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1 Introduction

Integrable boundaries have been getting considerable interest recently in statistical physics
as well as in the AdS/CFT correspondence. The developments were motivated by quench
problems in spin chains on the statistical physics side [1-5], while in the AdS/CFT correspon-
dence they describe various conformal defects in the gauge theory and related probe branes
in the string theory [6—13]. In most of the applications the physically relevant quantities are
the overlaps of multi-particle finite volume states with integrable boundary states [14-16].

The prototypical AdS/CFT duality relates the N’ = 4 supersymmetric Yang-Mills (SYM)
theory to strings propagating on the AdSs x S° background [17]. The total superconformal
symmetry of the conformal field theory psu(2,2|4) is manifested as isometries of the supercoset
string sigma model. By introducing a codimension 1 defect in the CF'T, with prescribed
boundary conditions for the fields, one can preserve half of the supersymmetry [18]. The
defect breaks partially the translational symmetry, which implies that single trace operators
acquire non-trivial vacuum expectation values (VEVs). The space-time dependence of the



VEV is completely determined in terms of the scaling dimension, but its proportionality
factor is a non-trivial function of the 't Hooft coupling. As single trace operators correspond
to multi-particle finite volume states the proportionality factor turns out to be the overlap
of this state with an integrable boundary state [6, 19].

Integrable boundary states have to satisfy severe consistency requirements including the
boundary Yang-Baxter equations for their K-matrix [20-22]. These equations involve the
scattering matrix of the excitations, which has a factorized form with su(2|2). ® su(2|2).
symmetry, the remnant of psu(2,2|4) after fixing the gauge and quantizing string theory.
In our works [21, 23] we classified the solutions for integrable factorized K-matrices (one of
these solutions were also found in [24] independently), which came in two versions, both
having osp(2|2) symmetry, such that together with su(2|2). they form a symmetric pair. The
difference lies in the embedding of this symmetry into su(2]2). , i.e. whether the bosonic
su(2) part of osp(2]2) lies in the Lorentzian or in the R-symmetry part. The codimension
1 defect implies that it is in the Lorentzian part, thus in order to describe the expectation
values of single trace operators we developed a procedure and calculated the corresponding
overlaps for this type of boundary states. The result is very general and applies in all the
cases with the same symmetry.

Recently a ’t Hooft line was introduced in the CFT, i.e. a codimension 3 defect and
its integrability properties were investigated [12]. Its presence implies specific boundary
conditions for the SYM fields and the expectation values of single trace operators were
connected to overlaps of multiparticle states with a boundary state, which seemed to be
integrable. This was supported by directly calculating the overlaps in various subsectors
at leading order. Since the geometrical setting breaks the symmetries as expected for the
other osp(2|2) embedding we expect that the all loop overlaps should be calculated from
our integrable K-matrix. The aim of our paper is to calculate the asymptotic overlaps for
the corresponding K-matrix.

Since the two K-matrices are related by a duality transformation we need to understand
how duality acts on su(2|2). overlaps. It turns out that due to the specific selection rules,
highest weight Bethe states have vanishing overlaps with the boundary state and only their
descendants can have non-zero overlaps. In order to investigate this phenomenon we analyze
the rational version of the problem, i.e. dualities for overlaps in rational su(2|2) spin chains
and their action on overlaps. This is also useful to make contact with the LO ’t Hooft
loop calculations.

The paper is organized as follows: first, in section 2 we recall the integrable K-matrices
for an su(2|2). symmetric scattering matrix. Having introduced the Bethe ansatz equations
and integrable K-matrices we present the previously calculated asymptotic overlaps for one
of these K-matrices. We then calculate its weak coupling, rational limit. In section 3 we
analyze the two types of rational K-matrices and the overlaps in various gradings. We
pay particular attention to degenerate cases. In section 4 we elevate the results for gi(4]4).
The various fermionic dualities enable us to make correspondences with all the existing
overlaps in the 't Hooft loop setting. In section 5, using a fermionic duality, we determine
the overlap formulas for the other type of K-matrix. These results are then used in section
6 to describe the asymptotic overlaps for the 't Hooft loop. We conclude in section 7. We



added several appendices, in which we investigate the condition whether the Bethe state can
have a non-vanishing overlap with the boundary state, and how to calculate the overlaps
of descendent states in the various cases.

2 K-matrices, overlaps and their weak coupling limit

In the prototypical duality there are 8 fermionic and 8 bosonic excitations, which scatters
on each other in an integrable way. Due to the factorized su(2]2). @ su(2|2). symmetry the
scattering matrix has also a factorized form

S(p1,p2) = So(p1,p2)S(p1,p2) @ S(p1,p2) (2.1)

The centrally extended su(2|2), symmetry completely fixes the matrix structure of the
scattering matrix S(p1,p2) [25] of the particles labeled by (1,2|3,4), where 1,2 are considered
to be bosonic, while 3,4 as fermionic. Their dispersion relation is also fixed by the symmetry
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where the 't Hooft coupling is A = 16m%¢ and the momentum of the particles is simply
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2.1 Periodic su(2|2). spin chains

In calculating the asymptotic, large volume (R-charge) spectrum one has to diagonalize an
inhomogeneous su(2|2), transfer matrix

t(po) = Tro(S(po,p1) - - - S(po,p2r)) (2.3)

This can be done by the Bethe ansatz method (which could be coordinate or algebraic).
As a first step one finds a simple eigenstate of the transfer matrix: all state being the same,
which can be either bosonic or fermionic. Typically we choose the 1s, and denote this bosonic
pseudovacuum as |0°) = ®2L|1). One can then introduce excitations, by turning 1s into other
labels and build a plane wave out of them. The y roots are the momenta of the plane waves
of excitations of 3s. Finally, w labels the momenta when 4s are created by flipping 3s. The
eigenvalue is then labeled by the set of magnons: y-roots {yx }x=1..n and w-roots {w};—1. s as

tu)ly, w) = Alu,y, w)ly, w) (2.4)

where we reparametrized py with u as zi + x% =ux i. The eigenvalue A(u,y,w) can
0

be written as
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Ry(u) = [[(x(uw)—y;); Qu(u) = [J(u—w); RE (u) = [] (z(u) - 27). (2.6)
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and the B quantities can be obtained from the R-s by replacing x(u) with 1/x(u):

N 2L
By(u) = [[(1/z(w) — y;); B (u) = [T(/z(w) —23) (2.7)
j=1 j=1

Shifts are understood as f*(u) = f(u + Q—Zg) and we assumed that the total momentum
vanishes: > ;p; = 0, which is enforced by the level matching condition. Finally, x(u) is
defined by z(u) + 1/z(u) = w.

