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Discrete maximum principles are essential measures of the qualitative reliability of the given 
numerical method, therefore they have been in the focus of intense research, including nonlinear 
elliptic boundary value problems describing stationary states in many nonlinear processes. In this 
paper we consider a general class of nonlinear elliptic problems which covers various special cases 
and applications. We provide exactly computable conditions on the geometric characteristics of 
widely studied finite element shapes: triangles, tetrahedra, prisms and rectangles, and guarantee 
the validity of discrete maximum principles under these conditions.

1. Introduction

The validity of maximum principles is an important property of second-order elliptic equations with various boundary conditions 
[25,26]. Generally speaking, it provides a priory known bounds of the unknown solution, provided some conditions on the given data 
are imposed. Such maximum principles are now known for many nonlinear elliptic problems appearing in a number of important 
applications in physics and engineering.

Therefore, obviously, their suitable discrete analogues, commonly called discrete maximum principles, or DMPs, have drawn much 
attention. A DMP is a relevant measure of the qualitative reliability of the given numerical method, since otherwise one might get 
physically incorrect numerical solutions, such as negative concentrations in some parts of the space domain. The validity of DMPs 
for the most widespread numerical techniques, like finite difference and finite element methods, has thus also been in the focus of 
research work for the recent decades. Starting with the pioneering works by Ciarlet [5], a lot of generalizations (involving various 
nonlinearities in the equations, mixed boundary conditions, usage of quadrature rules, usage of different types of finite elements) 
have been addressed. For the finite element method (FEM), which is in the focus of the present paper, various results on DMPs under 
proper geometric conditions on the computational meshes have been given e.g. in [4,6,27,28] in the case of linear elliptic problems. 
Such ideas were also relevant for linear parabolic problems [9,10]. We have established a DMP for general nonlinear elliptic problems 
in [18], which has been applied and extended in various later works, see, e.g. [15,24] and also the authors’ previous results, e.g. 
[16,19,20].
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In all the mentioned papers, the DMPs for nonlinear problems with lower order terms (typically arising from reaction type pro
cesses) have been derived under the condition that the mesh parameter is sufficiently small. However, no exact condition on the 
required mesh size has been given. The goal of the present paper is to fill this gap from the point of view of concrete applications. We 
provide exactly computable conditions on the geometric characteristics of widely studied finite element shapes: triangles, tetrahedra, 
prisms and rectangles, and guarantee the validity of discrete maximum principles under these conditions. The considered class of 
nonlinear elliptic problem is as general as possible within this scope, slightly extending the one used in [18], and also various special 
cases and applications are shown which are covered by our setting. Finally, we illustrate numerically that the restrictions on the mesh 
size are indeed necessary in practice.

2. The PDE problem and its FEM discretization

2.1. The general mathematical model and its properties

Let us consider the following nonlinear elliptic boundary value problem:

⎧⎪⎪⎨⎪⎪⎩
− div

(
𝑏(𝑥, 𝑢,∇𝑢) ∇𝑢

)
+ 𝑟(𝑥, 𝑢,∇𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑏(𝑥, 𝑢,∇𝑢) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

(2.1)

where Ω is a bounded domain in ℝ𝑑 (𝑑 = 2 or 3) under the assumptions below:

Assumption 2.1. 

(a) Ω has a piecewise smooth and Lipschitz continuous boundary 𝜕Ω; Γ𝑁,Γ𝐷 ⊂ 𝜕Ω are measurable open sets, such that Γ𝑁 ∩Γ𝐷 = ∅
and Γ𝑁 ∪ Γ𝐷 = 𝜕Ω, further 𝑚𝑒𝑎𝑠(Γ𝐷) > 0.

(b) The scalar functions 𝑏 ∶ Ω×ℝ×ℝ𝑑 →ℝ and 𝑟 ∶ Ω×ℝ×ℝ𝑑 →ℝ are continuous. Further, 𝑓 ∈𝐿2(Ω), 𝛾 ∈𝐿2(Γ𝑁 ) and 𝑔 = 𝑔∗∣Γ𝐷
for some 𝑔∗ ∈𝐻1(Ω).

(c) The functions 𝑏 and 𝑟 are bounded such that

0 < 𝜇0 ≤ 𝑏(𝑥, 𝜉, 𝜂) ≤ 𝜇1, 0 ≤ 𝑟(𝑥, 𝜉, 𝜂) ≤ 𝛽 ∀(𝑥, 𝜉, 𝜂) ∈ Ω ×ℝ ×ℝ𝑑 , (2.2)

where 𝜇0, 𝜇1 and 𝛽 are positive constants. The weak formulation of (2.1) is dfined as follows: find 𝑢 ∈𝐻1(Ω) such that

𝑢 = 𝑔 on Γ𝐷 in trace sense, and (2.3)

∫
Ω 

(
𝑏(𝑥, 𝑢,∇𝑢) ∇𝑢 ⋅∇𝑣+ 𝑟(𝑥, 𝑢,∇𝑢)𝑢𝑣

)
𝑑𝑥 = ∫

Ω 
𝑓𝑣 𝑑𝑥 + ∫

Γ𝑁

𝛾𝑣 𝑑𝜎 ∀𝑣 ∈𝐻1
𝐷
(Ω), (2.4)

where 𝐻1
𝐷
(Ω) ∶= {𝑢 ∈ 𝐻1(Ω) ∶ 𝑢|Γ𝐷 = 0 in trace sense} [1] with the following standard inner product and corresponding norm, 

respectively:

⟨𝑢, 𝑣⟩1 = ∫
Ω 

∇𝑢 ⋅∇𝑣 𝑑𝑥, |𝑣|1 = (
∫
Ω 

|∇𝑣|2 𝑑𝑥) 1
2
. (2.5)

Remark 2.1. The solvability of the problem can be ensured in two subclasses of (2.1).

(a) The existence and uniqueness of the weak solution can be proved for the following special case of (2.1) that leads to a uniformly 
monotone operator, see, e.g., [18,30]:

⎧⎪⎪⎨⎪⎪⎩
− div

(
𝑏(𝑥,∇𝑢) ∇𝑢

)
+ 𝑟(𝑥, 𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑏(𝑥,∇𝑢) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

(2.6)

under the following conditions:
(i) The mapping 𝑓 ∶ Ω×ℝ𝑑 →ℝ𝑑 , defined as 𝑓 (𝑥, 𝜂) ∶= 𝑏(𝑥, 𝜂)𝜂, is uniformly monotone and Lipschitz continuous with respect 

to 𝜂.
(ii) The scalar function 𝜉→ 𝑟(𝑥, 𝜉)𝜉 =∶ 𝑞(𝑥, 𝜉) is monotone increasing and Lipschitz continuous with respect to 𝜉.
Some reaction-diffusion type equations are examples of this type of model, see subsections 2.2.1-2.2.3 below.
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(b) The existence of a weak solution can be ensured for the following special case of (2.1):

⎧⎪⎪⎨⎪⎪⎩
− div

(
𝑏(𝑥, 𝑢) ∇𝑢

)
+ 𝑟(𝑥, 𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑏(𝑥, 𝑢) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

(2.7)

provided that 𝑏 and 𝑟 are Lipschitz continuous, 𝑏 ≥ 𝜇0 > 0 and 𝑟 ≥ 0, see [17]. An example of this model is stationary heat 
conduction, see subsection 2.2.4 below.

A motivating property for the present paper is that problem (2.1) satifies a maximum-minimum principle. First we formulate the 
maximum principle (sometimes called ‘continuous maximum principle’, CMP, in contrast to the later studied discrete version, DMP). 
The formulation and proof is similar to Theorem 5 in [18], now our problem is slightly more general.

Theorem 2.1. Let Assumption 2.1 hold and the weak solution of (2.1) belong to 𝐶1(Ω) ∩𝐶(Ω̄). If

𝑓 (𝑥) ≤ 0 (𝑥 ∈Ω) 𝑎𝑛𝑑 𝛾(𝑥) ≤ 0 (𝑥 ∈ Γ𝑁 ), (2.8)

then

max
Ω

𝑢 ≤max{0,max
Γ𝐷

𝑔}. (2.9)

In particular, if max
Γ𝐷

𝑔 ≥ 0 then

max
Ω

𝑢 =max
Γ𝐷

𝑔, (2.10)

and if 𝑔 ≤ 0 then we have the nonpositivity property

𝑢 ≤ 0 on Ω. (2.11)

Proof. We follow [18]. First, let us dfine the functions 𝑎̃(𝑥) ∶= 𝑏(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) and ℎ̃(𝑥) ∶= 𝑟(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) for 𝑥 ∈ Ω̄. Then 𝑎̃ ∈
𝐶(Ω) and satifies the uniform positivity 𝜇0 ≤ 𝑎̃ ≤ 𝜇1. Besides, ℎ̃ ∈ 𝐶(Ω̄) and ℎ̃ ≥ 0. Hence, the operator

𝐿̃𝑣 ≡ −𝑑𝑖𝑣(𝑎̃(𝑥)∇𝑣) + ℎ̃(𝑥)𝑣

satifies the standard properties required in equation (2.1) of [18], and 𝐿̃𝑢 = 𝑓 coincides with our original PDE, from which the 
statements (2.8)-(2.10) follow exactly as in Theorem 5 therein. □

The corresponding continuous minimum principle for the problem (2.1) can be verfied in the same way by reversing signs.

