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Abstract

We derive a universal formula for the overlaps between integrable matrix product states (MPS) and Bethe
eigenstates in glN symmetric spin chains. This formula expresses the normalized overlap as a product of a
MPS-independent Gaudin-determinant ratio and a MPS-dependent scalar factor constructed from eigenvalues
of commuting operators, defined via the K-matrix associated with the MPS. Our proof is fully representation-
independent and relies solely on algebraic Bethe Ansatz techniques and the KT -relation. We also propose a
generalization of the overlap formula to soN and spN spin chains, supported by algebra embeddings and low-rank
isomorphisms. These results significantly broaden the class of integrable initial states for which exact overlap
formulas are available, with implications for quantum quenches and defect CFTs.

1 Introduction
Overlaps between integrable boundary states and Bethe eigenstates in quantum spin chains have emerged as an im-
portant building block in the study of integrable systems. The integrable boundary states allow exact computations
of overlaps with Bethe eigenstates, often yielding compact expressions involving Gaudin-like determinant ratios and
scalar prefactors. The structure of these overlaps is universal across a wide class of models, including those with
glN , soN , and spN symmetries, and they are relevant in both condensed matter and high-energy contexts.

In recent years, the study of non-equilibrium dynamics in integrable models has gained significant momentum,
driven both by experimental advances [1, 2, 3] and theoretical developments [4, 5]. A key focus has been on quantum
quenches, where a system is initialized in a specific state and its subsequent evolution is tracked. The Quench Action
method has emerged as a powerful framework for analyzing such dynamics, particularly in determining the long-
time steady states [6, 7, 8]. Central to this approach is the computation of overlaps between the initial state and the
eigenstates of the post-quench Hamiltonian. While the method has been successfully applied to various integrable
systems [9, 10, 11, 12], much of the progress has relied on initial states with simple entanglement structures, such
as two-site product states, due to the tractability of their overlap calculations.

In the context of the AdS/CFT correspondence, integrability methods of the boundary states have provided
powerful tools for analyzing correlation functions in the presence of defects [13, 14]. A central development has
been the realization that one-point functions in defect configurations of the N = 4 super Yang-Mills (SYM) and
ABJM theories can be expressed as overlaps between multi-particle Bethe states and special boundary or matrix
product states (MPS) [15, 16, 17, 18]. This approach was initially applied to domain wall defects, such as the D3-
D5 brane setup, where tree-level one-point functions were linked to MPS overlaps [19] and later extended to finite
coupling via integrable bootstrap [20, 21, 22]. These techniques have also been generalized to other configurations,
Wilson and ’t Hooft lines, where similar overlap structures emerge [23, 24, 25, 26]. Moreover, overlaps have proven
essential in computing certain three-point functions involving determinant and single trace operators, particularly
in the AdS5/CFT4 and AdS4/CFT3 dualities [27, 28, 29]. More recent applications include the study of correlation
functions on the Coulomb branch of N = 4 SYM [30], and the surface defects of Gukov-Witten type in N = 4 SYM
[31, 32]. The integrable conformal defects in N = 4 SYM was also classified [33]. These developments underscore
the universality of overlap structures and their growing relevance in holographic context.

We can distinguish two types of boundary states: the simpler tensor product states and the matrix product
states. In the latter, an extra vector space (boundary space) is introduced, and the boundary state is constructed
from the product of matrices acting on this space. If this vector space is trivial (one-dimensional), then the
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MPS reduces to a simple tensor product state. Boundary states can be related to integrable boundary conditions
[34, 35, 36]. It has been observed that the overlaps of tensor product states with Bethe states are proportional to
the ratio of so-called Gaudin determinants [37, 38]. In early works, such overlap formulas were proven for XXX and
XXZ spin chains [39, 40, 41]. These derivations heavily depended on the representation of the Hilbert space and
the specific form of the tensor product state, and it was not clear how to generalize them to systems with multiple
quasi-particles (nested systems). In [42], the so-called KT -relation was introduced, whose main advantage is that
it enables the calculation of overlaps using purely algebraic Bethe Ansatz tools. As a result, the derivations are
universal, meaning they do not depend on the specific representations of the Hilbert space. The KT -relation and
the corresponding overlap proof can be generalized to glN symmetric spin chains [43, 44]. These papers proved
the overlap functions for all glN symmetric spin chains (independent of representation), for all integrable tensor
product states, which is a rather general result.

In this paper, we set an even more ambitious goal. We aim to determine a universal overlap function for all
integrable MPSs of all rational spin chains. We prove these formulas for a broad class of integrable MPSs of glN spin
chains. In the remaining cases, we provide strong arguments supporting the validity of our formula. The universal
overlap formula takes the following form

⟨MPS|ū⟩√
⟨ū|ū⟩

=

dB∑
ℓ=1

βℓ

n+∏
ν=1

r+ν∏
k=1

F̃ (ν)
ℓ (uνk)︸ ︷︷ ︸

⟨MPS| dependent

×
√

detG+

detG−︸ ︷︷ ︸
|ū⟩ dependent

, (1.1)

where |ū⟩ is the Bethe state and uνk are the Bethe roots. The Gaudin determinants detG± depend only on the
Bethe Ansatz equations. The quantities βℓ and F̃ (ν)

ℓ (u) are eigenvalues of commuting operators B and F(ν)(u).
These operators can be defined from the elements of the K-matrix associated with ⟨MPS|. Assuming that a similar
universal formula exists for soN and spN spin chains, we determine the form of the operators B and F(ν)(u). The
calculation is based on the algebra embeddings sl⌊N

2 ⌋ ⊂ soN , sln ⊂ sp2n and the isometries of low-rank cases:
sp2

∼= sl2, so3 ∼= sl2, so4 ∼= sl2 ⊕ sl2. The universal overlap formula and the definitions of the corresponding B and
F(ν)(u) operators were already published in a previous letter [45] without proof. In the current paper, we provide
the proof for the glN case and argue for the orthogonal and symplectic cases.

The paper follows the structure below. In the next section, we summarize the necessary definitions of glN
symmetric spin chains. In Section 3, we define the integrable MPSs and the corresponding K-matrices for glN
spin chains. We show how the KT -relation can be used for the systematic calculation of overlaps and introduce
the nested K-matrices required for this. In Section 4, we present theorems concerning the nested K-matrices and
overlaps, including the formula (1.1), which is the main result. The proofs are found in the Appendix. In Section
5, we extend the definition of the operators B and F(ν)(u) to all glN MPSs for which the formulas in Section 4 are
not applicable. In Section 6, we extend the definition of the operators B and F(ν)(u) to soN and spN symmetric
spin chains as well.

2 Definitions of the glN symmetric spin chains
Let Ti,j(z) be the generators of the Yangian Y (N) algebra [46]. They satisfy the RTT -relation

R1,2(u− v)T1(u)T2(v) = T2(v)T1(u)R1,2(u− v). (2.1)

The glN symmetric R matrix is

R(u) = 1 +
1

u
P, P =

N∑
i,j=1

ei,j ⊗ ej,i, (2.2)

where ei,j ∈ End(CN )-s are the unit matrices with the only nonzero entry equals to 1 at the intersection of the i-th
row and j-th column. The RTT -relation can be expressed with the entries

[Ti,j(u), Tk,l(v)] =
1

u− v
(Tk,j(v)Ti,l(u)− Tk,j(u)Ti,l(v)) . (2.3)

In this paper we will assume the following dependence of the Yangian generators on the spectral parameter

Ti,j(u) = δi,j +

∞∑
ℓ=0

u−ℓ−1Ti,j [ℓ]. (2.4)
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The generators Ei,j ≡ Tj,i[0] satisfy the glN Lie-algebra relation

[Ei,j , Ek,l] = δk,jEi,l − δi,lEk,j . (2.5)

Let VΛ and EΛ
i,j ∈ End(VΛ) be vector space and a corresponding irreducible highest weight representation of

glN for which

EΛ
i,j |0Λ⟩ = 0, i < j,

EΛ
i,i|0Λ⟩ = Λi|0Λ⟩,

(2.6)

where Λ = (Λ1, . . . ,ΛN ) is an N -tuple of scalars and |0Λ⟩ ∈ VΛ is the highest weight state. For finite dimensional
representations Λi − Λi+1 ∈ N for i = 1, . . . , N − 1. The Lax operators LΛ

i,j(u) ∈ End(VΛ) are the evaluation
representations of Y (N)

LΛ
i,j(u) = δi,j +

1

u
EΛ

j,i. (2.7)

The Lax-operators satisfy the RTT -relation. From the co-product property of the Yangian, we can define tensor
product representations on H = VΛ(1) ⊗ · · · ⊗ VΛ(J) . The H is the quantum space. The monodromy matrix is the
corresponding representation of the Yangian

T Λ̄,ξ̄
0 (u) = LΛ(J)

0,J (u− ξJ) . . . L
Λ(1)

0,1 (u− ξ1). (2.8)

The monodromy matrix is a highest weight representation of the Yangian, i.e.,

T Λ̄,ξ̄
i,j (u)|0⟩ = 0, i > j,

T Λ̄,ξ̄
i,i (u)|0⟩ = λi(u)|0⟩,

(2.9)

where |0⟩ = |0Λ(1)⟩ ⊗ · · · ⊗ |0Λ(J)⟩ is the pseudo-vacuum and λi(u)-s are the pseudo-vacuum eigenvalues which can
be expressed as

λi(u) =

J∏
j=1

u− ξj + Λ
(j)
i

u− ξj
. (2.10)

For simplicity, we will omit the upper index from now on and use the notation Ti,j(u) for arbitrary highest-weight
representations of the Yangian algebra.

The crossed monodromy matrix is defined as an inverse

N∑
k=1

T̂k,i(z)Tk,j(z) = λ1(z)λ1(−z)δi,j . (2.11)

The crossed monodromy matrices satisfy the following algebra

R1,2(u− v)T̂1(u)T̂2(v) = T̂2(v)T̂1(u)R1,2(u− v),

R̂1,2(u− v)T̂1(u)T2(v) = T2(v)T̂1(u)R̂1,2(u− v).
(2.12)

It follows from the first equation that the crossed monodromy matrix is also a representation of the Yangian algebra.
In the second equation we defined the crossed R-matrix

R̂1,2(u) = Rt1
1,2(−u), (2.13)

where t1 is the partial transposition corresponding to the space 1. The crossed monodromy matrices are lowest
weight representations of the Yangians, i.e.

T̂i,j(u)|0⟩ = 0, i < j,

T̂i,i(u)|0⟩ = λ̂i(u)|0⟩,
(2.14)

where |0⟩ is the highest weight vector (pseudo-vacuum) of the monodromy matrix Ti,j and the crossed eigenvalues
are [47]1

λ̂i(u) =
λ1(u)λ1(−u)
λi(u− (i− 1))

i−1∏
k=1

λk(u− k)

λk(u− (k − 1))
. (2.15)

1In this paper, we use a different convention for the crossed monodromy matrix than [47]. The connection is T̂i,j ↔ T̂N+1−i,N+1−j .
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We also introduce the α-functions

αi(u) =
λi(u)

λi+1(u)
, α̂i(u) =

λ̂i(u)

λ̂i+1(u)
. (2.16)

The crossed α-functions can expressed from the original ones as

α̂i(u) = 1/αi(u− i). (2.17)

The transfer matrices can be defined in the usual way

T (u) =

N∑
i=1

Ti,i(u), T̂ (u) =

N∑
i=1

T̂i,i(u). (2.18)

These are commutative operators

[T (u), T (v)] =
[
T (u), T̂ (v)

]
=
[
T̂ (u), T̂ (v)

]
= 0. (2.19)

The eigenvectors B(t̄) are called Bethe vectors. The Bethe vectors depend on the Bethe roots tνk for ν = 1, . . . , N−1
and k = 1, . . . , rν . We define the sets t̄ν = {tνk}

rν
k=1 and the set of sets t̄ = {t̄ν}N−1

ν=1 . The rν quantum numbers are
the cardinalities of the sets t̄ν . The Bethe roots satisfy the Bethe equations

αµ(t
µ
k) :=

λµ(t
µ
k)

λµ+1(t
µ
k)

=
f(tµk , t̄

µ
k)

f(t̄µk , t
µ
k)

f(t̄µ+1, tµk)

f(tµk , t̄
µ−1)

, (2.20)

where we introduced the following shorthand notations

f(u, v) =
u− v + 1

u− v
,

f(u, t̄i) =

ri∏
k=1

f(u, tik), f(t̄i, u) =

ri∏
k=1

f(tik, u), f(t̄i, t̄j) =

ri∏
k=1

f(tik, t̄
j).

(2.21)

The transfer matrix eigenvalues are [47]

τ(u|t̄) =
N∑
i=1

λi(u)f(t̄
i, u)f(u, t̄i−1), (2.22)

τ̂(u|t̄) =
N∑
i=1

λ̂i(u)f(t̄
i−1 + (i− 1), u)f(u, t̄i + i). (2.23)

We call the Bethe vector on-shell if the Bethe roots satisfy the Bethe equations (when the Bethe vector is an
eigenvector), and off-shell for generic Bethe roots. In the literature recursive definitions are available for the off-
shell Bethe vectors. For the overlap calculations we also have to know how the monodromy matrix entries act on
the off-shell Bethe vectors. Fortunately it was also previously derived in [48].

One can also define the left eigenvectors C(t̄) of the transfer matrix and the square of the norm of the on-shell
Bethe states satisfies the Gaudin hypothesis [49]

C(t̄)B(t̄) =
∏N−1

ν=1

∏
k ̸=l f(t

ν
l , t

ν
k)∏N−2

ν=1 f(t̄
ν+1, t̄ν)

detG, (2.24)

where G is the Gaudin matrix given by

G
(µ,ν)
j,k = −

∂ log Φ
(µ)
j

∂tνk
. (2.25)

3 Integrable matrix product states
In this section, we generalize the previously introduced KT -relation to MPSs. This essentially means that certain
quantities which were previously scalars will now become matrices in the so-called boundary space.
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3.1 KT-relations
We generalize the previously defined KT -relation [43, 44] with boundary degrees of freedom as

N∑
k=1

dB∑
c=1

Ka,c
i,k (z)⟨ψc,b|Tk,j(z) =

N∑
k=1

dB∑
c=1

⟨ψa,c|T̄i,k(−z)Kc,b
k,j(z). (3.1)

The ⟨ψa,b| are elements of the dual of the quantum space H, i.e., ⟨ψa,b| ∈ H∗ for a, b = 1, . . . , dB . The KT -relations
have two types: for the uncrossed KT -relation T̄ ≡ T and for the crossed KT -relation T̄ ≡ T̂ .

We can introduce a boundary vector space HB = CdB and we can collect the states and the coefficients to
matrices in the boundary space

⟨Ψ| :=
dB∑

a,b=1

⟨ψa,b| ⊗ eBa,b ∈ H∗ ⊗ End(HB),

Ki,j(z) :=

dB∑
a,b=1

Ka,b
i,j (z)e

B
a,b ∈ End(HB),

(3.2)

where eBa,b ∈ End(HB) are the unit matrices of the boundary space for a, b = 1, . . . , dB . Using these notations the
KT -relation simplifies as

K0(z)⟨Ψ|T0(z) = ⟨Ψ|T̄0(−z)K0(z), (3.3)

where T (z), T̄ (z) ∈ End(CN ) ⊗ End(H) are the monodromy matrices, the K(z) =
∑N

i,j=1 ei,j⊗ ∈ Ki,j(z) ∈
End(CN )⊗ End(HB) is the K-matrix and ⟨Ψ| ∈ H∗ ⊗ End(HB) is the boundary state.

We also define the matrix product state ⟨MPS| ∈ H∗ as

⟨MPS| =
dB∑
ℓ=1

⟨ψℓ,ℓ| = TrHB
(⟨Ψ|) . (3.4)

Our goal is to calculate on-shell overlaps ⟨MPS|B(t̄).

3.2 Reflection algebras
The compatibility of theKT -relation with theRTT -relation (we do the calculation ⟨Ψ|T1(u)T2(v) → ⟨Ψ|T̄1(−u)T̄2(−v)
in two different orders) requires the equation [43]

R1,2(v − u)K1(u)R̄1,2(−u− v)K2(v) = K2(v)R̄1,2(−u− v)K1(u)R1,2(v − u). (3.5)

where we used the notation

R̄(u) ≡

{
R(u), for the uncrossed case,
R̂(u), for the crossed case.

(3.6)

The KT -relation and the reflection equation is invariant under the renormalization of the K-matrix K1(u) →
f(u)K1(u) for any scalar function f(u).

In the crossed case the reflection equation with components is

[Ki,j(u),Kk,l(v)] =
1

u− v
(Kk,j(u)Ki,l(v)−Kk,j(v)Ki,l(u))

− 1

u+ v
(Ki,k(u)Kj,l(v)−Kk,i(v)Kl,j(u)) (3.7)

+
1

u2 − v2
(Kk,i(u)Kj,l(v)−Kk,i(v)Kj,l(u)) .

With a proper normalization, the K-matrix has the asymptotic limit

Ki,j(u) = Ai,j +O(u−1). (3.8)

Taking the u→ ∞ limit of the reflection equation becomes

[Ai,j ,Kk,l(v)] = 0. (3.9)
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We also assume that the K-matrix is irreducible, i.e. the set of matrices in the boundary space {Ki,j(u)}Ni,j=1 do
not have non-trivial invariant subspace. It leads to Ai,j = Ui,j1, where Ui,j ∈ C for i, j = 1, . . . , N . Multiplying
the reflection equation with (u+ v) and taking the v = −u limit, we obtain

0 = − (Ki,k(u)Kj,l(−u)−Kk,i(−u)Kl,j(u))

+
1

2u
(Kk,i(u)Kj,l(−u)−Kk,i(−u)Kj,l(u)) .

(3.10)

Taking the u→ ∞ limit
Ui,kUj,l = Uk,iUl,j , (3.11)

therefore Ui,k = ±Uk,i. In summary, the asymptotic limit of the K-matrix is

Ki,j(u) = Ui,j1+O(u−1). (3.12)

The reflection equation with the series expansion (3.12) defines the twisted Yangian algebras Y ±(N) (Y +(N) for
symmetric and Y −(N) for anti-symmetric U). 2

For the uncrossed case the explicit form of the reflection equation is

[Ki,j(u),Kk,l(v)] =
1

u− v
(Kk,j(u)Ki,l(v)−Kk,j(v)Ki,l(u))

+
1

u+ v

N∑
n=1

(δj,kKi,n(u)Kn,l(v)− δi,lKk,n(v)Kn,j(u)) (3.13)

− 1

u2 − v2
δi,j

N∑
n=1

(Kk,n(u)Kn,l(v)−Kk,n(v)Kn,l(u)) .

Taking the u→ ∞ limit of the reflection equation we can easily show that the the asymptotic limit of the K-matrix
is

Ki,j(u) = Ui,j1+O(u−1). (3.14)

Taking first the v = −u limit and later the u→ ∞ limit we obtain that

N∑
n=1

(δj,kUi,nUn,l − δi,lUk,nUn,j) = 0. (3.15)

The solution of this equation is
N∑

n=1

Ui,nUn,l = aδi,l, (3.16)

where a ∈ C. For a = 0 we call the K-matrix singular. For non-singular K-matrices we can always choose the
normalization as a = 1. The possible eigenvalues of the matrix U are ±1. Let the number of −1 be M . The
reflection equation and the asymptotic expansion with M number of −1 eigenvalues defines the reflection algebra
B(N,M). 3

3.3 Matrix product states from co-product
Let us introduce a tensor product quantum space as H = H(1)⊗H(2). The corresponding monodromy matrices are
T̄

(1)
i,j (u) ∈ End(H(1)), T̄

(2)
i,j (u) ∈ End(H(2)) and

T̄0(u) = T̄
(2)
0 (u)T̄

(1)
0 (u) ∈ End(CN )⊗ End(H), (3.17)

2In the literature (e.g., [50]), these algebras are often referred to as extended twisted Yangians, and the definitions of twisted Yangians
include an additional symmetry property. This extra condition partially fixes the normalization of the K-matrix, meaning that the
symmetry equation is not invariant under the rescaling K(u) → µ(u)K(u) for an arbitrary function µ(u). However, our KT -relation is
invariant under such rescaling, and we do not use the symmetry property in our calculations. Therefore, in this paper, we work with
the extended versions, and for simplicity, we omit the term “extended.”

3Similar to twisted Yangians, these algebras are commonly referred to as extended reflection algebras [51], and the definition of
reflection algebras includes an additional unitarity condition. However, since we do not use this condition, we also omit the term
“extended” here for the sake of simplicity.
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Let
〈
Ψ(1)

∣∣ ∈ H(1) ⊗HB and
〈
Ψ(2)

∣∣ ∈ H(2) ⊗HB be boundary states with the same K-matrix i.e. they satisfy the
same KT -relation

K0(u)⟨Ψ(i)|T (i)
0 (u) = ⟨Ψ(i)|T̄ (i)

0 (−u)K0(u), (3.18)

for i = 1, 2.

Proposition 1. The co-vector
⟨Ψ| = ⟨Ψ(2)|⟨Ψ(1)| (3.19)

is a boundary state in the tensor product quantum space H with the same K-matrix i.e. it satisfies the KT -relation

K0(u)⟨Ψ|T0(u) = ⟨Ψ|T̄0(−u)K0(u). (3.20)

Proof. Let us start with the lhs

K0(u)⟨Ψ|T0(u) = K0(u)
(
⟨Ψ(2)|⟨Ψ(1)|

)(
T

(2)
0 (u)T

(1)
0 (u)

)
= K0(u)

(
⟨Ψ(2)|T (2)

0 (u)
)(

⟨Ψ(1)|T (1)
0 (u)

)
, (3.21)

where we used the definition (3.19) and the co-product property of the monodromy matrix (3.17). Now we can use
the KT -relation of space H(2) :

K0(u)⟨Ψ|T0(u) =
(
⟨Ψ(2)|T̄ (2)

0 (−u)
)
K0(u)

(
⟨Ψ(1)|T (1)

0 (u)
)
. (3.22)

Now on H(1) :

K0(u)⟨Ψ|T0(u) =
(
⟨Ψ(2)|T̄ (2)

0 (−u)
)(

⟨Ψ(1)|T̄ (1)
0 (−u)

)
K0(u)

=
(
⟨Ψ(2)|⟨Ψ(1)|

)(
T̄

(2)
0 (−u)T̄ (1)

0 (−u)
)
K0(u).

(3.23)

Using (3.17) we just proved (3.20).

Using the co-product property, we can construct integrable MPSs of arbitrary length from the “elementary”
solutions of the KT -equation. In the following, we present an example where only the defining representations are
used. We begin with the reflection equation (3.5). After change of variables it is equivalent to

K0(u)R̄0,1(−u− θ)K1(θ)R0,1(u− θ) = R0,1(u− θ)K1(θ)R̄0,1(−u− θ)K0(u). (3.24)

We can use an equivalent form

K0(u)ψ2,1(θ)
[
R̄t2

0,2(−u− θ)R0,1(u− θ)
]
= ψ2,1(θ)

[
Rt2

0,2(u− θ)R̄0,1(−u− θ)
]
K0(u), (3.25)

where

ψ1,2(θ) =

N∑
i,j=1

⟨i, j| ⊗Ki,j(θ). (3.26)

The state ψ2,1(θ) satisfy the KT -relation for length two spin chain with monodromy matrices

T0(u) = R̄t2
0,2(−u− θ)R0,1(u− θ), T̄0(u) = Rt2

0,2(−u− θ)R̄0,1(u− θ). (3.27)

Using the co-product property we can built boundary state for length 2J as

⟨Ψ| = ψ2J,2J−1(θJ) . . . ψ4,3(θ2)ψ2,1(θ1),

T0(u) = R̄t2J
0,2J(−u− θJ)R0,2J−1(u− θJ) . . . R̄

t2
0,2(−u− θ1)R0,1(u− θ1).

(3.28)

For the even sites we have

R̄
t2j
0,2j(−u− θj) =

{
R0,2j(u+ θj), for the crossed case,
R̂0,2j(u+ θj), for the uncrossed case,

(3.29)

Using fusion, we can generalize the boundary states to any finite-dimensional representation of glN . The details
are provided in Appendix A. For a finite-dimensional representation Λ, there is a two-site state ψΛ

2,1(θ). Using the
co-product property, we can construct a boundary state

⟨Ψ| = ψΛ(J)

2J,2J−1(θJ) . . . ψ
Λ(2)

4,3 (θ2)ψ
Λ(1)

2,1 (θ1). (3.30)
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This satisfies the KT -relation on a spin chain where the monodromy matrix is defined as

T0(u) =
[
L̄Λ(J)

0,2J (−u− θJ)
]t2J

LΛ(J)

0,2J−1(u− θJ) . . .
[
L̄Λ(1)

0,2 (−u− θ1)
]t2

LΛ(1)

0,1 (u− θ1). (3.31)

The pseudo-vacuum eigenvalue is

λk(u) =

{∏J
j=1 λ

(j)
k (u− θj)λ̂

(j)
k (−u− θj), for the crossed case,∏J

j=1 λ
(j)
k (u− θj)λ

(j)
N+1−k(−u− θj), for the uncrossed case,

(3.32)

where

λ
(j)
k (u) =

u+ Λ
(j)
k

u
. (3.33)

The pseudo-vacuum eigenvalues satisfy the symmetry conditions

λk(u) =

{
λ̂k(−u), for the crossed case,
λN+1−k(−u), for the uncrossed case.

