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ARTICLE INFO ABSTRACT
Keywords: Discrete maximum principles are essential measures of the qualitative reliability of the given
Nonlinear elliptic PDE numerical method, therefore they have been in the focus of intense research, including nonlinear

Finite elements

- ! . elliptic boundary value problems describing stationary states in many nonlinear processes. In this
Discrete maximum principles

paper we consider a general class of nonlinear elliptic problems which covers various special cases
and applications. We provide exactly computable conditions on the geometric characteristics of
widely studied finite element shapes: triangles, tetrahedra, prisms and rectangles, and guarantee
the validity of discrete maximum principles under these conditions.

1. Introduction

The validity of maximum principles is an important property of second-order elliptic equations with various boundary conditions
[25,26]. Generally speaking, it provides a priory known bounds of the unknown solution, provided some conditions on the given data
are imposed. Such maximum principles are now known for many nonlinear elliptic problems appearing in a number of important
applications in physics and engineering.

Therefore, obviously, their suitable discrete analogues, commonly called discrete maximum principles, or DMPs, have drawn much
attention. A DMP is a relevant measure of the qualitative reliability of the given numerical method, since otherwise one might get
physically incorrect numerical solutions, such as negative concentrations in some parts of the space domain. The validity of DMPs
for the most widespread numerical techniques, like finite difference and finite element methods, has thus also been in the focus of
research work for the recent decades. Starting with the pioneering works by Ciarlet [5], a lot of generalizations (involving various
nonlinearities in the equations, mixed boundary conditions, usage of quadrature rules, usage of different types of finite elements)
have been addressed. For the finite element method (FEM), which is in the focus of the present paper, various results on DMPs under
proper geometric conditions on the computational meshes have been given e.g. in [4,6,27,28] in the case of linear elliptic problems.
Such ideas were also relevant for linear parabolic problems [9,10]. We have established a DMP for general nonlinear elliptic problems
in [18], which has been applied and extended in various later works, see, e.g. [15,24] and also the authors’ previous results, e.g.
[16,19,20].
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In all the mentioned papers, the DMPs for nonlinear problems with lower order terms (typically arising from reaction type pro-
cesses) have been derived under the condition that the mesh parameter is sufficiently small. However, no exact condition on the
required mesh size has been given. The goal of the present paper is to fill this gap from the point of view of concrete applications. We
provide exactly computable conditions on the geometric characteristics of widely studied finite element shapes: triangles, tetrahedra,
prisms and rectangles, and guarantee the validity of discrete maximum principles under these conditions. The considered class of
nonlinear elliptic problem is as general as possible within this scope, slightly extending the one used in [18], and also various special
cases and applications are shown which are covered by our setting. Finally, we illustrate numerically that the restrictions on the mesh
size are indeed necessary in practice.

2. The PDE problem and its FEM discretization
2.1. The general mathematical model and its properties
Let us consider the following nonlinear elliptic boundary value problem:
—div (b(x, " Vu)Vu) +rou, Vau = £(x) in Q,
b(x,u,Vu)z—: =y(x) only, @2n
u=gkx) onlp,

where Q is a bounded domain in R? (d =2 or 3) under the assumptions below:
Assumption 2.1.

(a) Q has a piecewise smooth and Lipschitz continuous boundary dQ; 'y, I, C 0Q are measurable open sets, such that 'y NI'p =@
and I'y UT'p = 0Q, further meas(I'p) > 0.

(b) The scalar functions b : QX R xR? — R and r : QxR X RY - R are continuous. Further, f € L2(Q), y € L2(Ty) and g = &
for some g* € H'(Q).
(¢) The functions b and r are bounded such that

0<pg<bx,&m) <y, 0LZr(x,én) <P V(x,f,n)eﬁxRde, (2.2)

where y,, 4; and f are positive constants. The weak formulation of (2.1) is defined as follows: find u € H 1(Q) such that

u=g onlp intrace sense, and 2.3)
/(b(x, u,Vu) Vu - Vo + r(x,u, Vu)uv) dx = / fvdx + / yvdo Yve H})(Q), 2.4)
Q Q Iy

where H ID(Q) ={ue H(Q) : ”IFD =0 intracesense} [1] with the following standard inner product and corresponding norm,
respectively:

(u,v)1=/Vu-Vde, |U|1=</|Vv|2dx) . (2.5)
Q

Q

[SIE

Remark 2.1. The solvability of the problem can be ensured in two subclasses of (2.1).

(a) The existence and uniqueness of the weak solution can be proved for the following special case of (2.1) that leads to a uniformly
monotone operator, see, e.g., [18,30]:

— div (b(x, Vu)Vu) +rowu = f(x) in Q
b(x, Vu)% =y(x) onTly, (2.6)

u=gkx) onlp,

under the following conditions:

(i) The mapping f : QxRY - R?, defined as f(x,#) := b(x, )y, is uniformly monotone and Lipschitz continuous with respect
to 7.

(i) The scalar function & — r(x, £)¢é =: g(x, &) is monotone increasing and Lipschitz continuous with respect to &.

Some reaction-diffusion type equations are examples of this type of model, see subsections 2.2.1-2.2.3 below.
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(b) The existence of a weak solution can be ensured for the following special case of (2.1):
—div (b(x,u) Vu) Froouu = f(x) in Q,
b(x, u)% =7y(x) onIy, 2.7)
u=g(x) onlp,

provided that b and r are Lipschitz continuous, b > u, > 0 and r > 0, see [17]. An example of this model is stationary heat
conduction, see subsection 2.2.4 below.

A motivating property for the present paper is that problem (2.1) satisfies a maximum-minimum principle. First we formulate the
maximum principle (sometimes called ‘continuous maximum principle’, CMP, in contrast to the later studied discrete version, DMP).
The formulation and proof is similar to Theorem 5 in [18], now our problem is slightly more general.

Theorem 2.1. Let Assumption 2.1 hold and the weak solution of (2.1) belong to C'(Q) n C(Q). If

f(x)<0 (x€Q) and y(x)<0 (xely), (2.8)
then
maxu < max{0,maxg}. (2.9)
Q I'p

In particular, if max g > 0 then
D

max u = max g, (2.10)
Q I'p

and if g <0 then we have the nonpositivity property

u<0 on Q. (2.11)

Proof. We follow [18]. First, let us define the functions a(x) := b(x, u(x), Vu(x)) and A(x) := r(x,u(x), Vu(x)) for x € Q. Then a €
C(€) and satisfies the uniform positivity u, < ad < y,. Besides, h e C(Q) and i > 0. Hence, the operator

Lv = —div(a(x)Vu) + h(x)v
satisfies the standard properties required in equation (2.1) of [18], and Lu = f coincides with our original PDE, from which the
statements (2.8)-(2.10) follow exactly as in Theorem 5 therein. []

The corresponding continuous minimum principle for the problem (2.1) can be verified in the same way by reversing signs.