Theorem 2.2. Let Assumption 2.1 hold and the weak solution of (2.1) belong to 𝐶1(Ω) ∩𝐶(Ω̄). If

𝑓 (𝑥) ≥ 0 (𝑥 ∈Ω) and 𝛾(𝑥) ≥ 0 (𝑥 ∈ Γ𝑁 ), (2.12)

then

min
Ω

𝑢 ≥min{0,min
Γ𝐷

𝑔}. (2.13)

In particular, if min
Γ𝐷

𝑔 ≤ 0 then

min
Ω

𝑢 =min
Γ𝐷

𝑔, (2.14)

and if 𝑔 ≥ 0 then we have nonnegativity property

𝑢 ≥ 0 on Ω. (2.15)
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2.2. Some examples and applications

2.2.1. Semilinear problems

A practically widely important special case of problem (2.1) is as follows, arising e.g. in various reaction-diffusion problems:

⎧⎪⎪⎨⎪⎪⎩

− div
(
𝑏(𝑥)∇𝑢

)
+ 𝑞(𝑥, 𝑢) = 𝑓 (𝑥) in Ω,

𝑏(𝑥) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

(2.16)

where 𝑞 ∈ 𝐶1(Ω ×ℝ). We assume that there exists 𝛽 > 0 such that

0 ≤ 𝜕𝑞

𝜕𝜉
(𝑥, 𝜉) ≤ 𝛽 and 0 < 𝜇0 ≤ 𝑏(𝑥) ≤ 𝜇1, ∀(𝑥, 𝜉) ∈ Ω ×ℝ. (2.17)

Then 𝑞 itself is Lipschitz continuous w.r.t 𝜉 with constant 𝛽, hence Remark 2.1 (a) implies the existence and uniqueness of the weak 
solution. Now let us first dfine a function 𝑟 in terms of 𝑞:

𝑟(𝑥, 𝜉) ∶=
⎧⎪⎨⎪⎩

𝑞(𝑥,𝜉)−𝑞(𝑥,0)
𝜉

, if 𝜉 ≠ 0,

𝜕𝑞

𝜕𝜉
(𝑥,0), if 𝜉 = 0,

(2.18)

then clearly 𝑟 is continuous and 0 ≤ 𝑟(𝑥, 𝜉) ≤ 𝛽, further,

𝑟(𝑥, 𝜉)𝜉 = 𝑞(𝑥, 𝜉) − 𝑞(𝑥,0), ∀𝜉 ∈ℝ. (2.19)

The PDE in (2.16) can be written as:

− div
(
𝑏(𝑥)∇𝑢

)
+ 𝑞(𝑥, 𝑢) − 𝑞(𝑥,0) = 𝑓 (𝑥) − 𝑞(𝑥,0) in Ω, (2.20)

that is,

− div
(
𝑏(𝑥)∇𝑢

)
+ 𝑟(𝑥, 𝑢)𝑢 = 𝑓 (𝑥) in Ω, (2.21)

where 𝑟(𝑥, 𝑢)𝑢 = 𝑞(𝑥, 𝑢) − 𝑞(𝑥,0) from (2.19) and 𝑓 (𝑥) = 𝑓 (𝑥) − 𝑞(𝑥,0). Then we can see that (2.21) is a special case of the PDE in 
problem (2.1).

2.2.2. Diffusion-kinetics: Michaelis-Menten nonlinearity

A diffusion-kinetics equation governing the steady-state concentration 𝑢 of some substrate in an enzyme-catalyzed reaction has 
the following form, see [21]:

div (𝑏(𝑥)∇𝑢) = 𝑞(𝑥, 𝑢) (2.22)

in a bounded domain Ω in ℝ2. Here 𝑏(𝑥) is the uniformly positive molecular diffusion coefficient of the substrate in a medium 
containing some continuous distribution of bacteria, and 𝑞 is the rate of the enzyme-substate reaction. In particular, the reaction rate 
is given by Michaelis-Menten theory:

𝑞(𝑥, 𝜉) ≡ 𝑞(𝜉) = 1
𝜖

𝜉

𝜉 + 𝑘
for 𝜉 ≥ 0, (2.23)

where 𝑘 > 0 is the Michaelis constant. Here the more general model is 𝑞(𝑥, 𝜉) = 1 
𝜖(𝑥)

𝜉

𝜉+𝑘 , where 𝜖(𝑥) ≥ 𝜖0 > 0, but typically 𝜖 is also 
constant [21], so we assume it from now on for simplicity. Let us impose mixed boundary conditions according to (2.16), where 
𝑢0 ≥ 0 and the zero Neumann condition describes the insulated part of the boundary:

𝑏(𝑥) 𝜕𝑢 
𝜕𝑛

= 0 on Γ𝑁, 𝑢 = 𝑢0 on Γ𝐷 .

The rate (2.23) is dfined only for the relevant concentrations 𝜉 ≥ 0. To obtain a proper operator, we can extend 𝑞(𝜉) from 𝜉 ≥ 0
to 𝜉 ∈ℝ by the formula

𝑞(𝜉) = 1
𝜖

𝜉|𝜉|+ 𝑘
for ∀𝜉 ∈ℝ.

Then 𝜉 ↦ 𝑞(𝜉) is monotone and Lipschitz continuous as required, i.e. the rearranged equation (2.22) with the mixed boundary 
conditions becomes a special case of (2.16) and has a unique weak solution. Furthermore, 𝑟(𝜉) ∶= 𝜖−1|𝜉|+𝑘 satifies 0 ≤ 𝑟 ≤ 1 

𝜖𝑘
, i.e. (2.2) 

holds. Then, by Theorem 2.2, the weak solution satifies 𝑢 ≥ 0, hence 𝑢 is the solution of the original problem (2.22) with nonlinearity 
(2.23).
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2.2.3. Electrostatic potential equation

A semilinear model describing electrostatic potential is given by{
− Δ𝑢 + 𝑒𝑢 = 0 in Ω,

𝑢 = 0 on 𝜕Ω,
(2.24)

see [13,23]. It can be put in the above framework as follows. The equation is first written as −Δ𝑢+ 𝑒𝑢 − 1 = −1. Now let us denote

𝑞(𝜉) ∶=

{
𝑒𝜉 − 1 if 𝜉 < 0,

𝜉 if 𝜉 ≥ 0
(2.25)

which is monotone and Lipschitz continuous, hence the problem{
− Δ𝑢 + 𝑞(𝑢) = −1 in Ω,

𝑢 = 0 on 𝜕Ω,
(2.26)

has a unique weak solution. Further, the function 𝑟(𝜉) = 𝑞(𝜉)∕𝜉 (dfined as 1 for 𝜉 = 0) satifies 0 ≤ 𝑟(𝜉) ≤ 1 for all 𝜉 ∈ℝ, hence (2.2) 
holds and thus (2.26) becomes a special case of (2.1). Then Theorem 2.1 implies 𝑢 ≤ 0 for (2.26), hence 𝑞(𝑢) and 𝑒𝑢 − 1 coincide and 
thus 𝑢 is the solution of the original problem (2.24) as well.

2.2.4. Nonlinear stationary heat conduction

Problems of the form (2.7) appear in modelling heat conduction in nonlinear isotropic media. The problem

⎧⎪⎪⎨⎪⎪⎩
− div

(
𝑎(𝑥, 𝑢) ∇𝑢

)
+ 𝑐(𝑥, 𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑎(𝑥, 𝑢) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

is the isotropic case of the model described in [17]. The function 𝑢 describes temperature distribution, where the heat conductivity 
is represented by the coefficient 𝑎, and the domain Ω is, for instance, a large transformer whose magnetic cores consist of iron tins.

2.2.5. Stefan–Boltzmann nonlinearity in radiation

The steady-state temperature distribution in various radiating bodies or gases lead to nonlinear PDEs of the form

div (𝑘(𝑥)∇𝑢) = 𝜎(𝑥)𝑢4 in Ω, (2.27)

where the thermal conductivity 𝑘(𝑥) and the Boltzmann factor 𝜎(𝑥) are uniformly positive, see [21].
In this example, similarly to subsection 2.2.2, the nonlinearity 𝑞(𝑥, 𝜉) = 𝜎(𝑥)𝜉4 is dfined only for 𝜉 ≥ 0 since we expect a solution 

𝑢 ≥ 0, but we can dfine a monotone increasing extension to all 𝜉 ∈ℝ by 𝑞(𝑥, 𝜉) ∶= 𝜎(𝑥)|𝜉|3𝜉.
On the other hand, rewriting the above nonlinearity in the expected form 𝑞(𝑥, 𝜉) = 𝑟(𝑥, 𝜉)𝜉, we find that 𝑟 is not bounded as 

required in (2.2). This will lead us to discuss the extension of our results, allowing power order growth instead of the present bounds 
on 𝑟 in (2.2), in subsection 4.5.1 at the end of the paper.

2.3. Finite element discretization

In the study of the discrete case, we assume that the domain Ω is a polytope, i.e. polygon or polyhedron in 2D or 3D, respectively. 
(If Ω has a curved boundary then it can be approximated with a polytope, see, e.g., [22].) To find the finite element solution for the 
model (2.1), consider a FEM subspace 𝑉ℎ of first-order elements. That is, the following general properties hold for the basis functions:

(B1) 0 ≤ 𝜙𝑖 ≤ 1 (∀𝑖 = 1,… , 𝑛+𝑚);

(B2)
𝑛+𝑚∑
𝑖=1 

𝜙𝑖 ≡ 1,

(B3) 𝜙𝑖(𝑃𝑗 ) = 𝛿𝑖𝑗 for proper nodes 𝑃1,… , 𝑃𝑛 ∈Ω and 𝑃𝑛+1,… , 𝑃𝑛+𝑚 ∈ 𝜕Ω.

