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Abstract

Smoking has a well-established impact on cardiovascular health, notably through ele-
vated resting heart rate and impaired autonomic regulation—both key risk factors. While
nicotine’s acute effects are well documented, the influence of smoking-related genetic
variants on heart rate (HR) responses remains unclear. This study investigated the asso-
ciation between selected smoking-related single nucleotide polymorphisms (SNPs) and
HR dynamics following physical exertion. A total of 661 Hungarian adults completed the
YMCA 3 min step test, with HR measured at rest, immediately post-exercise, and during
recovery at 5 and 10 min. Key indices included post-exercise HR (HR,¢), HR change (AHR),
maximum HR percentage (HRp,x9), and heart rate recovery coefficient (HRR). Genetic
analysis focused on nine SNPs previously linked to smoking behaviours, with a composite
genetic risk score derived from the three most influential variants (rs2235186, rs4142041,
and rs578776). Associations were examined using adjusted linear regression. No significant
relationship was found between any individual SNP and resting HR. However, rs2235186,
rs4142041, and rs578776 were consistently associated with elevated HR,y, increased AHR,
higher HRax%, and slower HRR. The genetic risk score showed significant correlations
with all post-exercise HR measures, suggesting a cumulative genetic effect. These findings
indicate that smoking-related genetic predisposition may influence autonomic cardiovascu-
lar responses to physical activity. Although resting HR remains unaffected, specific SNPs
are linked to post-exercise HR dynamics and recovery, highlighting the potential value of
genetic screening in personalised cardiovascular risk assessment among smokers.

Keywords: smoking; single nucleotide polymorphisms; heart rate recovery; cardiovascular
risk; genetic predisposition; YMCA step test; genetic risk score

1. Introduction

Tobacco smoking is a leading global public health concern, responsible for over 8 mil-
lion deaths annually—primarily due to cardiovascular diseases (CVDs) [1-3]. Approxi-
mately 22% of adults worldwide smoke, with notable gender disparities: 36.7% of men
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versus 7.8% of women. Europe has one of the highest smoking rates globally, with an aver-
age adult prevalence of 28% [4]. In Hungary, the national rate is similarly high (28%), but
among the Roma minority—especially in socioeconomically disadvantaged communities—
prevalence exceeds 70% [5]. Early initiation, heavy smoking, and limited access to cessation
support contribute to elevated CVD risk in these populations, reflected in Hungary’s
persistently high cardiovascular mortality rate [6].

Prolonged smoking induces chronic inflammation; the extra strain imposed on the
circulatory system and the reduction in blood oxygen-carrying capacity all contribute to the
development of cardiovascular diseases [7]. Nicotine and other tobacco constituents acutely
activate the sympathetic nervous system, elevating heart rate (HR) [8], while long-term
exposure can disrupt the balance of the autonomic nervous system and cause instability in
cardiac rhythm [9].

Beyond resting HR, smoking impairs cardiovascular autonomic regulation, primar-
ily by reducing heart rate variability (HRV)—a key indicator of parasympathetic tone
and adaptability. Studies have shown dose-dependent reductions in HRV among smok-
ers [10], acute HR increases after a single cigarette [11], and impaired autonomic reflexes
during physiological challenges [12]. Importantly, HRV improves after smoking cessation,
indicating that autonomic dysfunction may be reversible [13].

Recent genomic research has begun to explore how single nucleotide polymorphisms
(SNPs) associated with smoking behaviour [14,15] and HR regulation [16,17] may influ-
ence cardiovascular responses [15,18-20]. Several SNPs have been identified as linked to
smoking behaviour, nicotine dependence, or dosage intensity [21,22]; it is not yet clear how
these genetic variants may influence heart rate regulation, particularly under conditions of
physiological stress, such as exercise. Large-scale meta-analyses have identified SNPs that
correlate with both smoking behaviour and cardiovascular disease endpoints, suggesting a
shared genetic architecture. Twin and family studies further support a heritable component
to resting and exercise-induced HR variability, with heritability estimates ranging from
30% to 60% [23,24].

Given the strong epidemiological and physiological links between smoking and HR,
and the heritability of these traits, it is plausible that smoking-related genetic variants
influence autonomic cardiovascular control beyond behavioural factors. Mendelian ran-
domisation studies have even suggested a causal link between genetic liability to smoking
and increased coronary artery disease risk [15,25]. Despite these findings, few studies have
directly examined how these variants affect HR responses under physiological stress, such
as exercise.

To our knowledge, no prior study has systematically investigated the relationship
between smoking-related SNPs and post-exercise heart rate dynamics in a population-
based cohort. This study investigates the association between smoking-related SNPs and
heart rate dynamics at rest, following physical exertion, and in recovery, to elucidate
potential genetic influences on autonomic cardiovascular regulation. Integrating genomic
data with physiological phenotyping enhances our understanding of gene-behaviour
interactions and may support more precise cardiovascular risk stratification in populations
disproportionately affected by smoking.