The actual values for the roots can be obtained from the Bethe ansatz equations, which
originate from the regularity of the transfer matrix. Indeed, the transfer matrix has to be
regular at z*(u) = y;, which implies the quantization conditions

R {R(—) Q++} R() Q)
R i =regular — {—— =0  (28)
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The corresponding Bethe ansatz equation reads explicitly as

zd)v — Yj ZU 2
i = He o[22k H 4 =1 (2.9)
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where v; = y; + (n ! Similarly, the w-roots are quantized via the regularity at u = wy

R-OQF+ BtQ-—
Y %“’ + Qf“ =0 (2.10)
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Using that
R,B al
Q, = —2Y_ = U — v; 2.11

we can write the corresponding BA equation as
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We note that the Bethe ansatz method provides eigenstates, which are highest weight
states for the symmetry algebra. Descendent states can be obtained by applying symmetry
transformations. They show up in the Bethe ansatz equations as roots at infinities. The
Bethe ansatz equations assumed a specific order of creating excitations (1 — 3,3 — 4), i.e
they are valid in a specific grading. Later we explain how to switch between different gradings.

2.2 Integrable boundary states and overlaps

Integrable boundaries can be represented as boundary states in spin chains [20]. They can be
parametrized by K-matrices, which satisfy the boundary K-Yang Baxter equations involving



the scattering matrix S. These equations are very restrictive and in the su(2|2). case we
found two types of solutions [21]:

ki ka+e® 0 0 0 f@ 0 0
1 2
KW = hy etk 0 0 go_ -f® 0 0 0
0 0 0 fo 0 0 ki kyte®
0 0o —fM o 0 0 ke—e® Iy
(2.13)
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with k1ks — k% = 1, and

e®(p) = : M, FA(p) = ‘ \/QCTF(QC)Q_HUg (2.15)
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and some parameters k; and ;. Both matrices have osp(2|2) symmetry, but they differ in
which way this symmetry is embedded into su(2|2)..

Every solution of the K-Yang Baxter equation leads to an integrable boundary state. We
first create a two-site state and then distribute it homogeneously aloung the chain

(Uk| = (1] @ (Yo @ -+ @ (il (W] = (al @ (b|Kap (2.16)

a,b

We investigated the overlap corresponding to the boundary state built from K in
detail and found that the non-vanishing overlap requires the following selection rules for the
roots. The momenta of the particles, i.e. the inhomogeneities of the spin chain, should come
in pairs p; = —par+1-; as well as the v-s, v; = —vny1-; and w-s, w; = —wpr+1-4, and their
numbers should be related as N = 2M. In this case the overlap takes the form [21]

KYwly. W) _arn v Ry(zs)? L detGY
(v, wly, w) T Ry(0) Qu(0)Qu(s;)det G~

(2.17)
where G* are related to the factorization of the Gaudin determinant for the paired state

<8vi¢vj)N><N <8vi¢wj>N><M =G.G_ (2.18)
(awigbvj)MxN (awi¢wj)MxM

These formulae are valid for even M. For odd M the function Q. (u) has a zero root
M-1

Ware = 0, Qu(u) = qu:Tl (u? — wjg) = uQy(u). In this case Q, has to be used, instead
of Q. Also the factorization of the Gaudin determinant involves this special root in a
particular way, see [21, 26, 27] for details.

Our result is very general and describes overlaps in various physical situations. The
different cases are distinguished by how xs; depends on the coupling constant.



2.3 Weak coupling limit

At weak coupling the su(2|2). symmetry reduces to su(2|2) and the inhomogeneous spin
chain becomes rational. In this spin chain we have three different type of roots u(¥, which

describe how we flip the labels starting from all the 1s, and three different type of ); functions,

Q; = vaz’l(u — u(z)) The y type roots can scale at weak coupling either as y ~ % or as

J
2)

Y~ ﬁ distinguishing between type 1 and type 3 roots. The w roots scale as w ~ % and

they become the type 2 roots. A type 1 root u!) describes how to create 3s from 1s, u(?
creates 4s from 3s, while u(®) creates 2s from 4s. They correspond to a specific grading.
The limit of the K-matrix depends on the behavior of xs at small coupling. If z; does

not depend on g, the K-matrix in the weak coupling limit reads as

kika 0 O
KW (p) = 122 124 8 2 ’ (2.19)
00—+ 0
and the limit of the overlap formula is
(W ey [u)]? _ 2L Ni=Na Ny =y Q1(0)Q3(0) detG* (2.20)

’ Q2(0)Q2(i/2) det G—"

(u[u)

If, however, z; is defined in a g-dependent way, say as s + z;! = %‘9, then the K-matrix
in the weak coupling limit is degenerate

k1 ko+ —=500

u+i/2
ko — —2—  k 00
KO | ™2 Ou+z/2 04 ol (2.21)
0 0 00

and the limit of the overlap formula is

|<‘I’K<1>|u>’2:k2L—2Nl Ql(iS)QQS(O) det G*
(ufu) ! Q1(0)Q2(0)Q2(i/2) det G~

with the selection rules N; = Ny = N3. These results are valid in a specific grading.

(2.22)

We can easily calculate the weak coupling limit of the second type of boundary K-matrix,
K@ and realize that K and K® are related by the 1 <+ 3,2 <> 4 flips. This, however,
is nothing but choosing a different grading. In the following we investigate how changing
the grading will transform the overlap formulas in order to describe the overlaps with the
K-matrix K@,

3 Overlaps and dualities for rational su(2|2) spin chains

First we recall the overlaps in the su(2) spin chains as we will encounter the same quantities
later when we analyze the su(2|2) spin chain.



The generic su(2) K-matrix is nothing but the one, which appeared in the weak coupling
limit in a 2 by 2 box and has the form

k ky+ 7

K (u) = ( S ) (3.1)
ko — uti/2 ka

The corresponding boundary state has the following overlap with the Bethe states [28, 29]

(lw)®  Qi(is)* detG*
(ufu) Q1(0)Q1 (%) det G-

In this section we do not pay attention on scalar prefactors. The overlap has two interesting

(3.2)

limits. For s — 0 the K-matrix becomes symmetric and the overlap takes the form

K(u) =

(3.3)

ki ko \ (W ) |? N Q1(0) det G+
kg k4 ’ <u|u> Ql(%) det G~

while in the opposite s — oo limit the K-matrix is anti-symmetric with the overlap

(o) kWP 1 detGt
K(u)_(lo)’ i)~ Qu0)Qi(3) det G- (34)

Let us turn now to the su(2|2) case.

