe states.
Just as in the case of the scalar product [52, 53], a sum
formula can be derived for the off-shell overlaps, using
the so-called coproduct property of the Bethe states and
the boundary state ⟨Ψ|. Following Korepin’s argument
[52, 54], the on-shell overlap formula can then be derived
from the sum formula.

The derivation can also be generalized to nested spin
chains. For this, three prerequisites about Bethe vectors
are needed:

1. Recursion rule: expressing a Bethe vector in
terms of Bethe vectors that contain fewer roots of
a certain type.

2. Action formula: the action of the monodromy
matrix elements on Bethe vectors expressed in
terms of Bethe vectors.

3. Coproduct formula.

For glN spin chains, these were derived earlier in [53],
so the proof for overlaps applies [41]. Since the calcu-
lations are based on the algebraic Bethe Ansatz, the
proof is valid for any representation in the quantum
space. Furthermore, the calculation does not use the
explicit form of the MPS; it only assumes that ⟨Ψ| sat-
isfies the KT -relation. The KT -relation is used to re-
place the “creation” operators of the Bethe vectors with
“annihilation” operators, which requires inverting cer-
tain elements of the K-matrix (see equation (29) where
K2,1must be inverted). Based on this, the proof is valid
for any MPS whose associated K-matrix has certain in-
vertible components. It turns out that this condition
is satisfied for the K-matrices corresponding to the al-
gebras Y (glN , oN ) and Y (glN , gl⌊N

2 ⌋ ⊕ gl⌈N
2 ⌉), meaning

that the overlap formula is proven for integrable MPSs
with oN and gl⌊N

2 ⌋ ⊕ gl⌈N
2 ⌉ symmetry [41]. In the re-

maining cases (Y (glN , spN ) and Y (glN , glM⊕glN−M ) for
M < N/2), the method previously developed for simple
tensor product states (dB = 1) [39] can be generalized to
compute MPS overlaps [41]. This is not a rigorous proof,
as the calculation involves some unproven assumptions.
In these cases, additional checks were performed to vali-
date the overlap formula; see below.

For orthogonal and symplectic spin chains, the overlap
formula (19) has not yet been rigorously proven. In the
calculations of [41], it was only assumed that the usual
overlap formula (19) exists. However, this is a very well-
founded assumption, as it has been verified in numerous
previous cases [10, 16, 32–34, 39, 55–57] and no coun-
terexamples are known. If we accept the existence of
the overlap formula, then the unknown functions F̃ (j)

k (u)
appearing in the formula can be derived! Using the em-
beddings sln ⊂ o2n+1, sln ⊂ o2n and sln ⊂ sp2n the
functions F̃ (j)

k (u) for j = 1, 2, . . . , n− 1 can be obtained
from the overlap formulas of gln spin chains. The re-
maining functions F̃ (n)

k (u) can be determined using the
algebra isomorphisms sl2 ∼= sp2

∼= o3 and sl2 ⊕ sl2 ∼= o4.
For details, see Section 6 of [41].

A rigorous proof of the overlap functions for orthogo-
nal and symplectic spin chains requires knowledge of the
three prerequisites mentioned above (recursion, action,
and coproduct formulas). In the case of o2n+1 these for-
mulas are known [58], so the proof method based on the
KT -relation described above can likely be applied with-
out further difficulties. For the cases of o2n and sp2n, the
three prerequisites for Bethe vectors are currently not
available.
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The formulas that have not been rigorously proven un-
derwent further validation. Each reflection algebra in
I has one-dimensional representations corresponding to
scalar-valued K-matrices K(z), where dB = 1. The as-
sociated MPSs simplify to tensor product states, which
are the ⟨δ| states. For tensor product states in glN
spin chains, the overlap formulas were previously proven
[38, 39], and these results are compatible with the formu-
las in the present paper. For oN and sp2n spin chains, we
numerically verified the ⟨δ| state overlap formulas in cases
where the quantum space is constructed from the defining
representations of the symmetry algebra N = 3, 4, 5, 6, 8
and n = 1, 2, 4.

For every reflection algebra there exists a special MPS,
which is the action of the transfer matrix on the ⟨δ| state,
i.e.,

⟨MPSξ| = ⟨δ|T (ξ), (30)

where ξ is an arbitrary parameter. The K-matrix corre-
sponding to this special MPS is

K0,B(z) = R̄0,B(−z − ξ)K0(z)R0,B(−z + ξ), (31)

where B indicates the boundary space of the K-matrix.
From the defining equation (30), it follows that the ratio
of overlaps can be expressed in terms of the transfer ma-
trix eigenvalue τ(ξ|ū), on the other hand, the same ratio
can be expressed using our overlap formula (19), i.e.,

⟨MPSξ|ū⟩
⟨δ|ū⟩

= τ(ξ|ū) =
dB∑
k=1

βk

n+∏
j=1

F̃ (j)
k (ū+,j)

F̃ (j)
δ (ū+,j)

, (32)

where F̃ (j)
δ (u) are the one-particle overlaps correspond-

ing to the δ-state. I have verified the correctness of this
formula for every reflection algebra listed in Table I up
to rank 4.

In the case of Y (gl4, sp4) it was possible to compare
the (19) formula with previously numerically validated
results. The paper [55] contains a class of MPSs built
from the [s, 0] Dynkin-index representations of sp4 for
all s ∈ Z+-ra. The case s = 1 is given in Supplemen-
tary Material VII.B.2 [40]. We also performed numeri-
cal calculations for s = 2, 3, 4, 5, and the results agree.

For higher-rank cases, one can use a special class of K-
matrices for Y (gl2n, sp2n) [59]:

Ki,j(u) = gi,j +
1

u− 1/2
Fi,j , (33)

where gi,j = −gj,i is an arbitrary antisymmetric matrix
and Fi,j is a representation of the sp2n algebra, i.e., Fi,j =
Fj,i and

[Fi,j , Fk,l] = gk,jFi,l − gi,lFk,j − gi,kFj,l + gl,jFk,i. (34)

It turns out that the MPSs from [55] belong to this class
ofK-matrices when Fi,j are the [s, 0] Dynkin-index repre-
sentations of sp4. I have numerically verified the correct-
ness of the formula for the [0, 1], [1, 1] and [0, 2] represen-
tations as well. Since the overlaps for the δ-states (rep-
resentation with Dynkin index [0, 0]) were derived earlier
[39], in the numerical calculations I explicitly computed
the ratio of overlaps between the MPS and the δ-states
and compared it with the ratio given by the overlap for-
mula (19) which automatically cancels the Gaudin factor
that does not explicitly depend on the MPS. Using this
method, I also verified the correctness of the formula for
K-matrices of type (33) for n = 3, for the representations
[1, 0, 0], [0, 1, 0] and [0, 0, 1].

For orthogonal spin chains, it is also possible to per-
form a separate check for the o6 case. Here, we can use
the fact that o6 ∼= sl4, meaning that gl4 and o6 spin
chains are equivalent, with the only differences being in
conventions. At the level of K-matrices, the following
correspondences hold

• Y (o6, o3 ⊕ o3) ∼= Y (gl4, o4) and Y (o6, o5) ∼=
Y (gl4, sp4) (chiral pair structures)

• Y (o6, o6) ∼= Y (gl4, gl4), Y (o6, o2⊕o4) ∼= Y (gl4, gl2⊕
gl2) and Y (o6, gl3)

∼= Y (gl4, gl1 ⊕ gl3) (achiral pair
structures)

In all cases, there is an exact match between the overlap
formulas.
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