2. Results
2.1. Baseline Characteristics and Lipid Profile

A total of 661 individuals were included in the final analysis: 330 non-smokers and
331 smokers, aged 20-64 years. All participants had complete and validated data for assess-
ments of their basic characteristics, genotyping, physical activity, and cardiovascular fitness.
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Non-smokers had an average waist circumference of 97.22 cm, while smokers mea-
sured 92.71 cm (p < 0.001). The mean body mass index (BMI) was 27.96 kg/m? in
non-smokers and 26.51 kg/m? in smokers (p = 0.001). Systolic blood pressure averaged
126.24 mmHg in non-smokers and 124.24 mmHg in smokers (p = 0.048), whereas diastolic
blood pressure was 79.90 mmHg and 78.62 mmHg, respectively (p = 0.035). Homeostatic
Model Assessment of Insulin Resistance (HOMA-IR) values were 4.37 in non-smokers and
3.70 in smokers (p = 0.046).

Regarding physical activity, work-related Metabolic Equivalent of Task minutes per
week (MET-min/week) values were similar between groups. Transport-related activity was
higher among smokers (1669.42 vs. 1345.26 MET-min/week, p = 0.007), while leisure-time
activity was greater in non-smokers (1340.36 vs. 1007.11 MET-min/week, p < 0.001). Sitting
time was longer in non-smokers (529.29 vs. 413.44 min/week, p = 0.001). Domestic physical
activity levels were similar between groups (2930.61 vs. 2976.23 MET-min/week, p = 0.790).

Lipid profile analysis showed comparable low-density lipoprotein cholesterol (LDL-C:
3.11 vs. 3.15 mmol/L, p = 0.517) and triglyceride levels (1.56 vs. 1.55 mmol/L, p = 0.750)
between groups. However, high-density lipoprotein cholesterol (HDL-C) levels were lower
in smokers (1.26 vs. 1.37 mmol/L, p < 0.001).

Heart rate measurements—including resting, post-exercise, and recovery—did not
differ significantly between groups. Resting heart rate was 77.20 bpm in non-smokers and
77.61 bpm in smokers (p = 0.808). Post-exercise heart rate was 109.79 bpm and 112.25 bpm,
respectively (p = 0.378). Heart rate recovery at 5 and 10 min, recovery coefficients, and
maximum heart rate expressed as a percentage did not differ significantly between groups.

Demographic data indicated that 69.13% of smokers identified as Roma, compared to
32.12% of non-smokers (p < 0.001). A higher proportion of smokers reported poor financial
status (25.72% vs. 14.85%, p < 0.001). Educational attainment differed notably: 71.70% of
smokers had completed only primary education or less, while 36.36% of non-smokers fell
into this category. College or university degrees were held by 14.85% of non-smokers and
3.54% of smokers (p < 0.001).

Alcohol consumption patterns were similar across groups, with no significant differ-
ences in frequency. Medication use for hypertension, diabetes, and dyslipidaemia also
showed no statistically significant variation between smokers and non-smokers. See Table 1
for more details.

Table 1. Baseline characteristics of non-smokers and smokers. Includes anthropometric, metabolic,
physical activity, cardiovascular, and sociodemographic variables.

Non-Smokers Smokers
(n = 330) (n =331) p-Value
Average (95% CI)

Age (years) 43.68 (42.29-45.08) 42.49 (41.16-43.82) 0.182
Waist circumference (cm) 97.22 (95.55-98.88) 92.71 (90.96-94.45) <0.001 *
BMI (kg/m?) 27.96 (27.32-28.59) 26.51 (25.83-27.19) 0.001 *
Systolic blood pressure (mmHg) 126.24 (124.67-127.82) 124.24 (122.26-126.21) 0.048 *
Diastolic blood pressure (mmHg) 79.90 (78.99-80.82) 78.62 (77.48-79.76) 0.035 *
Homa-IR 4.37 (3.61-5.14) 3.70 (3.10-4.31) 0.046 *
Work (MET-min/week) 4881.90 (4229.64-5534.16)  4924.11 (4251.23-5596.99) 0.516

Domains of Transport (MET-min/week) 1345.26 (1153.32-1537.20)  1669.42 (1430.87-1907.98) 0.007 *
physical Domestic (MET-min/week) 2930.61 (2616.53-3244.68)  2976.23 (2654.54-3297.93) 0.790
activity Leisure-time 1340.36 (1137.50-1543.22)  1007.11 (819.53-1194.69) <0.001 *