(3.34)

The symmetry properties of the α-s are

αk(u) =
λk(u)

λk+1(u)
=


λ̂k(−u)

λ̂k+1(−u)
= α̂k(−u) = 1

αk(−u−k) , for the crossed case,
λN+1−k(−u)
λN−k(−u) = 1

αN−k(−u) , for the uncrossed case.
(3.35)

3.4 Integrability and pair structure
Assuming that the K-matrices are invertible, we can product the KT -relation with the inverse:

⟨Ψ|T0(z) = K0(z)
−1⟨Ψ|T̄0(−z)K0(z). (3.36)

Taking the trace in the auxiliary and the boundary space we obtain that

⟨MPS|T (z) = ⟨MPS|T̄ (−z). (3.37)

For on-shell states we have
(τ(u|t̄)− τ̄(−u|t̄)) ⟨MPS|B(t̄) = 0. (3.38)

The non-vanishing overlap ⟨MPS|B(t̄) ̸= 0 requires that

τ(u|t̄) = τ̄(−u|t̄). (3.39)

For the uncrossed case, the eigenvalue τ(−u|t̄) can be written as

τ(−u|t̄) =
N∑
i=1

λi(−u)f(t̄i,−u)f(−u, t̄i−1) =

=

N∑
i=1

λi(u)f(−t̄N−i, u)f(u,−t̄N+1−i) = τ(u|πa(t̄)),

(3.40)

where we used the symmetry property (3.34) and introduced the following map of Bethe roots:

πa(t̄1, t̄2, . . . , t̄N−1) =
(
−t̄N−1,−t̄N−2, . . . ,−t̄1

)
. (3.41)

For the crossed case, the eigenvalue τ̂(−u|t̄) can be written as

τ̂(−u|t̄) =
N∑
i=1

λ̂i(−u)f(t̄i−1 + (i− 1),−u)f(−u, t̄i + i) =

=

N∑
i=1

λi(u)f(−t̄i − i, u)f(u,−t̄i−1 − (i− 1)) = τ(u|πc(t̄)),

(3.42)
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where we used that the symmetry property (3.34) and introduced the following map of Bethe roots:

πc(t̄1, t̄2, . . . , t̄N−1) =
(
−t̄1 − 1,−t̄2 − 2, . . . ,−t̄N−1 − (N − 1)

)
. (3.43)

Substituting back to (3.39) the condition for non-vanishing overlaps read as

τ(u|t̄) = τ(u|πa/c(t̄)). (3.44)

Notice that the set πa/c(t̄) also satisfies the Bethe equations i.e. the vector B(πa/c(t̄)) is also an on-shell Bethe
vector. Since different Bethe vectors have different eigenvalues, we just obtain that the Bethe roots have to satisfy
the selection rule

t̄ = πa/c(t̄), (3.45)

for the non-vanishing overlaps. We call the Bethe roots with condition (3.45) as Bethe roots with pair structure.
For achiral pair structure, i.e. when t̄ = πa(t̄), every sets t̄ν satisfy the condition t̄ν = −t̄N−ν . For chiral pair

structure, i.e. when t̄ = πc(t̄), every sets t̄ν satisfy the condition t̄ν = −t̄ν − ν.

3.5 Recursion for off-shell overlaps
Following [43] we can obtain a method for the evaluation of off-shell overlaps. We use the recurrence relation and
action formulas for the Bethe states [52, 48]. See the details in appendix B. In the following we just sketch the
recursion for the overlaps and we concentrate on the number of Bethe roots and we drop the numerical coefficients
which are irrelevant for this purpose. The recurrence equation of the Bethe vectors reads as

Br1,...,rN−1 =

N∑
k=2

T1,k
∑

Br1−1,...,,rk−1−1,rk,...,rN−1(. . . ), (3.46)

and the action formulas are

Ti,jBr1,r2,...,rN−1 =

{∑
(. . . )Br1,...ri+1,ri+1+1,...,rj−1+1,rj ,...rN−1 , i ≤ j,∑
(. . . )Br1,...rj−1,rj+1−1,...,ri−1−1,ri,...rN−1 , i > j,

(3.47)

and

T̂i,jBr1,r2,...,rN−1 =

{∑
(. . . )Br1,...rj+1,rj+1+1,...,ri−1+1,ri,...rN−1 , j ≤ i,∑
(. . . )Br1,...ri−1,ri+1−1,...,rj−1−1,rj ,...rN−1 , j > i.

(3.48)

We can see that the diagonal elements Ti,i and T̂i,i do not change the number of Bethe roots. For i > j, Ti,j and
T̂j,i decrease the number of certain roots by one, while Tj,i and T̂i,j increase the number of those same roots by one.

3.5.1 The crossed overlaps

We use the (1, k) component of the crossed KT -relation

⟨Ψ|T1,k(u) =
N∑
j=1

K−1
1,1(u) ⟨Ψ| T̂1,j(−u)Kj,k(u)−

N∑
i=2

K−1
1,1(u)K1,i(u) ⟨Ψ|Ti,k(u), (3.49)

which can be used to change the creation operators T1,k to the operators T̂1,j and Ti,k where i, k = 2, . . . , N and
j = 1, . . . , N . For j > 1, the operators T̂1,j decrease the number of the first Bethe roots by one and the operators
T̂1,1(−u) and Ti,k(u) do not change it for i, k ≥ 2. Using the recurrence relation (3.49) and the action formulas
(3.47), (3.48) we obtain a recursion

⟨Ψ|Br1,... =
∑

(. . . ) ⟨Ψ|Br1−1,... +
∑

(. . . ) ⟨Ψ|Br1−2,.... (3.50)

When we changed the creation operators to the diagonal and the annihilation ones we assumed that the inverse
K−1

1,1(u) exists which is possible only for Y +(N) K-matrices but it is never true for Y −(N). This can be seen from
the asymptotic expansion (3.12). In the symmetric case, it is possible that U1,1 ̸= 0, but in the anti-symmetric case
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U1,1 = 0. If U1,1 ̸= 0 then the operator K−1
1,1(u) can be computed order by order in an expansion in powers of u−1.

In the following we concentrate on Y +(N) and deal the other case Y −(N) later.
Repeating these steps we can express the general overlap with a sum of overlaps without the first Bethe roots

⟨Ψ|Br1,... =
∑

(. . . ) ⟨Ψ|B0,.... (3.51)

We can see that we reduced the original gl(N) Bethe state to gl(N−1) ones. The action of operators {Ta,b}Na,b=2 and{
T̂a,b

}N

a,b=2
do not lead out of the subspace generated by the Bethe vectors B0,... . Naively, the crossed KT -relation

is not closed for the indexes a, b = 2, . . . , N since

N∑
c=2

Ka,c ⟨Ψ|Tc,b +Ka,1 ⟨Ψ|T1,b =
N∑
c=2

⟨Ψ| T̂a,cKc,b + ⟨Ψ| T̂a,1K1,b. (3.52)

We can see that the operators T1,b and T̂a,1 create the first type of Bethe roots therefore we have to eliminate them
from the equation (3.52). Let us get the components (1, b) , (a, 1) and (1, 1) of the crossed KT -relation

N∑
c=2

K1,c ⟨Ψ|Tc,b +K1,1 ⟨Ψ|T1,b ∼= ⟨Ψ| T̂1,1K1,b, (3.53)

Ka,1 ⟨Ψ|T1,1 ∼=
N∑
c=2

⟨Ψ| T̂a,cKc,1 + ⟨Ψ| T̂a,1K1,1, (3.54)

K1,1 ⟨Ψ|T1,1 ∼= ⟨Ψ| T̂1,1K1,1, (3.55)

where ∼= denotes the equality in the subspace generated by the Bethe vectors B0,.... Combining the equations (3.52),
(3.53), (3.54) and (3.55) we obtain a new crossed KT -relation on the subspace generated by the Bethe states B0,...

N∑
c=2

K(2)
a,c ⟨Ψ|Tc,b ∼=

N∑
c=2

⟨Ψ| T̂a,cK(2)
c,b , (3.56)

where
K

(2)
a,b(z) = Ka,b(z)−Ka,1(z)K

−1
1,1(z)K1,b(z), (3.57)

for a, b = 2, . . . , N . Repeating the previous method we can eliminate the sets of Bethe roots t̄ν , therefore we obtain
a recursion for the overlaps and in the end of the day we obtain an explicit formula for the overlap. In the (k+1)-th
step of the nesting we have a gl(N − k) K-matrix:

K
(k+1)
a,b (z) = K

(k)
a,b(z)−K

(k)
a,k(z)

[
K

(k)
k,k(z)

]−1

K
(k)
k,b(z), (3.58)

which satisfy the KT -relations

N∑
c=k

K(k)
a,c(u) ⟨Ψ|Tc,b(u) ∼=

N∑
c=k

⟨Ψ| T̂a,c(−u)K(k)
c,b (u), (3.59)

for a, b = k, . . . , N where ∼= denotes the equality in the subspace generated by the Bethe vectors B0,...,0,rk,...,rN−1 .

3.5.2 The uncrossed overlaps

We can use similar recursion for the uncrossed overlaps. Now we use the (N, k) component of the uncrossed
KT -relation

⟨Ψ|T1,k(u) =
N∑
j=1

K−1
N,1(u) ⟨Ψ|TN,j(−u)Kj,k(u)−

N∑
i=2

K−1
N,1(u)KN,i(u) ⟨Ψ|Ti,k(u). (3.60)

Analogous way, we can use this equation to decrease the numbers of the first Bethe roots while the cardinality of
t̄N−1 is not increased. Using the action formulas we obtain a recursion

⟨Ψ|Br1,...,rN−1 =
∑

(. . . )Br̃1,...,r̃N−1 . (3.61)
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where r1 > r̃1 and rN−1 ≥ r̃N−1. We can also use the (k, 1) component of the uncrossed KT -relation

⟨Ψ|Tk,N (−u) =
N∑
i=1

Kk,i(u) ⟨Ψ|Ti,1(u)K−1
N,1(u)−

N−1∑
j=1

⟨Ψ|Tk,j(−u)Kj,1(u)K
−1
N,1(u). (3.62)

Analogous way, we can use this equation to decrease the cardinality of t̄N−1 while the cardinality of t̄1 is not
increased. Using the action formulas we obtain a recursion

⟨Ψ|Br1,...,rN−1 =
∑

(. . . )Br̃1,...,r̃N−1 . (3.63)

where r1 ≥ r̃1 and rN−1 > r̃N−1.
Repeating these steps we can express the general overlap with a sum of overlaps without the first and last types

of Bethe roots
⟨Ψ|Br1,...,rN−1 =

∑
(. . . ) ⟨Ψ|B0,...,0. (3.64)

We can see that we reduced the original gl(N) Bethe state to gl(N − 2) ones. Naively, the uncrossed KT -relation
is not closed for this gl(N − 2) subsector since

N−1∑
c=2

Ka,c ⟨Ψ|Tc,b +Ka,1 ⟨Ψ|T1,b +Ka,N ⟨Ψ|TN,b =

N−1∑
c=2

⟨Ψ| T̄a,cKc,b + ⟨Ψ| T̄a,1K1,b + ⟨Ψ| T̄a,NKN,b, (3.65)

where Ti,j ≡ Ti,j(u) and T̄i,j ≡ Ti,j(−u). We can see that the operators T1,b and Ta,N create the first and last types
of Bethe roots therefore we have to eliminate them from the equation (3.65). We use the components (N, b), (a, 1)
and (N, 1) of the uncrossed KT -relation

N−1∑
c=2

KN,c ⟨Ψ|Tc,b +KN,1 ⟨Ψ|T1,b ∼= ⟨Ψ| T̄N,NKN,b, (3.66)

Ka,1 ⟨Ψ|T1,1 ∼=
N−1∑
c=2

⟨Ψ| T̄a,cKc,1 + ⟨Ψ| T̄a,NKN,1, (3.67)

KN,1 ⟨Ψ|T1,1 ∼= ⟨Ψ| T̄N,NKN,1, (3.68)

where ∼= denotes the equality in the subspace generated by the Bethe vectors B0,...,0. Combining the equations
(3.65), (3.66), (3.67) and (3.68) we obtain a new uncrossed KT -relation on the subspace generated by the Bethe
states B0,...,0

N∑
c=2

K(2)
a,c(u) ⟨Ψ|Tc,b(u) ∼=

N∑
c=2

⟨Ψ|Ta,c(−u)K(2)
c,b (u), (3.69)

where
K

(2)
a,b(z) = Ka,b(z)−Ka,1(z)K

−1
N,1(z)KN,b(z), (3.70)

for a, b = 2, . . . , N − 1. Repeating the previous method we can eliminate the sets of Bethe roots t̄ν , therefore we
obtain a recursion for the overlaps and in the end of the day we obtain an explicit formula for the overlap. In the
(k + 1)-th step of the nesting we have a gl(N − 2k) K-matrix:

K
(k+1)
a,b (z) = K

(k)
a,b(z)−K

(k)
a,k(z)

[
K

(k)
N+1−k,k(z)

]−1

K
(k)
N+1−k,b(z), (3.71)

which satisfy the KT-relations

N+1−k∑
c=k

K(k)
a,c(u) ⟨Ψ|Tc,b(u) ∼=

N+1−k∑
c=k

⟨Ψ|Ta,c(−u)K(k)
c,b (u), (3.72)

for a, b = k, . . . , N+1−k where ∼= denotes the equality in the subspace generated by the Bethe vectors B...,0,rk,...,rN−k,0....
We can examine the leading order of the nested K-matrices in the asymptotic limit. It is easy to see that

K
(k)
i,j (u) = U (k)

i,j 1+O(u−1). (3.73)
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From the recursive equations (3.71), if (3.16) holds, then the result follows

N+1−k∑
n=k

U (k)
i,n U

(k)
n,l =

N∑
n=1

Ui,nUn,l,

N+1−k∑
n=k

U (k)
n,n =

N∑
n=1

Un,n.

(3.74)

If the original K-matrix is a B(N,M) representation, then U (k) is an N −2k+2 dimensional matrix with M −k+1
eigenvalues equal to −1 and N −M −k+1 eigenvalues equal to +1. Based on this, at step M +1, U (M+1) becomes
the identity matrix.

During the calculation we assumed that the inverse
[
K

(k)
N+1−k,k(z)

]−1

exists. As long as the components

U (k)
N+1−k,k are non-zero, the matrices

[
K

(k)
N+1−k,k(z)

]−1

exist. As long as the matrix U (k) is not the identity,

U (k)
N+1−k,k ̸= 0 is guaranteed to hold after appropriate rotations. As we saw earlier, U (k) has M − k + 1 eigenvalues

equal to −1, and the last inverse we need is at k =
⌊
N
2

⌋
, meaning the necessary inverses exist if

M −
⌊
N

2

⌋
+ 1 ≥ 1,

i.e., there is at least one eigenvalue equal to −1 at step k =
⌊
N
2

⌋
.

In summary, the necessary nested K-matrices exist only in the case of B(N,
⌊
N
2

⌋
). In the next section, we will

precisely derive the overlaps for this case.

4 Derivations of the overlaps
For Y +(N) or B(N,

⌊
N
2

⌋
) K-matrices, with the recursions of the previous section we can eliminate all the Bethe

roots and in the end the off-shell overlaps are expressed by a function of the Bethe roots tνk, the α-functions αν , and
components of the K-matrices Ki,j and the vacuum overlap B = ⟨Ψ|0⟩, i.e. we can introduce the off-shell overlap
functions as

Sᾱ,B(t̄) := ⟨Ψ|B(t̄). (4.1)

In the calculations, we use only the recursion and action formulas for off-shell Bethe vectors and the KT -relation.
These formulas do not depend on the specific representations used in the quantum space. In a specific case, αk(t

k
j )

depends on the discrete variables J , Λ(j) and the continuous variables θj (where J is the number of inhomogeneities
and representations). For sufficiently large J , the variables tkj and αk(t

k
j ) can be considered independent. The

overlap also depends on the vacuum overlap B which is a matrix in the boundary space. This matrix also depends
on the discrete variables J , Λ(j), and the continuous variables θj . Let the eigenvalues of B be βℓ for ℓ = 1, . . . , dB .
For sufficiently large J , these can also be considered independent variables.

The derivations are essentially the same as those presented in the earlier paper [43]. In that earlier work, the
case dB = 1 was studied, meaning that the additional difficulty now arises from the fact that quantities which were
previously scalars are now matrices. Some parts of the derivations can be applied to matrices without difficulty.
The parts that require special attention in the case dB > 1 are discussed in the next subsection 4.1. There, we
present various theorems that describe the algebra of the nested K-matrices and define commuting subalgebras. In
subsections 4.2 and 4.3, we present the theorems necessary for deriving the on-shell overlaps. These are essentially
the same as those discussed in the dB = 1 case, with the difference that the scalar quantities depending on the
K-matrix are now replaced by the commuting operators introduced in 4.1.

4.1 Theorems for the K-matrices
4.1.1 Crossed K-matrices

The nesting of the previous section defines the series of operators

Y +(N) → Y +(N − 1) → . . . → Y +(2) → Y +(1)
K(1) ≡ K → K(2) → . . . → K(N−1) → K(N)

↓ ↓ . . . ↓ ↓
G(1) G(2) . . . G(N−1) G(N)

12



In the following we give the precise definitions and theorems for these nested operators.

Definition 2. The nested K-matrices are

K
(k+1)
a,b (z) := K

(k)
a,b(z)−K

(k)
a,k(z)

[
K

(k)
k,k(z)

]−1

K
(k)
k,b(z), (4.2)

for a, b = k + 1, . . . , N and
G(k)(u) := K

(k)
k,k(u), (4.3)

for k = 1, . . . , N .

Theorem 3. The crossed nested K-matrices K(k)(u−(k−1)/2) are representations of the twisted Yangian Y +(N+
1− k) and the G-operators satisfy the relations[

G(k)(u2),K
(k+1)
a,b (u1)

]
= 0,[

G(k)(u2),G
(k)(u1)

]
= 0,[

G(k)(u2),B
]
= 0,

(4.4)

for k = 1, . . . , N and k < a, b ≤ N .

Corollary 4. The operators G(k)(u) generate a Cartan subalgebra of Y +(N)[
G(k)(u2),G

(l)(u1)
]
= 0, (4.5)

for k, l = 1, . . . , N .

4.1.2 Uncrossed K-matrices

In the uncrossed case we introduce
n =

⌊
N

2

⌋
. (4.6)

The nesting of the uncrossed K-matrices defines the series

B(2n+ 1, n) → B(2n− 1, n− 1) → . . . → B(3, 1) → B(1, 0)
K(1) ≡ K → K(2) → . . . → K(n) → K(n+1)

↓ ↓ . . . ↓ ↓
G(1) G(2) . . . G(n) G(n+1)

for N = 2n+ 1 and

B(2n, n) → B(2n− 2, n− 1) → . . . → B(2, 1) → B(1, 0)
K(1) ≡ K → K(2) → . . . → K(n) → K(n+1)

↓ ↓ . . . ↓ ↓
G(1) G(2) . . . G(n) G(n+1)

for N = 2n.

Definition 5. The nested K-matrices are

K
(k+1)
a,b (z) := K

(k)
a,b(z)−K

(k)
a,k(z)

[
K

(k)
N+1−k,k(z)

]−1

K
(k)
N+1−k,b(z), (4.7)

for a, b = k + 1, . . . , N − k and
G(k)(u) = K

(k)
N+1−k,k(u), (4.8)

for k = 1, . . . , n+ 1.
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Theorem 6. The uncrossed nested K-matrices K(k)(u) are representations the reflection algebras B(N+2−2k, n+
1− k) and the G-operators satisfy the relations[

G(k)(u2),K
(k+1)
a,b (u1)

]
= 0,[

G(k)(u2),G
(k)(u1)

]
= 0, (4.9)[

G(k)(u2),B
]
= 0,

for k = 1, . . . , n+ 1 and k < a, b < N + 1− k.

Corollary 7. The operators G(k)(u) generate a Cartan subalgebra of B(N,n)[
G(k)(u2),G

(l)(u1)
]
= 0, (4.10)

for k, l = 1, . . . , n+ 1.

4.2 Off-shell overlap formulas
In this subsection we show theorems for the off-shell overlaps Sα,B(t̄). The derivations can be found in the Appendix
D.

The off-shell overlap functions will be written as sums over partitions of the sets of Bethe roots. A partition
t̄s ⊢ {t̄si , t̄sii} corresponds to a decomposition into (possibly empty) disjoint subsets t̄si , t̄sii such that t̄s = t̄si ∪ t̄sii and
t̄si ∩ t̄sii = ∅.

Theorem 8. The sum formula can be written as

Sᾱ,B(t̄) =
∑

part(t̄)

∏N−1
ν=1 f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

Z̄(t̄ii)BZ(t̄i)

N−1∏
ν=1

αν(t̄
ν
i ), (4.11)

where the sum goes over partitions t̄s ⊢ {t̄si , t̄sii}. The highest coefficients Z and Z̄ satisfy

ZK(t̄) = (−1)#t̄

(
N−2∏
s=1

f(t̄s+1, t̄s)

)−1 [
Z̄KT

(πc(t̄))
]tB

, (4.12)

in the crossed case and
ZK(t̄) =

[
Z̄KΠ

(πa(t̄))
]tB

, (4.13)

in the uncrossed case, where T denotes the transposition on the auxiliary and boundary spaces and
KΠ

i,j = (KN+1−j,N+1−i)
tB .

The HC-s have pole in the pair structure limit. In the crossed and the uncrossed cases the pair structure limits
are tνl → −tνk−ν and tN−ν

l → −tνk, respectively. We can use a common notation tν̃l → −tνk−νc̃ for the pair structure
limits, where

(ν̃, c̃) =

{
(ν, 1), for the crossed case,
(N − ν, 0), for the uncrossed case.

(4.14)

Theorem 9. The HC-s have poles at tν̃l → −tνk − νc̃:

Z(t̄) → −1

tν̃l + tνk + νc̃

f(tνk, τ̄
ν)f(tν̃l , τ̄

ν̃)

f(tνk, t̄
ν−1)f(tν̃l , t̄

ν̃−1)
F(ν)(tνk)Z(τ̄) + reg., (4.15)

and

Z̄(t̄) → 1

tν̃l + tνk + νc̃

f(τ̄ν , tνk)f(τ̄
ν̃ , tν̃l )

f(t̄ν+1, tνk)f(t̄
ν̃+1, tν̃l )

Z̄(τ̄)F(ν)(tνk) + reg., (4.16)

where τ̄ = t̄\{tνk, tν̃l } and

F(ν)(z) = (−1)c̃
[
G(ν)(z)

]−1

G(ν+1)(z). (4.17)
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We have the commuting set of operators[
F(k)(u),F(l)(v)

]
= 0,

[
F(k)(u),B

]
= 0, (4.18)

therefore we can diagonalize the matrices simultaneously:(
F(k)(u)

)
n,m

= δn,mF (k)
n (u), (B)n,m = δn,mβn. (4.19)

The off-shell overlap have the sum formula

⟨MPS|B(t̄) =
∑
part

∏N−1
ν=1 f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

Tr
[
Z̄(t̄ii)BZ(t̄i)

]∏
ν

αν(t̄
ν
i )

=

dB∑
ℓ=1

βℓ
∑
part

∏N−1
ν=1 f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

(
Z(t̄i)Z̄(t̄ii)

)
ℓ,ℓ

∏
ν

αν(t̄
ν
i ).

(4.20)

We can define the expressions

S
(ℓ)
ᾱ (t̄) :=

∑
part

∏N−1
ν=1 f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

(
Z(t̄i)Z̄(t̄ii)

)
ℓ,ℓ

∏
ν

αν(t̄
ν
i ), (4.21)

for which

⟨MPS|B(t̄) =
dB∑
ℓ=1

βℓS
(ℓ)
ᾱ (t̄). (4.22)

Theorem 10. The expressions S(n)
ᾱ (t̄) has the following pair structure limit

lim
tν̃l →−tνk−νc̃

S
(ℓ)
ᾱ (t̄) = F (ν)

ℓ (tνk)X
ν
k

f(τ̄ν , tνk)f(τ̄
ν̃ , tν̃l )

f(t̄ν+1, tνk)f(t̄
ν̃+1, tν̃l )

S
(ℓ)

ᾱmod(τ̄) + S̃, (4.23)

where τ̄ = t̄\{tνk, tν̃l } and

Xν
k = − d

dtνk
logα(tνk), (4.24)

the S̃ does not depend on Xν
k . The modified α-s are

αmod
µ (u) = αµ(u)

(
f(tνk, u)

f(u, tνk)

)δν,µ (f(−tνk − νc̃, u)

f(u,−tνk − νc̃)

)δν̃,µ f(u, tνk)
δν,µ−1

f(tνk, u)
δν,µ+1

f(u,−tνk − νc̃)δν̃,µ−1

f(−tνk − νc̃, u)δν̃,µ+1
. (4.25)

The definition of αmod
µ is compatible with the on-shell limit. In the original overlap function, the on-shell Bethe

roots satisfy the Bethe equations

αµ(t
µ
k) =

f(tµk , t̄
µ
k)

f(t̄µk , t
µ
k)

f(t̄µ+1, tµk)

f(tµk , t̄
µ−1)

. (4.26)

On the right-hand side of (4.23), we have overlaps where the Bethe roots tνk and tν̃l have been omitted. The remaining
Bethe roots must satisfy the same equations on-shell as before. It is clear that with the original α-functions, the
Bethe equations are not satisfied for the set τ̄ :

αµ(τ
µ
k ) ̸=

f(τµk , τ̄
µ
k )

f(τ̄µk , τ
µ
k )

f(τ̄µ+1, τµk )

f(τµk , τ̄
µ−1)

. (4.27)

However, with the modified α-functions, they are satisfied. To see this, separate the terms on the right-hand side
of the Bethe equations (4.26) according to the decomposition t̄ = τ̄ ∪ {tνk, tν̃l }:

f(τµk , t̄
µ
k)

f(t̄µk , τ
µ
k )

f(t̄µ+1, τµk )

f(τµk , t̄
µ−1)

=
f(τµk , τ̄

µ
k )

f(τ̄µk , τ
µ
k )

f(τ̄µ+1, τµk )

f(τµk , τ̄
µ−1)

(
f(τµk , t

ν
k)

f(tνk, τ
µ
k )

)δν,µ (f(τµk , tν̃l )
f(tν̃l , τ

µ
k )

)δν̃,µ f(tνk, τ
µ
k )

δν,µ+1

f(τµk , t
ν
k)

δν,µ−1

f(tν̃l , τ
µ
k )

δν̃,µ+1

f(τµk , t
ν̃
l )

δν̃,µ−1
.

(4.28)
Substituting back into the original Bethe equation (4.26), we obtain the result

αmod
µ (τµk ) =

f(τµk , τ̄
µ
k )

f(τ̄µk , τ
µ
k )

f(τ̄µ+1, τµk )

f(τµk , τ̄
µ−1)

, (4.29)

where αmod
µ is defined according to (4.25), after the substitution tν̃l = −tνk − νc̃.
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4.3 On-shell limit
We saw that the on-shell overlaps are non-vanishing only if the Bethe roots have pair structure. In the crossed
case the Bethe roots have chiral pair structure. For simplicity, we assume that the numbers rν are even 4. In the
chiral pair structure, we can decompose the sets t̄ν ⊢ {t̄+,ν , t̄−,ν}, where #t̄+,ν = #t̄−,ν = r+ν = rν/2. In the pair
structure limit, t−,ν

k = −t+,ν
k − ν for k = 1, . . . , r+ν .