Theorem 2.2. Let Assumption 2.1 hold and the weak solution of (2.1) belong to C LQ)nC@). If

f(x)>0 (xeQ) and y(x)>0 (xeTly), (2.12)
then
minu > min{0, ming}. (2.13)
Q I'p

In particular, if nlr_lin g <0 then
D
minu = ming, (2.14)
Q Ip

and if g > 0 then we have nonnegativity property

u>0 on Q. (2.15)
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2.2. Some examples and applications

2.2.1. Semilinear problems
A practically widely important special case of problem (2.1) is as follows, arising e.g. in various reaction-diffusion problems:
—div (b(x)Vu) + g(x,u) = f(x) in Q,
b(x)% =y(x) onTy, (2.16)
u=g(x) onlp,
where g € C!(Q X R). We assume that there exists # > 0 such that
0< g_g(x,@ <p  and  O<u<hXM<p.  V(xEOEQXR. (2.17)

Then g itself is Lipschitz continuous w.r.t £ with constant f, hence Remark 2.1 (a) implies the existence and uniqueness of the weak
solution. Now let us first define a function r in terms of g:

D40 ip ey,
Fx, &) 1= ; (2.18)
é (x,0), ifé=0,

then clearly r is continuous and 0 < r(x, &) < g, further,

r(x,8)é = q(x,$) — q(x,0), VEER. (2.19)
The PDE in (2.16) can be written as:

—div (b(x)Vu) + q(x,u) — q(x,0) = f(x)—q(x,0) in Q, (2.20)
that is,

—div (b(x)Vu) +r(x,wu= f(x) in Q, (2.21)
where r(x,u)u = q(x,u) — q(x,0) from (2.19) and f(x) = f(x) — g(x,0). Then we can see that (2.21) is a special case of the PDE in
problem (2.1).

2.2.2. Diffusion-kinetics: Michaelis-Menten nonlinearity

A diffusion-kinetics equation governing the steady-state concentration u of some substrate in an enzyme-catalyzed reaction has
the following form, see [21]:

div (b(x)Vu) = q(x,u) (2.22)

in a bounded domain Q in R2. Here b(x) is the uniformly positive molecular diffusion coefficient of the substrate in a medium
containing some continuous distribution of bacteria, and g is the rate of the enzyme-substate reaction. In particular, the reaction rate
is given by Michaelis-Menten theory:

1 ¢
=g =~ —= f >0, 2.23
q(x,8) =q() cEtk or & (2.23)
where k > 0 is the Michaelis constant. Here the more general model is g(x,¢) = $ §+Lk’ where e(x) > ¢, > 0, but typically e is also

constant [21], so we assume it from now on for simplicity. Let us impose mixed boundary conditions according to (2.16), where
ug > 0 and the zero Neumann condition describes the insulated part of the boundary:

bx)% =0 only, u=uy onTp.

The rate (2.23) is defined only for the relevant concentrations & > 0. To obtain a proper operator, we can extend ¢(£) from & >0
to £ € R by the formula

_1_¢
e &l +k
Then & — ¢(£) is monotone and Lipschitz continuous as required, i.e. the rearranged equation (2.22) with the mixed boundary
€ Py 1 .
BT satisfies 0 <r < - le (2.2)

holds. Then, by Theorem 2.2, the weak solution satisfies u > 0, hence u is the solution of the original problem (2.22) with nonlinearity
(2.23).

q) for V& eR.

conditions becomes a special case of (2.16) and has a unique weak solution. Furthermore, r(§) :=
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2.2.3. Electrostatic potential equation
A semilinear model describing electrostatic potential is given by
—Au+e"=0 in Q,
(2.24)
u=0 onoQ,
see [13,23]. It can be put in the above framework as follows. The equation is first written as —Au + ¢ — 1 = —1. Now let us denote
-1 ifeE<O,
q(§) = ) (2.25)
& if >0
which is monotone and Lipschitz continuous, hence the problem
— Au +qu) =-1 in Q,
u=~0 on 09,

(2.26)

has a unique weak solution. Further, the function (&) = ¢(¢)/& (defined as 1 for & = 0) satisfies 0 < r(€) < 1 for all £ € R, hence (2.2)
holds and thus (2.26) becomes a special case of (2.1). Then Theorem 2.1 implies u < 0 for (2.26), hence g(u) and ¢ — 1 coincide and
thus u is the solution of the original problem (2.24) as well.

2.2.4. Nonlinear stationary heat conduction

Problems of the form (2.7) appear in modelling heat conduction in nonlinear isotropic media. The problem
—div (a(x, u)Vu) +c(x,u)u = f(x) in Q,

a(x, u)j—‘: =y(x) only,
u=g(x) onlp,

is the isotropic case of the model described in [17]. The function u describes temperature distribution, where the heat conductivity
is represented by the coefficient a, and the domain Q is, for instance, a large transformer whose magnetic cores consist of iron tins.

2.2.5. Stefan—Boltzmann nonlinearity in radiation
The steady-state temperature distribution in various radiating bodies or gases lead to nonlinear PDEs of the form

div (k(x)Vu) = a(x)u4 in Q, (2.27)

where the thermal conductivity k(x) and the Boltzmann factor o(x) are uniformly positive, see [21].

In this example, similarly to subsection 2.2.2, the nonlinearity g(x, &) = o(x)&* is defined only for & > 0 since we expect a solution
u >0, but we can define a monotone increasing extension to all £ € R by q(x,£) := o(x)|£]?&.

On the other hand, rewriting the above nonlinearity in the expected form ¢(x,&) = r(x, &), we find that r is not bounded as
required in (2.2). This will lead us to discuss the extension of our results, allowing power order growth instead of the present bounds
on r in (2.2), in subsection 4.5.1 at the end of the paper.

2.3. Finite element discretization
In the study of the discrete case, we assume that the domain €2 is a polytope, i.e. polygon or polyhedron in 2D or 3D, respectively.
(If Q has a curved boundary then it can be approximated with a polytope, see, e.g., [22].) To find the finite element solution for the

model (2.1), consider a FEM subspace V), of first-order elements. That is, the following general properties hold for the basis functions:

B1) 0<¢; <1 (Vi=1,...,n+m);

n+m
B2 Y ¢; =1,
i=1
(B3) ¢,(P;)=9;; for proper nodes Py,...,P,€Qand P, ..., P, €0Q.

In Section 4 we will consider Courant, tetrahedral, bilinear and prismatic elements, for all of which the conditions (B1)-(B3) hold.
We solve the following problem (which is the counterpart of (2.3) and (2.4) in V},): find u;, € V}, such that

u, =g, onlp and

/[b(x,uh,Vuh) Vuy, - Vo, + r(x,uh,Vuh)uhvh] dx =/thh dx +/yhuh do Vv, € V}?. (2.28)
Q Q Ty
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To find the coefficient vector € of uy,, following [18], the corresponding nonlinear algebraic system of equations is given by

A@©)¢c=h, (2.29)
where the structure of the matrix is:
i A© A@
A@©) = (2.30)
0 I

where I is an m X m identity matrix and 0 is a m X n zero matrix, further, the entries of the matrix A(c)fori=1,...,nandj=1,...,n+m
(i.e. both for A(c) and A(c)) are

a,-j(é) =/[b(x,uh,Vuh) Vg, - V(]Sj +r(x,up, Vuy) qf)iqf)j dx, (2.31)
Q;

where ¢; and ¢ ; are corresponding basis functions and

Q,;; = supp; Nsupp¢;, (2.32)

where supp refers to the support of a function (i.e. the closure of the set where it is nonvanishing). The vector ¢ = (cy,...,c, +,,,)T
n+m

contains the values of the finite element solution u/, at all the nodal points, i.e. ¢; =u,(P;) and u, = Y. ¢;¢;, where ¢y, ....¢p, are the
i=

interior basis functions and ¢, |, ..., ¢, are the boundary basis functions. Furthermore, b = (b, ..., b,, &1, .-, &,,)" and A(€) is (n+m)

by (n+ m) matrix.