In Section 4 we will consider Courant, tetrahedral, bilinear and prismatic elements, for all of which the conditions (B1)-(B3) hold.
We solve the following problem (which is the counterpart of (2.3) and (2.4) in 𝑉ℎ): find 𝑢ℎ ∈ 𝑉ℎ such that

𝑢ℎ = 𝑔ℎ on Γ𝐷 and

∫
Ω 

[
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ) ∇𝑢ℎ ⋅∇𝑣ℎ + 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝑢ℎ𝑣ℎ

]
𝑑𝑥 = ∫

Ω 
𝑓ℎ𝑣ℎ 𝑑𝑥 + ∫

Γ𝑁

𝛾ℎ𝑣ℎ 𝑑𝜎 ∀𝑣ℎ ∈ 𝑉 0
ℎ
. (2.28)
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To find the coefficient vector 𝐜̄ of 𝑢ℎ, following [18], the corresponding nonlinear algebraic system of equations is given by

𝐀̄(𝐜̄)𝐜̄ = 𝐛̄, (2.29)

where the structure of the matrix is:

𝐀̄(𝐜̄) =
⎛⎜⎜⎝
𝐀(𝐜) 𝐀̃(𝐜)

𝟎 𝐈

⎞⎟⎟⎠ (2.30)

where 𝐈 is an 𝑚×𝑚 identity matrix and 𝟎 is a 𝑚×𝑛 zero matrix, further, the entries of the matrix 𝐀̄(𝐜) for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑛+𝑚
(i.e. both for 𝐀(𝐜) and 𝐀̃(𝐜)) are

𝑎𝑖𝑗 (𝐜̄) = ∫
Ω𝑖𝑗

[
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ) ∇𝜙𝑖 ⋅∇𝜙𝑗 + 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ) 𝜙𝑖𝜙𝑗

]
𝑑𝑥, (2.31)

where 𝜙𝑖 and 𝜙𝑗 are corresponding basis functions and

Ω𝑖𝑗 = 𝑠𝑢𝑝𝑝 𝜙𝑖 ∩ 𝑠𝑢𝑝𝑝 𝜙𝑗 , (2.32)

where 𝑠𝑢𝑝𝑝 refers to the support of a function (i.e. the closure of the set where it is nonvanishing). The vector 𝐜̄ = (𝑐1, ..., 𝑐𝑛+𝑚)𝑇

contains the values of the finite element solution 𝑢ℎ at all the nodal points, i.e. 𝑐𝑖 = 𝑢ℎ(𝑃𝑖) and 𝑢ℎ =
𝑛+𝑚∑
𝑖=1 

𝑐𝑖𝜙𝑖, where 𝜙1, ....𝜙𝑛 are the 

interior basis functions and 𝜙𝑛+1, ..., 𝜙𝑛+𝑚 are the boundary basis functions. Furthermore, ̄𝐛 = (𝑏1, ..., 𝑏𝑛, 𝑔1, ..., 𝑔𝑚)𝑇 and 𝐀̄(𝐜̄) is (𝑛+𝑚)
by (𝑛+𝑚) matrix.

3. Background for DMP: matrix maximum principles

Consider a linear algebraic system 𝐀𝐜 = 𝐛 with a matrix with similar structure as in (2.30):

𝐀 =
⎛⎜⎜⎝
𝐀 𝐀̃

𝟎 𝐈

⎞⎟⎟⎠ (3.1)

where the matrix 𝐀̄ has a dimension of (𝑛+𝑚) by (𝑛+𝑚).

Definition 3.1. (see [8]). The matrix 𝐀̄ satifies

• the discrete weak maximum principle (DwMP) if for any vector 𝐜̄ = (𝑐1, ..., 𝑐𝑛+𝑚)𝑇 ∈ℝ𝑛+𝑚 satisfying (𝐀̄𝐜̄)𝑖 ≤ 0, 𝑖 = 1, ..., 𝑛, one has

max 
𝑖=1,...,𝑛+𝑚

𝑐𝑖 ≤ max{0, max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑐𝑖};

• the discrete strict weak maximum principle (DWMP) if for any vector 𝐜̄ = (𝑐1, ..., 𝑐𝑛+𝑚)𝑇 ∈ℝ𝑛+𝑚 satisfying (𝐀̄𝐜̄)𝑖 ≤ 0, 𝑖 = 1, ..., 𝑛, one 
has

max 
𝑖=1,...,𝑛+𝑚

𝑐𝑖 = max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑐𝑖.

Theorem 3.1. (see [18, Theorem 5]). Let the matrix 𝐀̄ in (3.1) satisfy the following conditions, where 𝑎𝑖𝑗 denote the entries of 𝐀̄:

(i) 𝑎𝑖𝑗 ≤ 0 (∀𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛+𝑚; 𝑖 ≠ 𝑗),

(ii)
𝑛+𝑚∑
𝑗=1 

𝑎𝑖𝑗 ≥ 0 (∀𝑖 = 1,… , 𝑛),

(iii) 𝐀 is positive definite.

Then 𝐀̄ possesses the DwMP. If the inequality in condition (ii) is replaced by equality, then 𝐀̄ possesses the DWMP.

4. DMPs and mesh conditions for nonlinear elliptic problems

Now we can turn to our main goal, that is, to give sufficient conditions for the discrete analogues of Theorems 2.1--2.2 for the 
FE solution described in subsection 2.3. First we give some general properties, which show that the main task will be to ensure 
the nonpositivity of the offdiagonals of the FEM matrices. Then the latter will be presented for various first-order elements, where 
sufficient conditions are given for the mesh sizes under proper shape properties.
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Let 𝑉ℎ be any FEM subspace as described in the subsection 2.3. The entries of the matrix 𝐀̄(𝐜̄) for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑛+𝑚

are given by (2.31), where 𝜙𝑖 and 𝜙𝑗 are corresponding basis functions and Ω𝑖𝑗 = 𝑠𝑢𝑝𝑝 𝜙𝑖 ∩ 𝑠𝑢𝑝𝑝 𝜙𝑗 .

Proposition 4.1. Let the general properties (B1)-(B3) in Section 2.3 hold. Then the matrix (2.30)--(2.31) satifies

(i)
𝑛+𝑚∑
𝑗=1 

𝑎𝑖𝑗 (𝐜) ≥ 0 (∀𝑖 = 1,… , 𝑛);

(ii) 𝐀(𝐜) is positive definite.

Proof. It is similar as in [18] for simplicial elements, for completeness we summarize the proof.

(i) For any 𝑖= 1, ..., 𝑛 in (2.31), using properties (B1)-(B2) and (2.2), we have

𝑛+𝑚∑
𝑗=1 

𝑎𝑖𝑗 (𝐜̄) = ∫
Ω 

[
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ) ∇𝜙𝑖 ⋅∇(

𝑛+𝑚∑
𝑗=1 

𝜙𝑗 ) + 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ) 𝜙𝑖(
𝑛+𝑚∑
𝑗=1 

𝜙𝑗 )
]
𝑑𝑥

= ∫
Ω 

𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ) 𝜙𝑖 𝑑𝑥 ≥ 0 .

(iii) To verify that 𝐀(𝐜) is positive definite, let 𝐝 ≠ 𝟎 be an arbitrary vector in ℝ𝑛, formed by the coefficients 𝑑𝑖, and let

𝑣ℎ =
𝑛 ∑
𝑗=1 

𝑑𝑗𝜙𝑗 ∈ 𝑉ℎ.

Then 𝑣ℎ ≢ 0. The vector 𝐜 ∈ ℝ𝑛+𝑚 contains the coefficients for 𝑢ℎ as given in (2.28)--(2.29). Then, using (2.28) and (2.2), we 
have

𝐴(𝐜̄)𝐝 ⋅ 𝐝 =
𝑛 ∑

𝑖,𝑗=1
𝑎𝑖𝑗 (𝐜̄)𝑑𝑖𝑑𝑗

= ∫
Ω 

(
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ)∇

( 𝑛 ∑
𝑖=1 

𝑑𝑖𝜙𝑖

)
⋅∇

( 𝑛 ∑
𝑗=1 

𝑑𝑗𝜙𝑗

)
+ 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)

𝑛 ∑
𝑖=1 

𝑑𝑖𝜙𝑖

𝑛 ∑
𝑗=1 

𝑑𝑗𝜙𝑗

)
𝑑𝑥

= ∫
Ω 

(
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ)|∇𝑣ℎ|2 + 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝑣2ℎ

)
𝑑𝑥 ≥ 𝜇0 ∫

Ω 
|∇𝑣ℎ|2 = 𝜇0|𝑣ℎ|21 > 0. □

Proposition 4.2. Let the general properties (B1)-(B3) in subsection 2.3 hold. If 𝐀̄(𝐜̄) in (2.30)--(2.31) satifies the DwMP, then 𝑢ℎ satifies 
the DMP: that is, if

𝑓 (𝑥) ≤ 0 (𝑥 ∈Ω) 𝑎𝑛𝑑 𝛾(𝑥) ≤ 0 (𝑥 ∈ Γ𝑁 ), (4.1)

then

max
Ω

𝑢ℎ ≤max{0,max
Γ𝐷

𝑔ℎ}. (4.2)

In particular, if max
Γ𝐷

𝑔ℎ ≥ 0, then

max
Ω

𝑢ℎ =max
Γ𝐷

𝑔ℎ, (4.3)

and if 𝑔ℎ ≤ 0, then we have the nonpositivity property

𝑢ℎ ≤ 0 on Ω. (4.4)

Proof. Let 𝐜̄ = (𝑐1, ..., 𝑐𝑛+𝑚)𝑇 ∈ℝ𝑛+𝑚 and ̄𝐛 = (𝑏1, ..., 𝑏𝑛, 𝑔1, ..., 𝑔𝑚)𝑇 ∈ℝ𝑛+𝑚 be the vectors that appear in (2.29). Then

𝑏𝑖 = ∫
Ω 

𝑓𝜙𝑖 𝑑𝑥 + ∫
Γ𝑁

𝛾𝜙𝑖 𝑑𝜎 ≤ 0 (𝑖 = 1,… , 𝑛) (4.5)

owing to 𝑓 ≤ 0, 𝛾 ≤ 0 and property (B1) of subsection of 2.3. Then (2.29) and (4.5) imply 𝐀̄(𝐜̄)𝐜̄ = 𝐛̄ ≤ 𝟎. Since it is assumed that the 
matrix 𝐀̄(𝐜̄) possesses the DwMP, we have by definition

max 
𝑖=1,...,𝑛+𝑚

𝑐𝑖 ≤ max{0, max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑐𝑖} = max{0, max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑔𝑖} (4.6)
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since 𝑐𝑖 = 𝑔𝑖 for all 𝑖 = 𝑛, ..., 𝑛+𝑚. Using the fact that 0 ≤ 𝜙𝑖 ≤ 1 and 
∑𝑛+𝑚