In the uncrossed case the Bethe roots have achiral pair structure. For odd N , i.e., when N = 2n+ 1, we define
the notations t̄+,ν = t̄ν and t̄−,ν = t̄N−ν , where #t̄+,ν = #t̄−,ν = r+ν = rν for ν = 1, . . . , n. In the pair structure
limit, t−,ν

k = −t+,ν
k for k = 1, . . . , r+ν .

If N = 2n, then for simplicity we assume that the number rn is even. In this case, we can decompose the
set t̄n ⊢ {t̄+,n, t̄−,n} where #t̄+,n = #t̄−,n = r+n = rn/2. For the other nodes, we introduce the earlier notation
t̄+,ν = t̄ν and t̄−,ν = t̄N−ν for ν = 1, . . . , n − 1. In the pair structure limit, t−,ν

k = −t+,ν
k for k = 1, . . . , r+ν and

ν = 1, . . . , n.
In both the chiral and achiral cases, we introduce the set of sets t̄± = {t̄±,ν}n+

ν=1, where

n+ =

{
N − 1, for crossed cases,
n, for uncrossed cases.

The Theorem 10 is sufficient to prove the form of the overlaps involving Gaudin determinants.

Definition 11. The Gaudin matrices are defined by

G
±,(µ,ν)
j,k = −

(
∂

∂t+,ν
k

± ∂

∂t−,ν
k

)
log Φ

+,(µ)
j

∣∣∣∣∣
t̄−=πa/c(t̄+)

, (4.30)

where µ, ν = 1, . . . , n+, j, k = 1, . . . , r+ν and

Φ
+,(µ)
k = αµ(t

+,µ
k )

f(t̄µk , t
+,µ
k )

f(t+,µ
k , t̄µk)

f(t+,µ
k , t̄µ−1)

f(t̄µ+1, t+,µ
k )

. (4.31)

Corollary 12. The Gaudin-determinant factorizes as

detG = detG+ detG−, (4.32)

for Bethe roots with pair structure t̄ = πa/c (t̄).

After performing the pair structure limit, the elementary overlap functions S(ℓ) depend only on the variables
t+,µ
k , α+,µ

k ≡ αµ(t
+,µ
k ) and X+,µ

k . In the generalized model, these are independent variables. After the pair structure
limit, we can also perform the on-shell limit via

α+,µ
k →

f(t+,µ
k , t̄µk)

f(t̄µk , t
+,µ
k )

f(t̄µ+1, t+,µ
k )

f(t+,µ
k , t̄µ−1)

(4.33)

substitution. As a result, we obtain functions that depend only on the variables t+,µ
k and X+,µ

k :

S
(n)
ᾱ (t̄) → S(n)(t̄+|X̄+). (4.34)

Theorem 13. The crossed elementary overlaps are

S(ℓ)(t̄+|X̄+) =

N−1∏
ν=1

F (ν)
ℓ (t̄+,ν)×

N−1∏
ν=1

∏
k ̸=l

f(t+,ν
l , t+,ν

k )
∏
k<l

f(t+,ν
l ,−t+,ν

k − νc)f(−t+,ν
l − νc, t+,ν

k ) detG+. (4.35)

The uncrossed elementary overlaps are

S(ℓ)(t̄+|X̄+) =

n∏
ν=1

F (ν)
ℓ (t̄+,ν)×

∏n
ν=1

∏
k ̸=l f(t

+,ν
l , t+,ν

k )∏n−1
ν=1 f(t̄

+,ν+1, t̄+,ν)
∏

k≤l f(−t
+,N−1

2

l , t
+,N−1

2

k )
detG+, (4.36)

4The case of odd values is discussed in Section S-VIII of [45].
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for N = 2n+ 1 and

S(ℓ)(t̄+|X̄+) =

n∏
ν=1

F (ν)
ℓ (t̄+,ν)×

∏n
ν=1

∏
k ̸=l f(t

+,ν
l , t+,ν

k )
∏

k<l f(−t
+,N2
l , t

+,N2
k )f(t

+,N2
l ,−t+,N2

k )∏n−1
ν=1 f(t̄

+,ν+1, t̄+,ν)f(−t̄+,N2 , t̄+,N2 −1)
detG+, (4.37)

for N = 2n.

Corollary 14. The normalized on-shell overlaps are

⟨MPS|B(t̄)√
C(t̄)B(t̄)

=

dB∑
ℓ=1

βℓ

n+∏
ν=1

F̃ (ν)
ℓ (t̄+,ν)

√
detG+

detG− , (4.38)

where

F̃ (ν)
ℓ (u) =


F(ν)

ℓ (u)√
f(−u−ν,u)f(u,−u−ν)

, for the chiral case,

F (ν)
ℓ (u)

(
1√

f(−u,u)

)δ
ν,N−1

2

(
1√

f(−u,u)f(u,−u)

)δ
ν,N

2

, for the achiral case.
(4.39)

4.4 Redefinition of the Bethe roots
In applications, the most common convention is the one where the Bethe equations contain product of phases. To
align with this, we introduce a new convention for the Bethe roots:

tνk =

{
iuνk − ν/2, for the crossed case,
iuνk + N−2ν

4 , for the uncrossed case.
(4.40)

The Bethe equations with these new variables are

α̃µ(u
µ
k) = −

rµ∏
j=1

uµk − uµj − i

uµk − uµj + i

rµ+1∏
j=1

uµk − uµ+1
j + i/2

uµk − uµ+1
j − i/2

rµ−1∏
j=1

uµk − uµ−1
j + i/2

uµk − uµ−1
j − i/2

, (4.41)

where

α̃µ(u) =

{
αµ(iu− µ/2), for the crossed case,
αµ(iu+ N−2µ

4 ), for the uncrossed case.
(4.42)

Let us also introduce a new notation for the Bethe vectors

|ū⟩ =

{
B({iūν − ν/2}N−1

ν=1 ), for the crossed case,
B(
{
iūν + N−2ν

4

}N−1

ν=1
), for the uncrossed case,

(4.43)

for which the on-shell overlap formulas have the form

⟨MPS|ū⟩√
⟨ū|ū⟩

=

dB∑
ℓ=1

βℓ

n+∏
ν=1

F̃ (ν)
ℓ (ū+,ν)

√
detG+

detG− , (4.44)

where

F̃ (ν)
ℓ (u) =

F (ν)
ℓ (iu− ν/2)

√
u2

u2+1/4 , for the chiral case,

F (ν)
ℓ (iu+ N−2ν

4 )
(√

u−i/4
u+i/4

)δ
ν,N−1

2

(√
u2

u2+1/4

)δ
ν,N

2 , for the achiral case.
(4.45)

5 Other reflection algebras of glN spin chains
The formulas from the previous section can be applied to the Y +(N) and B(N,

⌊
N
2

⌋
) K-matrices. From now on,

we assume that the universal overlap formula (1.1) also exists for the other glN reflection algebras. In this section,
we extend the definition of the F(ν) operators to the remaining cases as well.
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5.1 Generalization for Y −(2n)

First, we extend the F -operators of the Y +(N) algebra to the Y −(N) case. We begin by solving the recursive
equation (4.2) for the nested K-matrix, from which we obtain the G-operators in closed form. Additionally, we
formulate a new recursion for the G-operators, which we apply to the Y −(N) K-matrices.

5.1.1 Quasi-determinants

The G-operators have several equivalent definitions. To express these, it is useful to introduce new notations. Let
X = (Xi,j)

N
i,j=1 be an N ×N matrix over a ring. Let 1 ≤M < N and introduce the following block notations,

X =

(
A B
C D

)
, (5.1)

where A is an M ×M , B an M × (N −M), C a (N −M)×M and D a (N −M)× (N −M) matrix over the ring.
Assume that A is invertible, and then let

X(M+1) ≡
(
A B

C D

)
:= D − CA−1B (5.2)

be a (N −M) × (N −M) matrix. This matrix can also be defined in another equivalent way. Let I denote the
inversion operation, i.e., I(X) := X−1, and let ΠM be a projection such that

ΠM (X) = ΠM

((
A B
C D

))
:= D. (5.3)

Combining these, we introduce the following operation.

ωM := I ◦ΠM ◦ I. (5.4)

It is easy to verify that the inverse matrix can be expressed in the following way:

X−1 =

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)
, (5.5)

therefore

X(M+1) =

(
A B

C D

)
= ωM (X). (5.6)

Clearly, ωM1+M2
= ωM1

◦ ωM2
, that is,

X(M1+M2) = ωM1
(X(M2)). (5.7)

These definitions can be applied to the nested K-matrices. The recursive step can be written using the new
notations as follows

K(s+1) =


K

(s)
s,s K

(s)
s,s+1 . . .

K
(s)
s+1,s
...

K
(s)
s+1,s+1 . . .

...
. . .

 = ω1(K
(s)).

Using the identity (5.7), the recursive equations can be solved

K(s) = ωs−1(K) =



K1,1 . . . K1,s−1 K1,s K1,s+1 . . .
...

. . .
...

...
Ks−1,1 . . . Ks−1,s−1 Ks−1,s Ks−1,s+1 . . .

Ks,1

Ks+1,1

...
. . .

Ks,s−1

Ks+1,s−1

...

Ks,s Ks,s+1 . . .
Ks+1,s Ks+1,s+1 . . .

...
...

. . .


,
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or simply by using components

K
(s)
i,j =


K1,1 . . . K1,s−1 K1,j

...
. . .

...
...

Ks−1,1 . . . Ks−1,s−1 Ks−1,j

Ki,1 . . . Ki,s−1 Ki,j

 , (5.8)

where i, j = s, . . . , N . Based on this, the G-operators can also be expressed in closed form.

G(s) =


K1,1 . . . K1,s−1 K1,s

...
. . .

...
...

Ks−1,1 . . . Ks−1,s−1 Ks−1,s

Ks,1 . . . Ks,s−1 Ks,s

 . (5.9)

The definitions above assume that the matrices K1,1 . . . K1,s

...
. . .

...
Ks,1 . . . Ks,s

 (5.10)

are invertible. This holds for the Y +(N) algebra, but for the Y −(2n) algebra, the inverse exists only for even s.
For odd K-matrices, there exists another recursion. We can introduce another series of subalgebras

Y +(2n) → Y +(2n− 2) → . . . → Y +(4) → Y +(2)
K(1) ≡ K → K(3) → . . . → K(2n−3) → K(2n−1)

↓ ↓ . . . ↓ ↓
k(1) k(2) . . . k(n−1) k(n)

In this case, the recurrence equation is
K(2k+1) = ω2

(
K(2k−1)

)
, (5.11)

which explicitly gives

K
(2k+1)
a,b (z) := K

(2k−1)
a,b (z)−

2k∑
α,β=2k−1

K(2k−1)
a,α (z)K̂

(2k−1)
α,β (z)K

(2k−1)
β,b (z), (5.12)

for a, b = 2k + 1, . . . , 2n, where K̂
(2k−1)
α,β (z) is the inverse of a 2× 2 block

2k∑
γ=2k−1

K(2k−1)
α,γ (z)K̂

(2k−1)
γ,β (z) = δα,β1. (5.13)

We also define the 2× 2 K-matrices as

k
(k)
α,β(u) := K

(2k−1)
α+2k−2,β+2k−2(u), (5.14)

for α, β = 1, 2.
The nested K-matrices K(2k−1) are the same as before, i.e., they satisfy the reflection equation (3.5). The

2 × 2 matrices k
(k)
α,β(u − (k − 1)) for α, β = 1, 2 generate Y +(2) subalgebras. The element k

(k)
1,1 = K

(2k−1)
2k−1,2k−1,

which by definition is the G(2k−1) operator. To compute G(2k)(u) we can use the formula (5.9) and the identity
ω2k−1 = ω1 ◦ ω2k−2, that is,

G(2k) = ω2k−1 ◦


K1,1 . . . K1,2k−1 K1,2k

...
. . .

...
...

K2k−1,1 . . . K2k−1,2k−1 K2k−1,2k

K2k,1 . . . K2k,2k−1 K2k,2k

 = ω1 ◦ ω2k−2 ◦


K1,1 . . . K1,2k−1 K1,2k

...
. . .

...
...

K2k−1,1 . . . K2k−1,2k−1 K2k−1,2k

K2k,1 . . . K2k,2k−1 K2k,2k


= ω1 ◦

(
K

(2k−1)
2k−1,2k−1 K

(2k−1)
2k−1,2k

K
(2k−1)
2k,2k−1 K

(2k−1)
2k,2k

)
=

 k
(k)
1,1 k

(k)
1,2

k
(k)
2,1 k

(k)
2,2

 . (5.15)

19



In summary, the G-operators have an alternative expression

G(2k−1)(z) =k
(k)
1,1(z),

G(2k)(z) =k
(k)
2,2(z)− k

(k)
2,1(z)

[
k
(k)
1,1(z)

]−1

k
(k)
1,2(z).

(5.16)

5.1.2 The Y −(2) overlaps

In the case of Y −(2) K-matrices, the asymptotic expansion begins with

Ki,j(u) = ϵi,j1+O(u−1), (5.17)

where i, j = 1, 2 and ϵi,j = −ϵj,i, ϵ1,2 = 1. It is clear that the K1,1(u) component is not invertible, so the previous
overlap formula cannot be applied. However, for finite-dimensional irreducible K-matrices, there exists a continuous
deformation K → K̃, that still solves the reflection equation and for which the K̃1,1 component is invertible. For
this deformed K-matrix, the overlap formula derived in the previous section can be applied. Taking the zero limit
of the deformation parameter yields the overlap formula for the original K-matrix.

This deformation is based on the theorem: every finite-dimensional irreducible representation of Y −(2) arises
from a representation of Y (2) via the embedding Y −(2) ↪→ Y (2) [53]. That is, for every finite-dimensional irreducible
Y −(2) K-matrix, there exists a Lax operator (a Y (2) representation) such that

Ki,j(u) =
∑
k,l

Lk,i(u)ϵk,lLl,j(−u). (5.18)

The K1,1(u) component is
K1,1(u) = L1,1(u)L2,1(−u)− L2,1(u)L1,1(−u). (5.19)

Since Y (2) contains an sl2 subalgebra, the boundary space is also an sl2 representation. The operator L1,1 preserves
the sl2 quantum number, while L2,1 lowers it by one, meaning that for finite-dimensional representations, K1,1(u)
is a nilpotent operator.

There is a special scalar solution of the reflection equation (dB = 1)

K(u|b) =
(

b(u+ 1/2) 1
−1 0

)
, (5.20)

where b ∈ C is a scalar parameter. From this scalar representation and the Lax operator L, we can construct a
deformed K-matrix:

K̃0(u|b) = Lt0
0 (u)K0(u|b)L0(−u), (5.21)

that is

K̃i,j(u|b) =
∑
k,l

Lk,i(u)ϵk,lLl,j(−u) + b(u+ 1/2)L1,i(u)L1,j(−u)

= Ki,j(u) + b(u+ 1/2)L1,i(u)L1,j(−u). (5.22)

This matrix satisfies the reflection equation, the component K̃1,1(u|b) is invertible, and K̃i,j(u|0) = Ki,j(u).
Let us examine the component K̃1,1, that is, the first G-operator:

G̃(1)(u|b) = K̃1,1(u|b) = K1,1(u) + b(u+ 1/2)L1,1(u)L1,1(−u).

Since the operator K1,1 lowers the sl2 spin and L1,1(u)L1,1(−u) does not change it, in a specific basis, the former
is an upper triangular matrix and the latter is a diagonal matrix, therefore the eigenvalues of G̃(1) coincide with
those of b(u+ 1/2)L1,1(u)L1,1(−u).

Let us continue with the second G-operator.

G̃(2)(u|b) = K̃2,2(u|b)− K̃2,1(u|b)
[
K̃1,1(u|b)

]−1

K̃1,2(u|b). (5.23)

It can be shown that this operator can be expressed using the Sklyanin determinant (see (A.29) for the definition
of k̃1,2

1,2)
k̃1,2
1,2(u|b) = G̃(1)(u+ 1|b)G̃(2)(u|b). (5.24)
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The Sklyanin determinant, in turn, factorizes

k̃1,2
1,2(u|b) = l1,21,2(−u)l

1,2
1,2(u+ 1) = k1,2

1,2(u), (5.25)

where the quantum determinant is defined as

R1,2(−1)L1(u− 1)L2(u) =

2∑
ai,bi=1

ea1,b1 ⊗ ea2,b2 ⊗ lb1,b2a1,a2
(u). (5.26)

(The proof matches Theorem 2.5.3 in [50]), meaning that the Sklyanin determinant does not depend on the defor-
mation parameter b. Based on this, the dependence of the eigenvalues of the F -operator

F(1)(u|b) =
[
G̃(1)(u|b)

]−1

G̃(2)(u|b) (5.27)

on b is extremely simple
Fℓ(u|b) = b−2Fℓ(u), (5.28)

where the functions Fℓ(u) are the eigenvalues of the F -operator:

F(u) :=
[
G̃(1)(u|1)

]−1

G̃(2)(u|1). (5.29)

The boundary state must also be deformed. The boundary state corresponding to the deformed K-matrix,
⟨Ψ̃(b)| can be obtained based on the description in Appendix A. The vacuum overlap in the deformed case is

B̃(b) = ⟨Ψ̃(b)|0⟩ =
J∏

j=1

Λ
(j)
1 −Λ

(j)
2∏

l=1

K̃1,1(θj − l|b) =
J∏

j=1

kj∏
l=1

G̃(1)(θj − l|b). (5.30)

Since the eigenvalues of G̃(1) are linear in b, the dependence of the eigenvalues of the operator B̃ on b is

β̃ℓ(b) = b
Λ1−Λ2

2 βℓ, (5.31)

where the βℓ are the eigenvalues of the operator

B := ⟨Ψ̃(1)|0⟩. (5.32)

Applying the overlap formula:

⟨MPS(b)|B(t̄)√
C(t̄)B(t̄)

= b
Λ1−Λ2

2 −r1

dB∑
ℓ=1

βℓF̃ℓ(t̄
+)

√
detG+

detG− . (5.33)

Now we can take the b → 0 limit. The Bethe states exists only when 2r1 ≤ Λ1 − Λ2 therefore the limit is
non-vanishing only when

r1 =
Λ1 − Λ2

2
, (5.34)

and the Y −(2) overlap is
⟨MPS|B(t̄)√
C(t̄)B(t̄)

= δ2r1,Λ1−Λ2

dB∑
ℓ=1

βℓF̃ℓ(t̄
+)

√
detG+

detG− , (5.35)

where the βℓ and Fℓ are the eigenvalues of the operators (5.32) and (5.29).
The selection rule (5.34) means that the Y −(2) MPSs are gl2 singlet states.
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5.1.3 Proposal for Y −(2n) overlaps

In this section, we combine the results of 5.1.1 and 5.1.2. The definitions discussed in Section 4 cannot be used
in the Y −(2n) case because those definitions involve the inverse of the K1,1 matrix, which is not invertible in this
case. However, in 5.1.1 we saw that there exists another equivalent definition for which the nested K-matrices can
be defined without requiring K1,1 to be invertible.

Based on Subsection 5.1.1, we have the series of subalgebras

Y −(2n) → Y −(2n− 2) → . . . → Y −(4) → Y −(2)
K(1) ≡ K → K(3) → . . . → K(2n−3) → K(2n−1)

↓ ↓ . . . ↓ ↓
k(1) k(2) . . . k(n−1) k(n)

Based on the definition in (5.14) the K-matrices k(s)(u − (s − 1)) are representations of the Y −(2). For these,
the G-operators defined by (5.16) do not exist. However, we can apply the method described in 5.1.2 i.e., we first
deform the k(s) matrices so that the G-operators become definable. The deformation is carried out as follows

k
(s)
i,j (u) =

∑
k,l

L
(s)
k,i(u+ (s− 1))ϵk,lL

(s)
l,j (−u− (s− 1)),

k̃
(s)
i,j (u|bs) = k

(s)
i,j (u) + bs(u+ (s− 1/2))L1,i(u+ (s− 1))L1,j(−u− (s− 1)).

(5.36)

For these deformed matrices, we can define the G-operators as

G̃(2s−1)(u|bs) = k̃
(s)
1,1(u|bs),

G̃(2s)(u|bs) = k̃
(s)
2,2(u|bs)− k̃

(s)
2,1(u|bs)

[
k̃
(s)
1,1(u|bs)

]−1

k̃
(s)
1,2(u|bs).

(5.37)

Based on the previous reasoning, the eigenvalues of the G̃(2s−1) operators are proportional, while the eigenvalues
of the G̃(2s) operators are inversely proportional to bs. Thus, the dependence of the eigenvalues of the F -operators

F(2s−1)(u|bs) =
[
G̃(2s−1)(u|bs)

]−1

G̃(2s)(u|bs),

F(2s)(u|bs, bs+1) =
[
G̃(2s)(u|bs)

]−1

G̃(2s+1)(u|bs+1),

(5.38)

on bs is as follows

F (2s−1)
ℓ (u|bs) =b−2

s F (2s−1)
ℓ (u),

F (2s)
ℓ (u|bs, bs+1) =bsbs+1F (2s)

ℓ (u),
(5.39)

where F (k)
ℓ are the eigenvalues of the F(k) operators in the limit bs → 1.

The deformed vacuum overlap is given by the formula in (A.36) meaning that the dependence of the vacuum
eigenvalues on bs is

β̃ℓ(b1, . . . , bn) =

n∏
s=1

b
Λ2s−1−Λ2s

2
s βℓ, (5.40)

where βℓ is the eigenvalue of the vacuum overlap in the limit bs → 1. Applying the overlap formula:

⟨MPS|B(t̄)√
C(t̄)B(t̄)

= lim
bs→0

n∏
s=1

b
Λ2s−1−Λ2s

2 −r2s−1+
r2s−2+r2s

2
s

dB∑
ℓ=1

βℓF̃ℓ(t̄
+)

√
detG+

detG− .

Now we can take the limit bs → 0. The limit is non-vanishing only when

r2s−1 =
Λ2s−1 − Λ2s + r2s−2 + r2s

2
, (5.41)

for s = 1, . . . , n and the Y −(2n) overlap is

⟨MPS|B(t̄)√
C(t̄)B(t̄)

=

dB∑
ℓ=1

βℓF̃ℓ(t̄
+)

√
detG+

detG− . (5.42)
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5.2 Generalization for B(N,M)

In the case of uncrossed B(N,M) K-matrices, the nesting procedure described in 3.5.2 cannot be continued beyond
step M . The nesting in this case proceeds as follows

B(N,M) → B(2N − 2,M − 1) → . . . → B(2N − 2M + 2, 1) → B(2N − 2M, 0)
K(1) ≡ K → K(2) → . . . → K(M) → K(M+1)

↓ ↓ . . . ↓
G(1) G(2) . . . G(M)

It is useful to first examine the case M = 0 separately and then generalize to arbitrary M .

5.2.1 The B(N, 0) overlaps

For the B(N, 0) K-matrices, the asymptotic expansion begins with

Ki,j(u) = δi,j1+O(u−1), (5.43)

where i, j = 1, . . . , N . It is clear that the component KN,1(u) is not invertible, so the previously used overlap
formula cannot be applied. For N = 2, the uncrossed B(2, 0) algebra is isomorphic to the crossed Y −(2) algebra.
In this case, for finite-dimensional irreducible K-matrices, there exists a continuous deformation K → K̃, that
still solves the reflection equation and makes the matrix elements in the overlap formula invertible. The following
generalizes this procedure to arbitrary N .