3. Background for DMP: matrix maximum principles

Consider a linear algebraic system AC = b with a matrix with similar structure as in (2.30):

_ (A A
A= 3.1
0 I

where the matrix A has a dimension of (n + m) by (n + m).

Definition 3.1. (see [8]). The matrix A satisfies
+ the discrete weak maximum principle (DwMP) if for any vector ¢ = (¢, ...,c, +m)T € R"™ satisfying (Aé),- <0, i=1,...,n, one has

max ¢; <max{0, max ¢};
i=l1,...,n+m i=n+1,...,n+m
« the discrete strict weak maximum principle (DWMP) if for any vector € = (¢, ...,c, +m)T € R™™ satisfying (Aé)i <0,i=1,...,n, one
has

Theorem 3.1. (see [18, Theorem 5]). Let the matrix A in (3.1) satisfy the following conditions, where a; j denote the entries of A:

(@) al-jSO Vi=1,....,n, j=1,....,n+m; i#j),
n+m

(i) Zaijzo ~i=1,...,n),
j=1

(iii) A is positive definite.

Then A possesses the DWMP. If the inequality in condition (ii) is replaced by equality, then A possesses the DWMP.
4. DMPs and mesh conditions for nonlinear elliptic problems

Now we can turn to our main goal, that is, to give sufficient conditions for the discrete analogues of Theorems 2.1-2.2 for the
FE solution described in subsection 2.3. First we give some general properties, which show that the main task will be to ensure

the nonpositivity of the offdiagonals of the FEM matrices. Then the latter will be presented for various first-order elements, where
sufficient conditions are given for the mesh sizes under proper shape properties.
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Let V), be any FEM subspace as described in the subsection 2.3. The entries of the matrix A@fori=1,...,nand j=1,....,n+m
are given by (2.31), where ¢; and ¢; are corresponding basis functions and €;; = supp ¢; N supp ;.

Proposition 4.1. Let the general properties (B1)-(B3) in Section 2.3 hold. Then the matrix (2.30)-(2.31) satisfies

n+m

@ Y a;©20(Vi=1,...,n);
j=1
(i) A(c) is positive definite.

Proof. It is similar as in [18] for simplicial elements, for completeness we summarize the proof.

(i) For any i =1,...,n in (2.31), using properties (B1)-(B2) and (2.2), we have
n+m n+m n+m
ICE / [ w4, Vi) Vb, V(Y )+ 1, Vi) (Y, 6] dx
j=1 a Jj=1 Jj=1
= /r(x,uh,Vuh) ¢;dx>0.
Q

(iii) To verify that A(c) is positive definite, let d # 0 be an arbitrary vector in R”, formed by the coefficients d;, and let

n
vy = d;; €V
j=1

Then vj, # 0. The vector ¢ € R"*™ contains the coefficients for u, as given in (2.28)—(2.29). Then, using (2.28) and (2.2), we
have

A@©d-d= Z a,;(©)d,d;

ij=1

=/<b(x,uh,Vuh)V< id,-d),-) v( id,@) +r(x,uh,Vuh)id,¢i idjd)j)dx
i=1 Jj=1 Jj=1

i=1

{O\D

(b(x,uh,Vu,,)|Vuh|2+r(x,uh,Vuh)u§l)dxzyO/|Vuh|2=,40|uh|}>o. O
Q

Proposition 4.2. Let the general properties (B1)-(B3) in subsection 2.3 hold. If A(€) in (2.30)~(2.31) satisfies the DWMP, then u,, satisfies
the DMP: that is, if

f)<0 (x€Q) and y(x)<0 (xeTy), 4.1)
then
max u;, < max{0,maxg;,}. (4.2)
Q Ip
In particular, if n}ax gy >0, then
D
max iy, = max g, (4.3)
Q I'p

and if g, <0, then we have the nonpositivity property

u, <0 on Q. 4.9
Proof. Let €=(c|,...,Cou) €R™™ and b= (b|,....b,, &, &) € R™" be the vectors that appear in (2.29). Then

biz/f¢idx+/y¢id6§0 (i=1,...,n (4.5)
Q

Y

owing to f <0, y <0 and property (B1) of subsection of 2.3. Then (2.29) and (4.5) imply A(©)¢ =b <0. Since it is assumed that the
matrix A(C) possesses the DWMP, we have by definition

max ¢; <max{0, max ¢;}=max{0, max g} (4.6)
i=1 m i=n+1,....n+m i=n+1,....n+m
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since ¢; = g; for all i =n,...,n + m. Using the fact that 0 < ¢, <1 and Z:’:lm ¢; =1 from properties (B2)-(B3), the solution vectors u,,

and g, can be estimated respectively as

n+m n+m
u, = ¢, < ax ¢ ;= max ¢, 4.7
h ; l¢l T i=l,..n+m ! ; ¢’ i=l,...n+m ! ( )
n+m n+m
gn= 2 g¢; < max g 2 ¢; > maxg, < max g;. (4.8)
Pt i=n+1,....n+m Pt I'p i=n+1,....n+m
Moreover, equality holds in (4.8) because of the following argument. Let g, := max =g Then, using (B3) of the general properties
i=n+l1,...,n+m
in subsection of 2.3, g,(P,) = Zf:ﬁl g®;(P,) =g, since ¢;(P,) =1 and 0 in the other nodes. Hence, indeed,
maxg, =  max i
I'p &h i:n+l,m,n+mgl
and thus also
max{0, max g;, } = max{0, max g} (4.9
I'p i=n+l,........, n+m

Altogether, (4.7), (4.6) and (4.9) imply (4.2). The remaining two statements are direct consequences of (4.2). []
Now we come to the main point to be used in the sequel of this paper:

Corollary 4.1. Let the general properties (B1)-(B3) in subsection 2.3 hold. If the matrix (2.30)-(2.31) satisfies

a;@©<0  Yi=l...n j=l..n+m i#], (4.10)

then the DMP (4.2) holds as well as its consequences (4.3) and (4.4) under the proper sign conditions given in Proposition 4.2.

Indeed, if (4.10) holds then Proposition 4.1 and Theorem 3.1 imply that A(c) satisfies the DwMP, and thus Proposition 4.2 yields
that the DMP and its consequences hold.
Therefore, in what follows, our remaining task is to verify (4.10) (i.e. the nonpositivity of the off-diagonals of the FEM matrices) for
the studied types of first order elements under proper mesh conditions.