(MET-min/week)
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Table 1. Cont.
Non-Smokers Smokers
(n =330) (n =331) p-Value
Average (95% CI)
Sitting time (min/week) 529.29 (479.46-579.11) 413.44 (383.16—443.73) 0.001 *
Low-density lipoprotein cholesterol 3.11 (3.01-3.21) 3.15 (3.04-3.25) 0.517
(mmol/L)
Triglycerides (mmol/L) 1.56 (1.44-1.67) 1.55 (1.44-1.66) 0.750
High-density lipoprotein cholesterol 1.37 (1.33-1.42) 1.26 (1.22-1.30) <0.001 *
(mmol/L)
Resting heart rate (bpm) 77.20 (76.13-78.27) 77.61 (76.43-78.79) 0.808
Heart rate after exercise (bpm) 109.79 (107.38-112.21) 112.25 (108.94 115.55) 0.378
Delta heart rate (bpm) 32.59 (30.30-34.88) 34.64 (31.45-37.82) 0.171
Heart rate after 5 min (bpm) 91.92 (90.24-93.60) 94.55 (92.59-96.51) 0.332
Heart rate after 10 min (bpm) 81.13 (79.95-82.31) 82.85 (81.44-84.25) 0.213
Heart rate recovery coefficient 0.23 (0.21-0.26) 0.23 (0.21-0.25) 0.338
Maximum heart rate expressed as percentage 62.60 (61.15-64.05) 63.46 (61.57-65.36) 0.446
Average prevalence in % (95% CI) p-value
Women 63.03 (57.73-68.11) 68.81 (63.51-73.77) 0.123
Roma 32.12 (27.26-37.30) 69.13 (63.84-74.07) <0.001 *
Fi a1 Bad 14.85 (11.33-18.98) 25.72 (21.11-30.79)
nancia Average 55.15 (49.76-60.45) 56.59 (51.04-62.02) <0.001 *
status Good 30.00 (25.25-35.10) 17.68 (13.75-22.21)
Less than primary and 36.36 (31.31-41.65) 71.70 (66.51-76.49)
Education prmaty <0.001 *
Vocational and high school 48.79 (43.43-54.17) 24.76 (20.21-29.77) ’
College and university 14.85 (11.33-18.98) 3.54 (1.89-6.04)
Less than 1 time per month 49.09 (43.72-54.47) 50.80 (45.26-56.33)
Alcohol 1 time per month 33.03 (28.12-38.24) 34.08 (28.98-39.48) 0.641
consumption  More than 2 times per 17.88 (14.03-22.28) 15.11 (11.46-19.41)
month
Anti-hypertensive medication 31.82 (26.97-36.99) 26.37 (21.70-31.47) 0.129
Anti-diabetic medication 7.27 (4.84-10.45) 9.00 (6.20-12.56) 0.423
Lipid-lowering medication 9.39 (6.60-12.90) 9.32 (6.47-12.93) 0.976

BMI: body mass index; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; MET-min/week:
Metabolic Equivalent of Task minutes per week; bpm: beats per minute; HDL-C: high-density lipoprotein
cholesterol; LDL-C = low-density lipoprotein cholesterol. *: Statistically significant difference (p < 0.05).

2.2. The Best-Fitting Genetic Models by SNPs

For each SNP, the heritable model that showed the strongest correlation with the delta
HR was determined. Of the nine SNPs examined, six were found to be dominant; two were

found to be recessive, and one was found to be codominant. The strongest correlation was
observed with the dominant heritability model for the G allele of rs2235186. See Table 2 for

more details.

Table 2. Effects of smoking-related SNPs on delta heart rate using a dominant, codominant, and

recessive inheritance model.

SNP (Risk Inheritance o P
Allele) Model B (95% CI) p-Value R
Recessive 0.542 (—7.295-8.379) 0.892 0.174
rs10490162 (C)  Codominant 1.820 (—2.426-6.065) 0.370 0.175
Dominant 1.080 (—1.285-3.446) 0.400 0.175
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Table 2. Cont.
SNP (Risk Inheritance o 5
Allele) Model B (95% CI) p-Value R

Recessive 0.797 (—2.102-3.696) 0.589 0.175

rs16969968 (A)  Codominant 1.833 (—0.947-4.613) 0.196 0.176
Dominant 1.340 (—0.540-3.219) 0.162 0.177

Recessive 0.808 (—3.255-4.871) 0.696 0.174

rs2036534 (C) Codominant 2.600 (—0.518-5.717) 0.102 0.178
Dominant 1.765 (—0.140-3.670) 0.069 0.179

Recessive 1.522 (—0.393-3.437) 0.119 0.177

rs2235186 (G) Codominant 3.241 (0.830-5.652) 0.008 0.184
Dominant 4.059 (1.654-6.464) 9.74 x 104 0.189

Recessive 1.198 (—0.805-3.200 0.236 0.176

rs2673931 (T) Codominant 1.650 (—1.084-4.385) 0.241 0.176
Dominant 0.870 (—1.602-3.341) 0.490 0.175

Recessive 2.408 (0.252-4.565) 0.029 0.181

rs3762611 (G) Codominant 3.479 (—0.134-7.092 0.059 0.179
Dominant 0.441 (—4.798-5.679) 0.869 0.174

Recessive 0.497 (—1.410-2.404) 0.609 0.175

rs4142041 (A) Codominant 2.427 (—0.301-5.155) 0.081 0.178
Dominant 3.825 (1.110-6.541) 0.006 0.185

Recessive —0.019 (—1.897-1.859) 0.984 0.174

rs578776 (G) Codominant 1.229 (—1.460-3.919) 0.370 0.175
Dominant 2.661 (—0.109-5.431) 0.060 0.179

Recessive 1.265 (—1.836—4.366) 0.423 0.175

rs6517442 (C) Codominant 2.761 (—0.070-5.592) 0.056 0.179
Dominant 1.948 (0.079-3.817) 0.041 0.180

Heritable models with the strongest correlation for SNPs are highlighted in bold.