3.1 Gradings, nesting and overlaps in the regular case

For the rational su(2]2) spin chains there exist two types of integrable K-matrices corre-
sponding to the two different realizations of the unbroken osp(2|2) symmetry and they come

with chiral pair structures:

k1 k20 0 0-s 00

KO k2 ks 0 0 7 @ _ | 0 00 ' (3.5)
0 00 -—s OOkle
0 0s O 00k2]€4

They are related to the g — 0 limits of the two K-matrices for the su(2|2). case. We fix the
normalization of the K-matrices by demanding that kiks — k% = 1. These two K-matrices
are related to each other by the 1 +» 3,2 +> 4 changes. As these changes are also related
to nestings and gradings we recall them now.

In the diagonalization of the super spin chain transfer matrices we can use different paths
for the nesting. Let us choose the pseudo vacuum as A; and the magnons u™, v, u®) such
a way, that they change the flavors as A; — A, Ay — Ag, A3 — Ay, respectively, where
Ap € {1,2,3,4} all distinct. We denote this nesting as (A1, A2, A3, A4). In particular, for the
nesting (1,2, 3,4) the Bethe state with magnon numbers Ny, Ny, N3 will have the following
number of 1,2,3 and 4 labels: #1 =L — Ny, #2 = Ny — Ny, #3 = N3 — Ny and #4 = N3.
This nesting corresponds to the grading (++ ——) and the Dynkin-diagram O — ® — O, where



+ corresponds to bosonic/ferminic indices and the bosonic O versus fermionic ® nodes encode
if there is a change in the nature of the labels. Another example is the nesting (1, 3,4, 2)
where #1 = L — Ny, #2 = N3, #3 = N1 — Ny and #4 = Ny — N3. The grading is (+ — —+),
while the corresponding Dynkin-diagram is ® — O — ®. Bethe states depend on the nesting.

The overlap of a Bethe state with a boundary state depends both on the nesting and the
type of the K-matrix. For the nesting (Aj, As, A3, A4) and K-matrix K@ we denote it by

. 2
S§A1,A2,A3,A4)(u) — W (3.6)

Since the two K-matrices are connected by the changes 1 <> 3; 2 <> 4, the overlaps are
also related

S§A1,A2,A3,A4)(u) _ S§A1,A2,A3,A4)(u)’ (3.7)
where 1 = 3;2 =4;3 = 1;4 = 2 . The above changes leave invariant the S-matrix implying
that the Bethe equations and the Bethe roots are the same on the two sides. We have already
obtained the overlap S§173’4’2) from the g — 0 limit as
G134 Q1(0)Q3(0) detG*
! Q2(0)Q2(i/2) det G~

with the selection rule Ni + N3 = 2Ns. By using the relation (3.7) we can easily write the
overlap for the other type of K-matrix in the opposite grading

2 Qu(0)Qs(0) derG*
2 Q2(0)Q2(i/2) det G~

The natural question is, how we could describe this second overlap in the original

(3.8)

(3.9)

grading or in any other gradings. In order to get this result, we have to apply fermionic
dualities [30]. The fermionic duality expresses the Bethe roots u in a given grading with
the dual Bethe roots @ in the dual grading. The original overlap written in terms of the
dual roots provides the overlap in the dual grading S (u) = Sﬁi(ﬁ). There is, however
an important difference. Although the original overlap corresponds to a (highest weight)
Bethe state |u) the dual overlap corresponds only to a descendent state, which can obtained
by acting with some fermionic generator |u) = Q|a) on the h.w. Bethe state |@) in the
dual grading. This implies that

(el a oage _ [TelQ®)
oy 02 W= SR =T

In order to calculate this (descendant) overlap we use the fermionic dualities. The duality

(3.10)

transformation involves two steps: the changing of the Gaudin determinant and using the
QQ-relations. The Gaudin determinant transforms as

Qafl(i/2)Qa 1(1/2) det G+ : —
det G+ N Qa(O)éa?O) Qe if Ny = even 3.11)
det G_ Qa(O)Qa(O) det é+ : _ ’
Qo1 (/@1 (72 dot 6= 1 Na = o0dd




where Q, denotes the Q-function after the duality transformation, for the new type of a
root. The QQ-relation reads as

Qa(1)Qa(u) ~ Quy1(u+17/2)Qa—1(u —i/2) — Quy1(u —i/2)Qa—1(u+1i/2) (3.12)

In showing these relations, one has to be careful and investigate the role of zero roots. Their
presence depends on the parity of Ny—1 + Ng41 and they imply non-trivial relations between
Q-functions. For instance, if N,_1 + Nyy1 is odd then Qu(0)Qu(0) ~ Qa+1(7/2)Qa—1(i/2)
and the Gaudin determinants are proportional to each other. A careful analysis shows that
both N7 and N3 should be even and N7 4+ N3 = 2Ns. In this case the following transformation
rule can be applied:

Qa(0) = Qa(0) ™' Qu-1(i/2)Qu+1(i/2) (3.13)

Let us start from the overlap (3.9) and perform a duality on Q3. Using (3.13) we obtain

553,1,4,2)N Q1(0) detG N Q1(0) detG (3.14)

Q2(0)Q3(0) det G=  Q2(0)Q3(0) det G
Since we keep track of the grading in the notation it would be confusing to carry the tilde
over the duality (and further dualities) thus we suppress it in the notation. Each quantity,
Q , detG* is understood in the respective grading.
A further duality at ()1 provides the sought for overlap in the grading (1, 3,4, 2)

i det G+
551,3,4,2) - Qz(g) € . (3‘15)
Q1(0)Q2(0)Q3(0) det G
We can also reach by dualities the overlap in the grading (1,2,3,4)
2 .

Q10)Q1(i/2) 1 Q3(i/2) det G-

which agrees with the overlap formulas of the su(2) subsectors. All of these overlaps have
factorized forms but they might not correspond to Bethe states in the new grading. In the
appendix we investigate carefully in which gradings the boundary state can have overlaps
with Bethe states and calculate carefully the scalar coefficients.