The deformation is based on the assumption that for every finite-dimensional B(N, 0) K-matrix, there exists a
Lax operator (a representation of Y (N)) such that

Ki,j(u) =

N∑
k=1

L′
i,k(u)Lk,j(−u), (5.44)

where
N∑

k=1

L′
i,k(u)Lk,j(u) = δi,j1. (5.45)

This is certainly true for N = 2, but for N > 2, it remains a conjecture. The component

KN,1(u) =

N∑
k=1

L′
N,k(u)Lk,1(−u), (5.46)

is a nilpotent operator.
The reflection equation has a special scalar solution (with dB = 1)

Ki,j(u|b̄) = δi,j + u

N/2∑
i=1

bieN+1−i,i. (5.47)

From this scalar representation and the Lax operator L, we can construct a deformed K-matrix:

K̃0(u|b̄) = L′
0(u)K0(u|b̄)L0(−u), (5.48)

that is

K̃i,j(u|b̄) = Ki,j(u) + u

N/2∑
k=1

bkL
′
i,N+1−k(u)Lk,j(−u). (5.49)

This matrix satisfies the reflection equation, the component K̃N,1(u|b̄) is invertible, and K̃i,j(u|0) = Ki,j(u).
Let us now examine the component K̃N,1, i.e., the first G-operator:

G̃(1)(u|b̄) = K̃N,1(u|b̄) = b1uL
′
N,N (u)L1,1(−u) +KN,1(u) + u

N/2∑
k=2

bkL
′
N,N+1−k(u)Lk,1(−u)

= b1uL
′
N,N (u)L1,1(−u) + ǨN,1(u). (5.50)
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The eigenvalues of G̃(1) coincide with those of b1uL′
N,N (u)L1,1(−u). Let us continue with the second G-operator

G̃(2)(u|b̄) = K̃2,2(u|b̄)− K̃2,1(u|b̄)
[
K̃1,1(u|b̄)

]−1

K̃1,2(u|b̄). (5.51)

It can be shown that this operator can be expressed using the quantum minor (see (C.39))

k̃1,2
1̄,2̄

(u|b̄) = G̃(1)(u+ 1|b̄)G̃(2)(u|b̄), (5.52)

where ī = N + 1− i. The quantum minor, however, factorizes

k̃1,2
1̄,2̄

(u|b̄) = b1b2l
1,2
1,2(−u)̂l

1̄,2̄
1̄,2̄

(u), (5.53)

meaning that the eigenvalues of G̃(2) are proportional to b2. This can be generalized: the eigenvalues of G̃(k) are
proportional to bk for k ≤ N/2. Based on this, the dependence of the eigenvalues of the operators

F(k)(u|b̄) =
[
G̃(k)(u|b̄)

]−1

G̃(k+1)(u|b̄) (5.54)

on b is extremely simple for k < N/2:

F (k)
ℓ (u|b̄) = bk+1

bk
F (k)

ℓ (u) (5.55)

where the functions Fℓ(u) are the eigenvalues of the operator

F(k)(u) := F(k)(u|b̄)

∣∣∣∣∣
bk=1

. (5.56)

If N = 2n + 1, then the eigenvalues of G̃(n+1)(u|b̄) do not depend on the bk parameters. If N = 2n, then the
eigenvalues of G̃(n+1)(u|b̄) are inversely proportional to bn, i.e.,

F (n)
ℓ (u|b̄) =

{
1
bn

F (n)
ℓ (u), if N = 2n+ 1,

1
b2
n
F (n)

ℓ (u), if N = 2n.
(5.57)

The boundary state must also be deformed. The boundary state ⟨Ψ̃(b)| corresponding to the deformed K-
matrix can be obtained based on the description in Appendix A. Since the eigenvalues of G̃(k) are linear in bk the
dependence of the eigenvalues of the B̃ operator on b is as follows:

β̃ℓ(b̄) =

n∏
k=1

bΛk

k βℓ, (5.58)

where the βℓ are the eigenvalues of the operator

B := ⟨Ψ̃(b̄)|0⟩

∣∣∣∣∣
bk=1

. (5.59)

Applying the overlap formula:

⟨MPS(b̄)|B(t̄)√
C(t̄)B(t̄)

=

n∏
k=1

b
Λk−rk+rk−1

k

dB∑
ℓ=1

βℓF̃ℓ(t̄
+)

√
detG+

detG− . (5.60)

Now we can take the b → 0 limit. The limit is non-vanishing only when

Λk = rk − rk−1, (5.61)

or equivalently

rk =

k∑
l=1

Λl. (5.62)

In summary, the B(N, 0) overlap is

⟨MPS|B(t̄)√
C(t̄)B(t̄)

=

dB∑
ℓ=1

βℓ

n∏
ν=1

F̃ (ν)
ℓ (t̄+,ν)

√
detG+

detG− , (5.63)

with the selection rule (5.62).
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5.2.2 General M

For general M , we define the nested K-matrices and G-operators according to the procedure described in 4,
continuing until we reach the matrix K(M+1), which is a representation of B̃(N − 2M, 0). This matrix is then
deformed as described above, and the G-operators are computed from the deformed matrices, following the same
procedure:

B(N,M) → . . . → B(2N − 2M + 2, 1) → B(2N − 2M, 0)

K(1) ≡ K → . . . → K(M) → K(M+1) → K̃(M+1) → K̃(M+2) → . . .
↓ ↓ ↓ ↓

G(1) . . . G(M) G(M+1) G(M+2) . . .

Specifically, the deformed K-matrix is given by

K
(M+1)
i,j (u) =

N−M∑
l=M+1

L′
i,l(u)Ll,j(−u),

K̃
(M+1)
i,j (u) = K

(M+1)
i,j (u) + u

n∑
l=M+1

L′
i,N+1−l(u)Ll,j(−u),

(5.64)

where i, j = M + 1, . . . , N −M . The G-operators G(s) are derived from the matrix K̃(M+1) in the usual way for
s ≥M + 1-re. Non-zero overlaps require the following selection rule:

rs = rM +

s∑
l=M+1

Λl, (5.65)

for s =M + 1, . . . , n.

6 Generalization for the orthogonal and symplectic spin chains
In this section, we generalize the overlap formulas to orthogonal and symplectic spin chains. Here, n denotes the
rank of the symmetry algebra, i.e., spN = sp2n and

soN =

{
so2n, if N is even,
so2n+1, if N is odd.

We introduce the following index sets

I =

{
{−n, . . . , ,−2,−1, 1, 2, . . . , n} , for N = 2n,

{−n, . . . , ,−2,−1, 0, 1, 2, . . . , n} , for N = 2n+ 1,
(6.1)

and in summations, our convention is
n∑

j=−n

aj ≡
∑
j∈I

aj . (6.2)

Assuming that the universal form of the overlaps exists (1.1) for both the orthogonal and symplectic cases, we
determine the unknown one-particle overlap functions F̃ (ν)

ℓ (u) for each node in the above subsections.

6.1 RTT - and KT -relations
The R-matrix for orthogonal and symplectic spin chains is given by:

R(u) = 1+
1

u
P− 1

u+ κN
Q ∈ End(CN ⊗ CN ), (6.3)

where

P =

n∑
i,j=−n

ei,j ⊗ ej,i, Q =

n∑
i,j=−n

θiθjei,j ⊗ e−i,−j , (6.4)
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and κN = N∓2
2 , where the minus and plus signs correspond to the orthogonal and symplectic cases, respectively.

In the orthogonal case, θi = +1 for all i, and in the symplectic case, θi = sgn(i). The RTT -relation defines the
Yangian algebras Y (gN )

R1,2(u− v)T1(u)T2(v) = T2(v)T1(u)R1,2(u− v). (6.5)

From this relation, it also follows that

n∑
k=−n

θjθkTi,k(u)T−j,−k(u− κN ) = δi,jγ(u), (6.6)

where γ(u) is a central element of the Y (gN ) algebra. This also implies that for the gN symmetric spin chains, the
crossed KT -relation is equivalent to the uncrossed one, since T̂ (u) ∼ T (u− κN ).

The highest weight representations can be defined analogously as before, meaning there exists a highest weight
vector for which

Ti,j(u)|0⟩ = 0, i > j,

Ti,i(u)|0⟩ = λi(u)|0⟩.
(6.7)

Just like in the glN case, the algebra Y (gN ) also contains a gN subalgebra, and the pseudo-vacuum is the highest
weight vector of this gN subalgebra as well. These glN weights can be obtained from the asymptotic limit of the
pseudo-vacuum eigenvalues

λ−i(u) = 1 +
1

u
Λ−i+n+1 +O(u−2), (6.8)

for i = 1, . . . , n.
For these representations, we can apply the inversion relation (6.6) on the pseudo-vacuum

n∑
k=−n

θ−nθ−kT−n,−k(u)Tn,k(u− κN )|0⟩ = T−n,−n(u)Tn,n(u− κN )|0⟩ = γ(u)|0⟩, (6.9)

i.e.,
γ(u) = λ−n(u)λn(u− κN ). (6.10)

The Bethe Ansatz equations are the following

α̃a(u
a
j ) = −

n∏
b=1

rb∏
k=1

uaj − ubk − i
2Ca,b

uaj − ubk + i
2Ca,b

, (6.11)

where Ca,b is the symmetric Cartan matrix, Ca,b = ρ⃗a · ρ⃗b, with ρ⃗a ∈ Rn being the simple roots for a = 1, . . . , n. In
both the orthogonal and symplectic cases,

ρa = (0, . . . , 0︸ ︷︷ ︸
a−1

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
n−a−1

), (6.12)

for a = 1, . . . , n− 1, and the remaining root is

ρn =


(0, . . . , 0, 0, 1), for so2n+1,

(0, . . . , 0, 0, 2), for sp2n,

(0, . . . , 0, 1, 1), for so2n.

(6.13)

As previously established, for orthogonal and symplectic spin chains, there is only one type of KT -relation. For
simplicity, we use the uncrossed convention:

K0(u)⟨Ψ|T0(u) = ⟨Ψ|T0(−u)K0(u). (6.14)

From the KT -relation, it also follows that
λk(u) = λ−k(−u).

As before, the KT -relation is compatible with associativity and the RTT -relation if the K-matrix satisfies the
reflection equation

26



R(v − u)K1(u)R(−u− v)K2(v) = K2(v)R(−u− v)K1(u)R(v − u). (6.15)

The K-matrices can be classified from the asymptotic limit of the reflection equation. Using previous calcula-
tions, the asymptotic limit of the K-matrix is

Ki,j(u) = Ui,j ⊗ 1+O(u−1), (6.16)

where

Ui,j = ±θiθjU−j,−i,

n∑
j=−n

Ui,jUj,k = aδi,k,

where a ∈ C. If a = 0, then the K-matrix is called singular. If a ̸= 0, then the K-matrix can be normalized such that
a = 1. From now on, we deal with non-singular K-matrices, i.e., where a = 1. From the second condition, it follows
that the eigenvalues of the U matrix are ±1. If Ui,j = +θiθjU−j,−i then the symmetry algebras of the possible U
matrices are gM ⊕ gN−M . The corresponding K-matrices generate the reflection algebra Y (gN , gM ⊕ gN−M ) [54].
If Ui,j = −θiθjU−j,−i then N is always even, and the symmetry algebra of the possible U matrices is gln, with the
corresponding reflection algebra Y (g2n, gln) [54].

In the following, we present examples of these algebras. In the case of Y (soN , soM ⊕ soN−M ),

U =

n∑
j=n−M+1

(ej,−j + e−j,j) +

n−M∑
j=−n+M

ej,j . (6.17)

In the case of Y (so2n, gln),

U =

n/2∑
j=1

xj(en−2j+1,2j−2−n − en−2j+2,2j−1−n) +

n∑
j=1

(ej,j − e−j,−j). (6.18)

In the case of Y (sp2n, sp2m ⊕ sp2n−2m),

U =

m∑
j=1

xj(en−2j+1,2j−2−n − en−2j+2,2j−1−n) +

n∑
j=−n

sjej,j , (6.19)

sj =

{
+1, |j| ≤ n− 2m,

(−1)n−j , |j| > n− 2m.

In the case of Y (sp2n, gln),

U =

n∑
j=1

xjej,−j +

n∑
j=1

(ej,j − e−j,−j). (6.20)

For better clarity, we provide a few explicit examples. In the case of Y (so4, gl2),

U =


−1 0 0 0
0 −1 0 0
x1 0 +1 0
0 −x1 0 +1

 , (6.21)

and in the case of Y (so6, gl3),

U =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 +1 0 0
x1 0 0 0 +1 0
0 −x1 0 0 0 +1

 , (6.22)
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and in the case of Y (so8, gl4),

U =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 x2 0 +1 0 0 0
0 0 0 −x2 0 +1 0 0
x1 0 0 0 0 0 +1 0
0 −x1 0 0 0 0 0 +1


. (6.23)

In the case of Y (sp8, sp2 ⊕ sp6),

U =



−1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 +1 0 0
x1 0 0 0 0 0 +1 0
0 −x1 0 0 0 0 0 −1


, (6.24)

and in the case of Y (sp8, sp4 ⊕ sp4),

U =



−1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 x2 0 +1 0 0 0
0 0 0 −x2 0 −1 0 0
x1 0 0 0 0 0 +1 0
0 −x1 0 0 0 0 0 −1


. (6.25)

6.2 The Y (n) subalgebra
The algebra Y (gN ) contains a subalgebra Y (n), and the corresponding generators are denoted

T
gln
n+1−i,n+1−j(u) = T−i,−j(u+

κN
2

), (6.26)

where i, j = 1, . . . , n. From this, it also follows that

λ
gln
1 (u) = λ−n(u+

κN
2

) = λn(−u− κN
2

). (6.27)

The Bethe vectors corresponding to this subalgebra are those for which rn = 0, meaning that in this sector, the
Bethe vectors are generated by the generators T−i,−j for 1 ≤ j < i ≤ n, i.e,

B({t̄ν}n−1
ν=1 , ∅) = P(T−i<−j)|0⟩, (6.28)

where P(T−i<−j) is a polynomial in the generators T−i,−j for 1 ≤ j < i ≤ n. It follows that the Bethe vectors in
the gln sector are annihilated by the generators Ti,−j if 0 ≤ i, j ≤ n and i ̸= −j. Based on this, we introduce an
equivalence relation in the gln sector:

A ∼= B, ⇐⇒ Ti,−j(A−B) = 0, (6.29)

for some 0 ≤ i, j ≤ n if i ̸= −j. The inversion relation (6.6) simplifies in the gln sector

n∑
k=1

T−i,−k(u+
κN
2

)Tj,k(u− κN
2

) ∼= δi,jλ−n(u+
κN
2

)λn(u− κN
2

), (6.30)
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when i, j = 1, . . . , n. Here, we used that θ−jθ−k = 1 for i, j = 1, . . . , n. Using the correspondences (6.6) and (6.27)
we get

n∑
k=1

T
gln
i,k (u)Tn+1−j,n+1−k(u− κN

2
) ∼= δi,jλ

gln
1 (u)λ

gln
1 (−u). (6.31)

We can see that this matches the inversion relation (2.11) used for the Y (n) algebras , i.e.,

T̂
gln
j,k (u) = Tn+1−j,n+1−k(u− κN

2
). (6.32)

The KT -relation in the gln sector also simplifies accordingly

n∑
k=1

Kn+1−i,k−n−1(u+
κN
2

)⟨Ψ|T gln
k,j (u)

∼=
n∑

k=1

⟨Ψ|T̂ gln
i,k (−u)Kn+1−k,j−n−1(u+

κN
2

). (6.33)

This is the KT -relation for the gln spin chain, and the K-matrix in the gln sector under the gln convention is

K
gln
i,j (u) = Kn+1−i,j−n−1(u+

κN
2

), (6.34)

where i, j = 1, . . . , n.
Based on this, we can determine the relationship between the one-particle overlap functions F̃gN ,(s)

k and F̃gln,(s)
k

for s = 1, . . . , n− 1. For this, we use the formula of the gln G-operators (5.9). Based on this, in the gN convention,
the G-operators are

G(s) =


Kn,−n . . . Kn,−n+s−2 Kn,−n+s−1

...
. . .

...
...

Kn−s+2,−n . . . Kn−s+2,−n+s−2 Kn−s+2,−n+s−1

Kn−s+1,−n . . . Kn−s+1,−n+s−2 Kn−s+1,−n+s−1

 . (6.35)

Using the correspondence (6.34), we can easily see that

Ggln,(s)(u) = G(s)(u+
κN
2

), (6.36)

for s = 1, . . . , n. Based on this, we can define the gN F -operators for s = 1, . . . , n− 1 in the usual way

F(s)(u) :=
[
G(s)(u)

]−1

G(s+1)(u) = Fgln,(s)(u− κN
2

). (6.37)

The one-particle overlap functions in the gln sector are given by (4.45)

F̃ (s)
ℓ (u) = Fgln,(s)

ℓ (iu− s/2)

√
u2

u2 + 1/4
= F (s)

ℓ (iu+
κN
2

− s/2)

√
u2

u2 + 1/4
, (6.38)

for s = 1, . . . , n− 1.

6.3 Nested gN K-matrices
Using equation (5.8) we can define nested K-matrices in the gln sector. Rewriting the quasi-determinant in the gN
convention, we obtain

K
(s)
i,j =


Kn,−n . . . Kn,−n+s−2 Kn,j

...
. . .

...
...

Kn−s+2,−n . . . Kn−s+2,−n+s−2 Kn−s+2,j

Ki,−n . . . Ki,−n+s−2 Ki,j

 . (6.39)

This defines a gln−s+1 K-matrix for i,−j = 1, . . . , n− s+ 1, according to the correspondence (6.34). This algebra
embedding can be extended to the full gN algebra, meaning that (6.39) defines a gN−2s+2 K-matrix for i, j =
−n+ s− 1, . . . , n− s+ 1. The proof can be carried out based on [55] or the proof of Theorem 6.
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There are recursive definitions equivalent to quasi-determinants for nested K-matrices. One such option is the
following:

K
(s+1)
a,b (u) = K

(s)
a,b(u)−K

(s)
a,−n+s−1(u)

[
K

(s)
n+1−s,−n+s−1(u)

]−1

K
(s)
n+1−s,b(u), (6.40)

where a, b = −n+ s, . . . , n− s. The G-operators can be expressed in the following way.

G(s)(u) = K
(s)
n+1−s,−n−1+s(u), (6.41)

for s = 1, . . . , n− 1.
According to section 5.1.1, another recursive definition for odd-indexed K-matrices is:

K
(2s+1)
a,b (u) = K

(2s−1)
a,b (u)−

n−2s+2∑
α,β=n−2s+1

K
(2s−1)
a,−α (u)K̂

(2s−1)
−α,β (u)K

(2s−1)
a,β (u), (6.42)

where K̂ is a 2× 2 inverse matrix defined as follows
n−2s+2∑

α,β=n−2s+1

K̂
(2s−1)
−α,β (u)K

(2s−1)
β,−γ (u) = δα,γ .

These matrices K(2s−1) exist for s = 1, . . . ,
⌊
n
2

⌋
. We can select k =

⌊
n
2

⌋
number of gl2 K-matrices

k
(s)
α,β(u) := K

(2s−1)
n−2s+3−α,−n+2s−3+β(u), (6.43)

for α, β = 1, 2. Using these, the G-operators can be defined as

G(2s−1)(u) = k
(s)
1,1(u),

G(2s)(u) = k
(s)
2,2(u)− k

(s)
2,1(u)

[
k
(s)
1,1(u)

]−1

k
(s)
1,2(u),

(6.44)

for s = 1, . . . , k.
We can examine the leading order of nested K-matrices in the asymptotic limit

K
(s)
i,j (u) = U (s)

i,j 1+O(u−1). (6.45)

From the recursive equations (6.40), it is easily derived that
n+1−s∑

k=−n−1+s

U (s)
i,k U

(s)
k,l =

n∑
k=−n

Ui,kUk,l,

n+1−s∑
k=−n−1+s

U (s)
k,k =

n∑
k=−n

Uk,k.

(6.46)

We can also see that for the algebras Y (so2n, soM ⊕ so2n−M ) and Y (sp2n, gln), the operator K−1
n,−n exists, meaning

that the first type of recursion (6.40) can be applied. This follows from the asymptotic limit of the K-matrices
(6.17), (6.20). Since in these cases Un,−n ̸= 0, the inverse of the operator Kn,−n(u) can be defined order by order
in the expansion in u−1. Based on this, we obtain the following recursions for these reflection algebras.

Y (so2n, soM ⊕ so2n−M ) → Y (so2n−2, soM−1 ⊕ so2n−M−1) → . . . → Y (so2n−2M , so2n−2M )
Y (sp2n, gln) → Y (sp2n−2, gln−1) → . . . → Y (sp2, gl1)

In the case of so2n, the recursion can be terminated when M = n or M = n− 1. In these cases, we have

Y (so2n, son ⊕ son) → Y (so2n−2, son−1 ⊕ son−1) → . . . → Y (so4, so2 ⊕ so2)
Y (so2n, son−1 ⊕ son+1) → Y (so2n−2, son−2 ⊕ son) → . . . → Y (so4, so3)

We observe that for the algebras Y (so2n, gln) and Y (sp2n, sp2m ⊕ sp2n−2m) the inverse K−1
n,−n does not exist, so

the first recursion is not applicable. However, the second recursion (6.42) is applicable. Based on this, we obtain
the following recursions for these reflection algebras.

Y (so4k, gl2k) → Y (so4k−4, gl2k−2) → . . . → Y (so4, gl2)
Y (so4k+2, gl2k+1) → Y (so4k−2, gl2k−1) → . . . → Y (so6, gl3)

Y (sp2n, sp2m ⊕ sp2n−2m) → Y (sp2n−4, sp2m−2 ⊕ sp2n−2m−2) → . . . → Y (sp2n−4m, sp2n−4m)
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6.4 Small rank algebras
In this subsection, we determine the one-particle overlaps in low-rank cases based on the correspondence sp2

∼= sl2,
so3 ∼= sl2, so4 ∼= sl2 ⊕ sl2.

6.4.1 The sp2 case

The algebras Y (sp2)
∼= Y (2) are equivalent, since the R-matrices satisfy the relation

2u+ 2

2u+ 1
Rsp2(2u) = Rgl2(u), (6.47)

meaning that the sp2 K-matrices can be obtained from gl2 K-matrices in the following way

Ksp2(u) = Kgl2(u/2), (6.48)

Based on this, the relation between the F -operators is:

Fsp2(u) = Fgl2(u/2). (6.49)

The Bethe Ansatz equations in the sp2 case are

α̃(uj) =
∏
k ̸=j

uj − uk − 2i

uj − uk + 2i
, (6.50)

meaning that the normalization of the Bethe roots differs between the two conventions: usp2
j = 2u

gl2
j . The overlap

function in the gl2 convention is

F̃gl2
ℓ (u

gl2
j ) = Fgl2

ℓ (iu
gl2
j )

√√√√ (u
gl2
j )2

(u
gl2
j )2 + 1/4

= Fgl2
ℓ (iu

sp2
j /2)

√√√√ (u
sp2
j )2

(u
sp2
j )2 + 1

= Fsp2

ℓ (iu
sp2
j )

√√√√ (u
sp2
j )2

(u
sp2
j )2 + 1

. (6.51)

We can see that in the sp2 convention, the overlap function takes the form

F̃sp2

ℓ (u) = Fsp2

ℓ (iu)

√
u2

u2 + 1/4
. (6.52)

The definitions of the sp2 G-operators are

G(1) = K1,−1.

G(2) =

(
K1,−1 K1,1

K−1,−1 K−1,1

)
.

(6.53)

6.4.2 The so3 case

The so3 K-matrices can be obtained from gl2 K-matrices via fusion. Let the gl2 K-matrix be ki,j . The so3
K-matrix can be obtained as

R1,2(1)k1(u− 1

2
)R1,2(−2u)k2(u+

1

2
) = k2(u+

1

2
)R1,2(−2u)k2(u− 1

2
)R1,2(1) =

=

2∑
ai,bi=1

ea1,b1 ⊗ ea2,b2 ⊗ kb1,b2
a1,a2

(u), (6.54)

where kb1,b2
a1,a2

is symmetric in both lower and upper indices. The so3 K-matrix Ki,j can be obtained using the index
correspondence (1, 1) ≡ −1, (1, 2) → 0, (2, 2) → +1, i.e.,

√
2
|i|+|j|

Ki,j(u) = kb1,b2
a1,a2

(2u), (6.55)
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where (a1, a2) ≡ i and (b1, b2) ≡ j. The components needed for the F - and G-operators are

K1,−1(u) = k+
2,1k

−
2,1, K1,0(u) =

√
2k−

2,1k
+
2,2,

K0,−1(u) =
1√
2

(
4u− 1

4u
k−
2,1k

+
1,1 + k−

1,1k
+
2,1 −

1

4u
k−
2,2k

+
2,1

)
,

K0,0(u) =
4u− 1

4u
k−
2,1k

+
1,2 + k−

1,1k
+
2,2 −

1

4u
k−
2,2k

+
2,2,

(6.56)

where k±
i,j ≡ ki,j(2u± 1

2 ). Let us compute the following expression

K0,−1(u) [K1,−1(u)]
−1

K1,0(u) =
4u− 1

4u
k−
2,1k

+
1,1

(
k+
2,1

)−1
k+
2,2 + k−

1,1k
+
2,2 −

1

4u
k−
2,2k

+
2,2. (6.57)

We combine this formula with K0,0:

K0,0(u)−K0,−1(u) [K1,−1(u)]
−1

K1,0(u) =
4u− 1

4u
k−
2,1

(
k+
1,2 − k+

1,1

(
k+
2,1

)−1
k+
2,2

)
. (6.58)

We can see that the gl2 G-operator appears on the right-hand side. Based on this, we define the so3 F -operator as
follows

Fso3(u) := [K1,−1(u)]
−1
(
K0,0(u)−K0,−1(u) [K1,−1(u)]

−1
K1,0(u)

)
=

4u− 1

4u
Fgl2(2u+ 1/2).

The Bethe Ansatz equations in the so3 case are

α̃(uj) =
∏
k ̸=j

uj − uk − i/2

uj − uk + i/2
,

meaning uso3
j = u

gl2
j /2. The overlap function in the gl2 convention is

F̃gl2
ℓ (u

gl2
j ) = Fgl2

ℓ (iu
gl2
j )

√√√√ (u
gl2
j )2

(u
gl2
j )2 + 1/4

= Fgl2
ℓ (2iuso3

j )

√
(uso3

j )2

(uso3
j )2 + 1/16

= Fso3

ℓ (iuso3
j − 1/4)

uso3
j + i/4

uso3
j + i/2

√
(uso3

j )2

(uso3
j )2 + 1/16

. (6.59)

We can see that in the so3 convention, the overlap function takes the following form

F̃so3

ℓ (u) = Fso3

ℓ (iu− 1/4)
u+ i/4

u+ i/2

√
u2

u2 + 1/16
. (6.60)

6.4.3 The so4 case

The algebras Y (so4) ∼= Y (2)⊕ Y (2) are equivalent, meaning the so4 R-matrix has a tensor product form:

Rso4(u) =
u

u+ 1
Rgl2(u)⊗Rgl2(u). (6.61)

The so4 reflection equation has factorizable solutions

K(u) = kL(u)⊗ kR(u), (6.62)

where kL/R are solutions to the uncrossed gl2 reflection equation. In this case, we have two non-interacting gl2 spin
chains, meaning that the overlap is the product of the overlaps of the two gl2 subsystems

⟨MPS|ūL, ūR⟩√
⟨ūL, ūR|ūL, ūR⟩

=
⟨MPSL|ūL⟩√

⟨ūL|ūL⟩
⟨MPSR|ūR⟩√

⟨ūR|ūR⟩
, (6.63)
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where ⟨MPSL/R| are the MPSs corresponding to the kL/R(u) K-matrices. The K-matrix written explicitly is

K =


kL
1,1k

R
1,1 kL

1,1k
R
1,2 kL

1,2k
R
1,1 kL

1,2k
R
1,2

kL
1,1k

R
2,1 kL

1,1k
R
2,2 kL

1,2k
R
2,1 kL

1,2k
R
2,2

kL
2,1k

R
1,1 kL

2,1k
R
1,2 kL

2,2k
R
1,1 kL

2,2k
R
1,2

kL
2,1k

R
2,1 kL

2,1k
R
2,2 kL

2,2k
R
2,1 kL

2,2k
R
2,2

 , (6.64)

We define the so4 G-operators as follows:

G(R)(u) := K1,−1(u)−K1,−2(u)K
−1
2,−2(u)K2,−1(u) = kL

2,1(k
R
1,2 − kR

1,1

[
kR
2,1

]−1
kR
2,2),

G(L)(u) := K−1,1(u)−K−1,−2(u)K
−1
2,−2(u)K2,1(u) = kR

2,1(k
L
1,2 − kL

1,1

[
kL
2,1

]−1
kL
2,2).