𝑖=1 𝜙𝑖 = 1 from properties (B2)-(B3), the solution vectors 𝑢ℎ
and 𝑔ℎ can be estimated respectively as

𝑢ℎ =
𝑛+𝑚∑
𝑖=1 

𝑐𝑖𝜙𝑖 ≤ max 
𝑖=1,...,𝑛+𝑚

𝑐𝑖

𝑛+𝑚∑
𝑖=1 

𝜙𝑖 = max 
𝑖=1,...,𝑛+𝑚

𝑐𝑖, (4.7)

𝑔ℎ =
𝑛+𝑚 ∑
𝑖=𝑛+1

𝑔𝑖𝜙𝑖 ≤ max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑔𝑖

𝑛+𝑚 ∑
𝑖=𝑛+1

𝜙𝑖 ⇒ max
Γ𝐷

𝑔ℎ ≤ max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑔𝑖. (4.8)

Moreover, equality holds in (4.8) because of the following argument. Let 𝑔𝑘 ∶= max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑔𝑖. Then, using (B3) of the general properties 

in subsection of 2.3, 𝑔ℎ(𝑃𝑘) =
∑𝑛+𝑚

𝑖=𝑛+1 𝑔𝑖𝜙𝑖(𝑃𝑘) = 𝑔𝑘 since 𝜙𝑖(𝑃𝑘) = 1 and 0 in the other nodes. Hence, indeed,

max
Γ𝐷

𝑔ℎ = max 
𝑖=𝑛+1,...,𝑛+𝑚

𝑔𝑖

and thus also

max{0,max
Γ𝐷

𝑔ℎ} = max{0, max 
𝑖=𝑛+1,........,𝑛+𝑚

𝑔𝑖}. (4.9)

Altogether, (4.7), (4.6) and (4.9) imply (4.2). The remaining two statements are direct consequences of (4.2). □

Now we come to the main point to be used in the sequel of this paper:

Corollary 4.1. Let the general properties (B1)-(B3) in subsection 2.3 hold. If the matrix (2.30)--(2.31) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0 ∀𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛+𝑚; 𝑖 ≠ 𝑗, (4.10)

then the DMP (4.2) holds as well as its consequences (4.3) and (4.4) under the proper sign conditions given in Proposition 4.2.

Indeed, if (4.10) holds then Proposition 4.1 and Theorem 3.1 imply that 𝐀(𝐜) satifies the DwMP, and thus Proposition 4.2 yields 
that the DMP and its consequences hold. 
Therefore, in what follows, our remaining task is to verify (4.10) (i.e. the nonpositivity of the off-diagonals of the FEM matrices) for 
the studied types of first order elements under proper mesh conditions.

4.1. Courant elements

In our recent article [2], we have determined the threshold mesh size ℎ0 to ensure the validity of DMPs by Courant FEM in 2D for 
suitable meshes with uniformly acute angle conditions for the nonlinear elliptic model (2.1). In our result, we have used the definition 
below. Here a family of triangulations means a collection  = {ℎ}ℎ>0 for which the mesh widths ℎ accumulate at 0.

Definition 4.1. A family  of triangulations of a bounded polygonal domain is said to be uniformly acute if there exists 𝛼0 <
𝜋

2 such 
that 𝛼𝑛 ≤ 𝛼0 for any angle 𝛼𝑛 in all triangles 𝑇𝑘 in all ℎ, where ℎ ∈  .

Theorem 4.1. [2] Let Assumption 2.1 hold and Courant finite elements be used with triangulations satisfying Definition 4.1. Let the mesh 
size ℎ satisfy

0 < ℎ ≤ ℎ0 =
( 12𝜇0 cos𝛼0

𝛽

) 1
2
, (4.11)

where 𝛼0 is the angle that obeys Definition 2, 𝜇0 and 𝛽 are positive constants from (2.2). Then the matrix in (2.30) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗).

Consequently, the DMP (4.2) holds.
Now, we will give similar results to investigate the validity of DMPs using tetrahedral, bilinear, and prismatic elements.

4.2. Tetrahedral elements

Now let us consider a 3D problem of the type (2.1) and apply tetrahedral P1 elements. For the description we rely on [12]. For 
a given tetrahedron 𝐾 we denote by 𝛼𝐾

𝑖𝑗
the angle between the two dimensional facets 𝐹𝐾

𝑖
and 𝐹𝐾

𝑗
which are adjacent to the given 

edge (Fig. 1).

Definition 4.2. A family  of tetrahedral triangulations of a bounded polyhedral domain is said to be uniformly acute if there exists 
𝛼0 <

𝜋

2 such that 𝛼𝐾
𝑖𝑗
≤ 𝛼0 for any angle 𝛼𝐾

𝑖𝑗
in all 𝐾 ∈ ℎ, and ℎ ∈  .
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Fig. 1. A tetrahedral cell 𝐾 from [12]. 

Theorem 4.2. Let 𝑑 = 3 and Assumption 2.1 hold, and let the tetrahedral finite element method be used with triangulations satisfying 
Definition 4.2. Let the mesh size ℎ satisfy

0 < ℎ ≤ ℎ0 =
( 20𝜇0 cos𝛼0

𝛽

) 1
2
, (4.12)

where 𝛼0 is the angle that obeys Definition 3, 𝜇0 and 𝛽 are the positive constants from (2). Then the matrix in (2.30) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗).

Consequently, the DMP (4.2) holds.

Proof. Let us consider the entries in (2.31). If 𝑖𝑛𝑡(Ω𝑖𝑗 ) ≠ ∅, then to estimate (2.31) we should find the values of the following integrals:

∫
Ω𝑖𝑗

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥 and ∫
Ω𝑖𝑗

𝜙𝑖𝜙𝑗 𝑑𝑥 , (4.13)

and the goal is to find proper upper bounds. To compute the entries of the stiffness matrix over a tetrahedron 𝐾 , we shall use the 
formula stated in [12] for the inner product of the basis functions, and for the upper bound we let 𝜎0 ∶= 𝑐𝑜𝑠(𝛼0), where 𝛼0 is the 
maximum angle from Definition 4.2, hence 𝜎0 > 0 and it is independent of 𝑖, 𝑗 and ℎ. Altogether, if 𝑖 ≠ 𝑗, then

∇𝜙𝑖 ⋅∇𝜙𝑗 |𝐾 = −
𝑐𝑜𝑠(𝛼𝐾

𝑖𝑗
)

ℎ𝐾
𝑖
ℎ𝐾
𝑗

≤ −𝑐𝑜𝑠(𝛼0)
ℎ2

, (4.14)

since all ℎ𝑖𝐾 ,ℎ𝑗𝐾 ≤ ℎ and 𝛼𝐾
𝑖𝑗
≤ 𝛼0. Therefore, we have a bound independently of 𝐾 :

∇𝜙𝑖 ⋅∇𝜙𝑗 |𝐾 ≤ −
𝜎0

ℎ2
< 0. (4.15)

Hence the bounds of the off-diagonal entries of the stiffness matrix are given by

∫
Ω𝑖𝑗

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥 =
∑

𝐾⊂Ω𝑖𝑗
∫
𝐾

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥 ≤ −
𝜎0

ℎ2
𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ). (4.16)

The formula for the entries of the mass matrix M over 𝐾 from [12] is

𝑚𝑖𝑗 |𝐾 = ∫
𝐾

𝜙𝑖𝜙𝑗 𝑑𝑥 = (1 + 𝛿𝑖𝑗 )
𝑑! 

(𝑑 + 1)!
𝑚𝑒𝑎𝑠𝑑𝐾,

where 𝛿𝑖𝑗 is Kronecker’s symbol. Therefore, since 𝑑 = 3 and 𝛿𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, we get

∫
Ω𝑖𝑗

𝜙𝑖𝜙𝑗 𝑑𝑥 =
∑

𝐾⊂Ω𝑖𝑗
∫
𝐾

𝜙𝑖𝜙𝑗 𝑑𝑥 =
∑

𝐾⊂Ω𝑖𝑗

1 
20
𝑚𝑒𝑎𝑠(𝐾) = 1 

20
𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ), (4.17)

where Ω𝑖𝑗 is as in (2.32). Using (2.2), (2.31), (4.16), (4.17) and (B1) of subsection 2.3, we have

𝑎𝑖𝑗 (𝐜̄) ≤ 𝜇0 ∫
Ω𝑖𝑗

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ 𝛽 ∫
Ω𝑖𝑗

𝜙𝑖𝜙𝑗 𝑑𝑥

≤ − 
𝜎0

ℎ2
𝜇0 meas (Ω𝑖𝑗 ) +

𝛽

20
𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) =𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) 

(
−
𝜎0

ℎ2
𝜇0 + 𝛽

20

)
.
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Let

𝑏𝑖𝑗 (ℎ) ∶= −
𝜎0

ℎ2
𝜇0 + 𝛽

20
, (4.18)

then

𝑎𝑖𝑗 (𝐜̄) ≤ 𝑏𝑖𝑗 (ℎ) 𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ). (4.19)

The sum of the terms in 𝑏𝑖𝑗 (ℎ) tends to −∞ as ℎ→ 0, which implies 𝑎𝑖𝑗 (ℎ) ≤ 0 if ℎ is small. The main task here is to find how small 
ℎ should be to guarantee the nonpositivity of (2.31). To determine the threshold ℎ = ℎ0, the following equation must hold:

−
𝜎0

ℎ2
𝜇0 + 𝛽

20
= 0.

This implies ℎ0 =
(

20𝜎0𝜇0
𝛽

) 1
2 . In summary, if 0 < ℎ ≤ ℎ0 =

(
20𝜎0𝜇0

𝛽

) 1
2 , then (4.19) yields 𝑎𝑖𝑗 (𝐜̄) ≤ 0. □

Remark 4.1. A nice family of simple examples is when Ω is the union of acute tetrahedra forming a so-called TCP-structure. Various 
such space-tiling TCP-structures, motivated by crystallography, are described in [7]. For instance, the mesh called A15, constructed 
from a square tiling, consists of tetrahedra with maximal dihedral angle 78.46◦ , i.e. with cosine value 0.2. Then ℎ0 = 2

(
𝜇0∕𝛽

)1∕2
.