3.2 Non-invertible K-matrices and overlaps of descendant states

Let us now investigate the non-invertible K-matrices, since they appear in the relevant
applications. They again come in two types

ki ket i 00 00 0 0
S
K _ | Rowm R 00 e 00 0 0 s
0 0 00 00 ki ket
0 0 00 00k — %75 ka



which are the weak coupling versions of the K-matrices when x, is g-dependent. Since in
the g — 0 limit we obtained the overlap for the first type of K-matrix

g(1842) Q1(i5)%Q3(0)  det G+
' @1(0)Q2(0)Qa (%) det G-

we can use the transformation 1 <+ 3; 2 <> 4 to obtain the overlap of the second type of

(3.18)

K-matrix in the opposite grading
g(3124) | Qi(is)’Q3(0) det G*
’ Q1(0)Q2(0)Q2(%) det G—

which has a factorized form. We now would like to calculate this overlap in the original

(3.19)

grading (1,3,4,2). This amounts to use the duality transformation for Qi:
g(1324) Q1(0)Q1(is)*Q3(0) det G+
2 Q2(0)Q2(2)?  det G-
written in terms of the new @Q1(0). But then the previous Q(is) term, denoted by Q1 (is) in
this grading, is problematic as it should be expanded by the QQ-relations Q; ~ Qfl(Q;QQ_ —
Qy Q7) used at s # 0 implying that the overlap S5 (13249 oes not have a factorized form
(1324 Q1(0)Q1 ((Qy (i5)Q5 (is) — Qy (is)Q3 (i5))*Q3(0) det G
? Q1(i5)Q2(0 )Qz(%)z det G~

This seems to contradict with the assumptions in [30], that overlaps of Bethe states have

(3.20)

(3.21)

factorized forms. The way out is what we explained, that the Bethe state under duality
transforms to a descendant state. If both the Bethe state and its descendants have non-zero
overlaps then they differ only by some constant factors, what we typically omit. If, however,
the highest weight Bethe state has a zero overlap, and only the descendants overlap, then
this overlap is not necessarily factorizing.

For K@ the non-vanishing overlaps require the selection rule #1 = #2 = 0. From
considerations in appendix A it follows that there are no Bethe states with non-vanishing
overlaps for the gradings (1,2,3,4), (1,3,4,2), (1,3,2,4), (3,1,2,4) and (3,1, 4,2) therefore
only descendant states can have non-vanishing overlaps there. For the grading (3,4, 1,2)
Bethe states can have non-trivial overlaps. This overlap is non-vanishing only in the su(2)
sector when Ny = N3 = 0. Since we know the su(2) overlaps, we can write that

g(3412) Q1(is)? detGT
’ Q1(0)Q1 (1) det G~

This grading is very special for the boundary state corresponding to K (2 since this is the only

(3.22)

one, when there are Bethe-states with non-vanishing overlaps. The corresponding overlap has
actually a factorized form. For gradings where only descendant states can have non-vanishing
overlaps, the overlap does not necessarily factorize. Indeed, for the grading (3,1,2,4) it has
but for (1,2,3,4) or (1,3,4,2) it does not.

In appendix A we investigate explicitly the relations between Bethe states in one grading
and descendant states in other gradings. Besides determining the requirement for non-
vanishing overlaps we also demonstrate how the precise overlaps for descendant states can
be calculated. This amounts to use heavily the su(2|2) symmetry algebra (A.2) and the
0sp(2|2) symmetry of the boundary state (A.5).

,10,



We close the section by summarizing what we have learned so far.

o The overlaps corresponding to the two types of K-matrices (3.5) can be described by
the same formulae, but they belong to opposite gradings (3.7).

e In order to obtain the overlaps of the other type of K-matrix in the original grading, or
other gradings, we can use the fermionic duality formulae. These formulae, however, in
special gradings can lead to non-factorizing overlaps, signaling that the overlap of the
Bethe state vanishes. There are special gradings where all Bethe states have vanishing
overlaps and only descendants state can overlap with the boundary state.

o For descendant states the overlaps can be expressed in terms of the overlaps with Bethe
states in another grading. In doing so one has to use the duality formulas. together
with the connection between Bethe states (A.1), the osp(2]2) symmetry of the boundary
state (A.5) and the su(2]|2) symmetry algebra (A.2).

We are going to face similar situation for the centrally extended su(2]2). algebra and the
corresponding K-matrices. Before turning to this situation we extend the previous analysis for
gl(4]4) overlaps, which appear at the weak coupling limit of the AdS/dCFT correspondence.

4 Overlaps and dualities for rational gl(4|4) spin chains, the leading order
’t Hooft line

The weak coupling limit of the integrable description governing the AdS5/CFTy duality can
be described by the gi(4]|4) spin chain [31]. In the following we lift the previous result for
this case. The bosonic part of the gl(4]|4) K-matrices are diagonal sums of the form

K=K%aK. (4.1)

As for the su(2]2) case, there are two solutions of the bYBE, which can be distinguished
how they transform for transposition in the respective sub-spaces. For the first solution
KO: (K0®)" = K0, while for the second K): (K@:®)" = K. In the
AdS5/CFT, context the (+) bosonic subspace corresponds to the isometries of S° while
the (—) bosonic subspace to the isometries of AdSs. The boundary related to K() breaks
the isometries of S° and AdS; to SO(3) x SO(3) and SO(2,3), respectively, which is the
bosonic symmetry of the D3-D5 domain wall defect. Contrary, the boundary related to K®)
breaks the isometries of S° and AdSs to SO(5) and SO(2,1) x SO(3), respectively, which
is the symmetry of the 't Hooft line.

Since we have already obtained the weak coupling asymptotic overlaps for K(I, our goal
is to derive the overlaps corresponding to the other K-matrix K2 and demonstrate that these
overlaps indeed describe the 't Hooft line at weak coupling. We are going to achieve this goal
by exploiting the connection between the K-matrices K(1):(F) = K@:(F) and using various
51530102030405060708) for the K-matrix K*) in

the grading 6; (6; = £). By using the connection between the K-matrices we have the relation

duality transformations. Let us denote the overlap

859192930495969708) _ 55_917_927_937_947_957_967_977_98). (4.2>
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We start with duality transformations for the first type of overlaps S7. For the alternating
Dynkin diagram ® — O — ® — O — ® — O — ® there are two gradings (+ — — + + — —+)
and (— + 4+ — — + +—), in which the massive particles (related to (4) correspond to the
SU(2) or SL(2) sectors, respectively. For the grading (+ — — + + — —+) and the K-matrix
KW, the weak coupling overlap is

GF——t =) _ Q1Q3Q4Q5Q7 det G
' Q2Q3 Qf QsQq det G~

where Q; = Q;(0), Qj = Qj(%) denote the Q-functions in the given grading. By dualizing
(Y3 we can reach the grading with the overlap

GlF—t—t—) _ Q1Q4Q5Q7 det G*
' @2Q3QsQg det G~

As we explained before the meaning of Q3 and the ratio of determinants is different from

(4.3)

(4.4)

the previous formula and they are all understood in their respective gradings. Performing
a duality on @5 leads to

GlH—H——t—F) _ Q1Q4Q4 Q7 det G+
h = —. (4.5)
Q2Q3Q5Q det G
Finally, dualizing (1 and ()7 we obtain
ittt - Q3 Q4Qi Qg  detG* (4.6)