4.1. Courant elements

In our recent article [2], we have determined the threshold mesh size A to ensure the validity of DMPs by Courant FEM in 2D for
suitable meshes with uniformly acute angle conditions for the nonlinear elliptic model (2.1). In our result, we have used the definition
below. Here a family of triangulations means a collection 7 = {7}, for which the mesh widths 4 accumulate at 0.

Definition 4.1. A family F of triangulations of a bounded polygonal domain is said to be uniformly acute if there exists a; < % such
that a, <« for any angle a,, in all triangles T} in all 7, where 7, € F.

Theorem 4.1. [2] Let Assumption 2.1 hold and Courant finite elements be used with triangulations satisfying Definition 4.1. Let the mesh
size h satisfy

1
12pgcosay \ 2
M) , (4.11)

B

where «ay, is the angle that obeys Definition 2, y, and f are positive constants from (2.2). Then the matrix in (2.30) satisfies

0<h5h0:<

a,-j(E)SO, i=1,.,n, j=1,..n+m (i#)).

Consequently, the DMP (4.2) holds.
Now, we will give similar results to investigate the validity of DMPs using tetrahedral, bilinear, and prismatic elements.

4.2. Tetrahedral elements

Now let us consider a 3D problem of the type (2.1) and apply tetrahedral P1 elements. For the description we rely on [12]. For
a given tetrahedron K we denote by "’5 the angle between the two dimensional facets F,.K and FjK which are adjacent to the given
edge (Fig. 1).
Definition 4.2. A family F of tetrahedral triangulations of a bounded polyhedral domain is said to be uniformly acute if there exists

ap < 5 such that af§ < ay for any angle aff inall K €7,, and 7, € F.
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Fig. 1. A tetrahedral cell K from [12].

Theorem 4.2. Let d = 3 and Assumption 2.1 hold, and let the tetrahedral finite element method be used with triangulations satisfying
Definition 4.2. Let the mesh size h satisfy

1
204 cos 2
“UHo COS ap ) , (4.12)

p

where «a is the angle that obeys Definition 3, yi, and f are the positive constants from (2). Then the matrix in (2.30) satisfies

0<h5h0=(

a;(© <0, i=1..n j=L..,n+m (@i#)).
Consequently, the DMP (4.2) holds.

Proof. Letus consider the entries in (2.31). If int(; j) # @, then to estimate (2.31) we should find the values of the following integrals:

/qu,- V¢, dx and /¢,-¢,- dx, (4.13)
Q; .

and the goal is to find proper upper bounds. To compute the entries of the stiffness matrix over a tetrahedron K, we shall use the
formula stated in [12] for the inner product of the basis functions, and for the upper bound we let 6 := cos(ay), where « is the
maximum angle from Definition 4.2, hence o, > 0 and it is independent of i, j and h. Altogether, if i # j, then

K
V¢.V¢|K__M<M (4.14)
O T KK T :
oy

since all hiK Jh jK < h and ai’; < . Therefore, we have a bound independently of K:

%0
V¢[~V¢j|K§—ﬁ <0. (4.15)
Hence the bounds of the off-diagonal entries of the stiffness matrix are given by
%0
Ve - Vep;dx = Z V- Vo, dxs—ﬁmeas(Q,-j). (4.16)
I KcQ;; X

ij

The formula for the entries of the mass matrix M over K from [12] is

m;; | K = /gbgb/dx 1+45;)

@+ 1)'meas[,K,

where §;; is Kronecker’s symbol. Therefore, since d =3 and 6;; =0 for i # j, we get

/d)d) dx = /d)d) dx = —meas(K)— Lmeas(Q s (4.17)
KcQ; Q 20

ij K kc ij

where Qij is as in (2.32). Using (2.2), (2.31), (4.16), (4.17) and (B1) of subsection 2.3, we have
a;;(©) < /40/ V-V, dx + ﬂ/¢[¢j dx
Q; Q;
<—ﬁyomeas(§l--)+£ meas(Q--):meas(Q--)( — Uy + == 4 )
- R Y7020 Y Y h? 20
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Let
._ 90 B
b;;(h) =k +50° (4.18)
then
a;;(€) < by;(h)ymeas(Q;;). (4.19)

The sum of the terms in b; ;(h) tends to —oo as A — 0, which implies g; (1) <0 if h is small. The main task here is to find how small
h should be to guarantee the nonpositivity of (2.31). To determine the threshold A = A, the following equation must hold:

) s _
h2ﬂ0 +20 =0.

1 1
This implies A :( MTO”O> 2. In summary, if 0 < h < h =( Z%TO”O) 2, then (4.19) yields a;;(€) <0. [

Remark 4.1. A nice family of simple examples is when ( is the union of acute tetrahedra forming a so-called TCP-structure. Various
such space-tiling TCP-structures, motivated by crystallography, are described in [7]. For instance, the mesh called A15, constructed

from a square tiling, consists of tetrahedra with maximal dihedral angle 78.46°, i.e. with cosine value 0.2. Then h, = 2( Ho/ ﬁ) 12

4.3. Bilinear elements
Consider a semilinear special case for the model problem (2.1) for d =2:
— o Au +r(x,u, Vuyu = f(x) in Q,
% =y(x) onTly, (4.20)

u=gkx) onlp,

where i > 0 is constant and 0 < r(x,&,#n) < f from (2.2). We consider bilinear elements for a 2D rectangular mesh. The following
definition and Theorem are crucial to investigate the validity of DMP for (4.20).

Definition 4.3. A family 7 of rectangular meshes on a given domain is said to be uniformly non-narrow if there exists p, < \/E such
that for any rectangle we have % < py where H and h denote the longest and shortest side of the rectangle, respectively.

Theorem 4.3. Let Assumption 2.1 hold and the bilinear finite element method be used with a mesh satisfying Definition 4.3. Let the mesh

size h satisfy
\/3Ho(2 - l%)
G

where p, obeys Definition 4.3, u, and p are the positive constants from (2.2). Then the matrix in (2.30) satisfies

0<h<hy= (4.21)

a,»j(é) <0, i=1l,.,n, j=1,.,n+m (i#)).
Consequently, the DMP (4.2) holds.

Proof. We have two possible patches in a rectangular mesh when i # j: the nodes can be diagonal or edge neighbours. We use the
results of [11] for the integrals on a rectangle R:

H2-2n? . .

TH if ¢; and ¢; are edge neighbours,

/v¢,. Ve dx = (4.22)

h+H? . £ . Ineich
R i | ¢; and ¢; are diagonal neighbours,
and
hH - gp ¢; and ¢; are edge neighbours
18 i i ’
/dndy dx = (4.23)
7 % if ¢; and ¢; are diagonal neighbours.

Let us first consider edge neighbours and let ¢; and ¢; be two such basis functions. Here €;; consists of two rectangles. The entries
of the matrix for one rectangle R are given as follows:
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aij(é)|R=/40/ Vq.’),--V¢jdx+/r(x,u,Vu)¢i¢jdx

R R

5#0/ V¢i'v¢jdx+ﬁ/¢[¢jdx
R

R

=;40(H2—2h2 +ﬂhH 1(3 <%

2h
_z2h Hh). 2
6hH 8 18 H>+ﬁ (4.24)

Letting p := % < py, i.e. H = ph, gives

a;;(©lg = 118<3/40<P—%>+ﬂﬂh2> %(3ﬂo(ﬂo—%>+ﬂﬂoh2)~

This holds on both rectangles, hence

a,,(© <ay(h) := —8<3y0<p0 - p%) +ﬁp0h2).