2.3. Association of Smoking-Related SNPs with Resting Heart Rate

None of the nine SNPs examined showed a statistically significant link with resting

heart rate (HRest). This finding remained consistent when adjusted linear regression

models were used to account for relevant covariates. Figure 1 provides further details

regarding these associations, including confidence intervals and the direction of effect for

each SNP.
rs10490162+ e
rs16969968+ ———
rs2036534 ——e—
rs22351864 e
rs26739314 ———
rs37626114 ——
rs41420414 e
rs578776 —_—
rs6517442 ——
2 -1 0 2 3 4

Beats per minute

Figure 1. Smoking-related SNP association with resting heart rate based on adjusted linear regres-

sion analysis.
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2.4. Association of Smoking-Related SNPs with Heart Rate After Exercise

Three SNPs, namely, rs2235186 (B = 3.387, 95% CI: 0.967-5.807, p = 0.006), rs4142041
(B =4.711, 95% CI: 1.990-7.432, p = 0.00072), and rs578776 (B = 4.063, 95% CI: 0.873-7.253,
p = 0.013), showed significant associations with heart rate after physical activity (HR,¢).
See Figure 2 for more details.

rs104901624 + g
rs16969968- e
rs2036534- e
* rs2235186 e
rs2673931+ —e—
rs3762611 e
* rs4142041 e
* rs578776+ ag
rs65174421 +H————

-2 0o 2 4 6 8
Beats per minute
Figure 2. Smoking-related SNPs association with heart rate after exercise (HR,) based on adjusted

linear regression analysis. *: p < 0.05.

2.5. Association of Smoking-Related SNPs with Delta Heart Rate

Three SNPs, namely rs2036534 (B = 2.408, 95% CI: 0.390-4.426, p = 0.019), rs2235186
(B =3.508, 95% CI: 1.114-5.902, p = 0.004), and rs4142041 (B = 3.980, 95% CI: 1.288-6.672,
p = 0.004), showed significant associations with delta heart rate (AHR). See Figure 3 for
more details.

rs10490162+ k *
rs16969968+ ——e—
* rs2036534 —e—
* rs2235186- e
rs2673931 e
rs3762611 H———
* rs4142041- ——————
rs5787764 —e—
rs6517442 —e—

-4 -2 0 2 4 6 8
Beats per
minute

Figure 3. Smoking-related SNPs association with delta heart rate based on adjusted linear regression

analysis. *: p < 0.05.
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2.6. Association of Smoking-Related SNPs with Heart Rate Recovery Coefficient

Two SNPs, namely, rs4142041 (B = 0.041, 95% CI: 0.019-0.063, p = 0.00028) and rs578776
(B =0.030, 95% CI: 0.005-0.05, p = 0.021), showed significant associations with the heart
rate recovery coefficient (HRR). See Figure 4 for more details.

rs104901621 + >
rs16969968- ———o——
rs2036534 ——
rs2235186- e
rs2673931+ ——
rs3762611- e
* 4142041 e
* rs578776 . am—
rs6517442- ———

~002 000 002 004 006 008
Coefficient

Figure 4. Smoking-related SNPs association with the heart rate recovery coefficient based on adjusted

linear regression analysis. *: p <0.05.

2.7. Association of Smoking-Related SNPs with the Percent of Predicted Maximum Heart Rate

Three of the nine SNPs tested showed a significant association with the percent
of predicted maximum heart rate (HRpax9,): 152235186 (B = 1.848, 95% CI: 0.508-3.188,
p = 0.007), rs4142041 (B = 2.601, 95% CI: 1.094-4.108, p = 0.00075), and rs578776 (B = 2.070,
95% CI: 0.304-3.836, p = 0.022). See Figure 5 for more details.

rs10490162 F *
rs16969968- —e—
rs2036534 —e—
rs2235186- ——
rs2673931+ —e—
rs3762611- e
* rs41420414 e
* rs578776 e
rs6517442- l—-o—i
N N T
Percentage

Figure 5. Smoking-related SNPs association with a percentage of predicted maximum heart rate
based on adjusted linear regression analysis. *: p <0.05.
2.8. Genetic Risk Score and Its Association with Heart Rate Change in Associated Parameters

Genetic risk score was calculated based on the three SNPs (rs2235186, rs4142041, and
rs578776) most closely associated with heart-rate parameters.
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Trend analysis revealed a progressive increase in heart rate-related parameters across
genetic risk score categories (see Table 3). Although HRyest exhibited no significant trend
(p = 0.253), HR,¢, AHR, HRR, and HRy,,x2, displayed significant positive trends (all
p <1 x 107°). Participants with higher genetic risk scores exhibited consistently greater
post-exercise heart rate values and enhanced heart rate reactivity.

Table 3. Trend analysis of heart rate-related parameters across genetic risk score categories.