(6.65)

It is evident that the gl2 G-operators appear on the right-hand side. We define the so4 F -operators as follows

FL/R(u) := [K2,−2(u)]
−1

G(L/R)(u) = Fgl2,L/R(u). (6.66)

We can see that the so4 F -operators are equal to the gl2 F -operators. In these calculations, we assumed that
K2,−2(u) is invertible, which implies that kL

2,1 and kR
2,1 are also invertible, which holds for B(2, 1) K-matrices.

Therefore, the above formulas are valid for the Y (so4, so2 ⊕ so2) ∼= B(2, 1)⊕ B(2, 1) K-matrices.
We can also say something about the case Y (so4, gl2)

∼= B(2, 1)⊕B(2, 0). In this case, K2,−2(u) is not invertible
(see also (6.21)), but K2,−1(u) = kL

2,1k
R
2,2 is! Using this, Fgl2,L(u) can be expressed as

FL(u) := [K2,−1(u)]
−1
(
K−1,2(u)−K−1,−1(u) [K2,−1(u)]

−1
K2,2(u)

)
= Fgl2,L(u). (6.67)

The so4 reflection algebra also has achiral solutions, meaning that the K-matrix does not factorize. The
achiral solutions are representations of the Y (so4, so3) reflection algebra. These K-matrices can be obtained from
representations of the Y (2) algebra as follows:

K(u) = (L̂(u)⊗ 1)Ř(2u)(L(u)⊗ 1), (6.68)

where L(u) is a Y (2) Lax-operator and L̂(u) is the usual inverse-transposed Lax-operator. In the above equation,
we used the notation Ř(u) = PR(u). In this case, the two non-interacting gl2 systems are coupled through the
boundary state. This results in an achiral pair structure, i.e., ūL = −ūR. In this case, the Gaudin determinants
are equal:

detG+ = detG− = detGR = detGL, → detG+

detG− = 1. (6.69)

The overlap can be reduced to a matrix element between Bethe vectors of a Y (2) transfer matrix, i.e., the overlap
can be written as

⟨MPS|ūL, ūR⟩√
⟨ūL, ūR|ūL, ūR⟩

=

dB∑
ℓ=1

βℓF̃gl2
ℓ (ūR), (6.70)

where F̃gl2
ℓ (u) = Fgl2

ℓ (iu) are the eigenvalues of the F -operator

Fgl2(u) = (L2,1(u))
−1
(
L1,2(u)− L1,1(u) (L2,1(u))

−1
L2,2(u)

)
. (6.71)

Now we express Fgl2 in terms of the matrix elements of the so4 K-matrix (6.68) The components needed for the
G- and F -operators are

K2,−2(u) = L̂2,1(u)L2,1(u), K2,1(u) = L̂2,1(u)L2,2(u),

K1,−2(u) =
2u− 1

2u
L̂2,1(u)L1,1(u)−

1

2u
L̂2,2(u)L2,1(u),

K1,1(u) =
2u− 1

2u
L̂2,1(u)L1,2(u)−

1

2u
L̂2,2(u)L2,2(u).

(6.72)

The achiral so4 G-operator is defined as follows:

G(2)(u) := K1,1(u)−K1,−2(u) [K2,−2(u)]
−1

K2,1(u)

=
2u− 1

2u
L̂2,1(u)

(
L1,2(u)− L1,1(u) (L2,1(u))

−1
L2,2(u)

)
. (6.73)

33



The achiral so4 F -operator is defined as:

Fso4(u) := [K2,−2(u)]
−1
(
K1,1(u)−K1,−2(u) [K2,−2(u)]

−1
K2,1(u)

)
=
u− 1/2

u
Fgl2(u), (6.74)

meaning that the one-particle overlap functions are

F̃so4

ℓ (u) = Fso4

ℓ (iu)
u

u+ i/2
. (6.75)

6.5 F -operators without extra selections rules
In the previous sections, we determined the F -operators and functions for the gln sector and for the remaining
nodes separately. Based on these, we can now obtain the full overlap functions. The results are summarized below.

For the so2n+1 models

F̃ (s)
ℓ (u) =

F (s)
ℓ (iu− 1

4 + n−s
2 )
√

u2

u2+1/4 , for s = 1, . . . , n− 1,

F (n)
ℓ (iu− 1/4)u+i/4

u+i/2

√
u2

u2+1/16 , for s = n.
(6.76)

For the sp2n models

F̃ (s)
ℓ (u) =

F (s)
ℓ (iu+ n+1−s

2 )
√

u2

u2+1/4 , for s = 1, . . . , n− 1,

F (n)
ℓ (iu)

√
u2

u2+1 , for s = n.
(6.77)

For the chiral so2n models

F̃ (s)
ℓ (u) =

F (s)
ℓ (iu+ n−1−s

2 )
√

u2

u2+1/4 , for s = 1, . . . , n− 2,

F (s)
ℓ (iu)

√
u2

u2+1 , for s = n− 1, n.
(6.78)

For the achiral so2n models

F̃ (s)
ℓ (u) =

F (s)
ℓ (iu+ n−1−s

2 )
√

u2

u2+1/4 , for s = 1, . . . , n− 2,

F (n−1)
ℓ (iu) u

u+i/2 , for s = n− 1.
(6.79)

The F -operators are defined via the G-operators:

F(s)(u) =
[
G(s)(u)

]−1

G(s+1)(u). (6.80)

In the cases of so2n+1 and sp2n this applies for s = 1, . . . , n and in the case of so2n for s = 1, . . . , n − 1. In the
chiral so2n case, the remaining F -operator is:

F(n)(u) =
[
G(n−1)(u)

]−1

G(n+1)(u). (6.81)

The G-operators can be defined through nested K-matrices using equation (6.40). For so2n+1 and sp2n, the matrices
K(s) are defined for s = 1, . . . , n and for so2n, for s = 1, . . . , n−1. These define the G-operators for the corresponding
values of s as

G(s)(u) = K
(s)
n+1−s,−n−1+s(u). (6.82)

The remaining G-operators are defined as follows.
For the so2n+1 models

G(n+1)(u) := K
(n)
0,0 (u)−K

(n)
0,−1(u)

[
K

(n)
1,−1(u)

]−1

K
(n)
1,0 (u). (6.83)

For the sp2n models

G(n+1)(u) := K
(n)
−1,1(u)−K

(n)
−1,−1(u)

[
K

(n)
1,−1(u)

]−1

K
(n)
1,1 (u), (6.84)
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For the chiral so2n models

G(n)(u) := K
(n−1)
1,−1 (u)−K

(n−1)
1,−2 (u)

[
K

(n−1)
2,−2 (u)

]−1

K
(n−1)
2,−1 (u),

G(n+1)(u) := K
(n−1)
−1,1 (u)−K

(n−1)
−1,−2(u)

[
K

(n−1)
2,−2 (u)

]−1

K
(n−1)
2,1 (u).

(6.85)

For the achiral so2n models

G(n)(u) := K
(n−1)
1,1 (u)−K

(n−1)
1,−2 (u)

[
K

(n−1)
2,−2 (u)

]−1

K
(n−1)
2,1 (u). (6.86)

The G-operators can also be expressed using quasi-determinants. In both chiral and achiral cases, equation
(6.35) defines the G(s) operators for s = 1, . . . , n or s = 1, . . . , n− 1. The missing G-operators are as follows.

For the so2n+1 models

G(n+1) =


Kn,−n . . . Kn,−1 Kn,0

...
. . .

...
...

K1,−n . . . K1,−1 K1,0

K0,−n . . . K0,−1 K0,0

 , (6.87)

For the sp2n models

G(n+1) =


Kn,−n . . . Kn,−1 Kn,1

...
. . .

...
...

K1,−n . . . K1,−1 K1,1

K−1,−n . . . K−1,−1 K−1,1

 , (6.88)

For the chiral so2n models

G(n+1) =


Kn,−n . . . Kn,−2 Kn,1

...
. . .

...
...

K2,−n . . . K2,−2 K2,1

K−1,−n . . . K−1,−2 K−1,1

 . (6.89)

For the achiral so2n models

G(n) =


Kn,−n . . . Kn,−2 Kn,1

...
. . .

...
...

K2,−n . . . K2,−2 K2,1

K1,−n . . . K1,−2 K1,1

 . (6.90)

These constructions assume the existence of inverses for certain operators. This is valid for the following reflection
algebras

• Y (so2n+1, son ⊕ son+1)

• Y (sp2n, gln)

• Y (so2n, son ⊕ son), which lead to chiral pair structures

• Y (so2n, son−1 ⊕ son+1), which lead to achiral pair structures

For the remaining reflection algebras, the above recursive equations cannot be applied directly. However, the
techniques described in section 5 still work, meaning that after suitable deformations, the F -operators can be
defined. From here on, each case is treated separately. A common feature in these cases is the need for certain
deformations of the nested K-matrices. These are continuous deformations, and in the final overlap functions, the
zero limit of the deformation parameter must be taken. In this limit, the overlap vanishes for certain quantum
numbers, leading to additional selection rules.
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6.6 F -operators with extra selections rules
6.6.1 Y (so2n, gln)

In this case, the K-matrix of the gln sector is a representation of Y −(n) (see equations (6.34) and (6.18)), so we
apply the trick described in section 5.1. The previous K(2s) matrices do not exist, but the K(2s−1) matrices do.
For these matrices, we can use the recursion (6.42). From these, we select k =

⌊
n
2

⌋
number of Y −(2) K-matrices

(6.43). The G-operator formulas (6.44) cannot be applied directly. Therefore, we deform these Y −(2) K-matrices
in the way described in section 5.1, i.e.,

k
(s)
i,j (u) =

2∑
k,l=1

L
(s)
k,i(u− κN−4s+4)ϵk,lL

(s)
l,j (−u),

k̃
(s)
i,j (u) = k

(s)
i,j (u) + (u+ 1/2− κN−4s+4/2)L

(s)
1,i (u− κN−4s+4)L

(s)
1,j(−u),

(6.91)

and for these, the G-operators are well-defined

G(2s−1)(u) = k̃
(s)
1,1(u),

G(2s)(u) = k̃
(s)
2,2(u)− k̃

(s)
2,1(u)

[
k̃
(s)
1,1(u)

]−1

k̃
(s)
1,2(u),

(6.92)

for s = 1, . . . , k. These define the F -operators F(s) in the usual way for s = 1, . . . , 2k − 1. From here on, it is
practical to treat even and odd n separately.

Y (so4k, gl2k) In this case, the nesting proceeds as follows.

Y (so4k, gl2k) → Y (so4k−4, gl2k−2) → . . . → Y (so4, gl2)
K(1) ≡ K → K(3) → . . . → K(2k−1)

↓ ↓ . . . ↓
k(1) k(2) . . . k(k)

We see that in the final step, we obtain a Y (so4, gl2) K-matrix, which has a chiral pair structure. In this case, we
have n = 2k F -operators, of which the first 2k − 1 were already given. We still need to define the missing F(2k)

operator. In the final step, the K-matrix is a representation of Y (so4, gl2)
∼= B(2, 1) ⊕ B(2, 0). The F -operator

corresponding to the B(2, 0) subalgebra was already given, that was F(2k−1). The F -operator corresponding to the
B(2, 1) subalgebra will be the missing F(2k), and it can be determined using equation (6.67), i.e.,

F(2k)(u) =
[
K

(2k−1)
2,−1 (u)

]−1
(
K

(2k−1)
−1,2 (u)−K

(2k−1)
−1,−1 (u)

[
K

(2k−1)
2,−1 (u)

]−1

K
(2k−1)
2,2 (u)

)
. (6.93)

Since the K-matrix of the gln sector is a representation of Y −(n), there are extra selection rules (see (5.41)). The
overlap is non-zero only if

r2s−1 =
Λ2s−1 − Λ2s + r2s−2 + r2s

2
, for s = 1, . . . ,

n

2
− 1,

rn−1 =
Λn−1 − Λn + rn−2

2
.

(6.94)

Y (so4k+2, gl2k+1) In this case, the nesting proceeds as follows.

Y (so4k+2, gl2k+1) → Y (so4k−2, gl2k−1) → . . . → Y (so6, gl3)
K(1) ≡ K → K(3) → . . . → K(2k−1)

↓ ↓ . . . ↓
k(1) k(2) . . . k(k)

We see that in the final step, we obtain a Y (so6, gl3) K-matrix. This algebra is equivalent to the B(4, 1) reflection
algebra, for which the pair structure is achiral. In the achiral case, we need n = 2k + 1 G-operators, of which the
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first 2k were already given, and G(2k+1)(u) is still missing. The definition (6.86) cannot be used, but (6.90) can.
Additionally, we can use another equivalent definition:

G(2k+1)(u) = K
(2k−1)
1,1 (u)−

3∑
α,β=2

K
(2k−1)
1,−α (u)K̂

(2k−1)
−α,β (u)K

(2k−1)
β,1 (u). (6.95)

Since the K-matrix of the gln−1 sector is a representation of Y −(n− 1), there are extra selection rules (see (5.41)).
The overlap is non-zero only if

r2s−1 =
Λ2s−1 − Λ2s + r2s−2 + r2s

2
, for s = 1, . . . ,

n− 3

2
,

rn−2 =
Λn−2 − Λn−1 + rn−3 + rn−1 + rn

2
.

(6.96)

6.6.2 Y (so2n, oM ⊕ o2n−M )

In this case, the nesting proceeds as follows:

Y (so2n, oM ⊕ o2n−M ) → Y (so2n−2, oM−1 ⊕ o2n−M−1) → . . . → Y (so2n−2M , so2n−2M )
K(1) ≡ K → K(2) → . . . → K(M+1)

↓ ↓ . . .
G(1) G(2) . . .

In the M + 1-th step, we obtain a Y (so2n−2M , so2n−2M ) K-matrix. This means that the MPS is a singlet state
with respect to the so2n−2M subalgebra, i.e., the overlap is non-zero only if

rs = rM +

s∑
k=M+1

Λk, for s =M + 1, . . . , n− 2,

rn−1 =
1

2
rM +

1

2

n−1∑
k=M+1

Λk − 1

2
Λn,

rn =
1

2
rM +

1

2

n−1∑
k=M+1

Λk +
1

2
Λn.

(6.97)

The corresponding K
(M+1)
j,−j components are not invertible, so the nesting cannot continue, and the operators

G(M+1), . . . are not defined. However, the trick described for the B(N,M) reflection algebras can be applied
here as well, i.e., we deform the factorized form of the K-matrix with a singular scalar K-matrix. This singular
solution is

K(u) = 1 + u

ñ/2∑
j=1

(eñ−2j+1,2j−2−ñ − eñ−2j+2,2j−1−ñ), (6.98)

where ñ = n−M . Assuming that the Y (so2n−2M , so2n−2M ) matrix can be factorized into

K
(M+1)
a,b (u) =

ñ∑
c=−ñ

L−c,−a(u− κN−2M )Lc,b(−u), (6.99)

the deformed K-matrix is

K̃
(1)
a,b(u) = K

(M+1)
a,b (u)+ (6.100)

+ u

k∑
l=1

(
L−(ñ−2l+1),−a(u− κN−2M )L−ñ+2l−2,b(−u)− L−(ñ−2l+2),−a(u− κN−2M )L−ñ+2l−1,b(−u)

)
.

It is clear that this deformed K-matrix forms a Y −(ñ) subalgebra in the glñ sub-sector, i.e., the same nesting can
be carried out as for the Y (so2ñ, glñ) algebra. We can define the nested K-matrices in the manner of (6.42). We
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can select k =
⌊
ñ
2

⌋
number of Y −(2) K-matrices k(s) for s = 1, . . . , k. These can be deformed in the manner of

(6.91), and for these, the G-operators are well-defined

G(M+2s−1)(u) = k̃
(s)
1,1(u),

G(M+2s)(u) = k̃
(s)
2,2(u)− k̃

(s)
2,1(u)

[
k̃
(s)
1,1(u)

]−1

k̃
(s)
1,2(u),

(6.101)

for s = 1, . . . , k.
If n −M is even, i.e., ñ = 2k, then the pair structure is chiral. The G-operators G(s)(u) previously defined

for s = 1, . . . , n immediately define the first n− 1 F -operators. The missing F -operator is

F(n)(u) =
[
K̃

(2k−1)
2,−1 (u)

]−1
(
K̃

(2k−1)
−1,2 (u)− K̃

(2k−1)
−1,−1 (u)

[
K̃

(2k−1)
2,−1 (u)

]−1

K̃
(2k−1)
2,2 (u)

)
. (6.102)

If n−M is odd, i.e., ñ = 2k+1, then the pair structure is achiral. The G-operators G(s)(u) previously defined
for s = 1, . . . , n− 1. The missing G-operator is

G(n)(u) = K̃
(2k−1)
1,1 (u)−

3∑
α,β=2

K̃
(2k−1)
1,−α (u)K̂

(2k−1)
−α,β (u)K̃

(2k−1)
β,1 (u). (6.103)

6.6.3 Y (so2n+1, oM ⊕ o2n+1−M )

This case is very similar to the earlier Y (so2n, oM ⊕ o2n−M ) case. Now, the nesting proceeds as follows.

Y (so2n+1, oM ⊕ o2n+1−M ) → Y (so2n−1, oM−1 ⊕ o2n−M ) → . . . → Y (so2n+1−2M , so2n+1−2M )
K(1) ≡ K → K(2) → . . . → K(M+1)

↓ ↓ . . .
G(1) G(2) . . .

In the M +1-th step, we obtain a Y (so2n+1−2M , so2n+1−2M ) K-matrix. This means that the MPS is a singlet state
with respect to the so2n+1−2M subalgebra, i.e., the overlap is non-zero only if

rs = rM +

s∑
k=M+1

Λk, (6.104)

for s =M + 1, . . . , n.
To compute the F -operators, we again use the trick described in the previous section: we deform the factorized

form of the K-matrix (6.99) with a singular scalar K-matrix (6.98) as in (6.100), where ñ = n −M . It is evident
that the deformed K-matrix again forms a Y −(ñ) subalgebra in the glñ sub-sector. Then we can define the nested
K-matrices using (6.42). We select k =

⌊
ñ
2

⌋
number of Y −(2) K-matrices k(s) for s = 1, . . . , k. These can be

deformed using (6.91), and the G-operators are well-defined for them (6.101).
If n −M is even, i.e., ñ = 2k, then the G-operators G(s)(u) have already been defined for s = 1, . . . , n. The

missing G-operator is

G(n+1)(u) = K̃
(2k−1)
0,0 (u)−

2∑
α,β=1

K̃
(2k−1)
0,−α (u)K̂

(2k−1)
−α,β (u)K̃

(2k−1)
β,0 (u). (6.105)

If n−M is odd, i.e., ñ = 2k + 1, then the G-operators G(s)(u) have already been defined for s = 1, . . . , n− 1.
Additionally, we need G(n) and G(n+1). The K-matrix K̃(2k+1) is a representation of Y (so3, so3). This must again
be deformed using the following singular so3 K-matrix:

K(u) =

 1 0 0
u 1 0

− 1
2u(u+ 1

4 ) −u 1

 . (6.106)

The deformed so3 K-matrix Ǩ is obtained as

K̃
(k+1)
a,b (u) =

1∑
c=−1

L−c,−a(u− κ3)Lc,b(−u),

Ǩ
(k+1)
a,b (u) = K̃

(k+1)
a,b (u)− 1

2
u(u+

1

4
)L−1,−a(u− κ3)L−1,b(−u)

+ u (L0,−a(u− κ3)L−1,b(−u)− L−1,−a(u− κ3)L0,b(−u)) ,

(6.107)
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and the remaining G-operators G(n), G(n+1) are given by

G(n)(u) = Ǩ
(k+1)
1,−1 (u),

G(n+1)(u) = Ǩ
(k+1)
0,0 (u)− Ǩ

(k+1)
0,−1 (u)

[
Ǩ

(k+1)
1,−1 (u)

]−1

Ǩ
(k+1)
1,0 (u).

(6.108)

6.6.4 Y (sp2n, sp2m ⊕ sp2n−2m)

This case is very similar to Y (so2n, gln) (see the asymptotic expansions). In this case, the nesting proceeds as
follows.

Y (sp2n, sp2m ⊕ sp2n−2m) → Y (sp2n−4, sp2m−2 ⊕ sp2n−2m−2) → . . . → Y (sp2n−4m, sp2n−4m)
K(1) ≡ K → K(3) → . . . → K(2m+1)

↓ ↓ . . .
k(1) k(2) . . .

In the m+1-th step, we obtain a Y (sp2n−4m, sp2n−4m) K-matrix. This means that the MPS is a singlet state with
respect to the sp2n−4m subalgebra. The K-matrix of the gl2m sector is a representation of Y −(2m), so there are
selection rules similar to (5.41). Based on these, the overlap is non-zero only if

r2s−1 =
Λ2s−1 − Λ2s + r2s−2 + r2s

2
, for s = 1, . . . ,m,

rs = r2m +

s∑
k=2m+1

Λk, for s = 2m+ 1, . . . , n− 1,

rn =
1

2
r2m +

1

2

n∑
k=2m+1

Λk.

(6.109)

The nested K-matrices K(3), . . . ,K(2m+1) can be obtained using the recursion (6.42). From these, we select
m number of Y −(2) K-matrices (6.43). The G-operator formulas (6.44) cannot be applied directly. Therefore,
we deform these Y −(2) K-matrices using (6.91), and the G-operators are well-defined for them using (6.92) for
s = 1, . . . ,m. These define the G-operators G(s) for s = 1, . . . , 2m.

The operator K(2m+1) can be deformed using the following scalar solution of the sp2ñ reflection equation:

K(u) = 1 + u

ñ∑
j=1

ej,−j , (6.110)

where ñ = n− 2m. The deformed K-matrix is

K
(2m+1)
a,b (u) =

ñ∑
c=−ñ

θaθcL−c,−a(u− κ2ñ)Lc,b(−u),

K̃
(1)
a,b(u) = K

(2m+1)
a,b (u) + u

k∑
c=1

θaθcL−c,−a(u− κ2ñ)L−c,b(−u).

(6.111)

From here, the nested K-matrices K̃(2), . . . , K̃(ñ) can be defined using the recursion (6.40), and the remaining
G-operators are given by

G(2m+s)(u) = K̃
(s)
ñ−s+1,−ñ+s−1(u), (6.112)

for s = 1, . . . , ñ and

G(n+1)(u) = K̃
(ñ)
−1,1(u)− K̃

(ñ)
−1,−1(u)

[
K̃

(ñ)
1,−1(u)

]−1

K̃
(ñ)
1,1 (u). (6.113)

7 Conclusions
In this paper, we presented the universal formula (1.1) that provides the overlaps between integrable MPSs and
Bethe states. The formula consists of a ratio of Gaudin determinants and a prefactor. The prefactor contains
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the one-particle overlap functions F (ν)
ℓ (u), which are the eigenvalues of the commuting F -operators F(ν)(u). The

formula is surprisingly broadly applicable, as the F -operators involved depend only on the quasi-determinants of
the K-matrix associated with the MPS.

The main result of the paper is a precise proof of the universal formula for those MPSs of glN symmetric spin
chains where all quasi-determinants exist. This applies to a large family of possible integrable MPSs. However, we
observed that for certain reflection algebras, these quasi-determinants are not well-defined because some operators
are non-invertible. In such cases, we showed that through continuous deformations, these operators can be made
invertible, allowing the quantities in the universal overlap formula to be determined. We also generalized the
definitions of the F -operators to orthogonal and symplectic spin chains.

In the future, it would be worthwhile to extend the proofs to the orthogonal and symplectic cases as well. This
requires knowledge of recursion, action, and coproduct formulas for the Bethe vectors. With these formulas in hand,
the proofs in the current paper could likely be applied without difficulty. For so2n+1 symmetric spin chains, these
formulas are already available [56, 57]. Additionally, it may be worthwhile to extend the results to graded and
trigonometric spin chains. The necessary formulas for Bethe vectors are already known in certain cases [52, 58].

It is worth noting that the formulas presented in the paper are not applicable in the case of twisted boundary
conditions. In these cases, integrability does not manifest at the level of Bethe roots (pair structure), but rather
in the full Q-system [42]. In such cases, the overlaps of the tensor product states cannot be expressed with
Gaudin determinants but rather with a determinant involving Q-functions [59]. Currently, one systematic method
is available for computing MPS overlaps, which is based on searching for generalized dressing formulas [60, 61]. The
advantage of this method is that it can be applied even in the presence of twists; the disadvantage is that it must
be carried out separately for each MPS, making it less general than the result of the present paper. A potential
research direction could be the search for a similarly universal overlap formula under twisted boundary conditions.
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A Boundary states for arbitrary representations
In this section, we focus on finite-dimensional representations of the Lie algebra glN , meaning that Λk −Λk+1 ∈ N.
Without loss of generality, we assume ΛN = 0, so Λk ∈ N. Every finite-dimensional representation corresponds
to a Young diagram Y (Λ) , where the k-th row contains Λk boxes. The total number of boxes in the diagram is
n =

∑N−1
k=1 Λk. We introduce an n-fold tensor product space (CN )⊗n, indexed by 1, 2, . . . , n. A box x ∈ Y (Λ) in

the Young diagram is identified by its row i and column j, i.e., x = (i, j). Additionally, we can label the boxes as
xj ∈ Y (Λ), where j = 1, . . . , n. The label of the box at position (a, b) is given by

∑b−1
j=1 wj + a, where wj is the

height of the j-th column. For example, the Young diagram corresponding to Λ = (3, 2, 2, 1, 0) can be labeled in
the following way.