Multiplying with p,, we see we should satisfy

3Ho(py = 2) + Brgh® <0.

Indeed, this holds for sufficiently small A using that p; < \/5, hence q;;(€) <0 as well. The threshold hj is obtained by expressing h
from equality above. Altogether, for the edge neighbours the threshold is

\/3H02 = )

hy= ————. (4.25)
Po \/E
Now we consider diagonal neighbours, we use similar arguments as for the edge neighbours. Now Q;; is one rectangle R, and the
entries of the matrix are calculated by combining equations (4.22) and (4.23):

a Ho(h* + H?) =~ phH
a,’j(c) Sﬂo/ Vo, - V¢j dx+ﬂ/¢,-¢j dx= T ehH + 36 =: a[j(h,H).
R R
We want to determine /4 and H such that a; ;(h, H) <0, ie.
h H
6 ( -n —) Hh<0
Ho Tk +p

Letting p = %, i.e. H = ph and multiply by p gives

64y — 6gp” + pp*h® <0.

This is true for sufficiently small s, namely, when

V6u(1 + p?)

O<hs ————. (4.26)

VP

Note that \/5 > pog > 1, hence hy in (4.25) satisfies
\/3u \/ 0 /T i = V6uy(l +p%)
RERRYT G

hence if h < hy), then (4.26) also holds. Altogether, h in (4.25) is a suitable threshold for both diagonal and edge neighbours. []

(Vp>0),

Example. Let us apply a uniform square mesh on Q for the following problem:

—HgAu + —f in Q 4.27)

A +e
(with proper boundary conditions), which involves the rewritten form of the Michaelis-Menten nonlinearity (2.23), i.e. A,e > 0 are
given constants. To compute A in (4.21), we need to calculate the constants therein. Since f = % and p, = 1, we obtain

ho = /3. (4.28)
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D E
ic

R
b .- ¥ o\a

A » 3

Fig. 2. Basic notations for prismatic elements, based on [14].
4.4. Prismatic elements

Consider the semilinear special case (4.20) of our model problem, where

Ho >0 isconstantand 0 <r(x,&,n) < fy. (4.29)
(Here f, is written instead of the previously used f so as not to collide with the notation for angles a, f, y of triangles that we will rely
on in the mesh.) Now d =3, and Q is a given domain in R3 which can be partitioned face-to-face into triangular prisms. A prism is
of the form P =T X I for a given triangle T and interval /, and the corresponding first-order elements have the vertices of the prism
as degrees of freedom, see [14] for more details. We will rely on Fig. 2 for the notations to be used in the sequel. The parameter for
the triangular mesh on which the prisms are based will be denoted by 4. We also impose the following mesh regularity assumption:

Assumption 4.4. Let h > 0 be the triangular mesh parameter. There exist fixed angles 0 < y,,;, <

Ymax < 5 such that the area |T'| of
any triangle T satisfies

2SN < T] S S0

Further, let y,,,, denote a lower bound for the second largest degrees of the triangles T'.

Theorem 4.4. Let Assumption 4.4 hold, and let us fix a constant &, such that

4 cot
0< 8, < > Tmax (4.30)
SINY g
If the mesh parameters satisfy the following conditions, where u, and f, are from (4.29):
3uoé
p2 < K00 4.31)
Bo
t +coty,, 2 4cot
co Yme.d O min 151 < (£> < C.O Ymax —5, (4.32)
SINY pin 2 H SIN Y

then the matrix in (2.30) satisfies

4;(© <0, i=1,..n j=1,..n+m (i#))
Consequently, the DMP (4.2) holds.

Proof. Let ¢; and ¢; be basis functions, i # j. Then the entries of the FE matrix are given by

a;©= ) af@.

PCQ;
where
a{}(é):ﬂo/VqS[-V¢jdx+/r(x,u,Vu)d),—qﬁjdeyo/ V¢[-V¢jdx+ﬂ0/¢,-¢jdx
P P P P
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are the contributions on the individual prisms P. It suffices to ensure a,.P, (€) <0 on each prism. Here, in the case of prismatic FEM,

we have three cases as in [14], see (9)-(11) therein. We use the notations of Fig. 2.

(1

Case (i):
P H
aij(C)SMo/V(f’A'V¢de+ﬂ0/¢4¢3dx: B
P P
Case (ii): "
aS(E)SﬂO/V¢A-V¢Ddx+ﬂ0/¢A¢Ddx=E
P P
Case (iii):

12

P

Now, our goal is to find conditions on 4 and H to satisfy af; (¢) <0 in all the cases (i)-(iii).

Case (i). Using Assumption 4.4, we have

2 Boh?

_ _H h” . .
tJiI;(C) <= ( /40< —2cot Ymax T 555 SIN ymax) + T SINY g

12

hence to achieve ai’;(é) <0, we need

2H?

( h )2 < 4 cot Ymax :B()h2
H/ = siny.y Bup
Assumption (4.31) implies

— <6.

3y !
This and the r.h.s. of (4.32) yield

s < A0y Boh®

S — 1S — ,
S Y g SINY 4y 31“0

(i)Z < 4ot ¥pax
H

i.e. the desired bound (4.33) is satisfied and hence af;(é) <0.
Case (ii). Using Assumption 4.4, we have

M)+ﬂo|T|)

_ _H
aS ©=< E (/40( COL Y peq + COLY iy — H2 3

hence to achieve af;(é) <0, we need

COt ¥eq + COt ¥ in < 2 &
7] SH 3wy
Using Assumption 4.4 again, for (4.37) it suffices that

COt Y jpeq + COLY iy < (£>2 _ ﬂth
iy i ~\H 6uy

Since Assumption (4.31) implies (4.34), this and the L.h.s. of (4.32) yield

COt Y peq + COLY i + ﬂ0h2 < COt Y peq + COLY i 1

+ =6 <

SINY i 6uy SINY iy 2
i.e. the desired bound (4.38) is satisfied and hence af; ©<o0.
T T
HolT| + BylT|
H? 6
uolT| " ﬂo|T|) H
H? 6

Case (iii). Now, using the notation (T, H) := —

ai[;.(é) < H (—yocoly -

12 T 12

On the other hand, we have seen in case (ii) that the r.h.s. of (4.36) is nonpositive, i.e.

% ) + ﬂOlTI

Ho ( cot Vmed + cot Ymin — H2 3

—2C0ty+m

(/40<cotﬂ+coty—

af;(é)suo/quA~V¢de+ﬁ0/¢A¢de=—£
P

-2 (—/AOC(J[}/ + KT, H)) < % T, H).

= /40< COt ¥peq + €Ot ¥,i) + 21(T, H) < 0.