Genetic Risk Score

0-2

4 6

(n=41) (n =219) (n = 381) p for Trend
Average (95% CI)
HRyest 75.32 (72.69-77.95) 77.03 (75.63-78.42) 77.84 (76.81-78.87) 0.253
HR, ¢ 98.83 (91.72-105.94) 105.75 (102.75-108.76) 115.30 (112.53-118.07) 1.47 x 1078 **
AHR 23.51 (16.87-30.16) 28.73 (26.02-31.43) 37.46 (34.74-40.18) 8.12 x 1077 **
HRR 0.14 (0.10-0.19) 0.19 (0.17-0.22) 0.26 (0.24-0.29) 6.19 x 1078 **
HRhaxo% 55.74 (51.77-59.72) 60.20 (58.37-62.02) 65.42 (63.83-67.02) 6.34 x 1078 **

HRest: resting heart rate; HR,¢: heart rate after the test; AHR: delta heart rate; HRR: heart rate recovery coefficient;
HRpaxo: percent of predicted maximum heart rate; **: p < 0.016 (Bonferroni corrected p-value).

Complementary regression analysis (Table 4) showed that the GRS was significantly
associated with HR,¢ (B = 3.99; 95% CI: 2.49-5.49; p = 2.47 x 10~7) and AHR (B = 1.64; 95%
CI: 0.68-2.60; p = 8.86 x 10~%), HRR (B = 0.028; 95% CI: 0.016-0.040; p = 5.42 x 10~°), and
HRpaxe, (B =2.19; 95% CI: 1.36-3.02; p = 2.93 x 10~7). However, no significant association
was observed for HRyest (p = 0.343).

Table 4. Association of genetic risk score on heart rate-related parameters.

B (95% CI) p-Value
HRest 0.301 (—0.322-0.925) 0.343
HR, 4 3.986 (2.486-5.486) 247 x 1077 **
AHR 1.640 (0.676-2.604) 8.86 x 104 **
HRR 0.028 (0.016-0.040) 5.42 x 1076 **
HRmax% 2.193 (1.362-3.023) 293 x 1077 **

HRyest: resting heart rate; HR,¢: heart rate after the test; AHR: delta heart rate; HRR: heart rate recovery coefficient;
HRpaxe: percent of predicted maximum heart rate, **: p < 0.016 (Bonferroni corrected p-value).

3. Discussion

This study examined the relationship between nine smoking-related SNPs and heart
rate regulation, with a focus on dynamic cardiovascular responses to physical exertion.
Although no significant correlations were found with HRyest, three variants (rs2235186,
rs4142041, and rs578776) demonstrated statistically significant associations with post-
exercise HR parameters, including HR,¢, AHR, HRR, and HRy,x%. These results are
consistent with prior studies demonstrating autonomic dysregulation in smokers, and
they provide a genetic explanation for the physiological patterns previously observed. For
instance, Papathanasiou et al. [26] showed that young habitual smokers exhibit significantly
attenuated heart rate recovery following standardised treadmill exercise, indicative of
autonomic impairment. Dinas et al. [27] reviewed active and passive tobacco exposure and
reported that smoking reduces heart rate variability and slows recovery dynamics during
and after exertion. Barutcu et al. The authors of [12] further confirmed that smokers display
heightened sympathetic drive and blunted vagal tone in response to autonomic challenges.

Our findings extend these physiological observations by identifying three smoking-
associated SNPs—1s2235186, rs4142041, and rs578776—that may underlie inter-individual
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differences in autonomic recovery. Each of these variants is linked to genes with plausible
roles in cardiovascular regulation.

The rs2235186 variant lies upstream of the ADRBI gene, which encodes the f3;-
adrenergic receptor. Altered receptor expression or sensitivity may enhance sympa-
thetic activation during exertion and delay recovery due to sustained catecholamine
signalling [28,29]. The rs4142041 variant is associated with CTNNA3, a gene involved
in dopaminergic reward processing. Although not directly involved in cardiovascular
control, central dopaminergic signalling can influence stress sensitivity and parasym-
pathetic withdrawal [30,31], which may contribute to delayed heart rate recovery and
increased cardiovascular risk in individuals with heightened dopaminergic reactivity. This
interpretation is supported by recent findings demonstrating extensive genetic overlap
between smoking behaviour, schizophrenia, and cardiovascular traits, highlighting the role
of central nervous system pathways in autonomic modulation [32]. Meanwhile, rs578776
resides within CHRNAS3, a gene repeatedly linked to nicotine dependence and autonomic
modulation via cholinergic pathways [33-36]. In addition, smoking-induced activation of
innate immune pathways—such as the cGAS-STING and Toll-like receptor systems—may
amplify sympathetic drive and impair vagal recovery, further contributing to autonomic
dysregulation [37].

In contrast, Linneberg et al. [38] reported a significant association between the
1516969968 polymorphism and elevated HRest in smokers. This result was not repli-
cated in our cohort, possibly due to population-specific factors, environmental influences,
or methodological differences in phenotyping. One plausible explanation for the lack of as-
sociation with HRyest may lie in the metabolic profile of the participants. As HOMA-IR was
included as a covariate in our regression models, its role in modulating autonomic balance
warrants further consideration. Recent meta-analyses have also identified elevated ho-
mocysteine levels—modulated by smoking and genetic polymorphisms—as independent
predictors of autonomic dysfunction and endothelial impairment [39]. Insulin resistance is
known to enhance sympathetic tone and suppress parasympathetic activity, which may
attenuate baseline heart rate variability and obscure genetic associations at rest. In con-
trast, exercise-induced stress may amplify genotype-dependent differences in autonomic
response, revealing stronger SNP associations with post-exercise heart rate traits.