 Q1Q2Q3Q5Q6Q7 det G~

which is the overlap for the same alternating diagram, we started with, but with the massive
particle in the SL(2) sector. By using the identity, which relates the two K-matrices (4.2),
we can obtain the overlap of the other K-matrix for the alternating diagram with massive
particles in the SU(2) sector as

GlF—— =) _ Q3 Q1Qf Qg det Gt
2 Q1Q20Q3Q5Q6Q7 det G~

In order to compare this overlap with results for the 't Hooft line we perform various duality

(4.7)

transformations. Let us first calculate the overlap in the grading O —® -0 —-0—-0—-® — O
with (— — + 4+ 4+ 4+ ——). Dualizing @1 and Q7 leads to

(4t Q1Q4QF Q7 det GT
%2  Q2Q3Q5Q6 det G (48)

By dualizing further QQ2 and Qg we obtain

Glm—HH+—) _ Q1Q2Q4Q; QQ7 det Gﬁ
2 Q1 Q3QF Q5QF QF det G-

We can project this result into the SO(6) subsector by switching off other excitations. The

(4.9)

overlap is simply

Gl—tHtt——) _ QaQf  detG*

: = 001 05Q7 det G (4.10)
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which completely agrees with the SO(5) overlap formula in the SO(6) sector of the 't Hooft
line [12].
By dualizing further we obtain that

Sl @2Q3Q4Q5Qs  det G (4.11)

QT QT QI QI QrQF det G

which in the SL(2) subsector leads to

Glt————t+) _ Qa det G*

= —— 4.12
2 TdetG—’ (4.12)
in complete agreement with [12].
Performing one last duality leads to
(it Q1Q203Q4Q6Q7F  det GT
S = S oroto.0F0.0F - (4.13)
Q7 Q5 Q3 Q5Q5 Q7Q7 det G
which provides the overlap in the gluon subsector
N det G*

st ++4) _ Q3 de (4.14)

N @det G~

agreeing with [12].

In conclusion, we have determined the overlaps of the second type of K-matrix, K® in the
various gradings and demonstrated that they reproduce all the overlaps which were available
for the weak coupling limits of the 't Hooft line. Motivated by this matching we calculate the
overlaps of the second type of K-matrix for the su(2|2). spin chains in the next section.

5 Overlaps and dualities for the su(2|2). spin chain

In the su(2|2). spin chain there are only two non-equivalent gradings. In the first the
pseudovacuum is a bosonic tensor-product state |0°) = |1)®2L from which the y roots create a
fermionic label, say 3 and then the w root another fermionic one with 4. Due to the 34 — 12
scattering process, states with label 2 are automatically created. We can introduce the bosonic
and fermionic quantum numbers n, = #1 — #2, ny = #3 — #4, such that the corresponding
Bethe states |y, w)? have the quantum numbers n, = 2L — N and ny =N —2M. We have
obtained the normalized overlap in this grading for the first type of K-matrix as

_NRy(zs)? 1 det GT
© R 0) Qu0)Qu(Z) det G

Sy, w) =k Ng (5.1)

where N = 2M.
Alternatively, we could use the fermionic pseudo vacuum |0/) = |3)®2L to create Bethe
state, by flipping fermions to bosons first, and then bosons to bosons. Actually the transfor-

mation 1 < 3,2 <> 4 not only changes the gradings but also exchanges the two K-matrices.
This implies that the overlap corresponding to the other K-matrix K® can be described

,13,



by the same overlap formula in the other grading, when the Bethe state is created from
the fermionic vacuum

S{(y,w) = Sty w), (5.2)

thus
N Ry(xs)? 1 det GT

° Ry(O) Qw(O)Qw(i) det G~ ,

where again, the various @-functions and determinants are understood in their own grading.

Sf(y, w) = k" Nz (5.3)

This could be the result for the overlaps in the case of the 't Hooft line for any coupling,
when wrapping effects are neglected. We, however, would like to calculate the same overlap
in the bosonic grading. In doing so we need to implement the duality transformations [32].

5.1 Duality relations

Let us dualize the y-roots in order to describe the transfer matrix eigenvalue in the other
grading. We start from the bosonic grading and the Bethe state |y, w)?. The idea is to
investigate the quantity, which is related to the y-type Bethe ansatz equation (R(_)Q; -
RMQE). By definition it vanishes at x = y;. Let us calculate the leading orders of this

expression
2L+M—1
ROQy —~RHEQE =0 x 2 M 4+ 3™ b 4+ (RE(0) - RH(0)) x 271 (5.4)
c=—M-+1

Since R(7)(0) = R (0) the expression 2™~ 1(R(Q, — RHQ) is a polynomial of order
2L + 2M — 2 and it has zeros at * = y;. Let us denote the remaining zeros by gy; and
their generating function by 7~2y:

Ry = [[(x(u) - 7) (5.5)

They are defined by
PMHUROQ, - RMQE) = ARyR, (5.6)
where A is a constant and by comparing the degrees we can see that N = 2L +2M — N — 2.

We have also a similar equation for the B quantities:

1

1 (87Q, ~ BYQY) = AB,B,. (5.7)

The dual Bethe roots ¢ satisfies the dual Bethe equations. They can be obtained by
evaluating (5.6) at « = §; leading to

R QF }
— v =0 (5.8)
{R(Jr) Q’w x(u)*

=Y,
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By evaluating (5.6) at u — w; + % and taking the ratio we have the equations
Ry Ry ("I ROTQET -
R, Ri\e)  ROQu )
U=wp
B+ B (o~ \M 7 Bt
Y = 7% — —_— (5.10)
By By :U+ B(_)_Qw
u=wy

e mne )
uU=w;

and

This implies that

ST RyBy Ry By Quo
meaning, that the dual roots satisfy the same Bethe equations as the original ones but they
correspond to different solutions. The corresponding Bethe states |y, >f have the quantum
numbers ny = N — 2M = 2L — N — 2 and ny = 2L — N =N—-2M + 2, therefore the
Bethe states |y, w)/ and |y, w)® are not equal but they are in the same su(2/2), multiplet
and they are connected as

- 4
7, w)! = Qi QL y, w)’ (5.11)
where we used the standard notation for the su(2|2). generators, see appendix B for details.