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

Hence also (T, H) <0, and with (4.40), this implies that af; (€) <0 holds for case (iii) with no extra condition, given that it has

already been ensured in case (ii). []
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Remark 4.2. (i) In the case of a uniform equilateral triangular plane partition for the base of the prisms, the condition (4.32) becomes

4 1 h\% _38

—+28 <(=) <2-4,. 41

3+251_<H)_3 g @41
This means that we can choose a fixed ratio of 4 and H to satisfy

4 h\% 8

Z<(=) <2 4.42

3<(3) <3 (4.42)

and then use the largest value of §,, expressed to satisfy (4.41), for the threshold (4.31). For example, if (%)2 = %, then 6, = g and

the threshold in (4.31) is h> < i%. In particular, as a concrete illustration, if in the PDE we have f; =1 and y, = 1073 (since the
diffusion coefficient is often small), then the conditions altogether are

L -2 and h<0.051. (4.43)
H 3

We also note that the condition (4.42) is an analogue of [14, Remark 5], formulated for linear problems with vanishing reaction
coefficient.

(ii) In the general case, if we can only access y,,,, easily then we can use the estimates y,,;, > 7 — 27,,,, and y,,. > 7 /4, thus the
1—cot 2y 0x

Lh.s. of (4.32) can be replaced by the expression + % 6. However, this gives a more pessimistic sufficient condition.

SiN2¥0x

(iii) To make (4.32) feasible for general partitions, the angles of the triangles must satisfy proper restrictions, analogously to the
linear case in [14], wherein various examples are given for such so-called “well-shaped prismatic partitions”.

4.5. Some extensions

The structure of our general problem (2.1) has enabled an organized study of the conditions in the above. Now we consider some
extensions related to the nonlinearity in the PDE or to the boundary conditions.

4.5.1. Power order nonlinearities

Let Q c R for d =2 or 3, and consider a semilinear elliptic Dirichlet problem

— o Au +r(x,u, Vuyu = f(x) in Q,

(4.44)
u=0 on 0Q
with proper power order growth assumed for r w.r.t. u:
Assumption 4.5.1. y, > 0 is a given constant, further, there exists f > 0 and ¢ > 1 such that the scalar function r satisfies
0<r(x,&m < plgl (4.45)

for any x € Q, £ €R and # € R?. In addition, if d =3 then ¢ < 2.

Remark 4.3. The estimations, required by the power growth, will use the following property. Let p be a real number satisfying 2 < p
(ifd=2)or2<p< (% (if d > 2). Then there hold the Sobolev embedding and corresponding estimate

Hy(Q) C LP(Q). lull oy < Kpnq lul, (4.46)

for some constant Kp,g >0, see [13].

We note that this embedding is true for H!(Q) as well, but for H(; () there are more convenient estimations for the value of
K,.q >0, see Remark 4.5 below. Further, the strong restriction in Assumption 4.5.1 for d = 3 will arise from the stronger bound on
p in (4.46).

The conditions for the used FEM, besides those in subsection 2.3, are as follows.

Assumptions 4.5.2. There exist constants ¢, > 0 and ¢, > 0, independent of A, such that for any i # j for which the interior of
Q;; 1= supp ¢; N supp $; is nonempty,

(i) the basis functions satisfy

/ Ve, Vo, < —% meas(€;)); (4.47)

Q;
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(i) we have

meas(Q,-j) > cohd (4.48)

(where d is the space dimension), i.e. the mesh is uniformly shape regular.

Remark 4.4. Condition (4.47) is satisfied for Courant, tetrahedral, and bilinear elements as well under our conditions given in the
previous subsections. Namely, for tetrahedral elements, it is shown in (4.16), and it is similar for Courant elements; for bilinear
elements, it follows from (4.22) and the assumed non-narrowness.

Also, condition (4.48) is satisfied for Courant and tetrahedral elements under the minimum angle condition (which is used typically
to ensure convergence), and follows again from the non-narrowness for bilinear elements.

Theorem 4.5. Let Assumptions 4.5.1-4.5.2 hold. Let the mesh size h satisfy

1/d

/400000/
O0<h<hy= ——— (4.49)
‘BKZd,ng

where d is the space dimension, g, B, 0, ¢, are constants from Assumptions 4.5.1-4.5.2, respectively, K

1d.Q is defined with (4.46), and
L diam(Q)llflle(Q)

wy 1= (4.50)
/4071'\/Z

(where diam refers to the diameter). Then the matrix in (2.30) satisfies

a,»j(é) <0, i=1,.,n, j=1.,n4+m (@(#})).
Consequently, the DMP (4.2) holds.
Proof. Let ¢, and ¢ j be basis functions, i # j. Using (4.45), (4.47) and the fact that 0 < ¢; < 1, we have

a;;(©) = /40/ V-V, dx+ / r(x,up, Vuy)$;¢; dx

Q Q
0o
s—ﬁyomeas(ﬁu)+ﬂ |uy,|?dx. (4.51)
Q

ij

To estimate / |uy|? dx, we apply embeddings of H Q) to LP(Q) spaces from Remark 4.3. If % + ly =1, then similarly to (59) in [18],
A P

q 1 q
/ AR L [ H B R A T
Q;
1/s x4 q
< meas(€;) Kq,yg|“h|1~ (4.52)

Letr=d. If ﬁ + % =1 then % = % in (4.52), and then (4.51) becomes
_ 0 d-1)/d g9 q
;@ < - 2 Mo meas () + pmeas(,;) =D/ K lunl]. (4.53)

Let w be as in (4.50), then we prove |u;,|; < w, by coercivity. Indeed, the weak formulation in V), of (4.44) with test function u;, = v,
gives the following:

//40|Vuh|2dx+/r(x,uh,Vuh)uidx=/fuhdx. (4.54)
Q Q Q
The Lh.s. of (4.54) gives

/,u0|Vuh|2dx+/r(x,uh,Vuh)uidxz,uo/|Vuh|2dx:y0|uh|%,
Q Q Q

since r > 0 and ufl > 0. Hence, from equation (4.54),
2
Holupl S/fuh dx < | fll2llupll2) < Call fll 2 lunlis
Q

by the Poincaré-Friedrichs inequality. From these argument, the upper bound of |u,|; is summarized as follows:
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Coll f1l L2(Q) < diam(Q)|| £ |l L2(Q)

uply < < =wy (4.55)
Ho pom\d
since Cg < WL\/(_Q), see in [13]. Using Assumptions 4.5.1-4.5.2 and equation (4.53) and (4.55) we have
2
_ op _
a;(©)<— h—uo meas (Qij) + ﬂmeas(Qij)d l/dK;’d o 0

_ @-nyda( _ % 1/d
= meas(Q;) ( o 0 o meas ()4 + K2, 0)
_ oo B c
Smeas(Qij)(d Wd( _ﬁ 1/dh+ﬂKdQ 0) =meas(Qij)(d Wd(— zl+c2),

where ¢; = yoaocl/ and ¢, = ﬁK w . Let

€1
b;;(h) = % +c5.
Then, for small enough h, we have b;;(h) <0 and hence a;;(¢) < 0. The threshold for A is h, = %, i.e. a;;(¢) <0 holds for
1/d
¢ Mo"oc
O<h<hy=—=—F—— (4.56)
© K qd Q 0

as was stated. []

Remark 4.5. To estimate KZ 19 recursively, we can use Lemma 11.2 from [13] which states the following:

P1+p P1Py o.p—-1 =1
Kp1+p2,§2_ 2 KZ(pl—l)Q 2py-1)Q" (4.57)

as seen in (4.55) above, and from this one can

In particular, K, o = Cg, is the Poincaré-Friedrichs constant, hence K, o < M\/(;Q)
n

derive a bound for K4 given below in (4.60).