These findings align with known cardiometabolic mechanisms and underscore the
value of incorporating metabolic markers into cardiovascular risk assessment. It also high-
lights the complex interplay between genetic and environmental factors in determining
heart rate regulation. One additional reason for the lack of associations with HRest may be
its high variability in response to acute behavioural and environmental stimuli, such as
stress, physical activity, caffeine intake, and circadian rhythms [40—42]. These short-term
modifiers may mask subtle genetic effects. By contrast, exercise-induced heart rate dynam-
ics are governed more directly by intrinsic autonomic processes, such as vagal withdrawal
and sympathetic reactivation, and may, therefore, serve as more robust phenotypic markers
for detecting genotype-dependent autonomic variation, particularly in populations with
metabolic comorbidities.

Recent genome-wide meta-analyses, including data from the UK Biobank and the
Global Biobank Meta-analysis Initiative (GBMI), reaffirmed the importance of the CHRNAS3,
CTNNA3, and ADRBI loci in regulating cardiovascular and autonomic nervous system func-
tion. These studies identified robust associations between rs578776 (CHRNA3) and nicotine
dependence, rs2235186 (ADRB1) and heart rate modulation, and other variants across
diverse populations [43]. In parallel, advances in Mendelian randomisation methodology—
particularly through the MR-Base platform—have enabled more rigorous causal inference
using curated GWAS summary statistics and automated sensitivity analyses [44,45]. In-
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tegrating these resources strengthens the biological plausibility of our findings and sup-
ports the translational potential of genotype-informed cardiovascular risk stratification.
Recent Mendelian randomisation meta-analyses have confirmed causal links between ge-
netic liability to smoking and increased risk of atrial fibrillation, coronary artery disease,
and autonomic dysfunction across diverse populations [46,47]. Beyond genetic variation,
smoking-induced DNA methylation—particularly at loci such as cg25313468 (REST)—has
been shown to mediate cardiovascular risk and autonomic imbalance, complementing our
SNP-based findings [46]. These epigenetic signals may interact with germline variants to
shape individual autonomic profiles, particularly under exertional stress.

Moreover, our three-variant PGS showed robust, graded associations with key exercise
heart-rate parameters—AHR (p = 8.86 x 10~%) and HRR (p = 5.42 x 10~®)—suggesting
that genotype-guided risk stratification could identify smokers at greatest risk of auto-
nomic dysfunction. Clinically, carriers at high genetic risk might benefit from targeted
[-blocker therapy, nicotinic receptor modulators, or personalised exercise prescriptions
designed to enhance vagal reactivation. From a public-health perspective, early genetic
screening in tobacco-exposed populations could prioritise cessation support and cardio-
vascular monitoring for those most predisposed. This interpretation is consistent with
the results of emerging Mendelian randomisation studies that support the idea that the
genetic architecture associated with smoking plays a causal role in coronary and autonomic
dysregulation [15,18].

Several limitations should be acknowledged. First, smoking status was self-reported
without biochemical verification (e.g., cotinine levels) or pack-year quantification, which
may have led to exposure misclassification. Second, we lacked objective measures of
cardiorespiratory fitness—such as direct VO;max testing or continuous physical activity
monitoring—which could confound heart rate responses. Third, the YMCA 3 min step test
relies on a 60 s manual radial pulse count that is vulnerable to inter- and intra-observer
variability and may underestimate peak and early recovery values compared with con-
tinuous ECG monitoring. Fourth, despite adjusting for a broad range of demographic,
metabolic, and lifestyle covariates, residual confounding by unmeasured acute modifiers
(e.g., stress, caffeine intake, and circadian influences) and by population stratification or
cryptic relatedness may persist. Fifth, our genetic risk score comprised only three SNPs,
capturing a limited fraction of the polygenic architecture of autonomic control, and we
did not examine potential effect modification by sex or age. Finally, the cross-sectional
design, modest sample size (n = 661), and high proportion of Roma participants restrict
generalisability to other ethnic groups and preclude causal inference. Future research in
larger, multi-ethnic, longitudinal cohorts—with continuous ECG monitoring, Mendelian
randomisation analyses, and functional studies—will be essential to validate and expand
upon these findings.

Emerging research on clonal haematopoiesis suggests that smoking accelerates somatic
mutations in hematopoietic stem cells, which may interact with inherited genetic risk
loci and influence autonomic recovery. Integrating CHIP markers into future genetic
models could enhance cardiovascular risk stratification [48]. Taken together, these multi-
layered genomic insights underscore the need for integrative models that combine germline,
somatic, and epigenetic data to refine cardiovascular risk prediction in smokers.

4. Materials and Methods
4.1. Study Design and Populations

A complete and detailed description of the design of this study and the collection
of data has been presented in our previous papers [5,49]. In brief, the survey aimed to
investigate the underlying factors contributing to the Roma population’s markedly poorer
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health status compared to the general Hungarian population, particularly with regard to
the high burden of non-communicable diseases.