5.2 Dual overlap formulae

We now derive the dual overlap formulae. At first let us check the selection rules. From
the form of the K-matrix K we can see that the non-vanishing overlap requires n, = 0,
i.e. 2L = N. However, Bethe states could contain maximum 2L — 2 y-roots, therefore they
must have vanishing overlaps and only descendant overlaps can be non-zero. Let us denote a
descendant of the Bethe state |y, w) by |y, w, d) and the corresponding overlap by S5(y, w, d).
All these descendants are in the same su(2|2). multiplet as |y, w)/. It implies that their
overlaps are proportional to Sg (y,w):

2N NR (z5)2 1 det G

Sy(y, wid) = CaS§(y, w) = " TR0) Qu0)Qul _) det G

(5.12)

d refers to the specific descendant state and Cy is its corresponding proportionality factor
to be fixed.

In expressing the overlap in terms of bosonic quantities we start with the ratio of
determinants. We investigated this quantity in many cases numerically and observed that

det Gt _ detG*
det G- ~ detG-

(5.13)
was always satisfied. The sign difference is irrelevant when we compare squares of overlaps,

which is natural as the phases of Bethe states are conventional. The remaining part of
the dual overlap formula (5.12) is still not satisfactory as it contains the dual Bethe roots,
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7~€y. We would like to express the overlap with the original Bethe roots only. In doing
so we use the identity

IL‘M_l
Ry(2s)Ry(xs) = I (R (25)Qu (5) = R (24) Q5 (5)) (5.14)

where the prefactor A can be obtained by evaluating the identity at zero:

L .
_ )
23 (= —27) —M] (5.15)
=1
The overlap then can be written in terms of purely bosonic quantities as
RO (2,)Qy (s) ~ RY) <xs>@$<s>>2
Ry(zs)

Ry(0) 1 det Gt
REIO)A(L (2L — 200 — A) Qu(0)Qu(zy) det G

L(2L —2M) — A
g

Ry (0)Ry(0) = R (0) 1 ,

Sg(y,w; d) = Cdk%L_NargM*N*Z (

X

(5.16)

Clearly, this is not a factorized overlap which is related to the fact that only the descendants
can overlap with the boundary state in this grading. There is only one example when the
overlap is factorized which is the s = 0 case when

o n—2 (R = (=DMR)(i))* R,(0) Qw(%) det G

B RE(0)A(L(2L = 2M) — A) Ry(i)? Qu(0) det G—

Sa(y, w;d) = Caki" N (5.17)

We can also take the g — 0 limit. Assuming that the unfixed parameter x is regular

in the g — 0 limit (i.e. z;, = a + O(g) where a # 0) we obtain that
1 @det Gt
Q1Q3 Q2 det G~

which agrees with our previous result (3.15).

. b . -
lim 3(y, wid) (5.18)

If we would like to calculate also the normalization constants (which is necessary when
we want to compare the formulas with the actual overlaps) then we need to know the relation
between the descendant state with non-vanishing overlap and the dual state. The simplest
case happens when N = 2L — 2, since then the descendent state can be

v, w; —2,2)" := Q4 Q) |y, w)® (5.19)

which is just |y, w)/ implying that C_22 = 1. Here the descendent is labelled by its n; and
ny quantum numbers. Clearly both Q},) and Q;l decreases nj, and increases ny by 1.
Let us see an other example for a descendant of N = 2L — 2 with a non-vanishing overlap

ly, w; —2,0)" := Q4 Qj |y, w)° (5.20)

In this case we also need to use the symmetry properties of the boundary state and have to
calculate the norm of the descendant state. The calculations are relegated to appendix B. The

2 .
final result is that C_o ¢ = (%:) %-

how to calculate the normalizations properly.

In appendix B we provide more examples

We have tested these formulae numerically very extensively for various spin chain sizes
and randomly chosen rapidity parameters, so we are quite convinced about their correctness.
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6 All loop overlap for K®, the asymptotic ’t Hooft loop

In this section we present formulae for the asymptotic overlaps with su(2|2), ® su(2|2),.
symmetry. We analyze the boundary K-matrix of the form

K® (p) = Ko(p) K (p) @ K@ (p) (6.1)

where Ky(p) can be fixed from unitarity, boundary crossing unitarity and additional physical
requirements. Different Ky(p) factors correspond to different physical situations. We will
not distinguish them and keep Ky(p) in its abstract form.

The large volume spectrum of the AdS5/CFT4 correspondence is described by the
asymptotical Bethe ansatz based on the factorizing S-matrix (2.1). We put 2L particles in
a finite volume J (the R-charge) and demand the periodicity of the wave function. This
problem reduces to the diagonalization of a tensor product of two su(2|2). transfer matrices
t(u) ® t(u). They can be done separately for the two copies. We distinguish the left and
right factors by an upper index o = 1,2:

t(w)]y @, W) = Au, y'), w(®) |y, wl) (6.2)

They satisfies the same Bethe equations but are typically different solutions. The quantization
of the momenta requires

e%ri 1= i’ H So(pj,pk)A(’U,j,y(l),W(l))A(Uj,y(Q),W(Q)) =1 (6.3)
kik#j
In order to have a non-trivial overlap, momenta should come in pairs p = {p™,p~},
such that pt = —p~ and J = 2L. The overlap of the boundary state built from the tensor
product K matrix factorizes into two su(2|2). copies. We should decide again in which
grading we are interested in the formulas. The simplest is choosing fermionic grading in
both wings, which leads to

2
‘<‘PK<2>’ b v, (a)>‘ . det G+
1) wNGS (v (2
p,y@, w@ |p, y(@ H Ko(pi) 2S5 (v wi) S (y® w®) =2 (64)
where R ( )2
S 1
St v, W k2L N,—N Ts . 65
2w =R TR0 Qu00@u(3) (6:5)
and the determinants involve also differentiation w.r.t. the momenta:
Gj; = (30;%; + %;%j) (6.6)

Here Ut = {p*, vt w(a)+} collects all the variables and U = {u+, al@+, W(a)+} is the
collection of the properly normalized rapidities [21].

If, however, we are interested in the overlaps in the bosonic gradings then we have to
use the bosonic overlap formulas for descendant states (5.16)

2
(o] 3, wlo); )| Lo , dotG
_ | 1) w32y w®
(D, y(@), wl@); d@) [p, y(@), wie); d@) AE’KO(M Sy WY WE) G

(6.7)
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which do not have a factorized form. Here A is the proper normalization corresponding
to the given descendant state and

RO(24)Qa(5) —R<+><xs>¢2$<3>>2 e (6.8)

Sg(y, W) = < Ry(l's) R(+)(0) Qw(O)Qw(Qig) '

These results are very generic and are valid for any integrable boundaries with the
specifically embedded osp(2|2) @ osp(2|2) symmetries. In order to specify to a physical
situation one has to fix the scalar factor Ky and determine how the parameter z; (which
could be even different for the two factors) depend on the parameters of the model. In the
case of the 't Hooft loop we can compare the weak coupling limit of the formulas with section
4 and conclude that x4 should start at weak coupling as x5 = a + O(g), i.e. it does not vanish
in the limit. It is a challenging task to provide an all loop expression for x;.