4.3. Bilinear elements

Consider a semilinear special case for the model problem (2.1) for 𝑑 = 2:

⎧⎪⎪⎨⎪⎪⎩
− 𝜇0 Δ𝑢 + 𝑟(𝑥, 𝑢,∇𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷,

(4.20)

where 𝜇0 > 0 is constant and 0 ≤ 𝑟(𝑥, 𝜉, 𝜂) ≤ 𝛽 from (2.2). We consider bilinear elements for a 2D rectangular mesh. The following 
definition and Theorem are crucial to investigate the validity of DMP for (4.20).

Definition 4.3. A family  of rectangular meshes on a given domain is said to be uniformly non-narrow if there exists 𝜌0 <
√
2 such 

that for any rectangle we have 𝐻
ℎ ≤ 𝜌0 where 𝐻 and ℎ denote the longest and shortest side of the rectangle, respectively.

Theorem 4.3. Let Assumption 2.1 hold and the bilinear finite element method be used with a mesh satisfying Definition 4.3. Let the mesh 
size ℎ satisfy

0 < ℎ ≤ ℎ0 =

√
3𝜇0(2 − 𝜌20)

𝜌0
√
𝛽

(4.21)

where 𝜌0 obeys Definition 4.3, 𝜇0 and 𝛽 are the positive constants from (2.2). Then the matrix in (2.30) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗).

Consequently, the DMP (4.2) holds.

Proof. We have two possible patches in a rectangular mesh when 𝑖 ≠ 𝑗: the nodes can be diagonal or edge neighbours. We use the 
results of [11] for the integrals on a rectangle 𝑅:

∫
𝑅 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥 = 
⎧⎪⎨⎪⎩

𝐻2−2ℎ2
6ℎ𝐻 if 𝜙i and𝜙j are edge neighbours,

− ℎ2+𝐻2

6ℎ𝐻 if 𝜙i and𝜙j are diagonal neighbours,
(4.22)

and

∫
𝑅 

𝜙𝑖𝜙𝑗 𝑑𝑥 = 
⎧⎪⎨⎪⎩

ℎ𝐻

18 if 𝜙i and𝜙i are edge neighbours,

ℎ𝐻

36 if 𝜙i and𝜙i are diagonal neighbours.
(4.23)

Let us first consider edge neighbours and let 𝜙𝑖 and 𝜙𝑗 be two such basis functions. Here Ω𝑖𝑗 consists of two rectangles. The entries 
of the matrix for one rectangle 𝑅 are given as follows:
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𝑎𝑖𝑗 (𝐜̄)|𝑅 = 𝜇0 ∫
𝑅 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ ∫
𝑅 

𝑟(𝑥, 𝑢,∇𝑢)𝜙𝑖𝜙𝑗 𝑑𝑥

≤ 𝜇0 ∫
𝑅 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ 𝛽 ∫
𝑅 

𝜙𝑖𝜙𝑗 𝑑𝑥

=
𝜇0(𝐻2 − 2ℎ2)

6ℎ𝐻
+ 𝛽ℎ𝐻

18 
= 1 

18

(
3𝜇0

(
𝐻

ℎ 
− 2ℎ
𝐻

)
+ 𝛽𝐻ℎ

)
. (4.24)

Letting 𝜌 ∶= 𝐻

ℎ ≤ 𝜌0, i.e. 𝐻 = 𝜌ℎ, gives

𝑎𝑖𝑗 (𝐜̄)|𝑅 = 1 
18

(
3𝜇0

(
𝜌− 2 

𝜌

)
+ 𝛽𝜌ℎ2

) ≤ 1 
18

(
3𝜇0

(
𝜌0 −

2 
𝜌0

)
+ 𝛽𝜌0ℎ

2
)
.

This holds on both rectangles, hence

𝑎𝑖𝑗 (𝐜̄) ≤ 𝑎𝑖𝑗 (ℎ) ∶=
2 
18

(
3𝜇0

(
𝜌0 −

2 
𝜌0

)
+ 𝛽𝜌0ℎ

2
)
.

Multiplying with 𝜌0, we see we should satisfy

3𝜇0(𝜌20 − 2) + 𝛽𝜌20ℎ
2 ≤ 0.

Indeed, this holds for sufficiently small ℎ using that 𝜌0 <
√
2, hence 𝑎𝑖𝑗 (𝐜̄) ≤ 0 as well. The threshold ℎ0 is obtained by expressing ℎ

from equality above. Altogether, for the edge neighbours the threshold is

ℎ0 =

√
3𝜇0(2 − 𝜌20)

𝜌0
√
𝛽

. (4.25)

Now we consider diagonal neighbours, we use similar arguments as for the edge neighbours. Now Ω𝑖𝑗 is one rectangle 𝑅, and the 
entries of the matrix are calculated by combining equations (4.22) and (4.23):

𝑎𝑖𝑗 (𝐜̄) ≤ 𝜇0 ∫
𝑅 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ 𝛽 ∫
𝑅 

𝜙𝑖𝜙𝑗 𝑑𝑥 = −
𝜇0(ℎ2 +𝐻2)

6ℎ𝐻
+ 𝛽ℎ𝐻

36 
=∶ 𝑎𝑖𝑗 (ℎ,𝐻).

We want to determine ℎ and 𝐻 such that 𝑎𝑖𝑗 (ℎ,𝐻) ≤ 0, i.e.

6𝜇0
(
− ℎ 
𝐻

− 𝐻

ℎ 

)
+ 𝛽𝐻ℎ ≤ 0.

Letting 𝜌 = 𝐻

ℎ , i.e. 𝐻 = 𝜌ℎ and multiply by 𝜌 gives

−6𝜇0 − 6𝜇0𝜌2 + 𝛽𝜌2ℎ2 ≤ 0.

This is true for sufficiently small ℎ, namely, when

0 < ℎ ≤
√
6𝜇0(1 + 𝜌2)

𝜌
√
𝛽

. (4.26)

Note that 
√
2 > 𝜌0 ≥ 1, hence ℎ0 in (4.25) satifies

ℎ0 ≤
√
3𝜇0√
𝛽

<

√
6𝜇0√
𝛽

√
𝜌−2 + 1 =

√
6𝜇0(1 + 𝜌2)

𝜌
√
𝛽

(∀𝜌 > 0),

hence if ℎ ≤ ℎ0, then (4.26) also holds. Altogether, ℎ0 in (4.25) is a suitable threshold for both diagonal and edge neighbours. □

Example. Let us apply a uniform square mesh on Ω for the following problem:

−𝜇0Δ𝑢+
𝑢 

𝜆+ 𝜖𝑢
= 𝑓 in Ω (4.27)

(with proper boundary conditions), which involves the rewritten form of the Michaelis-Menten nonlinearity (2.23), i.e. 𝜆, 𝜖 > 0 are 
given constants. To compute ℎ0 in (4.21), we need to calculate the constants therein. Since 𝛽 = 1 

𝜆
and 𝜌0 = 1, we obtain

ℎ0 =
√
3𝜇0𝜆. (4.28)
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Fig. 2. Basic notations for prismatic elements, based on [14]. 

4.4. Prismatic elements

Consider the semilinear special case (4.20) of our model problem, where

𝜇0 > 0 is constant and 0 ≤ 𝑟(𝑥, 𝜉, 𝜂) ≤ 𝛽0. (4.29)

(Here 𝛽0 is written instead of the previously used 𝛽 so as not to collide with the notation for angles 𝛼, 𝛽, 𝛾 of triangles that we will rely 
on in the mesh.) Now 𝑑 = 3, and Ω is a given domain in ℝ3 which can be partitioned face-to-face into triangular prisms. A prism is 
of the form 𝑃 = 𝑇 × 𝐼 for a given triangle 𝑇 and interval 𝐼 , and the corresponding first-order elements have the vertices of the prism 
as degrees of freedom, see [14] for more details. We will rely on Fig. 2 for the notations to be used in the sequel. The parameter for 
the triangular mesh on which the prisms are based will be denoted by ℎ. We also impose the following mesh regularity assumption:

Assumption 4.4. Let ℎ > 0 be the triangular mesh parameter. There exist fixed angles 0 < 𝛾𝑚𝑖𝑛 ≤ 𝛾𝑚𝑎𝑥 <
𝜋

2 such that the area |𝑇 | of 
any triangle 𝑇 satifies

1
2
ℎ2 sin 𝛾𝑚𝑖𝑛 ≤ |𝑇 | ≤ 1

2
ℎ2 sin 𝛾𝑚𝑎𝑥 .

Further, let 𝛾𝑚𝑒𝑑 denote a lower bound for the second largest degrees of the triangles 𝑇 .

Theorem 4.4. Let Assumption 4.4 hold, and let us fix a constant 𝛿1 such that

0 < 𝛿1 <
4cot 𝛾𝑚𝑎𝑥
sin 𝛾𝑚𝑎𝑥

. (4.30)

If the mesh parameters satisfy the following conditions, where 𝜇0 and 𝛽0 are from (4.29):

ℎ2 ≤ 3𝜇0𝛿1
𝛽0

, (4.31)

cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛
sin 𝛾𝑚𝑖𝑛

+ 1
2
𝛿1 ≤ 

(
ℎ 
𝐻

)2 ≤ 4cot 𝛾𝑚𝑎𝑥
sin 𝛾𝑚𝑎𝑥

− 𝛿1 , (4.32)

then the matrix in (2.30) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗)

Consequently, the DMP (4.2) holds.