1 5 8
2 6
3 7
4

Each space also has an associated inhomogeneity sj = k − l, if xj = (k, l). We also introduce a shorthand
notation for the R-matrices:

Rj,k ≡ Rj,k(uj − uk). (A.1)

From these, a projection operator can be constructed

ΠΛ
1,2,...,,n =

1

A
lim

uj→sj
(Rn−1,n) (Rn−2,nRn−2,n−1) . . . (R1,n . . . R1,3R1,2) ,→ (ΠΛ

1,2,...,,n)
2 = ΠΛ

1,2,...,,n, (A.2)

where A is a normalization constant
A =

∏
x∈Y (Λ)

hook(x). (A.3)

The subspace of the operator ΠΛ
1,2,...,,n with eigenvalue +1 is isomorphic to the irreducible representation Λ.
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A.1 Fusion of the R-matrix
The two types of R-matrices (2.2), (2.13) are representations of the Yangian algebra Y (N), i.e.,

R1,2(u1 − u2)R̄1,3(u1)R̄2,3(u2) = R̄2,3(u2)R̄1,3(u1)R1,2(u1 − u2). (A.4)

We can define fused R-matrices as follows

R̄Λ,□
I,0 (u) =

(
R̄n,0(u+ sn) . . . R̄2,0(u+ s2)R̄1,0(u+ s1)

)
ΠΛ

1,2,...,n =

= ΠΛ
1,2,...,n

(
R̄1,0(u+ s1)R̄2,0(u+ s2) . . . R̄n,0(u+ sn)

)
,

(A.5)

and

R̄□,Λ
0,I (u) =

(
R̄0,1(u− s1)R̄0,2(u− s2) . . . R̄0,n(u− sn)

)
ΠΛ

1,2,...,n =

= ΠΛ
1,2,...,n

(
R̄0,n(u− sn) . . . R̄0,2(u− s2)R̄0,1(u− s1)

)
,

(A.6)

where I denotes the +1 eigenspace of the operator ΠΛ
1,2,...,,n. The matrices RΛ,□ and R□,Λ satisfy the following

relations

R1,2(u1 − u2)R
□,Λ
1,3 (u1 − u3)R

□,Λ
2,3 (u2 − u3) = R□,Λ

2,3 (u2 − u3)R
□,Λ
1,3 (u1 − u3)R1,2(u1 − u2),

RΛ,□
1,2 (u1 − u2)R

Λ,□
1,3 (u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R

Λ,□
1,3 (u1 − u3)R

Λ,□
1,2 (u1 − u2),

R□,Λ
1,2 (u1 − u2)R1,3(u1 − u3)R

Λ,□
2,3 (u2 − u3) = RΛ,□

2,3 (u2 − u3)R1,3(u1 − u3)R
□,Λ
1,2 (u1 − u2),

(A.7)

and unitarity

R□,Λ
1,2 (u)RΛ,□

2,1 (−u) = u− (N − 1)

u

N−1∏
k=1

u+ (Λk − k + 1)

u+ (Λk − k)
,

RΛ,□
1,2 (u)R□,Λ

2,1 (−u) = u+ (N − 1)

u

N−1∏
k=1

u− (Λk − k + 1)

u− (Λk − k)
.

(A.8)

The matrix R̂□,Λ is also a representation of the Yangian algebra:

R1,2(u1 − u2)R̂
□,Λ
1,3 (u1 − u3)R̂

□,Λ
2,3 (u2 − u3) = R̂□,Λ

2,3 (u2 − u3)R̂
□,Λ
1,3 (u1 − u3)R1,2(u1 − u2),

R̂1,2(u1 − u2)R̂
□,Λ
1,3 (u1 − u3)R

□,Λ
2,3 (u2 − u3) = R□,Λ

2,3 (u2 − u3)R̂
□,Λ
1,3 (u1 − u3)R̂1,2(u1 − u2).

(A.9)

The partial transpose of R̂□,Λ can be expressed using the matrix RΛ,□
I,0(

R̂□,Λ
0,I (u)

)t0
= (R0,n(−u+ sn) . . . R0,2(−u+ s2)R0,1(−u+ s1))Π

Λ
1,2,...,n = RΛ,□

I,0 (−u), (A.10)

i.e.,

R□,Λ
1,2 (u)

(
R̂□,Λ

1,2 (u)
)t1

=
u− (N − 1)

u

N−1∏
k=1

u+ (Λk − k + 1)

u+ (Λk − k)
. (A.11)

The fused R-matrix R□,Λ coincides with the previously defined Lax operator (2.7)

LΛ(u) = R□,Λ(u). (A.12)

This is a highest-weight representation of the Yangian, and the highest-weight vector is

|0Λ⟩ = ΠΛ
1,2,...,,n|1, 2, . . . , w1, 1, 2, . . . , w2, . . . , 1, 2, . . . , wm⟩. (A.13)

The highest weights can be obtained from the action of LΛ
i,i(u):

LΛ
i,i(u)|0Λ⟩ = λΛi (u)|0Λ⟩ → λΛi (u) =

u+ Λi

u
. (A.14)
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From the inversion relation, we get that

L̂Λ(u) =
u+ Λ1

u

u− Λ1

u− (N − 1)

N−1∏
k=1

u+ (Λk − k)

u+ (Λk − k + 1)
R̂□,Λ(u), (A.15)

where L̂Λ is defined as in (2.11). The vector |0Λ⟩ is the lowest-weight vector of the operator L̂Λ, and the lowest
weight is given by (2.15)

λ̂Λi (u) =
λΛ1 (u)λ

Λ
1 (−u)

λΛi (u− (i− 1))

i−1∏
k=1

λΛk (u− k)

λΛk (u− (k − 1))

=
u+ Λ1

u+ (Λi − i+ 1)

u− Λ1

u

i−1∏
k=1

u+ (Λk − k)

u+ (Λk − k + 1)
.

(A.16)

For the Lax operator
(
L̂Λ
0,I

)tI
, the vector |0Λ⟩ becomes the highest-weight vector, and the highest weight is given

by (A.16).

A.2 Fusion of the K-matrix
Fusion can also be applied to the reflection equation

R1,2(v − u)K1(u)R̄1,2(−u− v)K2(v) = K2(v)R̄1,2(−u− v)K1(u)R1,2(v − u). (A.17)

The fused reflection matrix is defined as

KΛ
I (u) = lim

uj→u+sj
K1

(
R̄1,2K2

) (
R̄1,3R̄2,3K3

)
. . .
(
R̄1,nR̄2,n . . . R̄n−1,nKn

)
ΠΛ

1,2,...,n

= ΠΛ
1,2,...,n

(
KnR̄n−1,n . . . R̄2,nR̄1,n

)
. . .
(
K3R̄2,3R̄1,3

) (
K2R̄1,2

)
K1,

(A.18)

where
Kj ≡ Kj(uj), R̄j,k ≡ R̄j,k(−uj − uk).

This K-matrix satisfies the reflection equation

LΛ
0,1(u− θ)KΛ

1 (θ)L̄
Λ
0,1(−u− θ)K0(u) = K0(u)L̄

Λ
0,1(−u− θ)KΛ

1 (θ)L
Λ
0,1(u− θ). (A.19)

This equation is equivalent to the relation

K0(u)ψ
Λ
2,1(θ)

[
L̄Λ
0,2(−u− θ)

]t2
LΛ
0,1(u− θ) = ψΛ

2,1(θ)
[
LΛ
0,2(u− θ)

]t2
L̄Λ
0,1(−u− θ)K0(u), (A.20)

where we introduce a matrix-valued two-site state.

ψΛ
1,2(θ) =

dΛ∑
i,j=1

⟨i, j| ⊗KΛ
i,j(θ). (A.21)

A.3 Crossed KT-relation
In the crossed case, the fused K-matrix satisfies the following equation

K0(u)ψ
Λ
2,1(θ)

[
L̂Λ
0,2(−u− θ)

]t2
LΛ
0,1(u− θ) = ψΛ

2,1(θ)
[
LΛ
0,2(u− θ)

]t2
L̂Λ
0,1(−u− θ)K0(u). (A.22)

This crossed KT -relation applies to a two-site spin chain, where the monodromy matrices are

T0(u) =
[
L̂Λ
0,2(−u− θ)

]t2
LΛ
0,1(u− θ), T̂0(u) =

[
LΛ
0,2(−u− θ)

]t2
L̂Λ
0,1(u− θ). (A.23)

It is easy to verify that these matrices satisfy the required relations, namely the RTT -relation (2.1) and the inversion
relation (2.11). The pseudo-vacuum eigenvalues are

λk(u) = λΛk (u− θ)λ̂Λk (−u− θ), λ̂k(u) = λ̂Λk (u− θ)λΛk (−u− θ). (A.24)
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In this two-site quantum space, the pseudo-vacuum is

|0⟩ = |0Λ⟩ ⊗ |0Λ⟩. (A.25)

If Λ is a fundamental representation, i.e., Λ = µ(k) where

µ
(k)
j =

{
1, j ≤ k,

0, j > k,
(A.26)

then the highest weight vector is
|0µ(k)⟩ =

∑
i1,...,ik

ϵi1,...,ik |i1, . . . , ik⟩, (A.27)

where ϵ a Levi-Civita tensor. In these cases, the fused transfer matrices coincide with the Sklyanin minors

Kµ(k)

→ kj1,j2,...,jk
i1,i2,...,ik

, (A.28)

which are defined as

Πµ(k)

1,2,...,,k

(
KkR̂k−1,k . . . R̂2,kR̂1,k

)
. . .
(
K3R̂2,3R̂1,3

)(
K2R̂1,2

)
K1 =

∑
ai,bi

ea1,b1 ⊗ · · · ⊗ eak,bk ⊗ kb1,...,bk
a1,...,ak

, (A.29)

where k is antisymmetric under the exchanges ik ↔ il and jk ↔ jl. The pseudo-vacuum overlap is

ψµ(k)

2,1 (θ)|0⟩ = k1,2,...,k
1,2,...,k(θ), (A.30)

which is the Sklyanin determinant in the subalgebra generated by {Ki,j}ki,j=1. For a general representation Λ =∑N−1
k=1 dkµ

(k), the pseudo-vacuum overlap is

BΛ(θ) = ψΛ
2,1(θ)|0⟩ = B(θ)

N−1∏
k=1

dk∏
l=1

k1,2,...,k
1,2,...,k(θ − (Dk + l − 1)), (A.31)

where Dk =
∑N−1

l=k+1 dk, and B(θ) is a scalar depending on θ. Since the normalization of the MPS is arbitrary, the
specific value of B(θ) is irrelevant.

Using the coproduct property of boundary states (Lemma 1), we can construct more general boundary states

⟨Ψ| = ψΛ(J)

2J,2J−1(θJ) . . . ψ
Λ(2)

4,3 (θ2)ψ
Λ(1)

2,1 (θ1), (A.32)

where the Λ(j) are arbitrary representations and the θj are arbitrary inhomogeneities. The monodromy matrices
are

T0(u) =
[
L̂Λ(J)

0,2J (−u− θJ)
]t2J

LΛ(J)

0,2J−1(u− θJ) . . .
[
L̂Λ(1)

0,2 (−u− θ1)
]t2

LΛ(1)

0,1 (u− θ1),

T̂0(u) =
[
LΛ(J)

0,2J (−u− θJ)
]t2J

L̂Λ(J)

0,2J−1(u− θJ) . . .
[
LΛ(1)

0,2 (−u− θ1)
]t2

L̂Λ(1)

0,1 (u− θ1).

(A.33)

The pseudo-vacuum eigenvalues are

λk(u) =

J∏
j=1

λΛ
(j)

k (u− θj)λ̂
Λ(j)

k (−u− θj), λ̂k(u) =

J∏
j=1

λ̂Λ
(j)

k (u− θj)λ
Λ(j)

k (−u− θj). (A.34)

We observe a symmetry property
λk(u) = λ̂k(−u). (A.35)

The pseudo-vacuum overlap is

B(θ) = ⟨Ψ|0⟩ =
J∏

j=1

BΛ(j)

(θj). (A.36)
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A.4 Uncrossed KT-relation
In the uncrossed case, the fused K-matrix satisfies the following equation

K0(u)ψ
Λ
2,1(θ)

[
LΛ
0,2(−u− θ)

]t2
LΛ
0,1(u− θ). = ψΛ

2,1(θ)
[
LΛ
0,2(u− θ)

]t2
LΛ
0,1(−u− θ)K0(u). (A.37)

We evaluate the transposed Lax operator.[
LΛ
1,2(−u)

]t2
= ei,j ⊗

(
δi,j1− 1

u
(EΛ

j,i)
t

)
= ei,j ⊗

(
δi,j1+

1

u
EΛcg

j,i

)
= LΛcg

1,2 (u). (A.38)

Here we introduced the contra-gradient representation

EΛcg

i,j := −(EΛ
i,j)

t. (A.39)

Let the highest weight vector of the contra-gradient representation be |0̄⟩Λ, for which

EΛcg

i,j |0̄Λ⟩ = 0, for i < j,

EΛcg

i,i |0̄Λ⟩ = −ΛN+1−i|0̄Λ⟩.
(A.40)

We see that (A.37) is an uncrossed KT -relation for a two-site spin chain, where the monodromy matrix is

T0(u) = LΛcg

0,2 (u+ θ)LΛ
0,1(u− θ). (A.41)

In this two-site quantum space, the pseudo-vacuum is

|0⟩ = |0Λ⟩ ⊗ |0̄Λ⟩. (A.42)

The pseudo-vacuum eigenvalue is

λk(u) =
u− θ + Λk

u− θ

u+ θ − ΛN+1−k

u+ θ
. (A.43)

For fundamental representations, we can introduce the same notation for the components of the fused K-matrix as
before. The highest weight vectors are

|0µ(k)⟩ =
k∑

i1,...,ik=1

ϵi1,...,ik |i1, . . . , ik⟩,

|0̄µ(k)⟩ =
k∑

i1,...,ik=1

ϵi1,...,ik |̄i1, . . . , īk⟩,

(A.44)

where ī = N +1− i. Since the construction is symmetric under the exchange Λ ↔ Λcg we can assume without loss
of generality that k ≤ N/2. The pseudo-vacuum overlap is

ψµ(k)

2,1 (θ)|0⟩ = k1,2,...,k

1̄,2̄,...,k̄
(θ), (A.45)

where the quantum minor is defined as follows

Πµ(k)

1,2,...,,k (KkRk−1,k . . . R2,kR1,k) . . . (K3R2,3R1,3) (K2R1,2)K1 =
∑
ai,bi

ea1,b1 ⊗ · · · ⊗ eak,bk ⊗ kb1,...,bk
a1,...,ak

. (A.46)

If k ≤ N/2, then
{
Kī,j

}k
i,j=1

forms a Y (k) subalgebra, so k1,2,...,k

1̄,2̄,...,k̄
(θ) is a quantum determinant in the Y (k)

subalgebra. For a general representation Λ =
∑N/2

k=1 dkµ
(k), the pseudo-vacuum overlap is

BΛ(θ) = ψΛ
2,1(θ)|0⟩ = B(θ)

N/2∏
k=1

dk∏
l=1

k1,2,...,k

1̄,2̄,...,k̄
(θ − (Dk + l − 1)), (A.47)

where B(θ) is a scalar depending on θ.
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Using the coproduct property of boundary states (3.19), we can construct more general boundary states

⟨Ψ| = ψΛ(J)

2J,2J−1(θJ) . . . ψ
Λ(2)

4,3 (θ2)ψ
Λ(1)

2,1 (θ1), (A.48)

where the Λ(j) are arbitrary representations and the θj are arbitrary inhomogeneities. The monodromy matrix is

T0(u) = LΛ(J),cg

0,2J (u+ θJ)L
Λ(J)

0,2J−1(u− θJ) . . . L
Λ(1),cg

0,2 (u+ θ1)L
Λ(1)

0,1 (u− θ1). (A.49)

The pseudo-vacuum eigenvalues are as follows

λk(u) =

J∏
j=1

u− θj + Λ
(j)
k

u− θj

u+ θj − Λ
(j)
N+1−k

u+ θj
. (A.50)

We observe a symmetry property
λk(u) = λk(−u). (A.51)

The pseudo-vacuum overlap is

B(θ) = ⟨Ψ|0⟩ =
J∏

j=1

BΛ(j)

(θj). (A.52)

B Recursions for the off-shell Bethe states
In this section, we summarize the formulas for the off-shell Bethe vectors that are necessary for our purposes. These
formulas can be found in the papers [52, 48]. The Bethe vectors satisfy the following recursive equations

B({z, t̄1},
{
t̄k
}N−1

k=2
) =

N∑
j=2

T1,j(z)

λ2(z)

∑
part(t̄)

B(t̄1,
{
t̄kii
}j−1

k=2
,
{
t̄k
}N−1

k=j
)

∏j−1
ν=2 αν(t̄

ν
i )g(t̄

ν
i , t̄

ν−1
i )f(t̄νii, t̄

ν
i )∏j−1

ν=1 f(t̄
ν+1, t̄νi )

, (B.1)

where the sum goes over the partitions t̄s ⊢ {t̄si , t̄sii} for s = 2, . . . , j − 1 such that #t̄si = 1. We have another
recursion

B(
{
t̄k
}N−2

k=1
, {z, t̄N−1}) =

N−1∑
j=1

Tj,N (z)

λN (z)

∑
part(t̄)

B(
{
t̄k
}j−1

k=1
,
{
t̄kii
}N−2

k=j
, t̄N−1)

∏N−2
ν=j g(t̄

ν+1
i , t̄νi )f(t̄

ν
i , t̄

ν
ii)∏N−1

ν=j f(t̄
ν
i , t̄

ν−1)
, (B.2)

where the sum goes over the partitions t̄s ⊢ {t̄si , t̄sii} for s = j, . . . , N − 2 such that #t̄si = 1.
We also use the following action formula

Ti,j(z)B(t̄) = λN (z)
∑

part(w̄)

B(w̄ii)

∏i−1
s=j f(w̄

s
i , w̄

s
iii)∏i−2

s=j f(w̄
s+1
i , w̄s

iii)
×

i−1∏
s=1

f(w̄s
i , w̄

s
ii)

h(w̄s
i , w̄

s−1
i )f(w̄s

i , w̄
s−1
ii )

N−1∏
s=j

αs(w̄
s
iii)f(w̄

s
ii, w̄

s
iii)

h(w̄s+1
iii , w̄s

iii)f(w̄
s+1
ii , w̄s

iii)
, (B.3)

where w̄ν = {z, t̄ν}. The sum goes over all the partitions of w̄ν ⊢ {w̄ν
i , w̄

ν
ii, w̄

ν
iii} where #w̄ν

i = Θ(i − 1 − ν) and
#w̄ν

iii = Θ(ν − j). We also set w̄0
i = w̄N

iii = {z} and w̄0
ii = w̄0

iii = w̄N
i = w̄N

ii = ∅. We also used the unit step function

Θ(k) =

{
1, k ≥ 0,

0, k < 0.

We also need the action formula for the crossed monodromy matrix [47, 43]

T̂i,j(z)B(t̄) = (−1)i−j λ̂1(z)
∑

part(w̄)

B(w̄ii)

∏N−1
s=2 f(t̄s−1 − 1, t̄s)∏N−1

s=2 f(w̄s−1
ii − 1, w̄s

ii)

∏j−1
s=i f(w̄

s
i , w̄

s
iii)∏j−1

s=i+1 f(w̄
s−1
i − 1, w̄s

iii)
×

N−1∏
s=i

f(w̄s
i , w̄

s
ii)

h(w̄s
i , w̄

s+1
i + 1)f(w̄s

i , w̄
s+1
ii + 1)

j−1∏
s=1

αs(w̄
s
iii)f(w̄

s
ii, w̄

s
iii)

h(w̄s−1
iii − 1, w̄s

iii)f(w̄
s−1
ii − 1, w̄s

iii)
, (B.4)
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where w̄ν = {z − ν, t̄ν}. The sum goes over all the partitions of w̄ν ⊢ {w̄ν
i , w̄

ν
ii, w̄

ν
iii} where #w̄ν

i = Θ(ν − i),
#w̄ν

iii = Θ(j − 1− ν). We also set w̄0
iii = {z}, w̄N

i = {z −N} and w̄0
i = w̄0

ii = w̄N
ii = w̄N

iii = ∅.
Finally, we also need the co-product formula of the Bethe states. Let H(1),H(2) be two quantum spaces for

which H = H(1) ⊗H(2) and the corresponding off-shell states are B(1)(t̄),B(2)(t̄). The co-product formula reads as

B(t̄) =
∑

part(t̄)

∏N−1
ν=1 α

(2)
ν (t̄νi )f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

B(1)(t̄i)B(2)(t̄ii), (B.5)

where the sum goes over the partitions t̄s ⊢ {t̄si , t̄sii}.

C Theorems for the nested K-matrices
In this section, we prove the theorems concerning nested K-matrices from subsection 4.1.

C.1 Crossed K-matrices
Lemma 15. The operator K1,1(u) satisfies the following commutation relations

[K1,1(u),B] = [K1,1(u),K1,1(v)] = 0. (C.1)

Proof. Let us get the (1, 1) component of the KT -relation

N∑
k=1

K1,k(z)⟨Ψ|Tk,1(z) =
N∑

k=1

⟨Ψ|T̂1,k(−z)Kk,1(z). (C.2)

Let us apply it on the pseudo-vacuum:

K1,1(z)⟨Ψ|T1,1(z)|0⟩ = ⟨Ψ|T̂1,1(−z)|0⟩K1,1(z), (C.3)

where we used that Ti,j(z)|0⟩ = T̂j,i(z)|0⟩ = 0 for i > j. The equation above simplifies as

K1,1(z)Bλ1(z) = BK1,1(z)λ̂1(−z). (C.4)

Using the symmetry property (3.34), we obtain that

[K1,1(z),B] = 0. (C.5)

From the nested KT -relations we can derive analogous equations as (C.5). For the nested K-matrices we have

[K
(k)
k,k(z),B] = 0. (C.6)

For the other relation, we can use the (1, 1), (1, 1) component of the reflection equation (3.7). After simplifications

[K1,1(u),K1,1(v)] = 0. (C.7)

Lemma 16. The component K1,1(u) commutes with the entire nested K-matrix, i.e.,[
K1,1(v),K

(2)
a,b(u)

]
= 0, (C.8)

for a, b = 2, . . . , N .
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Proof. Let us get the ((1, 1), (1, b)), ((1, 1), (a, 1)) and ((1, 1), (a, b)) components of the boundary Yang-Baxter
equation (3.7) (a, b > 1)

u− v − 1

u− v

u+ v + 1

u+ v
K1,1(u)K1,b(v) = K1,b(v)K1,1(u)−

1

u− v

u+ v + 1

u+ v
K1,1(v)K1,b(u)

+
1

u+ v
K1,1(v)Kb,1(u), (C.9)

K1,1(u)Ka,1(v) =
u− v − 1

u− v

u+ v + 1

u+ v
Ka,1(v)K1,1(u) +

1

u− v

u+ v + 1

u+ v
Ka,1(u)K1,1(v)

− 1

u+ v
K1,a(u)K1,1(v), (C.10)

[K1,1(u),Ka,b(v)] =
1

u− v

u+ v + 1

u+ v
(Ka,1(u)K1,b(v)−Ka,1(v)K1,b(u))

− 1

u+ v
(K1,a(u)K1,b(v)−Ka,1(v)Kb,1(u)) . (C.11)

Let us apply (C.10) to obtain

K1,1(u)
(
Ka,1(v)K

−1
1,1(v)K1,b(v)

)
=
u− v − 1

u− v

u+ v + 1

u+ v
Ka,1(v)K1,1(u)K

−1
1,1(v)K1,b(v)+

+
1

u− v

u+ v + 1

u+ v
Ka,1(u)K1,b(v)−

1

u+ v
K1,a(u)K1,b(v). (C.12)

On the first term on the right-hand side, we use the commutation relations (C.1) and (C.9)

u− v − 1

u− v

u+ v + 1

u+ v
Ka,1(v)K1,1(u)K

−1
1,1(v)K1,b(v) = Ka,1(v)K

−1
1,1(v)

(
u− v − 1

u− v

u+ v + 1

u+ v
K1,1(u)K1,b(v)

)
=(

Ka,1(v)K
−1
1,1(v)K1,b(v)

)
K1,1(u)−

1

u− v

u+ v + 1

u+ v
Ka,1(v)K1,b(u) +

1

u+ v
Ka,1(v)Kb,1(u). (C.13)

Combining the last two equations we have[
K1,1(u),Ka,1(v)K

−1
1,1(v)K1,b(v)

]
=

1

u− v

u+ v + 1

u+ v
(Ka,1(u)K1,b(v)−Ka,1(v)K1,b(u))

− 1

u+ v
(K1,a(u)K1,b(v)−Ka,1(v)Kb,1(u)) . (C.14)

We can see the r.h.s. agrees with the r.h.s. of the commutation relation (C.11) therefore we just proved[
K1,1(u2),K

(2)
a,b(u1)

]
= 0, (C.15)

for a, b = 2, . . . , N .

Now we turn to the proof of Theorem 3.

Proof. First, we prove that the nested K-matrices K(k)(u− (k−1)/2) form a representation of the algebra Y +(N +
1− k). In the section 5.1.1, we saw that the nested K-matrices can be expressed using quasi-determinants. Let us
decompose the K-matrix into block form

K =

(
A B
C D

)
, (C.16)

where A is a (k − 1)× (k − 1) matrix and D is an (N − k + 1)× (N − k + 1) matrix. The nested K-matrices K(k)

can be expressed as follows

K(k) =

(
A B

C D

)
= D−CA−1B. (C.17)

First, we invert the reflection equation

R1,2(u− v)K−1
1 (u)R̂1,2(u+ v +N)K−1

2 (v) = K−1
2 (v)R̂1,2(u+ v +N)K−1

1 (u)R1,2(u− v), (C.18)
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where we used the unitarity relations of the R-matrices

R1,2(u)R1,2(−u) =
u2 − 1

u2
, R̂1,2(u)R̂1,2(−u+N) = 1. (C.19)

We decompose the inverse matrix into block form

K−1 =

(
Ã B̃

C̃ D̃

)
, (C.20)

where D̃ can be expressed in the following form

D̃ =
(
D−CA−1B

)−1
. (C.21)

The matrix D̃ satisfies the following reflection equation

R1,2(u− v)D̃1(u)R̂1,2(u+ v +N)D̃2(v) = D̃2(v)R̂1,2(u+ v +N)D̃1(u)R1,2(u− v), (C.22)

where R and R̂ are glN−k+1 symmetric R-matrices. We can invert the equation again

R1,2(v − u)D̃−1
1 (u)R̂1,2(−u− v − k + 1)D̃−1

2 (v) = D̃−1
2 (v)R̂1,2(−u− v − k + 1)D̃−1

1 (u)R1,2(v − u). (C.23)

We see that the operator D̃−1(u − (k − 1)/2) satisfies the glN−k+1 reflection equation. Combining equations
(C.17), (C.21) and (C.23), we see that the operator K(k)(u− (k− 1)/2) is a representation of the reflection algebra
Y +(N − k + 1).