7 Conclusions

In this work we developed fermionic dualities for overlaps in su(2|2). spin chains with K-
matrices having osp(2]2). symmetries. These symmetries come in two versions depending on
how the unbroken symmetry is embedded into the full symmetry (2.13). We have previously
calculated the overlaps for one type of K-matrix K (@) in the bosonic grading, which correspond
to the D3-D5 AdS/dCFT setup. In the present work we investigated the other embedding
with K, which has the symmetry of the ’t Hooft loop. The two K-matrices are related by a
boson-fermion duality. As a consequence, the previous overlap formula for K () in the bosonic
grading describes the overlap of K(?) in the fermionic grading. We then developed fermionic
dualities to express the overlap of the boundary state coming from K(? in bosonic gradings.
Gradings encode the information how nesting happens in the Bethe ansatz, i.e. in which
order from a given pseudo vacuum the excitations are created. The nature of the excitations
together with their scatterings depend on the grading and the nested Bethe ansatz constructs a
highest weight Bethe state, which is the eigenvector of the transfer matrix. Descendent states
have the same eigenvalue and are created by symmetry transformations. The same eigenvalue
can be described by different gradings. A Bethe state in one grading is a descendent state in
another grading. Fermionic dualities connect the Bethe ansatz equations in different gradings.
In order to transform an overlap formula we need to use the Q@-relations together with the
transformation of the ratio of Gaudin type determinants. We elaborated these transformations
in the su(2]2) and su(2]2). spin chains together with the corresponding selections rules. We
observed that in certain gradings the overlap formula does not factorize over Bethe roots.
Since after the duality the Bethe state is described by a descendent state in the dual grading
we actually calculate on overlap with a descendent state. If the Bethe state in the dual
grading has a non-trivial overlap with the boundary state then the overlap is factorising and
it differs only by a scalar factor from the descendent overlap. If, however, the Bethe state
does not overlap with the boundary state, then the descendant overlap is not factorising.
We investigated carefully the requirements that Bethe states overlap with the boundary
state. On the way we determined the relations between Bethe states and descendants in the
various gradings, which helped to calculate the proper prefactors in the descendant overlaps.
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Here the symmetry properties of the boundary state was crucial. Eventually, we could describe
all overlaps in all gradings in the su(2|2) and su(2|2). spin chains. By putting together two
copies of overlap formulas we made a proposal for overlaps in the AdS5/CFT4 settings with
symmetries of the 't Hooft line. We confirmed our proposal against all available 1 loop results
in the various subsectors [12]. In order to have a precise all loop description one needs to know
the scalar factor of the reflection factor Ky, together with the explicit form of the boundary
parameter xs. The absence/presence of boundary bound-states could help in this analysis.

As future works, it would be very nice to find Ky and x4, which correspond to the
't Hooft line setting.

As our results relied only on the symmetry of the boundary K-matrix it is valid for other
problems with the same symmetries. In particular, [13] investigates the correlation functions
on the Coulomb branch of planar N' =4 SYM, where the R-symmetry is broken to SO(5)
just as in the case of the 't Hooft loop. If integrability extends to all sectors and all loops,
one-point functions could be described by our formulas, with appropriately chosen Ky and
zs. Our overlaps are expected to be applied in the ABJM theory, where it could describe
asymptotic 3-point function [9], domain wall [10] and Wilson loop 1-point functions [11].
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A Bethe states and descendent states

In this appendix we investigate the relations of Bethe states in different gradings. We start
by parametrizing the irreducible representations of su(2|2) by the Young-tableaux on figure 1.
The Bethe states are highest weight states which correspond these diagrams. They are
obtained by acting with raising operators on the pseudo vacuum. In the (1,2,3,4) grading,
for example, we start with all 1s, then use uV) roots to create 2s, then u(?) roots to flip 2s to
3s from which we flips 4s by u(®). In the corresponding state the multiplicities of |1), |2), |3),
|4) are 2L — Ni, N1 — Na, Ny — N3, N3, respectively. They can be put in the Young-tableaux
as 1s in the first row, 2s in the second row, 3s in the remaining first column and 4s in the
last column. These are kept track by the As, as shown on figure 1. The very existence of
the diagram implies among others that A; > As and Az > A4. In table 1 we relate the
multiplicities of |1), |2), |3), |4) in the various gradings to the labels of the Young-tableaux.
Each Young-tableaux corresponds to a given representation of su(2]2). For a given
grading the nesting procedure provides a Bethe state, which is a highest weight state. Other
nesting uses different creation operators and describes the same representations by different
highest weight Bethe states. A highest weight Bethe state in one grading is a descendent
state in another grading. Let us denote the Bethe state in the grading (Aj, As, As, A4) as
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As

Figure 1. Young-Tableaux parametrizing the representation of su(2|2).

#1 #2 43 #4
(1234) | Ay =2L-N; Ao=Ni—Ny |A3—2=Noy—N3| As—2=Njs
(1,342) | A =2L-N; As—2=N3 |A3—1=N—No|As—1=Ny— Ny
(1324) | A1 =2L—N; |Ay—1=No—N3|A3—1=N,—Ny| A4—2=Nj
(34,12) | Ay —2=No— N3 | Ay—2=Njs Ay =2L — N Ay =N; — N,
(3124) | Ay —1=N, —Ny | Ay —1=Ny— N3 | A3=2L—N; Ap—2=Ny
(3142) | Ay —1=N, — Ny | Ay—2=Njs As=2L—-N; |Ai—1=N,—N;

Table 1. Relation between the labels of the Young-tableaux and excitation numbers in the various
gradings.

\u(A17A27A3,A4)). Bethe states in different gradings can be connected to each other as
1
|u(---7Ak7Ak+17---)> = FAr + # A1 EAkaAk+l|u(---aAk+17Ak7---)>7

where E; ; are the su(2|2) generators which satisfy the relations

(A1)

[Eij, Erg) = Ezngk,l—(—1)([i]HjD([kH[l])Ek,lEi,j — 5j7kEi’l_(_1)([ﬂ+[J'])([k}+[l})5l.,lEk7j' (A.2)

The structure of K@ implies that there is the selection rule #1 = #2. Looking at the
table we can see that the Bethe states have non-vanishing overlaps in the gradings (1,2,3,4),
(3,1,2,4) and (3,4, 1,2) for the representations A; = Ag. In the gradings (1, 3,4,2), (1,3,2,4)
and (3,1,4,2) however A; > Ag cannot be satisfied, thus there are no Bethe states with
non-vanishing overlaps i.e. (¥|u(;349)) = 0 for all Bethe states.