Example. An example for the problem (4.44) is as follows, involving Stefan-Boltzmann nonlinearity, see (2.27) as rewritten in sub-
section 2.2.5:

— Au+|uPu= f(x) inQ,

(4.58)
u=0 onoQ,
where Q = [0, 1]2, and we use bilinear FEM on a square mesh. To estimate the mesh size s, we calculate
1/2
HoO0C,

hy= ;Kog 3 (4.59)

since d =2 and ¢ =3 in (4.56). To find o, note that for h = H we get —é and —% in (4.22), hence
1 _ 1 meas(R)

/qui.V(j)jdxs—g_—g T

R
Then (4.47) is obtained by adding up the above for the rectangles R C Q;; j» SO the factor is preserved, i.e. 6y = é. We have p =1,

p =1, and from (4.50), using d =2 and diam(Q2) = \/_,
V2l fllze 10z

V2 z
1/2

We have ¢ = 1 in Assumption 4.5.2 (ii) since meas(Q,-j) > meas(R) = h*. We can determine K63 using the formula in (4.57). For
p =4, we have from (11.10) in [13] that

wy 1=

2diam(Q)? 2

4 _

Ko<= —=5 (4.60)
and for p; = p, =3 in (4.57), using (4.60), we have

6 2 v2_9.4 9
Kasz— (KQ) §K4Q—_2’
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hence we get

3
K3 <=2,
6,9—7.[

Altogether, we have

13
L@
Ho =1, 60=é, cé/zzl, p=1, KS’QS%, and wozT().

Therefore the threshold for in (4.56) is given by
4

_ V4
817

0<h<hy .
L2(Q)

For instance, for the constant source function f = 10, we get

18- 103

~
~

ho

4.5.2. Pure Neumann boundary

Let us consider problem (2.1) when there is only a Neumann boundary, i.e. I'y = 0Q:

—div (b(x, ” Vu)Vu) + (Vi = f(x) in Q,
(4.61)
b(x,u,Vu)Z—': =y(x) ondQ.
Assumption 2.1 (a) required meas(I'p) > 0, hence the above case is not covered. The condition meas(I'p)) > 0 was used to enable
working in the space H })(Q) with norm (2.5), and to derive item (ii) of Proposition 4.1. Now we must estimate in H 1 (). To ensure
that this proposition still holds, we strengthen Assumption 2.1 such that the condition on r in (2.2) is replaced by
O<a<rx&mM<p  Vx&EneQxRxRY (4.62)

for some constant a. Then, letting /i :=min{u,, @}, we can complete the proof of (ii) as

A@©d - d = /( b(x, ty, Vi) [Voy|? + r(x, ., Vuh)vi)

Q
2 2 S a 2,2 ~ 2
ZﬂO/IVv,,I +a/uh Zﬂ/(IVUhI +Uh)= M”Uh”H] > 0.
Q Q Q

All the other results on A for the specific elements then remain true, since the choice of norm does not affect those calculations.

4.5.3. Boundary nonlinearities
The earlier results can be also extended to boundary nonlinearities. We consider the case when the nonlinearity is assumed to
appear only on the boundary, such models arise e.g. in localized chemical reactions or radiation problems. We illustrate this with the
following 2D model problem, where Q C R? is a bounded domain:
—HpAu = f(x) in Q,
yo% +z(x,u)u=y(x) onTly, (4.63)

u=gkx) onlp.
Assumptions 4.5.3.

() pg>0isa given constant, z : I'y X R — R is continuous and there exists a constant # > 0 such that

0<z(x,&)<n  V(x,&) €Ty xR, (4.64)

(i) The Neumann boundary curve I'y; is a connected union of some edges of the polygon 0Q.

Further, we assume that the used FEM satisfies Assumptions 4.5.2.
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Theorem 4.6. Let Assumptions 4.5.2 and 4.5.3 hold, and let the mesh size h satisfy
0<h < hy= 220k
Then
a,-j(é) <0, i=1,.,n, j=1l.,n4+m (@{#})).
Consequently, the DMP (4.2) holds.

Proof. Let ¢; and ¢; be basis functions, i # j, and denote

Iniji=Q;nly.

The entries of the matrix obtained from (4.63) can be estimated using (4.47) and (4.64):

_ CoH
a;;(©) :yo/ Vo, Ve dx+ / z(x,u)p;¢p;do < — Zzomeas(ﬂu)+n / ¢i¢;do.
Q;; Inij nij
Here I'y ; ; is the segment connecting the nodes P; and Pj, for which qbi(Pj) =6 j (cf. condition (B3) in section 2.3). Hence, denoting
by h;; the length of I'y ;;,

y h h
s Nij—s ij _h
/(bi(bjdﬂ':/r o dSZ?Sgs
Inij o Y

since h; ;< h where h is the mesh parameter. From this and (4.48) for d =2,

a;;(€) < —opHpcy + gh =:a;;(h).
It suffices to ensure g; (W) <0, which holds if

6 C
hsh0;=w‘ 0
n

Finally, we note that one may combine these results, i.e. similar calculations can be carried out if there is a coefficient r in the PDE
and z in the boundary condition as well, furthermore, one may allow Iy = dQ if either r or z has a positive lower bound as in (4.62).
A simple example of the latter is the Newton law of cooling on the boundary: y, M4 a(u— ug) = 0, which can be just rewritten as in
(4.63) with z = a and y = au,. This boundary condition coupled with the PDE (4.58) corresponds to the cooling model mentioned in
[21].

4.6. Numerical illustration

We illustrate the above theoretical results with numerical experiments, with focus on the nonnegativity, which is the practically
most important case of the minimum/maximum principle.

We will observe in the model problems that the nonnegativity can be indeed violated for too coarse meshes, as suggested by our
theoretical results and also observed earlier for 1D linear problems in [3], and moreover, our bounds for the threshold mesh size A,
are not far from the experimental thresholds.

For each of the following four model problems (after their brief description) we give the relevant minimal values in tables. Finally
we give a graphical illustration of the violation phenomena.