Proof. Let 𝜙𝑖 and 𝜙𝑗 be basis functions, 𝑖 ≠ 𝑗. Then the entries of the FE matrix are given by

𝑎𝑖𝑗 (𝐜̄) =
∑

𝑃⊂Ω𝑖𝑗

𝑎𝑃𝑖𝑗 (𝐜̄),

where

𝑎𝑃
𝑖𝑗
(𝐜̄) = 𝜇0 ∫

𝑃

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ ∫
𝑃

𝑟(𝑥, 𝑢,∇𝑢)𝜙𝑖𝜙𝑗 𝑑𝑥 ≤ 𝜇0 ∫
𝑃

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ 𝛽0 ∫
𝑃

𝜙𝑖𝜙𝑗 𝑑𝑥
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are the contributions on the individual prisms 𝑃 . It suffices to ensure 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0 on each prism. Here, in the case of prismatic FEM, 

we have three cases as in [14], see (9)-(11) therein. We use the notations of Fig. 2.

Case (i):

𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 𝜇0 ∫

𝑃

∇𝜙𝐴 ⋅∇𝜙𝐵 𝑑𝑥+ 𝛽0 ∫
𝑃

𝜙𝐴𝜙𝐵 𝑑𝑥 =
𝐻

12

(
𝜇0

(
− 2cot 𝛾 + |𝑇 | 

𝐻2

)
+
𝛽0|𝑇 |
3 

)
.

Case (ii):
𝑎𝑃𝑖𝑗 (𝐜̄) ≤ 𝜇0 ∫

𝑃

∇𝜙𝐴 ⋅∇𝜙𝐷 𝑑𝑥+ 𝛽0 ∫
𝑃

𝜙𝐴𝜙𝐷 𝑑𝑥 =
𝐻

12

(
𝜇0

(
cot 𝛽 + cot 𝛾 − 2|𝑇 |

𝐻2

)
+
𝛽0|𝑇 |
3 

)
.

Case (iii):
𝑎𝑃𝑖𝑗 (𝐜̄) ≤ 𝜇0 ∫

𝑃

∇𝜙𝐴 ⋅∇𝜙𝐸 𝑑𝑥+ 𝛽0 ∫
𝑃

𝜙𝐴𝜙𝐸 𝑑𝑥 = −𝐻
12

(
𝜇0

(
cot 𝛾 + |𝑇 | 

𝐻2

)
−
𝛽0|𝑇 |
6 

)
.

Now, our goal is to find conditions on ℎ and 𝐻 to satisfy 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0 in all the cases (i)-(iii). 

Case (i). Using Assumption 4.4, we have

𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 𝐻

12

(
𝜇0

(
− 2cot 𝛾𝑚𝑎𝑥 +

ℎ2

2𝐻2 sin 𝛾𝑚𝑎𝑥
)
+
𝛽0ℎ

2

6 
sin 𝛾𝑚𝑎𝑥

)
,

hence to achieve 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0, we need(

ℎ 
𝐻

)2 ≤ 4cot 𝛾𝑚𝑎𝑥
sin 𝛾𝑚𝑎𝑥

−
𝛽0ℎ

2

3𝜇0
. (4.33)

Assumption (4.31) implies

𝛽0ℎ
2

3𝜇0
≤ 𝛿1 . (4.34)

This and the r.h.s. of (4.32) yield(
ℎ 
𝐻

)2 ≤ 4cot 𝛾𝑚𝑎𝑥
sin 𝛾𝑚𝑎𝑥

− 𝛿1 ≤ 4cot 𝛾𝑚𝑎𝑥
sin 𝛾𝑚𝑎𝑥

−
𝛽0ℎ

2

3𝜇0
, (4.35)

i.e. the desired bound (4.33) is satified and hence 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0. 

Case (ii). Using Assumption 4.4, we have

𝑎𝑃𝑖𝑗 (𝐜̄) ≤ 𝐻

12

(
𝜇0

(
cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛 −

2|𝑇 |
𝐻2

)
+
𝛽0|𝑇 |
3 

)
, (4.36)

hence to achieve 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0, we need

cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛|𝑇 | ≤ 2 
𝐻2 −

𝛽0
3𝜇0

. (4.37)

Using Assumption 4.4 again, for (4.37) it suffices that

cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛
sin 𝛾𝑚𝑖𝑛

≤ 
(
ℎ 
𝐻

)2
−
𝛽0ℎ

2

6𝜇0
. (4.38)

Since Assumption (4.31) implies (4.34), this and the l.h.s. of (4.32) yield

cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛
sin 𝛾𝑚𝑖𝑛

+
𝛽0ℎ

2

6𝜇0
≤ 

cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛
sin 𝛾𝑚𝑖𝑛

+ 1
2
𝛿1 ≤ 

(
ℎ 
𝐻

)2
, (4.39)

i.e. the desired bound (4.38) is satified and hence 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0. 

Case (iii). Now, using the notation 𝑟(𝑇 ,𝐻) ∶= −
𝜇0|𝑇 |
𝐻2 +

𝛽0|𝑇 |
6 

, we have

𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 𝐻

12

(
−𝜇0𝑐𝑜𝑡𝛾 −

𝜇0|𝑇 |
𝐻2 +

𝛽0|𝑇 |
6 

)
= 𝐻

12

(
−𝜇0𝑐𝑜𝑡𝛾 + 𝑟(𝑇 ,𝐻)

) ≤ 𝐻
12

𝑟(𝑇 ,𝐻). (4.40)

On the other hand, we have seen in case (ii) that the r.h.s. of (4.36) is nonpositive, i.e.

𝜇0
(
cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛 −

2|𝑇 |
𝐻2

)
+
𝛽0|𝑇 |
3 

= 𝜇0
(
cot 𝛾𝑚𝑒𝑑 + cot 𝛾𝑚𝑖𝑛) + 2 𝑟(𝑇 ,𝐻) ≤ 0.

Hence also 𝑟(𝑇 ,𝐻) ≤ 0, and with (4.40), this implies that 𝑎𝑃
𝑖𝑗
(𝐜̄) ≤ 0 holds for case (iii) with no extra condition, given that it has 

already been ensured in case (ii). □
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Remark 4.2. (i) In the case of a uniform equilateral triangular plane partition for the base of the prisms, the condition (4.32) becomes

4
3
+ 1

2
𝛿1 ≤ 

(
ℎ 
𝐻

)2 ≤ 8
3
− 𝛿1 . (4.41)

This means that we can choose a fixed ratio of ℎ and 𝐻 to satisfy

4
3
<
(
ℎ 
𝐻

)2
<

8
3

(4.42)

and then use the largest value of 𝛿1, expressed to satisfy (4.41), for the threshold (4.31). For example, if ( ℎ 
𝐻
)2 = 16

9 , then 𝛿1 =
8
9 and 

the threshold in (4.31) is ℎ2 ≤ 8𝜇0
3𝛽0

. In particular, as a concrete illustration, if in the PDE we have 𝛽0 = 1 and 𝜇0 = 10−3 (since the 
diffusion coefficient is often small), then the conditions altogether are

ℎ 
𝐻

= 4
3

and ℎ ≤ 0.051. (4.43)

We also note that the condition (4.42) is an analogue of [14, Remark 5], formulated for linear problems with vanishing reaction 
coefficient.

(ii) In the general case, if we can only access 𝛾𝑚𝑎𝑥 easily then we can use the estimates 𝛾𝑚𝑖𝑛 ≥ 𝜋 − 2𝛾𝑚𝑎𝑥 and 𝛾𝑚𝑒𝑑 ≥ 𝜋∕4, thus the 
l.h.s. of (4.32) can be replaced by the expression 1−cot 2𝛾𝑚𝑎𝑥sin 2𝛾𝑚𝑎𝑥

+ 1
2 𝛿1. However, this gives a more pessimistic sufficient condition.

(iii) To make (4.32) feasible for general partitions, the angles of the triangles must satisfy proper restrictions, analogously to the 
linear case in [14], wherein various examples are given for such so-called ``well-shaped prismatic partitions''.

4.5. Some extensions

The structure of our general problem (2.1) has enabled an organized study of the conditions in the above. Now we consider some 
extensions related to the nonlinearity in the PDE or to the boundary conditions.

4.5.1. Power order nonlinearities

Let Ω ⊂ℝ𝑑 for 𝑑 = 2 or 3, and consider a semilinear elliptic Dirichlet problem⎧⎪⎨⎪⎩
− 𝜇0 Δ𝑢 + 𝑟(𝑥, 𝑢,∇𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑢 = 0 on 𝜕Ω
(4.44)

with proper power order growth assumed for 𝑟 w.r.t. 𝑢:

Assumption 4.5.1. 𝜇0 > 0 is a given constant, further, there exists 𝛽 > 0 and 𝑞 ≥ 1 such that the scalar function 𝑟 satifies

0 ≤ 𝑟(𝑥, 𝜉, 𝜂) ≤ 𝛽|𝜉|𝑞 (4.45)

for any 𝑥 ∈Ω, 𝜉 ∈ℝ and 𝜂 ∈ℝ𝑑 . In addition, if 𝑑 = 3 then 𝑞 ≤ 2.

Remark 4.3. The estimations, required by the power growth, will use the following property. Let 𝑝 be a real number satisfying 2 ≤ 𝑝

(if 𝑑 = 2) or 2 ≤ 𝑝 ≤ 2𝑑
𝑑−2 (if 𝑑 ≥ 2). Then there hold the Sobolev embedding and corresponding estimate

𝐻1
0 (Ω) ⊂𝐿𝑝(Ω), ‖𝑢‖𝐿𝑝(Ω) ≤𝐾𝑝,Ω |𝑢|1 (4.46)

for some constant 𝐾𝑝,Ω> 0, see [13].

We note that this embedding is true for 𝐻1(Ω) as well, but for 𝐻1
0 (Ω) there are more convenient estimations for the value of 

𝐾𝑝,Ω> 0, see Remark 4.5 below. Further, the strong restriction in Assumption 4.5.1 for 𝑑 = 3 will arise from the stronger bound on 
𝑝 in (4.46).

The conditions for the used FEM, besides those in subsection 2.3, are as follows.