In other words, using the duality we can obtain overlap expressions for every grading,
however not every overlap formula corresponds to Bethe states, some of them corresponds
only to descendent states. E.g., for the grading (1,3, 4,2), taking an irrep with A; = Ay, the
overlap with the Bethe state is zero, but the following descendants have non-vanishing overlaps

(V[E23E24]u(134,2)) # 0; (VB3 1E24lu(134,2)) # 0. (A.3)
These overlaps are given by the expression (3.15) up to a combinatorial prefactor

(] E23E24l0(1,34,2))] _ (8)2 L — N (¥lugs 1 2.4))]?
|E23E 4lu1 3.4.2)) 2 k1) Ni— No+ N3+ 1(usgq24)usioa))

(A4)

which we determine in the next subsection.

— 20 —



A.1 Overlap calculations in the su(2|2) spin chain

Assuming that we fixed the prefactor of 5’53 124) We can calculate the complete overlaps in the

grading (1, 3,4,2) using the connection between the Bethe states of different gradings (A.1),
the exchange properties of the su(2|2) algebra and the transformation properties of the
boundary state. We start with [u 349)) = E13E42|u(31,2,4)) and write

(V[E23E2 4001 34,9)) = ( Uz124)) = (V|E13E23E2 42|03 1.2,4)) (A5)
=(U|E13E23(E22+ Esa)lug i 24y) = Nao(

Ul(3,1,2,4)>

where we only used the su(2]2) algebra and the fact that the Bethe state is a highest weight
state, i.e. Eaalu(s24)) = 0. We now can exploit the osp(2]2) symmetry of the K-matrix
and the corresponding boundary state

S (B K = (— 1)U ZK (V| Ej (A.6)
k

therefore (V|Ey 3K33 + (V|E1 4K34 = —K1 2(V|E3 2, which reads explicitly as

s k
(U|Eyg = —(¥|Bs o — = (¥|Ey4. (A7)
ky k1

Substituting this relation back into eq. (A.5) we obtain that

S
11(3,1,2,4)> = k:TNQ(L - N2)<‘I"u(3,1,2,4)>- (A.8)

S
(V1B B s a) = 3 Na

which expresses the overlap of the boundary state with a descendent state in one grading to
the overlap with a highest weight state in another grading. In order to get the normalized
overlap we need to calculate the norm of the descendent state. This can be done by using
the relations of the algebra and the relations between the different Bethe states:

ug a2 = (A.9)

11(1,3,4,2)>

(
= <U(1,3,4,2)|E4,2[E3,27 Es 3] 11(1,3,4,2)> —{ u(1,3,4,2)>
= (N1 — Na+ N3+ 1){u(1342)|Es2F2 4|01 342)) — (W1 342)|E12F23F3 4001 342))
= N2(N1 — No + N3+ 1)(u(1,349)01,342)-

together with

(uasa2)u0342) = (U324 FeaB31E1 3B 001 9.4)) = No(L — No)(us 124y 031,2,4))
(A.10)

Collecting all the formulas we can express the overlap in the (1,3,4,2) grading in terms of
the overlap in the (3,1,2,4) grading as

{

u(34.2)) _ (5)2 L — Ny (Plugs 12,4))]2 (A1)
N ’

|2 k1 — No + N3+ 1 (usq24)usi24))

11(1,3,4,2)>
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B Overlap calculations in the su(2|2). spin chain

In this appendix we calculate the overlaps of descendant states in the su(2|2). spin chain.
We start by calculating the properly normalized overlap for a descendant with N = 2L — 2
with a non-vanishing overlap

vy, w; —2,0)° := Qi Qf |y, w)° (B.1)

We use the exchange relations of the su(2|2). algebra

[RD,Je] = 88 - %55;110 [L2,3,) = 863a - %550117,

R3] = 650" + 00 L2 17] = 503 + 2o,
{Q:,Q4} = case, (@i, 0]} = cae’Ct,
{Qd, Q) = 8RS + a1 + %5553]141 (B.2)

where C = C! = ig (e*ﬂp/2 — emﬂ), together with the symmetry properties of the bound-
ary state

(TDNQE = izse®nas(PANQ)7 . 1P WP|QF = ize®(TP|Q) %, (B.3)

]{21 kig a k‘4 —k‘g
Naf = , m p— . (B.4)
]{72 k4 _I‘JQ kl

Taking into account the osp(2|2) invariance property of the boundary state

where

k1 (PP1Q) = iz (TP|Q)* + ko (¥)Q4 (B.5)

the overlap simplifies as

1T

k1

1T

(WOy, w; —2,0) :=
kq

(U105 Q4 |y, w)b = (T3, w) (B.6)

In order to calculate the normalized overlap we need to determine the norm, too. It can
be calculated as

(v, w; =2, 0ly, w; =2,0)" = (y, w|Q} "Q} Qi Qi ly, W)’ = (B.7)
= {y, wlQ} (RS + LI + S0y, W)’ — {y, wl{Q]*, 0]} Rily, w)’
= —(igA+1){y. wlQ}'Qily, w)" — (v, w[R{R{ |y, w)"
= —(ig A+ 1)y, wl(RE + L+ JE)y, w)? 2y, wiRy, w)"
= igA(igA+ N —2M +1)(y, wly,w)’

where we used that

1 N .
§H!y,W>b: 2ig Y (z, —af) — L| [y, w)’ = [~igA — L+ M] |y, w)"
k=1
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We also have
(¥, wly, w)! = (v, wlQ7Ql*Q) @} |y, w)*
1
= (v, wlQ} (RS + L + H)Q} |y, w)" — (y, w|CClly, w)"
=igA(igA+ 2L — 2M)(y, wly, w>b

where we used that

2L + —
. x x
(C|va>b = CT|y’W>b =19 Z 7]1 - 7{1 |y7W>b
k=1 L Lk
L + - - +
- L L L ol b _
—ZQZ o ﬁ+\lx_~__\lx_ ly,w)” =0
k=1 k k k k

In summary, the normalization constant turns out to be

o _(:cs>2 (igA + 2L — 2M)
207 \ky) (igA+N—2M+1)

We could repeat the calculation for the other descendant

A
(2L - N —1)

* 3 4
ly, w; —2,0%)° := QL*Q} |y, w)®; C_gor = 3

i
g

Using similar calculations the normalization constants can be fixed.

(B.8)

(B.12)
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