4.6.1. Michaelis-Menten nonlinearity with bilinear FEM: homogeneous case

First, we consider the 2D reaction-diffusion problem (4.27), containing the rewritten form of the Michaelis-Menten nonlinearity,
in the following concrete case:

u .
— llOA”+ Tren = f in Q, 4.65)
u=0 onoQ,

where Q :=[0,1]%, yy =107 and ¢ = 103 are constants given by Murray, see [21], and f(x,y) := (2x — 1)® > 0 describes a source
function mostly concentrated near two edges of the square domain.
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Table 1
Minima of the FE solutions of (4.65) for some values of A.
h 0.25 0.01 0.0075 0.0074  0.005 0.001
minu,, -0.0170  -8.3e-11 -8.8¢-14 0 0 0
Table 2

Minima of the FE solutions of (4.67) for some values of A.

h 0.25 0.01 0.0078 0.0077 0.005 0.001

minu,, -0.6157 -0.2689 -9.0e-05 +7.6e-14 +1.6e-11 +4.4e-11

We employ bilinear FEM a uniform square mesh, where the mesh parameter is the edge length . Since the boundary function is
g =0, from (2.14) we expect the discrete nonegativity, in fact

minu, =0 (4.66)
Q
should hold.

Table 1 illustrates the minima of some FE solutions u,,. It was experienced in the tests that the discrete nonnegativity (4.66) fails
(that is, minuj, < 0) when A > 0.0075, i.e. n < 132 nodes are used on the edges, whereas (4.66) already holds when h < 0.0074, i.e.
n > 133 nodes are used.

The results confirm that the numerical solution satisfies the nonnegativity u;, > 0 only for sufficiently small mesh sizes h. Moreover,
let us compare the obtained results with the theoretical sufficient condition. From (4.28) we have h < hy = 0.0054, and in the runs we
obtained nonnegative minima for 4 < 0.0074, hence the magnitude of the estimation was reasonable. (We note that the theoretical
value of A is the same for all right-hand sides f and does not just concern the given one, hence A can be pessimistic for a given
problem.)

Qualitatively, the right-hand side of (4.65), which is concentrated near two edges of the square domain, forces the solution to a
similar behaviour. The arising jumps seem to induce the numerical solution to violate nonnegativity.

4.6.2. Michaelis-Menten nonlinearity with bilinear FEM: non-homogeneous case
Let us modify the boundary condition of (4.65) to an inhomogeneous one with g = 1:

— poAu+——=f inQ:=[0,1]%

14eu

(4.67)
u=1 onoQ,
and use the same uniform bilinear FEM as above. Since f >0 and g = 1, we expect the discrete analogue of (2.13), i.e.
minu, > min{0,min1} =0, (4.68)
9} 0Q

i.e. discrete nonegativity should hold again. Now we do not expect the equality (4.66), however, away from the two edges we expect
uy, ~ 0 since f ~ 0 there.

Table 2 shows a similar behaviour to Table 1, now the discrete nonnegativity fails above almost the same threshold as before,
and it is satisfied below this threshold, i.e. for 2 <0.0077. (The theoretical sufficient condition is the same, 4 < h, = 0.0054, as in the
homogeneous case.)

4.6.3. Exponential nonlinearity for hexagonal bars: prismatic elements

Now we consider a 3D domain discretized by prismatic elements. Our goal is to reproduce the behaviour of the previous two
tests, i.e. to define a problem where the experimental threshold is close to the theoretical one h. For this we use a uniform mesh
where we can easily control the parameters. Further, h, does not depend on the r.h.s, but the previous two tests suggest that discrete
nonnegativity can fail if f is close or equal to zero an a large part of Q and has sudden jumps on some portion, enforcing a similar
behaviour of the solution if the diffusion is small and thus has no considerable smoothing effect.
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Table 3

Minima of the FE solutions of (4.69) for some values of A.
h 0.3333 0.1666 0.1111 0.0833
k 1 2 3 4
DOF, 57 637 2387 5955

minu, -0.0048 -0.0028 -2.1e-11 0

Table 4
Minima of the FE solutions of the 2D version of (4.69) for
some values of h.

h 0.3333 0.1666 0.1111 0.0833
k 1 2 3 4
DOF 19 91 217 397

minu, -0.0099 -0.0113 -0.0057 0

Based on the above, we consider an analogue of the electrostatic problem (2.26) with proper data:

— HglAu+e'=f in Q,
(4.69)
u=0 onoQ,

where Q is a hexagonal bar, i.e. Q = X X [0, L], where X is a regular hexagon with edge length a. We note that hexagonal bars arise
in certain applications for their favourable shapes, e.g. such a so-called honeycomb geometry can represent electrostatic precipitators
[29]. We set pig =1.85- 1073 and a = L = 1. We let f be a source function of the form

f=1+o, (4.70)

where ¢ is concentrated along a portion of the boundary, namely, 0 =0.1 on , = X X [0,¢] for e =1/16, and =0 on Q \ Q,. Now
a constant 1 r.h.s would lead to the constant 0 solution, hence ¢ > 0 implies that the discrete nonnegativity

minu, =0
Q
from (4.66) is expected again, and the small support of ¢ should induce the behaviour described above.

We employ prismatic elements, using the case described in Remark 4.2 (i). We define an equilateral triangular plane partition for
the hexagonal base X of the prisms, denoting by & the edge length of the triangles. The height of the prismatic cells is H =3h/4
based on (4.43). To enable a partition of the given Q with these mesh parameters, we define an integer k € N* and let A = 1/(3k),
H =1/(4k). The number of unknowns is then

DOF, = (3= 1)9% +1)(4k — 1).

Table 3 shows that discrete nonnegativity fails again until a threshold is attained by 4. The computed threshold is obtained from

the inequality h? < %, as seen in Remark 4.2 (i), where now f, = 1, hence we get hy = 0.0702. This is again slightly pessimistic,
2P0

since we see nonnegativity already for 4 = 0.0833.

4.6.4. Exponential nonlinearity for hexagonal cross-sections: Courant elements

Finally we consider a domain being a 2D cross-section of the bar discussed in the previous subsection, and solve the same type
of PDE as (4.69)—(4.70). Now ¢ is concentrated in a thin layer along an edge of the boundary. The mesh is also identical to the one
used in the hexagonal base above, i.e. an equilateral triangular partition is defined, and Courant elements are used.

Table 4 shows similar conclusions as above. We find that discrete nonnegativity fails again until a threshold is attained by 4. The
computed threshold from (4.11) is hg = \/(%: now we set o = 1073, hence hy = 0.0774, which is not far from the experimental
value where nonnegativity already holds.
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Fig. 3. Left: h=0.25, minu, = —0.0170. Right: 2 =0.01, minu, = —0.0421.
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4.6.5. Graphical illustration of the mesh sensitivity

Numerical solutions
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= —8.8¢ — 14. Right: 1 =0.0074, minu;, =0.

0.2

x-axis

x-axis

For an illustration we enclose the graphs of the numerical solutions for the Michaelis-Menten problems with bilinear FEM from

subsections 4.6.1-4.6.2 for some mesh sizes.

(a) Homogeneous case. The solution has large values in layers concentrated near two edges of the square domain, but it is close
to zero in the remaining main part of Q. The arising jumps induce that the approximation u;,, on a coarse mesh violates nonnegativity
with an oscillatory behaviour, since the average of u; should be close to 0 (Figs. 3, 4).

(b) Inhomogeneous case. The solution has large values on the whole boundary and on neighbouring layers, but again it is close
to zero in the remaining main part of Q and thus provides jumps. Hence the violation of nonnegativity on coarse meshes can have

the same explanation as in item (a) (Figs. 5, 6).
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