All data were collected in 2018 in two counties of northeastern Hungary (HajddG-Bihar
and Szabolcs-Szatmar-Bereg), which have the highest representation of segregated Roma
colonies. This study was conducted by trained healthcare professionals and field workers
who followed standardised protocols throughout the data collection process. Ethical
approval for the study was granted in 2017 (reference no. 61327-3/2017 /EKU).

The Roma sample was drawn from 25 randomly selected segregated colonies, each
with over 100 residents. Within each colony, 20 households were randomly selected, and
one adult from each household was recruited. The general Hungarian sample consisted of
25 individuals randomly selected from each of 20 general medical practices participating in
the General Practitioners” Morbidity Sentinel Stations Program (GPMSSP) [50].

The survey included adults aged 20-64 years and comprised three core components:
(1) a structured questionnaire based on the European Health Interview Survey (EHIS wave
2); (2) standardised physical examinations, including anthropometric and blood pressure
measurements; and (3) fasting laboratory testing for basic metabolic and cardiovascular
risk markers.

Anthropometric measurements (height, weight, and BMI) were performed using cali-
brated SECA devices, with participants wearing light clothing and no shoes. Blood pressure
was measured using validated Omron M6 Comfort devices, following a standardised pro-
tocol: participants were seated and rested for at least five minutes before measurement,
and three readings were taken at one-minute intervals. The average of the second and
third readings was used for analysis. All equipment was regularly calibrated, and mea-
surements were performed by trained nurses and general practitioners. All measurements
were conducted in designated community health centres, ensuring standardised conditions
across sites.

Physical activity and health status were assessed using two validated instruments: the
European Health Interview Survey (EHIS wave 2) and the International Physical Activity
Questionnaire (IPAQ long form). The IPAQ enabled domain-specific and intensity-specific
analysis of physical activity, and results were expressed in MET-min/week according to the
standardised IPAQ scoring protocol. Both instruments have been widely used in European
population studies, and their psychometric properties are well established.

A total of 832 individuals were initially recruited for the study: 417 from the general
Hungarian population and 415 from the Roma population. However, participants with
incomplete genotype and/or phenotype data were excluded from the final analysis. Specif-
ically, 171 individuals were removed due to missing or invalid data in either the genetic or
cardiovascular fitness assessments. As a result, the final analytic sample consisted of 661 in-
dividuals (330 non-smokers and 331 smokers), all of whom had complete and validated
data for both genotyping and heart rate response measurements. A detailed participant
flow diagram illustrating recruitment, exclusions, and final sample size is provided in
Supplementary Figure S1.

4.2. DNA Extraction, SNP Selection, Testing Hardy—Weinberg Equilibrium, Linkage
Disequilibrium, and Genotyping

DNA was extracted from EDTA-anticoagulated blood samples using the MagNA
Pure LC system (Roche Diagnostics, Basel, Switzerland), in accordance with the manufac-
turer’s instructions.

The process of selecting the SNPs and the results of testing Hardy—Weinberg equilib-
rium and linkage disequilibrium have been described elsewhere [51]. In brief, a literature
search on PubMed was conducted to identify SNPs demonstrating a significant effect on
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smoking behaviours and that are consistent with smoking intensity. Nine SNPs were
selected for inclusion in the present study.

Genotyping was performed on a MassARRAY platform (Sequenom, Inc., San Diego,
CA, USA) using iPLEX Gold chemistry by the Mutation Analysis Facility (MAF) service
provider at the Karolinska Institute in Solna, Sweden. The Facility conducted validation,
concordance analysis, and quality control according to their protocols.

4.3. Measurement of Heart Rate Responses to Physical Exertion

The YMCA 3 min step test was used to assess how heart rate changes in response to
physical exertion. Each test began with the subject sitting on a chair in a quiet room for a
two-minute rest period. They were then instructed to step up and down on a 30 cm step or
bench 72 times within three minutes, maintaining a pace set by a metronome at 96 beats
per minute (four beats per step cycle, equating to 24 steps per minute).

Heart rate after exercise was recorded following a standardised five-second seated
recovery period after completing the step test. This minimised the influence of early
autonomic rebound on pulse values. HR was measured at four intervals during the test:
one minute before the test, while at rest, immediately after the test, and five minutes
(HRs5min) and ten minutes (HRjomin) afterwards. Heart rate was assessed manually via
radial pulse palpation for 60 s by trained professionals. This method was chosen because
it is practical for field-based surveys. Although it may slightly underestimate peak post-
exercise values due to rapid early recovery, consistently applying it to all participants
introduces a systematic, non-differential error that is unlikely to bias comparative analyses.
This field-friendly protocol has been validated in multiple population health surveys and
demonstrates excellent reproducibility for both resting and recovery heart-rate measures in
large cohorts.

The difference between HRest and HR,5 was defined as a AHR, which is inversely
correlated with cardiovascular fitness.