Assumptions 4.5.2. There exist constants 𝜎0 > 0 and 𝑐0 > 0, independent of ℎ, such that for any 𝑖 ≠ 𝑗 for which the interior of 
Ω𝑖𝑗 ∶= 𝑠𝑢𝑝𝑝 𝜙𝑖 ∩ 𝑠𝑢𝑝𝑝 𝜙𝑗 is nonempty,

(i) the basis functions satisfy

∫
Ω𝑖𝑗

∇𝜙𝑖 ⋅∇𝜙𝑗 ≤ −
𝜎0

ℎ2
𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) ; (4.47)
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(ii) we have

𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) ≥ 𝑐0ℎ
𝑑 (4.48)

(where 𝑑 is the space dimension), i.e. the mesh is uniformly shape regular.

Remark 4.4. Condition (4.47) is satified for Courant, tetrahedral, and bilinear elements as well under our conditions given in the 
previous subsections. Namely, for tetrahedral elements, it is shown in (4.16), and it is similar for Courant elements; for bilinear 
elements, it follows from (4.22) and the assumed non-narrowness. 
Also, condition (4.48) is satified for Courant and tetrahedral elements under the minimum angle condition (which is used typically 
to ensure convergence), and follows again from the non-narrowness for bilinear elements.

Theorem 4.5. Let Assumptions 4.5.1-4.5.2 hold. Let the mesh size ℎ satisfy

0 < ℎ ≤ ℎ0 =
𝜇0𝜎0𝑐

1∕𝑑
0

𝛽𝐾
𝑞

𝑞𝑑,Ω𝑤
𝑞

0
(4.49)

where 𝑑 is the space dimension, 𝜇0, 𝛽, 𝜎0, 𝑐0 are constants from Assumptions 4.5.1-4.5.2, respectively, 𝐾𝑞𝑑,Ω is dfined with (4.46), and

𝑤0 ∶=
𝑑𝑖𝑎𝑚(Ω)‖𝑓‖𝐿2(Ω)

𝜇0𝜋
√
𝑑

(4.50)

(where 𝑑𝑖𝑎𝑚 refers to the diameter). Then the matrix in (2.30) satifies

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗).

Consequently, the DMP (4.2) holds.

Proof. Let 𝜙𝑖 and 𝜙𝑗 be basis functions, 𝑖 ≠ 𝑗. Using (4.45), (4.47) and the fact that 0 ≤ 𝜙𝑖 ≤ 1, we have

𝑎𝑖𝑗 (𝐜̄) = 𝜇0 ∫
Ω 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ ∫
Ω 

𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝜙𝑖𝜙𝑗 𝑑𝑥

≤ − 
𝜎0

ℎ2
𝜇0 meas (Ω𝑖𝑗 ) + 𝛽 ∫

Ω𝑖𝑗

|𝑢ℎ|𝑞 𝑑𝑥. (4.51)

To estimate ∫
Ω 
|𝑢ℎ|𝑞 𝑑𝑥, we apply embeddings of 𝐻1(Ω) to 𝐿𝑝(Ω) spaces from Remark 4.3. If 1

𝑟 +
1
𝑠 = 1, then similarly to (59) in [18],

∫
Ω𝑖𝑗

|𝑢ℎ|𝑞 ≤ ‖1‖𝐿𝑠(Ω𝑖𝑗 )
‖‖‖|𝑢ℎ|𝑞1‖‖‖𝐿𝑟(Ω𝑖𝑗 )

≤𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )1∕𝑠‖𝑢ℎ‖𝑞𝐿𝑞𝑟(Ω𝑖𝑗 )

≤𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )1∕𝑠𝐾
𝑞

𝑞𝑟,Ω|𝑢ℎ|𝑞1. (4.52)

Let 𝑟 = 𝑑. If 1 
𝑑
+ 1

𝑠 = 1 then 1
𝑠 =

𝑑−1
𝑑

in (4.52), and then (4.51) becomes

𝑎𝑖𝑗 (𝐜̄) ≤ − 
𝜎0

ℎ2
𝜇0 meas (Ω𝑖𝑗 ) + 𝛽 𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )(𝑑−1)∕𝑑𝐾

𝑞

𝑞𝑑,Ω|𝑢ℎ|𝑞1. (4.53)

Let 𝑤0 be as in (4.50), then we prove |𝑢ℎ|1 ≤𝑤0 by coercivity. Indeed, the weak formulation in 𝑉ℎ of (4.44) with test function 𝑢ℎ = 𝑣ℎ
gives the following:

∫
Ω 

𝜇0|∇𝑢ℎ|2 𝑑𝑥+ ∫
Ω 

𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝑢2ℎ 𝑑𝑥 = ∫
Ω 

𝑓𝑢ℎ 𝑑𝑥 . (4.54)

The l.h.s. of (4.54) gives

∫
Ω 

𝜇0|∇𝑢ℎ|2 𝑑𝑥+ ∫
Ω 

𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝑢2ℎ 𝑑𝑥 ≥ 𝜇0 ∫
Ω 

|∇𝑢ℎ|2 𝑑𝑥 = 𝜇0|𝑢ℎ|21,
since 𝑟 ≥ 0 and 𝑢2

ℎ
≥ 0. Hence, from equation (4.54),

𝜇0|𝑢ℎ|21 ≤ ∫
Ω 

𝑓𝑢ℎ 𝑑𝑥 ≤ ‖𝑓‖𝐿2(Ω)‖𝑢ℎ‖𝐿2(Ω) ≤ 𝐶Ω‖𝑓‖𝐿2(Ω)|𝑢ℎ|1,
by the Poincaré-Friedrichs inequality. From these argument, the upper bound of |𝑢ℎ|1 is summarized as follows:
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|𝑢ℎ|1 ≤ 𝐶Ω‖𝑓‖𝐿2(Ω)

𝜇0
≤ 𝑑𝑖𝑎𝑚(Ω)‖𝑓‖𝐿2(Ω)

𝜇0𝜋
√
𝑑

=𝑤0 (4.55)

since 𝐶Ω ≤ 𝑑𝑖𝑎𝑚(Ω)
𝜋
√
𝑑

, see in [13]. Using Assumptions 4.5.1-4.5.2 and equation (4.53) and (4.55) we have

𝑎𝑖𝑗 (𝐜̄) ≤ − 
𝜎0

ℎ2
𝜇0 meas (Ω𝑖𝑗 ) + 𝛽𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )𝑑−1∕𝑑𝐾

𝑞

𝑞𝑑,Ω𝑤
𝑞

0

=𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )(𝑑−1)∕𝑑
(
−
𝜎0

ℎ2
𝜇0 meas (Ω𝑖𝑗 )1∕𝑑 + 𝛽𝐾

𝑞

𝑞𝑑,Ω𝑤
𝑞

0

)
≤𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )(𝑑−1)∕𝑑

(
−
𝜎0

ℎ2
𝜇0 𝑐

1∕𝑑
0 ℎ+ 𝛽𝐾

𝑞

𝑞𝑑,Ω𝑤
𝑞

0

)
=𝑚𝑒𝑎𝑠(Ω𝑖𝑗 )(𝑑−1)∕𝑑

(
− 

𝑐1
ℎ 

+ 𝑐2

)
,

where 𝑐1 = 𝜇0𝜎0𝑐
1∕𝑑
0 and 𝑐2 = 𝛽𝐾

𝑞

𝑞𝑑,Ω𝑤
𝑞

0. Let

𝑏𝑖𝑗 (ℎ) = −
𝑐1
ℎ 

+ 𝑐2.

Then, for small enough ℎ, we have 𝑏𝑖𝑗 (ℎ) ≤ 0 and hence 𝑎𝑖𝑗 (𝐜̄) ≤ 0. The threshold for ℎ is ℎ0 =
𝑐1
𝑐2

, i.e. 𝑎𝑖𝑗 (𝐜̄) ≤ 0 holds for

0 < ℎ ≤ ℎ0 =
𝑐1
𝑐2

=
𝜇0𝜎0𝑐

1∕𝑑
0

𝛽𝐾
𝑞

𝑞𝑑,Ω𝑤
𝑞

0
(4.56)

as was stated. □

Remark 4.5. To estimate 𝐾𝑞

𝑞𝑑,Ω recursively, we can use Lemma 11.2 from [13] which states the following:

𝐾
𝑝1+𝑝2
𝑝1+𝑝2 ,Ω

≤ 𝑝1𝑝2
2 

𝐾
𝑝1−1
2(𝑝1−1),Ω

𝐾
𝑝2−1
2(𝑝2−1),Ω

. (4.57)

In particular, 𝐾2,Ω = 𝐶Ω is the Poincaré-Friedrichs constant, hence 𝐾2,Ω ≤ 𝑑𝑖𝑎𝑚(Ω)
𝜋
√
𝑑

as seen in (4.55) above, and from this one can 
derive a bound for 𝐾4,Ω given below in (4.60).

Example. An example for the problem (4.44) is as follows, involving Stefan-Boltzmann nonlinearity, see (2.27) as rewritten in sub
section 2.2.5:⎧⎪⎨⎪⎩

− Δ𝑢 + |𝑢|3𝑢 = 𝑓 (𝑥) in Ω,

𝑢 = 0 on 𝜕Ω,
(4.58)

where Ω= [0,1]2, and we use bilinear FEM on a square mesh. To estimate the mesh size ℎ, we calculate

ℎ0 =
𝜇0𝜎0𝑐

1∕2
0

𝛽𝐾3
6𝑤

3
0

(4.59)

since 𝑑 = 2 and 𝑞 = 3 in (4.56). To find 𝜎0, note that for ℎ =𝐻 we get −1
6 and −1

3 in (4.22), hence

∫
𝑅 

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥 ≤ −1
6
= −1

6
𝑚𝑒𝑎𝑠(𝑅)

ℎ2
.

Then (4.47) is obtained by adding up the above for the rectangles 𝑅 ⊂ Ω𝑖𝑗 , so the factor is preserved, i.e. 𝜎0 =
1
6 . We have 𝜇0 = 1, 

𝛽 = 1, and from (4.50), using 𝑑 = 2 and 𝑑𝑖𝑎𝑚(Ω) =
√
2,

𝑤0 ∶=

√
2‖𝑓‖𝐿2(Ω)

𝜋
√
2

=
‖𝑓‖𝐿2(Ω)

𝜋
.