Since the operator K(k) satisfies the glN−k+1 reflection equation, the Lemmas 15 and 16 are also applicable to
the operator K(k), i.e., [

K
(k)
k,k(v),K

(k)
k,k(u)

]
=
[
K

(k)
k,k(v),K

(k+1)
a,b (u)

]
= 0, (C.24)

where a, b = k + 1, . . . , N .

C.2 Uncrossed K-matrices
Lemma 17. The operator KN,1(u) satisfies the following commutation relations

[KN,1(u),B] = [KN,1(u),KN,1(v)] = 0. (C.25)

Proof. Let us get the (N, 1) component of the KT -relation

N∑
k=1

KN,k(z)⟨Ψ|Tk,1(z) =
N∑

k=1

⟨Ψ|TN,k(−z)Kk,1(z). (C.26)

Let us apply it on the pseudo-vacuum:

KN,1(z)⟨Ψ|T1,1(z)|0⟩ = ⟨Ψ|TN,N (−z)|0⟩KN,1(z), (C.27)

where we used that Ti,j(z)|0⟩ = 0 for i > j. The equation above simplifies as

KN,1(z)Bλ1(z) = BKN,1(z)λN (−z). (C.28)

Using the symmetry property λ1(z) = λN (−z), we obtain that

[KN,1(z),B] = 0. (C.29)

From the nested KT -relations we can derive analogous equations as (C.29). For the nested K-matrices we have

[K
(k)
N+1−k,k(z),B] = 0. (C.30)

For the other relation we can use the (N, 1), (N, 1) component of the reflection equation (3.7). After simplifica-
tions

[KN,1(u),KN,1(v)] = 0.
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Lemma 18. The component KN,1(u) commutes with the entire nested K-matrix, i.e.,[
KN,1(v),K

(2)
a,b(u)

]
= 0, (C.31)

for a, b = 2, . . . , N − 1.

Proof. Let us get the ((N, 1), (N, b)), ((N, 1), (a, 1)) and ((N, 1), (a, b)) components of the boundary Yang-Baxter
equation (1 < a, b < N)

u− v − 1

u− v
KN,1(u)KN,b(v) = KN,b(v)KN,1(u)−

1

u− v
KN,1(v)K1,b(u) (C.32)

KN,1(u)Ka,1(v) =
u− v − 1

u− v
Ka,1(v)KN,1(u) +

1

u− v
Ka,1(u)KN,1(v) (C.33)

[KN,1(u),Ka,b(v)] =
1

u− v
(Ka,1(u)KN,b(v)−Ka,1(v)KN,b(u)) (C.34)

Let us apply (C.33) to obtain

KN,1(u)
(
Ka,1(v)K

−1
N,1(v)KN,b(v)

)
=
u− v − 1

u− v
Ka,1(v)KN,1(u)K

−1
N,1(v)KN,b(v)+

+
1

u− v
Ka,1(u)KN,b(v). (C.35)

On the first term on the right-hand side, we use the commutation relations (C.25) and (C.32):

u− v − 1

u− v
Ka,1(v)KN,1(u)K

−1
N,1(v)K1,b(v) = Ka,1(v)K

−1
N,1(v)

(
u− v − 1

u− v
KN,1(u)KN,b(v)

)
(
Ka,1(v)K

−1
N,1(v)KN,b(v)

)
KN,1(u)−

1

u− v
Ka,1(v)KN,b(u). (C.36)

Combining the last two equations we have[
KN,1(u),Ka,1(v)K

−1
N,1(v)KN,b(v)

]
=

1

u− v
(Ka,1(u)KN,b(v)−Ka,1(v)KN,b(u)) . (C.37)

We can see the r.h.s. agrees with the r.h.s. of the commutation relation (C.34) therefore we just proved[
KN,1(u),K

(2)
a,b(v)

]
= 0, (C.38)

for a, b = 2, . . . , N − 1.

Now we turn to the proof of Theorem 6.

Proof. First, let us prove that the nested K-matrix K(2)(u) satisfies the reflection equation. The proof is very
similar to the proof of Theorem 3.1 in [55]. We start from the reflection equation

k1,2(u) = R1,2(−1)K1(u+ 1)R1,2(−2u− 1)K2(u) = K2(u)R1,2(−2u− 1)K1(u+ 1)R1,2(−1)

=
∑
ai,bi

ea1,b1 ⊗ ea2,b2 ⊗ kb1,b2
a1,a2

(u). (C.39)

Since R1,2(−1) is a projection operator onto the antisymmetrized subspace, the quantum minor kb1,b2
a1,a2

(u) is anti-
symmetric in both its upper and lower indices. Let us examine the specific components k1,b

N,a(u):

k1,b
N,a(u) = KN,1(u+ 1)Ka,b(u)−Ka,1(u+ 1)KN,b(u). (C.40)

Substitute (u, v) → (u+ 1, u) into (C.33):

KN,1(u+ 1)Ka,1(u) = Ka,1(u+ 1)KN,1(u). (C.41)
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Using this, we find that k1,b
N,a can be expressed in terms of K(2)

a,b:

k1,b
N,a(u) = KN,1(u+ 1)K

(2)
a,b(u). (C.42)

We define an (N − 2)× (N − 2) matrix as follows:

k̃1(u) =

N−1∑
a1,b1=2

ẽa1,b1 ⊗ k1,b1
N,a1

(u), (C.43)

where ẽa,b are the unit matrices of size (N − 2)× (N − 2). In this notation,

k̃1(u) = G(u+ 1)K
(2)
1 (u). (C.44)

Now consider four auxiliary spaces and define an R-matrix on them

R1,2,3,4(u) = A1,2A3,4R4,1(u− 1)R3,1(u)R4,2(u)R3,2(u+ 1)

= R3,2(u+ 1)R3,1(u)R4,2(u)R4,1(u− 1)A1,2A3,4 (C.45)

=

N∑
ai,bi=1

ea1,b1 ⊗ ea2,b2 ⊗ ea3,b3 ⊗ ea4,b4 ⊗Rb1,b2,b3,b4
a1,a2,a3,a4

(u).

This R-matrix is antisymmetric in the first-second and third-fourth indices, i.e.,

P1,2R1,2,3,4(u) = R1,2,3,4(u)P1,2 = P3,4R1,2,3,4(u) = R1,2,3,4(u)P3,4 = −R1,2,3,4(u). (C.46)

The quantum minor satisfies the following equation:

R1,2,3,4(v − u)k1,2(u)R1,2,3,4(−u− v − 1)k3,4(v) = k3,4(v)R1,2,4,3(−u− v − 1)k1,2(u)R1,2,3,4(v − u). (C.47)

We define operators where the components are fixed in the first and third spaces

R◦
1,2(u) =

N−1∑
ai,bi=2

ẽa2,b2 ⊗ ẽa4,b4 ⊗R1,b2,1,b4
1,a2,1,a4

(u),

R•
1,2(u) =

N−1∑
ai,bi=2

ẽa2,b2 ⊗ ẽa4,b4 ⊗R1,b2,N,b4
1,a2,N,a4

(u),

(C.48)

again using ẽa,b a (N − 2)× (N − 2) as the unit matrices. Taking the (N, 1) components of equation (C.47) in the
first and third spaces, we obtain a reflection equation for the k̃ matrices

R◦
1,2(v − u)k̃1(u)R

•
1,2(−u− v − 1)k̃2(v) = k̃2(v)R

•
1,2(−u− v − 1)k̃1(u)R

◦
1,2(v − u), (C.49)

where we used the identities R1,b2,1,b4
1,a2,1,a4

(u) = RN.b2,N,b4
N,a2,N,a4

(u) and R1,b2,N,b4
1,a2,N,a4

(u) = RN.b2,1,b4
N,a2,1,a4

(u) and the fact that
Rb1,b2,b3,b4

a1,a2,a3,a4
is antisymmetric in the first-second and third-fourth indices. The matrices R◦ and R• can be expressed

using the glN−2 symmetric R-matrix as follows:

R◦
1,2(u) =

u+ 2

u+ 1
R

(N−2)
1,2 (u),

R•
1,2(u) = R

(N−2)
1,2 (u+ 1).

(C.50)

Substituting back into equation (C.49), we get:

R
(N−2)
1,2 (v − u)K

(2)
1 (u)R

(N−2)
1,2 (−u− v)K

(2)
2 (v) = K

(2)
2 (v)R

(N−2)
1,2 (−u− v)K

(2)
1 (u)R

(N−2)
1,2 (v − u), (C.51)

where we used the relation (C.44) and the commutation relation (C.31). We see that the nested K-matrix K(2)

satisfies the glN−2 reflection equation. By repeatedly applying the above method, we see that K(k) satisfies the
glN−2k+2 reflection equation. In 3.5.2 , we saw that the asymptotic limit of the nested K-matrices satisfies equation
(3.74). Combining this with the reflection equation just derived, we see that K(k) is a representation of the reflection
algebra B(N − 2k + 2,M − k + 1).

Since the operator K(k) satisfies the glN−2k+2 reflection equation, the Lemmas 17 and 18 are also applicable to
the operator K(k), i.e., [

G(k)(v),G(k)(u)
]
=
[
G(k)(v),K

(k+1)
a,b (u)

]
= 0, (C.52)

where a, b = k + 1, . . . , N − k.
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D Proofs for the theorems of overlaps
In this section, we prove the theorems related to the overlap formula from sections 4.2 and 4.3.

D.1 Proof for the sum formula
Lemma 19. The off-shell overlap has the sum formula

Sᾱ,B(t̄) =
∑

part(t̄)

WB(t̄i|t̄ii)
N−1∏
ν=1

αν(t̄
ν
i ), (D.1)

where the sum goes through the partitions t̄ν = t̄νi ∪ t̄νii, and WB is a matrix valued function which depends only on
the variables t̄i, t̄ii, components of the K-matrices Ki,j and the vacuum overlap B.

Proof. The proof is the same as Appendix C in [43]. In that earlier case, the quantities Ki,j , W and S were still
scalars, but in the current paper, they are matrices. However, this does not require any changes in the derivation
of the sum formula. Appendix C of [43] applies directly even in the presence of nontrivial boundary spaces.

Lemma 20. The weights are factorized as

WB(t̄i|t̄ii) =
∏N−1

ν=1 f(t̄
ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

Z̄(t̄ii)BZ(t̄i), (D.2)

where the highest coefficients (HC) Z(t̄) and Z̄(t̄) depend only on the variables t̄ and the entries of the K-matrix.

Proof. The proof is similar than Appendix D in [43]. The derivation is based on co-product formula of the Bethe
states (B.5). Let us renormalize the Bethe states and overlaps as

B̃(t̄) =
N−1∏
ν=1

λν+1(t̄
ν)B(t̄), S̃λ̄,B(t̄) =

N−1∏
ν=1

λν+1(t̄
ν)Sᾱ,B(t̄). (D.3)

The sum formula (Lemma 19) of the renormalized overlap is

S̃λ̄,B(t̄) =
∑

part(t̄)

WB(t̄i|t̄ii)
N−1∏
ν=1

λν(t̄
ν
i )λν+1(t̄

ν
ii). (D.4)

Let H(1),H(2) be two subsystems of the quantum space for which H = H(1)⊗H(2) and the renormalized co-product
formula is

B̃(t̄) =
∑∏N−1

ν=1 λ
(2)
ν (t̄νi )λ

(1)
ν+1(t̄

ν
ii)f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

B̃(1)(t̄i)B̃(2)(t̄ii), (D.5)

where B̃(1/2) and λ
(1/2)
ν are the off-shell Bethe vectors and pseudo-vacuum eigenvalues on the subsystems H(1/2).

We can also use the co-product property of the boundary state, Lemma 1. Combining the co-product formulas of
the boundary state and the Bethe states, the of-shell overlaps can be written as

S̃λ̄,B(t̄) =
∑∏N−1

ν=1 λ
(2)
ν (t̄νi )λ

(1)
ν+1(t̄

ν
ii)f(t̄

ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

S̃λ̄(2),B(2)(t̄ii)S̃λ̄(1),B(1)(t̄i), (D.6)

where B(1/2) are the pseudo-vacuum overlaps.
Now let us fix a particular partition t̄ = t̄i ∪ t̄ii and choose the highest weights as

λ
(1)
ν+1(u) = 0, for all u ∈ t̄νi ,

λ(2)ν (u) = 0, for all u ∈ t̄νii,
(D.7)
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therefore in the sum rule of the overlap (D.4) and the co-product formula (D.6) there is only one non-vanishing
term:

S̃λ̄,B(t̄) = WB(t̄i|t̄ii)
N−1∏
ν=1

λν(t̄
ν
i )λν+1(t̄

ν
ii),

S̃λ̄(1),B(1)(t̄i) = WB(1)(t̄i|∅)
N−1∏
ν=1

λ(1)ν (t̄νi ),

S̃λ̄(2),B(2)(t̄ii) = WB(2)(∅|t̄ii)
N−1∏
ν=1

λ
(2)
ν+1(t̄

ν
ii).

(D.8)

Substituting back, we obtain that

WB(t̄i|t̄ii) =
∏N−1

ν=1 f(t̄
ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

WB(2)(∅|t̄ii)WB(1)(t̄i|∅). (D.9)

Applying the last equation for t̄ii = ∅ we have

WB(t̄|∅) = WB(2)(∅|∅)WB(1)(t̄|∅). (D.10)

Since WB(2)(∅|∅) is just the vacuum overlap we have

WB(t̄|∅) = B(2)WB(1)(t̄|∅). (D.11)

From the co-product property of the boundary state (Lemma 1) we know that B = B(2)B(1). Since the equation
(D.11) is true for any decomposition of the quantum space, the B-dependence of the weights WB(t̄|∅) should be

WB(t̄|∅) = BZ(t̄). (D.12)

Analogous way, for t̄i = ∅ we have
WB(∅|t̄) = WB(2)(∅|t̄)B(1), (D.13)

therefore we can introduce another HC as
WB(∅|t̄) = Z̄(t̄)B. (D.14)

Substituting back we obtain that

WB(t̄i|t̄ii) =
∏N−1

ν=1 f(t̄
ν
ii, t̄

ν
i )∏N−2

ν=1 f(t̄
ν+1
ii , t̄νi )

Z̄(t̄ii)BZ(t̄i). (D.15)

Lemma 21. Let us introduce the following modified monodromy matrix

T̃ (u) = V T t(−u)V, (D.16)

which also satisfies the RTT -relation. Denote the Bethe vector defined with the components of T̃ as B̃(t̄). The new
Bethe vectors can be expressed in terms of the original Bethe vectors.

1∏N−1
ν=1 α̃ν(t̄ν)

B̃(t̄) = B(πa(t̄)). (D.17)

Proof. We can prove the statement by induction. The pseudo-vacuum is also the highest weight state for T̃ , since

T̃i,j(u)|0⟩ = TN+1−j,N+1−i(−u)|0⟩ = 0, (D.18)

for i > j and
T̃i,i(u)|0⟩ = TN+1−i,N+1−i(−u)|0⟩ = λN+1−i(−u)|0⟩, (D.19)

therefore
λ̃i(u) = λN+1−i(−u). (D.20)
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This proves the statement for rj = 0 for j = 1, . . . , N − 1.
Now assume the statement holds when the number of Bethe roots of the first type is at most r1. Now use the

recursive equation for r1 + 1:

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)
B̃({z, t̄1},

{
t̄k
}N−1

k=2
) =

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)

N∑
j=2

T̃1,j(z)

λ̃2(z)

∑
part(t̄)

B̃(t̄1,
{
t̄kii
}j−1

k=2
,
{
t̄k
}N−1

k=j
)

∏j−1
ν=2 α̃ν(t̄

ν
i )g(t̄

ν
i , t̄

ν−1
i )f(t̄νii, t̄

ν
i )∏j−1

ν=1 f(t̄
ν+1, t̄νi )

. (D.21)

Apply the induction hypothesis to the right-hand side.

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)
B̃({z, t̄1},

{
t̄k
}N−1

k=2
) =

N∑
j=2

T̃1,j(z)

λ̃1(z)

∑
part(t̄)

B(
{
−t̄N−k

}N−j

k=1
,
{
−t̄N−k

ii
}N−2

k=N−j+1
,−t̄1)

∏j−1
ν=2 g(t̄

ν
i , t̄

ν−1
i )f(t̄νii, t̄

ν
i )∏j−1

ν=1 f(t̄
ν+1, t̄νi )

. (D.22)

Now we can express T̃1,j and λ̃1 in terms of the original quantities.

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)
B̃({z, t̄1},

{
t̄k
}N−1

k=2
) =

N−1∑
j=1

Tj,N (−z)
λN (−z)

∑
part(t̄)

B(
{
−t̄N−k

}j−1

k=1
,
{
−t̄N−k

ii
}N−2

k=j
,−t̄1)

∏N−j
ν=2 g(t̄

ν
i , t̄

ν−1
i )f(t̄νii, t̄

ν
i )∏N−j

ν=1 f(t̄
ν+1, t̄νi )

. (D.23)

After rearrangements, we get

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)
B̃({z, t̄1},

{
t̄k
}N−1

k=2
) =

N−1∑
j=1

Tj,N (−z)
λN (−z)

∑
part(t̄)

B(
{
−t̄N−k

}j−1

k=1
,
{
−t̄N−k

ii
}N−2

k=j
,−t̄1)

∏N−2
ν=j g(−t̄N−ν−1

i ,−t̄N−ν
i )f(−t̄N−ν

i ,−t̄N−ν
ii )∏N−j

ν=1 f(−t̄
N−ν
i ,−t̄N−ν+1)

. (D.24)

We see that the right-hand side matches the right-hand side of the recursive equation (B.2), i.e.,

1

α̃1(z)
∏N−1

ν=1 α̃ν(t̄ν)
B̃({z, t̄1},

{
t̄k
}N−1

k=2
) = B(

{
−t̄N−k

}N−2

k=1
, {−z,−t̄1}), (D.25)

which proves the inductive step.

Lemma 22. Let us introduce the following modified monodromy matrix

T̃ (u) = T̂ t(−u), (D.26)

which also satisfies the RTT -relation. Denote the Bethe vector defined with the components of T̃ as B̃(t̄). The new
Bethe vectors can be expressed in terms of the original Bethe vectors

1∏N−1
ν=1 α̃ν(t̄ν)

B̃(t̄) = A(t̄)B(πc(t̄)), (D.27)

where

A(t̄) = (−1)#t̄

(
N−2∏
s=1

f(t̄s+1, t̄s)

)−1

. (D.28)

Proof. The matrix T̃ can be expressed in two steps

T̃ (u) = V Ť t(−u)V. (D.29)
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This is the relation that appeared in Lemma 21, i.e., B̃ can be expressed in terms of B̌ as follows

1∏N−1
ν=1 α̃ν(t̄ν)

B̃(t̄) = B̌(πa(t̄)). (D.30)

At the same time, B̌ can be expressed in terms of the original Bethe vector as shown in [47]

B̂(t̄) = A(t̄)B(µ(t̄)), (D.31)

where
µ(t̄) = {t̄N−1 − 1, t̄N−2 − 2, . . . , t̄1 − (N − 1)}. (D.32)

Substituting back, we get
1∏N−1

ν=1 α̃ν(t̄ν)
B̃(t̄) = A(πa(t̄))B(µ(πa(t̄))). (D.33)

It is easy to show that A(πa(t̄)) = A(t̄) and µ(πa(t̄)) = πc(t̄), which completes the proof.

Lemma 23. The uncrossed HC-s have the following property

ZK(t̄) =
[
Z̄KΠ

(πa(t̄))
]tB

, (D.34)

where we have indicated the K-matrix dependence of the HCs and

KΠ(u) = VKT (u)V, (D.35)

where T denotes the transposition on the auxiliary and boundary spaces.

Proof. By rearranging the KT -relation, we obtain:

KΠ(u)⟨ΨtB |
[
V T t(−u)V

]
= ⟨ΨtB |

[
V T t0(u)V

]
KΠ(u), (D.36)

where tB denotes the transposition on the boundary space. Let us introduce the following modified monodromy
matrix:

T̃ (u) = V T t(−u)V. (D.37)

Denote the Bethe vectors defined by the components of T̃ as B̃(t̄). These Bethe vectors can be expressed in terms
of the original Bethe vectors, according to Lemma 21:

B̃(t̄) = B(πa(t̄))

N−1∏
ν=1

αν(t̄
ν). (D.38)

Since the modified monodromy matrix satisfies the KT -relation

KΠ(u)⟨ΨtB |T̃ (u) = ⟨ΨtB |T̃ (−u)KΠ(u), (D.39)

the off-shell overlap satisfies the sum formula

⟨ΨtB |B̃(t̄) =
∑

part(t̄)

WKΠ

BtB (t̄i|t̄ii)
N−1∏
ν=1

αν(t̄
ν
i ), (D.40)

where we used (3.35) and the symmetry property (3.35). Now we can use the relation between Bethe overlaps, from
which we obtain:

⟨ΨtB |B̃(t̄) = (⟨Ψ|B(πa(t̄)))
tB

N−1∏
ν=1

αν(t̄
ν) =

∑
part(t̄)

(
WK

B (πa(t̄i)|πa(t̄ii))
)tB N−1∏

ν=1

αν(t̄
ν
ii), (D.41)

that is, (
WK

B (πa(t̄i)|πa(t̄ii))
)tB

= WKΠ

BtB (t̄ii|t̄i). (D.42)

Using the explicit form of the weights, we obtain the desired formula (D.34).
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Lemma 24. The crossed HC-s have the following property

ZK(t̄) = (−1)#t̄

(
N−2∏
s=1

f(t̄s+1, t̄s)

)−1 [
Z̄KΠ

(πc(t̄))
]tB

, (D.43)

where we have indicated the K-matrix dependence of the HCs and

KΠ(u) = KT (u), (D.44)

where T denotes the transposition on the auxiliary and boundary spaces.

Proof. By rearranging the KT -relation, we obtain:

KΠ(u)⟨ΨtB |
[
T̂ t(−u)

]
= ⟨ΨtB |

[
T t(u)

]
KΠ(u). (D.45)

Let us introduce the following modified monodromy matrix:

T̃ (u) = T̂ t(−u). (D.46)

Denote the Bethe vectors defined by the components of T̃ as B̃(t̄). These Bethe vectors can be expressed in terms
of the original Bethe vectors, according to Lemma 21.

B̃(t̄) = A(t̄)B(πc(t̄))

N−1∏
ν=1

αν(t̄
ν). (D.47)

Since the modified monodromy matrix satisfies the KT -relation, the off-shell overlap satisfies the sum formula

⟨ΨtB |B̃(t̄) =
∑

part(t̄)

WKΠ

BtB (t̄i|t̄ii)
N−1∏
ν=1

αν(t̄
ν
i ). (D.48)

Now we can use the relation between Bethe overlaps, from which we obtain:

⟨ΨtB |B̃(t̄) = A(t̄) (⟨Ψ|B(πc(t̄)))
tB

N−1∏
ν=1

αν(t̄
ν) = A(t̄)

∑
part(t̄)

(
WK

B (πc(t̄i)|πc(t̄ii))
)tB N−1∏

ν=1

αν(t̄
ν
ii), (D.49)

that is,
A(t̄)

(
WK

B (πc(t̄i)|πc(t̄ii))
)tB

= WKΠ

BtB (t̄ii|t̄i). (D.50)

Using the explicit form of the weights and the identity A(πc(t̄))−1 = A(t̄), we obtain the desired formula (D.43).

Combining the lemmas from this section, we complete the proof of Theorem 8.

D.2 Poles of the HC-s
In this subsection, we prove two lemmas that provide the HC Z̄(t̄) recursively. The crossed and uncrossed cases
must be treated separately. In the proof, we follow the calculations in Appendices E and F of [43]. There, the case
dB = 1 was derived, i.e., when the quantities Z̄ and Ki,j are scalars. Now, these calculations must be generalized
to matrix-valued quantities. The computation is essentially the same; we just need to pay attention to the order of
the matrices.

From the sum formula, we see that the off-shell overlap ⟨Ψ|B(t̄) is simply equal to the HC Z̄(t̄) when all αν(t
ν
k)

are set to zero. That is, in computing Z̄(t̄), it is sufficient to consider only the terms independent of α. We introduce
the notation ∼= to mean that two quantities are equal in the limit αν(t

ν
k) → 0, i.e.,

⟨Ψ|B(t̄) ∼= Z̄(t̄)B. (D.51)
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Lemma 25. The crossed HC has the following recursion

Z̄({z, t̄1}, {t̄ν}N−1
ν=2 ) = −

∑
part

K−1
1,1(z)Z̄(t̄

1
ii, {t̄ν}N−1

ν=2 )G(2)(z)
f(t̄1,−z − 1)

f(t̄2,−z − 1)f(t̄2, z)

f(t̄1i , t̄
1
ii)

h(t̄1i ,−z − 1)
−

−
N∑
i=2

K−1
1,1(z)K1,i(z)

∑
part

Z̄(w̄1
ii, {t̄νii}i−1

ν=2, {t̄ν}
N−1
ν=i )

f(w̄1
i , w̄

1
ii)

h(w̄1
i , z)

f(t̄2i , t̄
2
ii)

h(t̄2i , w̄
1
i )f(t̄

2
i , w̄

1
ii)

i−1∏
s=3

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

, (D.52)

In the first line the sum goes over all the partitions of t̄1 ⊢
{
t̄1i , t̄

1
ii
}
where #t̄1i = 1. In the second line w̄1 = {z, t̄1}

and the sum goes over all the partitions of w̄1 ⊢
{
w̄1

i , w̄
1
ii
}
, t̄ν ⊢ {t̄νi , t̄νii} where #w̄1

i = #t̄νi = 1 and ν = 2, . . . , i− 1.

Proof. We can see that this formula matches equation (4.14) from the paper [43] for scalar quantities. We will
follow the proof described in section E.2 of [43].