AHR = HR, — HRyest

The heart rate recovery coefficient was calculated as an indicator of autonomic cardio-
vascular regulation [52], expressing the degree of heart rate decline after physical exertion
relative to the resting heart rate. It is calculated using the following formula:

HRaft — HRSmin

HRR =
HRrest

The predicted maximum heart rate [53] and percent of predicted maximum heart rate
(HRmax%) were calculated as follows:

HRpax = 220 — age (years)

HRaft

Rmax

HRpoos = x 100

4.4. Calculation of the Individual Effect of SNPs and the Joint Effect Estimated by Genetic
Risk Score

To evaluate the effect of each SNP individually, we tested the three most common
inheritance models—dominant, recessive, and codominant—and selected the model that
exhibited the strongest association with AHR. The selection of the best-fitting heritability
model was guided by the R? value (higher values indicate a better fit) and p-values (lower
values indicate a stronger association) [54]. The most appropriate inheritance model for
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each SNP—based on its association with AHR—was then used to construct the genetic risk
score (GRS).
SNP coding followed the criteria of the selected inheritance models:

(a) Codominant model: the homozygous genotype with the risk allele was coded as 2,
the heterozygote as 1, and the homozygous genotype with no risk allele as 0.

(b) Dominant model: genotypes with one or two risk alleles were coded as 2; those with
no risk allele were coded as 0.

(¢) Recessive model: genotypes with two risk alleles were coded as 2; both the heterozy-
gote and the homozygous genotype with no risk allele were coded as 0.

To explore the genetic predisposition to smoking-related alterations in cardiovascular
physiology, particularly changes in heart rate (AHR), a genetic risk score (GRS) was cal-
culated. SNPs previously associated with smoking behaviour and nicotine dependence
were examined using multivariable linear regression models. The optimisation process
started with the SNP showing the strongest association with AHR (lowest p-value) and
then included additional SNPs in ascending order of p-values. SNPs were only retained
in the final oGRS if they strengthened the model’s association with AHR. Variants that
failed to enhance or weakened the predictive value were excluded. The final oGRS was
then used to stratify individuals into tertiles representing low, moderate, and high genetic
susceptibility to smoking-induced heart rate changes.

For further analyses to minimise the risk of type I error inflation due to multiple
testing, all SNPs were analysed simultaneously within a single statistical model, rendering
multiple comparison correction (e.g., p-value adjustment) unnecessary. However, for
statistical calculations with GRS, a Bonferroni corrected p-value was considered significant
(p <0.016).

4.5. Statistical Analyses

Categorical variables were compared using the chi-squared test, while comparisons
between two subgroups were conducted using the Mann-Whitney U test. The Kolmogorov—-
Smirnov test was used to check whether the quantitative variables were normally dis-
tributed. Where this was not the case, Templeton’s two-step method [55] was used to
transform the variables into a normal distribution. The Jonckheere-Terpstra trend test was
used to analyse the association trend between GRS categories and HR-related parameters.

Linear regression analyses were performed, adjusting for the following covariates: age,
waist circumference, BMI, systolic and diastolic blood pressure, the HOMA-IR index, the
domains of physical activity (work-related, transport-related, domestic, and leisure-time),
sitting time, the lipid profile (LDL-C, HDL-C, and triglycerides), the exercise-related polygenic
score [56], sex, self-identified Roma ethnicity, financial status, educational level, alcohol
consumption, and the use of antihypertensive, antidiabetic, and lipid-lowering medications.

Statistical analyses were conducted using the IBM Statistical Package for the Social
Sciences (SPSS) version 26 (Armonk, NY, USA).

4.6. Ethical Approval

The protocol (61327-2017/EKU) was approved by the Committee of the Hungarian
Scientific Council on Health. All subjects agreed to participate in the study by signing a
written informed consent form.

5. Conclusions

Our findings suggest that smoking-related genetic polymorphisms may not influ-
ence HRyest but can significantly modulate acute cardiovascular responses to physical
exertion. These genotype-dependent differences in post-exercise HR regulation highlight
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the importance of context-dependent genetic effects, specifically, how genetic predispo-
sition manifests under physiological stress rather than at rest [42]. Given the established
prognostic relevance of abnormal heart rate recovery [57,58], such genetically modulated
responses may serve as early indicators of cardiovascular autonomic dysfunction. The
strong predictive value of the GRS underscores the potential utility of genetic screening
in improving cardiovascular risk stratification, particularly in individuals with a high
level of tobacco exposure. As public health moves towards more personalised preven-
tion, genotype-informed models may guide more precise lifestyle recommendations, early
interventions, and resource allocation in at-risk populations.
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BMI Body Mass Index

CAD Coronary Artery Disease

CHRIS Cooperative Health Research in South Tyrol

AHR Delta Heart Rate

EDTA Ethylenediaminetetraacetic Acid

GRS Genetic Risk Score

GPMSSP General Practitioners” Morbidity Sentinel Stations Program
HDL High-Density Lipoprotein

HOMA-IR Homeostatic Model Assessment of Insulin Resistance
HR Heart Rate

HR, ¢ Heart Rate after (exercise)

HRmax Maximum Heart Rate

HRmaxo Percent of Predicted Maximum Heart Rate

HRR Heart Rate Recovery

HRyegst Heart Rate at Rest

HRV Heart Rate Variability

LDL Low-Density Lipoprotein

MAF Mutation Analysis Facility

SNP Single Nucleotide Polymorphism

SPSS Statistical Package for the Social Sciences
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