Let us start with the recurrence equation

⟨Ψ|B({z, t̄1}, {t̄ν}N−1
ν ) ∼= ⟨Ψ| T1,2(z)

λ2(z)f(t̄2, z)
B(t̄), (D.53)

and the crossed KT -relation

K1,1(z) ⟨Ψ|T1,2(z) =
N∑
j=1

⟨Ψ| T̂1,j(−z)Kj,2(z)−
N∑
i=2

K1,i(z) ⟨Ψ|Ti,2(z). (D.54)

The T1,2(z) term in the r.h.s. of (D.53) can be expressed with T̂1,k(−z) and Tj,2(z) where k = 1, . . . , N and
j = 2, . . . , N therefore

⟨Ψ|B({z, t̄1}, {t̄ν}N−1
ν=2 ) ∼=

1

f(t̄2, z)

 N∑
j=1

K−1
1,1(z) ⟨Ψ| T̂1,k(−z)

λ2(z)
B(t̄)Kk,2(z)−

N∑
i=2

K−1
1,1(z)K1,i(z) ⟨Ψ| Ti,2(z)

λ2(z)
B(t̄)

 . (D.55)

The next step is to apply the action formulas to the expressions

⟨Ψ| T̂1,k(−z)
λ2(z)

B(t̄) and ⟨Ψ| Ti,2(z)
λ2(z)

B(t̄). (D.56)

According to section E.2 of [43] only the terms with k = 1, 2 contain α-independent contributions, and these are
the following:

⟨Ψ| T̂1,1(−z)
λ2(z)

B(t̄) =
∑
part

Z̄(t̄1ii, {t̄ν}N−1
ν=2 )BZ({−z − 1}, ∅×N−2)

f(t̄1,−z − 1)

f(t̄2,−z − 1)

f(t̄1i , t̄
1
ii)

h(t̄1i ,−z − 1)
,

⟨Ψ| T̂1,2(−z)
λ2(z)

B(t̄) = (−1)
∑
part

Z̄(t̄1ii, {t̄ν}N−1
ν=2 )B

f(t̄1,−z − 1)

f(t̄2,−z − 1)

f(t̄1i , t̄
1
ii)

h(t̄1i ,−z − c)
,

(D.57)

see equations (E.27), (E.29), (E.33), and (E.34) in [43]. The sums goes over all the partitions of t̄1 ⊢
{
t̄1i , t̄

1
ii
}
where

#t̄1i = 1. The first formula contains the HC Z({−z − 1}, ∅×N−2). We can calculate it from the one-excitation
overlap ⟨Ψ|B({z}, ∅×N−2). First, we use the recursive formula for the Bethe vectors, then the KT -relation (D.54)

⟨Ψ|B({z}, ∅×N−2) =
1

λ2(z)
⟨Ψ|T1,2(z)|0⟩ =

K−1
1,1(z)

λ2(z)

(
λ̂1(−z)BK1,2(z)− λ2(z)K1,2(z)B

)
. (D.58)

Here we used the fact that the pseudo-vacuum is a highest weight state. Exploiting the symmetry property (3.35)
and the exchange relation (4.4), we obtain:

⟨Ψ|B({z}, ∅×N−2) = α1(z)BK−1
1,1(z)K1,2(z)−K−1

1,1(z)K1,2(z)B. (D.59)

From this, the highest coefficients (HCs) can be expressed:

Z̄({z}, ∅×N−2) = −K−1
1,1(z)K1,2(z), Z({z}, ∅×N−2) = K−1

1,1(z)K1,2(z). (D.60)
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Using the previously derived identity between the HCs (4.12), we obtain an equivalent formula for Z({z}, ∅×N−2):

Z({z}, ∅×N−2) = −
[
Z̄KT

({−z − 1}, ∅×N−2)
]tB

= K2,1(−z − 1)K−1
1,1(−z − 1). (D.61)

Substituting back, we get:

⟨Ψ| T̂1,1
λ2(z)

(−z)B(t̄)K1,2(z) + ⟨Ψ| T̂1,2
λ2(z)

(−z)B(t̄)K2,2(z) =∑
part

Z̄(t̄1ii, {t̄ν}N−1
ν=2 )B

(
K2,1(z)K

−1
1,1(z)K1,2(z)−K2,2(z)

) f(t̄1,−z − 1)

f(t̄2,−z − 1)

f(t̄1i , t̄
1
ii)

h(t̄1i ,−z − 1)
. (D.62)

We observe that on the right-hand side, the quantity K
(2)
2,2(z) = G(2)(z) appears, which commutes with B.

Let us continue with the action of Ti,2. According to section E.2 of [43], the α-independent terms are:

⟨Ψ| Ti,2(z)
λ2(z)

B(t̄) ∼=
∑
part

Z̄(w̄1
ii, {t̄νii}i−1

ν=2, {t̄ν}
N−1
ν=i )B

f(w̄1
i , w̄

1
ii)

h(w̄1
i , z)

f(t̄2i , t̄
2
ii)f(t̄

2, z)

h(t̄2i , w̄
1
i )f(t̄

2
i , w̄

1
ii)

i−1∏
s=3

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

, (D.63)

see equation (E.35) in [43]. The sum goes over all the partitions of w̄1 ⊢
{
w̄1

i , w̄
1
ii
}
, t̄ν ⊢ {t̄νi , t̄νii} where w̄1 = {z, t̄1}

and #w̄1
i = #t̄νi = 1 for ν = 2, . . . , i− 1. Substituting back to (D.55) we obtain a recurrence formula (D.52) for the

HC after the simplification with B.

Lemma 26. The uncrossed HC has the following recursions. The recursion for the set t̄1 is

Z̄({z, t̄1}, {t̄ν}N−1
ν=2 ) =∑

part

K−1
N,1(z)Z̄({ω̄

ν
ii}N−2

ν=1 , t̄
N−1
ii )G(2)(z)

N−2∏
s=1

f(ωs
i , ω̄

s
ii)

h(ωs
i , ω

s−1
i )f(ωs

i , ω̄
s−1
ii )

f(t̄N−1
i , t̄N−1

ii )f(t̄N−1,−z)
h(t̄N−1

i , ωN−2
i )f(t̄N−1

i , ω̄N−2
ii )f(t̄2, z)

−

−
N∑
i=2

K−1
N,1(z)KN,i(z)

∑
part

Z̄(w̄1
ii, {t̄νii}i−1

ν=2, {t̄ν}
N−1
ν=i )

f(w̄1
i , w̄

1
ii)

h(w̄1
i , z)

f(t̄2i , t̄
2
ii)

h(t̄2i , w̄
1
i )f(t̄

2
i , w̄

1
ii)

i−1∏
s=3

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

, (D.64)

In the second line the sum goes for the partitions t̄N−1 ⊢ t̄N−1
i ∪ t̄N−1

ii ,ω̄ν ⊢ ω̄ν
i ∪ ω̄ν

ii, for ν = 1, . . . , N − 2 where
ω̄ν = {−z, t̄ν} and #ω̄ν

i = #t̄N−1
i = 1. We also set ω̄0

i = {−z} and ω̄0
i = ∅. In the second line w̄1 = {z, t̄1} and the

sum goes over all the partitions of w̄1 ⊢
{
w̄1

i , w̄
1
ii
}
, t̄ν ⊢ {t̄νi , t̄νii} where #w̄1

i = #t̄νi = 1 and ν = 2, . . . , i− 1.
The recursion for the set t̄N−1 is

Z̄({t̄s}N−2
s=1 , {z, t̄N−1}) =

N∑
i=1

N−1∑
j=1

f(t̄1,−z)
∑
part

Kj,i(−z)Z̄({t̄sii}
N−2
s=1 , t̄N−1)K−1

N,1(−z)×

i−1∏
s=1

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

∏N−2
ν=j g(t̄

ν+1
iii , t̄νiii)f(t̄

ν
iii, t̄

ν
ii)f(t̄

ν
iii, t̄

ν
i )∏N−1

ν=j f(t̄
ν
iii, t̄

ν−1)
, (D.65)

where we sum up to the partitions t̄ν ⊢ t̄νi ∪ t̄νii ∪ t̄νiii for ν = 1, . . . , N − 2 where #t̄νi = Θ(i− 1− ν), #t̄νiii = Θ(ν − j)
and t̄N−1

iii = {z}, t̄N−1
ii = t̄N−1 and t̄0i = {−z}.

Proof. We can see that this formula matches equations (4.11) and (4.12) from the paper [43] for scalar quantities.
In the lemma concerning the crossed highest coefficient (HC), we saw that the proof can be generalized to matrix-
valued quantities with minimal modifications. This also holds true in the uncrossed case. If we follow the derivation
in section E.1 of [43] and apply the substitution

G(2)(z) = K
(2)
N−1,2(z) = KN−1,2(z)−KN−1,1(z)K

−1
N,1(z)KN,2(z) (D.66)

using the commutation relation [B,G(2)(z)] = 0, we obtain the proof of the lemma.

Lemma 27. The crossed HC has poles at t1l → −t1k − 1:

Z̄(t̄) → 1

t1l + t1k + 1

f(τ̄1, t1l )f(τ̄
1, t1k)

f(t̄2, t1l )f(t̄
2, t1k)

Z̄(τ̄)F(1)(t1k) + reg. (D.67)

where τ̄ = t̄\{t1k, t1l } .
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Proof. We follow section F.1 (ν = 1) of [43], which concerns the poles of the scalar HC. The proof proceeds by
induction on r1.

Let us calculate the pole for r1 = 2. Substitute into (D.52). At the pole t1 + z + 1 → 0, only the first term on
the right-hand side contains a contribution.

Z̄({z, t1}, {t̄ν}N−1
ν=2 ) → − 1

t1 + z + 1

1

f(t̄2,−z − 1)f(t̄2, z)
K−1

1,1(z)Z̄(∅, {t̄ν}
N−1
ν=2 )G(2)(z) + reg. (D.68)

Since the HC Z̄(∅, {t̄ν}N−1
ν=2 ) is built from the components of second nested K-mátrix K(2) which commute with

K−1
1,1, we have [

K−1
1,1(z), Z̄(∅, {t̄ν}

N−1
ν=2 )

]
= 0, (D.69)

therefore we just proved (D.67) for r2 = 2.
Now assume the statement holds for r1 or fewer Bethe roots of type t̄1. Use the recursive equation (D.52) for

r1 + 1 first-type roots:

Z̄({z, t̄1}, {t̄ν}N−1
ν=2 ) = −

∑
part

K−1
1,1(z)Z̄(t̄

1
ii, {t̄ν}N−1

ν=2 )G(2)(z)
f(t̄1,−z − 1)

f(t̄2,−z − 1)f(t̄2, z)

f(t̄1i , t̄
1
ii)

h(t̄1i ,−z − 1)
−

−
N∑
i=2

K−1
1,1(z)K1,i(z)

∑
part

Z̄(w̄1
ii, {t̄νii}i−1

ν=2, {t̄ν}
N−1
ν=i )

f(w̄1
i , w̄

1
ii)

h(w̄1
i , z)

f(t̄2i , t̄
2
ii)

h(t̄2i , w̄
1
i )f(t̄

2
i , w̄

1
ii)

i−1∏
s=3

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

. (D.70)

Now examine the pole at t1k+ t
1
l +1 = 0. Since the HC is a symmetric function of the first-type roots, it is sufficient

to prove the statement for this pair. On the right-hand side of the equation, only the HCs contain such a pole, but
in those HCs, there are r1 or fewer first-type Bethe roots. We apply the induction hypothesis to those. The pole
appears in the first line only if t1k, t

1
l ∈ t̄1ii, and in the second line if t1k, t

1
l ∈ w̄1

ii. The pole can be written in the
following form

Z̄({z, t̄1}, {t̄ν}N−1
ν=2 ) → 1

t1l + t1k + 1

f(w̄1, t1l )f(w̄
1, t1k)

f(t̄2, t1l )f(t̄
2, t1k)

Q(w̄1, {t̄ν}N−1
ν=2 )F(1)(t1k) + reg. (D.71)

where w̄1 = w̄1\{t1k, t1l } = {z, τ̄1}. Additionally, we introduce the notation w̄1
ii = w̄1

ii\{t1k, t1l }. Using the induction
hypothesis, the right-hand side of (D.70) for each HC gives a Q-operator that can be expressed as follows

Q({z, τ̄1}, {t̄ν}N−1
ν=2 ) = −

∑
part

K−1
1,1(z)Z̄(τ̄

1
ii , {t̄ν}N−1

ν=2 )G(2)(z)
f(τ̄1,−z − 1)

f(t̄2,−z − 1)f(t̄2, z)

f(τ̄1i , τ̄
1
ii)

h(τ̄1i ,−z − 1)
−

−
N∑
i=2

K−1
1,1(z)K1,i(z)

∑
part

Z̄(w̄1
ii, {t̄νii}i−1

ν=2, {t̄ν}
N−1
ν=i )

f(w̄1
i , w̄

1
ii)

h(w̄1
i , z)

f(t̄2i , t̄
2
ii)

h(t̄2i , w̄
1
i )f(t̄

2
i , w̄

1
ii)

i−1∏
s=3

f(t̄si , t̄
s
ii)

h(t̄si , t̄
s−1
i )f(t̄si , t̄

s−1
ii )

, (D.72)

where we used the commutation relation
[F(1)(u),G(2)(v)] = 0. (D.73)

We observe that the right-hand side of (D.72) is exactly the right-hand side of the recursive equation (D.52), i.e.,

Q({z, τ̄1}, {t̄ν}N−1
ν=2 ) = Z̄({z, τ̄1}, {t̄ν}N−1

ν=2 ). (D.74)

Substituting back into (D.71), the lemma holds for r1 + 1 first-type Bethe roots.

Lemma 28. The uncrossed HC-s have a pole at tN−1
l → −t1k:

Z̄(t̄) → 1

tN−1
l + t1k

f(τ̄1, t1k)f(τ̄
N−1, tN−1

l )

f(t̄2, t1k)
Z̄(τ̄)F(1)(t1k) + reg. (D.75)

where τ̄ = t̄\{t1k, t
N−1
l }.

Proof. We follow section F.2 (ν = 1) of [43], which concerns the poles of the scalar highest coefficient (HC). The
proof proceeds by induction on both r1 and rN−1.

58



Let us calculate the pole for r1 = rN−1 = 1:

Z̄({z}, {t̄ν}N−2
ν=2 , {t

N−1}) → 1

tN−1 + z
×

∑
part

K−1
N,1(z)Z̄(∅, {ω̄

ν
ii}N−2

ν=2 , ∅)G(2)(z)

N−2∏
s=2

f(ωs
i , ω̄

s
ii)

h(ωs
i , ω

s−1
i )f(ωs

i , ω̄
s−1
ii )

1

h(−z, ωN−2
i )f(−z, ω̄N−2

ii )f(t̄2, z)
+ reg. (D.76)

In the denominator there is a factor f(−z, ω̄N−2
ii ) therefore the residue is nonzero only when −z /∈ ω̄N−2

ii ⇒ ω̄N−2
i =

{−z}. In an analogous way, the terms f(ω̄s
i , ω̄

s−1
ii ) imply that ω̄s

i = {−z} for s = 2, . . . , N − 3 which means there
is only one non-vanishing term in the sum

Z̄({z}, {t̄ν}N−2
ν=2 , {t

N−1}) → 1

tN−1 + z

1

f(t̄2, z)
K−1

N,1(z)Z̄(∅, {t̄
ν}N−2

ν=2 , ∅)G(2)(z) + reg. (D.77)

Since the HC Z̄(∅, {t̄ν}N−2
ν=2 , ∅) is build from the components of second nested K-mátrix K(2) which commute with

K−1
N,1, we have [

K−1
N,1(z), Z̄(∅, {t̄

ν}N−2
ν=2 , ∅)

]
= 0, (D.78)

therefore we just proved (D.75) for r1 = rN−1 = 1.
The proof for r1 + rN−1 > 2 can be done by induction. In the lemma concerning the crossed HCs, we saw

that the proof is entirely analogous to the scalar case, provided we use the commutation relations of the F - and
G-operators. The proof here is also analogous to the scalar case found in Appendix F.2 (ν = 1) of [43], if we use
the relation

[F(1)(u),G(1)(v)] = [F(1)(u),G(2)(v)] = 0. (D.79)

We see that Lemmas 27 and 28 together prove Theorem 9 for ν = 1. Theorem 9 can also be proven by another
induction, which involves a very similar computation to the ν = 1 case. The proof for the scalar HC in the case
ν > 1 is found in Appendices F.1 and F.2 of [43], and this can be applied to the matrix-valued HCs without
modification, one only needs to use the relation

[F(ν)(u),G(µ)(v)] = 0. (D.80)

D.3 Proofs for the overlap functions S(ℓ)

D.3.1 Pair structure limit of the off-shell overlaps

In this section, we prove Theorem 10.

Proof. To prove the theorem, we need to take the limit of the off-shell overlap as tν̃l → −tνk − νc̃. Since the overlap
depends only on the α-functions, the derivative terms Xν

k can arise from the poles of the HCs. From the sum rule
of the overlap, we see that the HC Z(t̄i) has a pole if tνk, t

ν̃
l ∈ t̄i and Z̄(t̄i) has a pole if tνk, t

ν̃
l ∈ t̄ii. Introducing the

usual notation τ = t̄\{tνk, tν̃l } the part of the overlap formula proportional to the poles comes from summing over
the partitions of τ̄ . For a given partition τ̄ ⊢ τ̄i ∪ τ̄ii two terms contribute from the original sum: t̄i = τ̄i ∪ {tνk, tν̃l },
t̄ii = τ̄ii and t̄i = τ̄i, t̄ii = τ̄ii ∪ {tνk, tν̃l }. Based on this, the limit of the overlap as tν̃l → −tνk − νc̃ can be written as
follows

Sᾱ,B(t̄) →
1

tν̃l + tνk + νc̃

(
1− αν(t

ν
k)αν̃(t

ν̃
l )
) ∑
part(τ̄)

∏N−1
s=1 f(τ̄sii, τ̄

s
i )∏N−2

s=1 f(τ̄s+1
ii , τ̄si )

Z̄(τ̄ii)F
(ν)(tνk)BZ(τ̄i)×

× f(tνk, τ̄
ν
i )

f(tνk, τ̄
ν−1
i )

f(τ̄νii , t
ν
k)

f(τ̄ν+1
ii , tνk)

f(tν̃l , τ̄
ν̃
i )

f(tν̃l , τ̄
ν̃−1
i )

f(τ̄ ν̃ii , t
ν̃
l )

f(τ̄ ν̃+1
ii , tν̃l )

N−1∏
s=1

αs(τ̄
s
i ) + reg. (D.81)

Here we used the commutation relations (4.4) and (4.9). After rearrangement, we obtain:

Sᾱ,B(t̄) →
1

tν̃l + tνk + νc̃

(
1− αν(t

ν
k)αν̃(t

ν̃
l )
) f(τ̄ν , tνk)

f(t̄ν+1, tνk)

f(τ̄ ν̃ , tν̃l )

f(t̄ν̃+1, tν̃l )

∑
part(τ̄)

∏N−1
s=1 f(τ̄sii, τ̄

s
i )∏N−2

s=1 f(τ̄s+1
ii , τ̄si )

Z̄(τ̄ii)F
(ν)(tνk)BZ(τ̄i)×

× f(tνk, τ̄
ν
i )

f(τ̄νi , t
ν
k)

f(τ̄ν+1
i , tνk)

f(tνk, τ̄
ν−1
i )

f(tν̃l , τ̄
ν̃
i )

f(τ̄ ν̃i , t
ν̃
l )

f(τ̄ ν̃+1
i , tν̃l )

f(tν̃l , τ̄
ν̃−1
i )

N−1∏
s=1

αs(τ̄
s
i ) + reg. (D.82)

59



Using the definitions of Xν
k (4.24) and αmod

s (4.25), we get:

Sᾱ,B(t̄) → Xν
k

f(τ̄ν , tνk)

f(t̄ν+1, tνk)

f(τ̄ ν̃ , tν̃l )

f(t̄ν̃+1, tν̃l )
×

∑
part(τ̄)

∏N−1
s=1 f(τ̄sii, τ̄

s
i )∏N−2

s=1 f(τ̄s+1
ii , τ̄si )

Z̄(τ̄ii)F
(ν)(tνk)BZ(τ̄i)

N−1∏
s=1

αmod
s (τ̄si ) + S̃α,B, (D.83)

where S̃α,B does not depend on Xν
k . Taking the trace:

trVB
[Sᾱ,B(t̄)] → Xν

k

f(τ̄ν , tνk)

f(t̄ν+1, tνk)

f(τ̄ ν̃ , tν̃l )

f(t̄ν̃+1, tν̃l )
×

dB∑
ℓ=1

F (ν)
ℓ (tνk)βℓ

∑
part(τ̄)

∏N−1
s=1 f(τ̄sii, τ̄

s
i )∏N−2

s=1 f(τ̄s+1
ii , τ̄si )

(
Z(τ̄i)Z̄(τ̄ii)

)
ℓ,ℓ

N−1∏
s=1

αmod
s (τ̄si ) + S̃α,B, (D.84)

i.e.,
dB∑
ℓ=1

βℓS
(ℓ)
ᾱ (t̄) → Xν

k

f(τ̄ν , tνk)

f(t̄ν+1, tνk)

f(τ̄ ν̃ , tν̃l )

f(t̄ν̃+1, tν̃l )

dB∑
ℓ=1

F (ν)
ℓ (tνk)βℓS

(ℓ)

ᾱmod(τ̄) + trS̃α,B. (D.85)

Assuming that the βℓ variables are linearly independent, we obtain the desired formula.

D.3.2 On-shell limit

In this section, we prove Theorem 13. To prove the theorem, we need to define the Korepin criterion and state a
lemma related to it.

Definition 29. Let N (r̄)(t̄|X̄) be a function of 2
∑n

s=1 rs variables, where t̄ = {t̄s}ns=1 and X̄ =
{
X̄s
}n
s=1

with
cardinalities #t̄s = #X̄s = rs. The Korepin criterion is defined as follows:

(i) The function N (r̄)(t̄|X̄) is symmetric over the replacement of the pairs (Xµ
j , t

µ
j ) ↔ (Xµ

k , t
µ
k).

(ii) It is linear function of each Xµ
j .

(iii) N (1̄ν)(. . . , ∅, {tν}, ∅, . . . | . . . , ∅, {Xν}, ∅, . . . ) = Xν , where 1̄ν ∈ Nn is an n-component vector whose compo-
nents are defined as (1ν)k = δk,ν for k = 1, . . . , n.

(iv) The coefficient of Xµ
j is given by the function N (r̄−1̄µ) with modified parameters Xν

k

∂N (r̄)(t̄|X̄)

∂Xµ
j

= N (r̄−1̄µ)(τ̄ , X̄mod), (D.86)

where τ̄ = t̄\{tµk}, X̄ = X̄\{Xµ
k } and the original variables Xν

k should be replaced by Xν,mod
k which are defined

with (4.24) and (4.25).

(v) N (r̄)(t̄|X̄) = 0, if all Xµ
j = 0.

Lemma 30. If a set of functions N (r̄+)(t̄+|X̄+) satisfies the Korepin criterion, then

N (r̄+)(t̄+|X̄+) = detG+. (D.87)

Proof. The proof proceeds recursively in the total number of variables r+ =
∑n

s=1 r
+
s . This is the same as Propo-

sition 4.1 in [49].

Using the above lemma and the earlier Theorem 10 we can now easily prove Theorem 13 for on-shell overlaps.
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Proof. The derivation of Theorem 13 follows Appendix H of [43]. We begin with the crossed case and introduce the
normalized overlap functions.

N (r̄+)(t̄+|X̄+) =
S(ℓ)(t̄+|X̄+)∏N−1

ν=1 F (ν)
ℓ (t̄+,ν)

∏
k ̸=l f(t

+,ν
l , t+,ν

k )
∏

k<l f(t
+,ν
l ,−t+,ν

k − ν)f(−t+,ν
k − ν, t+,ν

l )
. (D.88)

According to Lemma 30, it is sufficient to show that the functions N (r̄+) satisfy the Korepin conditions. Property
(i) follows from the definition of the overlaps. Properties (ii) and (iv) follow from Theorem 10. Property (v) follows
from the fact that for a Bethe vector that does not satisfy the pair structures, the on-shell overlap is zero, i.e., the
overlap

⟨MPS|B(t̄) =
dB∑
ℓ=1

βℓS
(ℓ)
ᾱ (t̄) (D.89)

vanishes in the on-shell limit. In the generalized model, the variables αν
k ≡ αν(t

ν
k) are algebraically independent of

the tνk, so any set of Bethe roots can be on-shell with appropriately chosen α’s. Thus, in the generalized model, the
on-shell limit is equivalent to:

αν
k → Aν

k(t̄) ≡
f(tµk , t̄

µ
k)

f(t̄µk , t
µ
k)

f(t̄µ+1, tµk)

f(tµk , t̄
µ−1)

. (D.90)

The on-shell limit of a general overlap is zero.

lim
αν

k→Aν
k(t̄)

⟨MPS|B(t̄) =
dB∑
ℓ=1

βℓ

(
lim

αν
k→Aν

k(t̄)
S
(ℓ)
ᾱ (t̄)

)
= 0. (D.91)

Assuming the βℓ are also independent variables, the overlap functions vanish in the on-shell limit.

lim
αν

k→Aν
k(t̄)

S
(ℓ)
ᾱ (t̄) = 0. (D.92)

The definition of N (r̄+) involves two limits: the pair structure limit and the on-shell limit. These limits are not
interchangeable, if we take the on-shell limit first, we get zero; however, if we start with the pair structure limit, we
obtain N (r̄+), i.e.,

lim
αν

k→Aν
k(t̄)

lim
t−→π(t̄+)

S
(ℓ)
ᾱ (t̄) = S(ℓ)(t̄+|X̄+). (D.93)

The reason the two limits are not interchangeable is that the overlap function contains formal first-order poles, and
in the pair structure limit, the first-order terms of the expressions αν(t

−,ν
k ) in (t−,ν

k + t+,ν
k + ν) are needed:

αν(t
−,ν
k ) = αν(t

+,ν
k )−1 + (t−,ν

k + t+,ν
k + ν)αν(t

+,ν
k )−2α′

ν(t
+,ν
k ) +O((t−,ν

k + t+,ν
k + ν)2). (D.94)

It is evident that the limits are not interchangeable because if we take the pair structure limit first, we get terms
proportional to α′

ν(t
+,ν
k ) which we do not get if we start with the on-shell limit. If Xν

k = 0, then α′
ν(t

+,ν
k ) = 0, and

in this case, the two limits are interchangeable, i.e.,

S(ℓ)(t̄+|0̄) = 0, (D.95)

meaning that (v) also holds. Property (iii) follows from the Theorem 10 and (v). The proof in the non-crossed case
is completely analogous.
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