We have 𝑐1∕20 = 1 in Assumption 4.5.2 (ii) since 𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) ≥ 𝑚𝑒𝑎𝑠(𝑅) = ℎ2. We can determine 𝐾3
6 using the formula in (4.57). For 

𝑝 = 4, we have from (11.10) in [13] that

𝐾4
4,Ω ≤ 2𝑑𝑖𝑎𝑚(Ω)2

2𝜋2
= 2 
𝜋2

(4.60)

and for 𝑝1 = 𝑝2 = 3 in (4.57), using (4.60), we have

𝐾6
6,Ω ≤ 9

2
(𝐾2

4,Ω)
2 = 9

2
𝐾4

4,Ω ≤ 9 
𝜋2

,
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hence we get

𝐾3
6,Ω ≤ 3 

𝜋
.

Altogether, we have

𝜇0 = 1, 𝜎0 =
1
6
, 𝑐1∕20 = 1, 𝛽 = 1, 𝐾3

6,Ω ≤ 3 
𝜋
, and 𝑤3

0 =
‖𝑓‖3

𝐿2(Ω)

𝜋3
.

Therefore the threshold for in (4.56) is given by

0 < ℎ ≤ ℎ0 =
𝜋4

18‖𝑓‖3
𝐿2(Ω)

.

For instance, for the constant source function 𝑓 ≡ 10, we get

ℎ0 =
𝜋4

18 ⋅ 103
≈ 0.05.

4.5.2. Pure Neumann boundary

Let us consider problem (2.1) when there is only a Neumann boundary, i.e. Γ𝑁 = 𝜕Ω:

⎧⎪⎨⎪⎩
− div

(
𝑏(𝑥, 𝑢,∇𝑢) ∇𝑢

)
+ 𝑟(𝑥, 𝑢,∇𝑢)𝑢 = 𝑓 (𝑥) in Ω,

𝑏(𝑥, 𝑢,∇𝑢) 𝜕𝑢 
𝜕𝜈

= 𝛾(𝑥) on 𝜕Ω .
(4.61)

Assumption 2.1 (a) required 𝑚𝑒𝑎𝑠(Γ𝐷) > 0, hence the above case is not covered. The condition 𝑚𝑒𝑎𝑠(Γ𝐷) > 0 was used to enable 
working in the space 𝐻1

𝐷
(Ω) with norm (2.5), and to derive item (ii) of Proposition 4.1. Now we must estimate in 𝐻1(Ω). To ensure 

that this proposition still holds, we strengthen Assumption 2.1 such that the condition on 𝑟 in (2.2) is replaced by

0 < 𝛼 ≤ 𝑟(𝑥, 𝜉, 𝜂) ≤ 𝛽 ∀(𝑥, 𝜉, 𝜂) ∈ Ω ×ℝ ×ℝ𝑑 (4.62)

for some constant 𝛼. Then, letting 𝜇̃ ∶= min{𝜇0, 𝛼}, we can complete the proof of (ii) as

𝐴(𝐜̄)𝐝 ⋅ 𝐝 = ∫
Ω 

(
𝑏(𝑥, 𝑢ℎ,∇𝑢ℎ)|∇𝑣ℎ|2 + 𝑟(𝑥, 𝑢ℎ,∇𝑢ℎ)𝑣2ℎ

)
≥ 𝜇0 ∫

Ω 
|∇𝑣ℎ|2 + 𝛼 ∫

Ω 
𝑣2
ℎ
≥ 𝜇̃∫

Ω 

(|∇𝑣ℎ|2 + 𝑣2
ℎ

)
= 𝜇̃‖𝑣ℎ‖2𝐻1 > 0.

All the other results on ℎ0 for the specific elements then remain true, since the choice of norm does not affect those calculations.

4.5.3. Boundary nonlinearities

The earlier results can be also extended to boundary nonlinearities. We consider the case when the nonlinearity is assumed to 
appear only on the boundary, such models arise e.g. in localized chemical reactions or radiation problems. We illustrate this with the 
following 2D model problem, where Ω ⊂ℝ2 is a bounded domain:

⎧⎪⎪⎨⎪⎪⎩
− 𝜇0 Δ𝑢 = 𝑓 (𝑥) in Ω,

𝜇0
𝜕𝑢 
𝜕𝜈

+ 𝑧(𝑥, 𝑢)𝑢 = 𝛾(𝑥) on Γ𝑁,

𝑢 = 𝑔(𝑥) on Γ𝐷 .

(4.63)

Assumptions 4.5.3. 

(i) 𝜇0 > 0 is a given constant, 𝑧 ∶ Γ𝑁 ×ℝ→ℝ is continuous and there exists a constant 𝜂 > 0 such that

0 ≤ 𝑧(𝑥, 𝜉) ≤ 𝜂 ∀(𝑥, 𝜉) ∈ Γ𝑁 ×ℝ . (4.64)

(ii) The Neumann boundary curve Γ𝑁 is a connected union of some edges of the polygon 𝜕Ω.

Further, we assume that the used FEM satifies Assumptions 4.5.2.
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Theorem 4.6. Let Assumptions 4.5.2 and 4.5.3 hold, and let the mesh size ℎ satisfy

0 < ℎ ≤ ℎ0 =
6𝜎0𝜇0𝑐0

𝜂
.

Then

𝑎𝑖𝑗 (𝐜̄) ≤ 0, 𝑖 = 1, ..., 𝑛, 𝑗 = 1, ..., 𝑛+𝑚 (𝑖 ≠ 𝑗).

Consequently, the DMP (4.2) holds.

Proof. Let 𝜙𝑖 and 𝜙𝑗 be basis functions, 𝑖 ≠ 𝑗, and denote

Γ𝑁,𝑖𝑗 ∶= Ω𝑖𝑗 ∩ Γ𝑁 .

The entries of the matrix obtained from (4.63) can be estimated using (4.47) and (4.64):

𝑎𝑖𝑗 (𝐜̄) = 𝜇0 ∫
Ω𝑖𝑗

∇𝜙𝑖 ⋅∇𝜙𝑗 𝑑𝑥+ ∫
Γ𝑁,𝑖𝑗

𝑧(𝑥, 𝑢)𝜙𝑖𝜙𝑗 𝑑𝜎 ≤ −
𝜎0𝜇0

ℎ2
𝑚𝑒𝑎𝑠(Ω𝑖𝑗 ) + 𝜂 ∫

Γ𝑁,𝑖𝑗

𝜙𝑖𝜙𝑗 𝑑𝜎 .

Here Γ𝑁,𝑖𝑗 is the segment connecting the nodes 𝑃𝑖 and 𝑃𝑗 , for which 𝜙𝑖(𝑃𝑗 ) = 𝛿𝑖𝑗 (cf. condition (B3) in section 2.3). Hence, denoting 
by ℎ𝑖𝑗 the length of Γ𝑁,𝑖𝑗 ,

∫
Γ𝑁,𝑖𝑗

𝜙𝑖𝜙𝑗 𝑑𝜎 =

ℎ𝑖𝑗

∫
0 

𝑠 
ℎ𝑖𝑗

ℎ𝑖𝑗 − 𝑠

ℎ𝑖𝑗
𝑑𝑠 =

ℎ𝑖𝑗

6 
≤ ℎ

6 
,

since ℎ𝑖𝑗 ≤ ℎ where ℎ is the mesh parameter. From this and (4.48) for 𝑑 = 2,

𝑎𝑖𝑗 (𝐜̄) ≤ −𝜎0𝜇0𝑐0 + 𝜂

6
ℎ =∶ 𝑎𝑖𝑗 (ℎ).

It suffices to ensure 𝑎𝑖𝑗 (ℎ) ≤ 0, which holds if

ℎ ≤ ℎ0 ∶=
6𝜎0𝜇0𝑐0

𝜂
. □

Finally, we note that one may combine these results, i.e. similar calculations can be carried out if there is a coefficient 𝑟 in the PDE 
and 𝑧 in the boundary condition as well, furthermore, one may allow Γ𝑁 = 𝜕Ω if either 𝑟 or 𝑧 has a positive lower bound as in (4.62). 
A simple example of the latter is the Newton law of cooling on the boundary: 𝜇0

𝜕𝑢 
𝜕𝜈

+ 𝛼(𝑢− 𝑢0) = 0, which can be just rewritten as in 
(4.63) with 𝑧 ≡ 𝛼 and 𝛾 = 𝛼𝑢0. This boundary condition coupled with the PDE (4.58) corresponds to the cooling model mentioned in 
[21].

4.6. Numerical illustration

We illustrate the above theoretical results with numerical experiments, with focus on the nonnegativity, which is the practically 
most important case of the minimum/maximum principle.

We will observe in the model problems that the nonnegativity can be indeed violated for too coarse meshes, as suggested by our 
theoretical results and also observed earlier for 1D linear problems in [3], and moreover, our bounds for the threshold mesh size ℎ0
are not far from the experimental thresholds.

For each of the following four model problems (after their brief description) we give the relevant minimal values in tables. Finally 
we give a graphical illustration of the violation phenomena.

4.6.1. Michaelis-Menten nonlinearity with bilinear FEM: homogeneous case

First, we consider the 2D reaction-diffusion problem (4.27), containing the rewritten form of the Michaelis-Menten nonlinearity, 
in the following concrete case:

⎧⎪⎨⎪⎩
− 𝜇0Δ𝑢+

𝑢 
1+𝜖𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,
(4.65)

where Ω ∶= [0,1]2, 𝜇0 = 10−5 and 𝜖 = 10−3 are constants given by Murray, see [21], and 𝑓 (𝑥, 𝑦) ∶= (2𝑥− 1)6 ≥ 0 describes a source 
function mostly concentrated near two edges of the square domain. 
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Table 1
Minima of the FE solutions of (4.65) for some values of ℎ.

ℎ 0.25 0.01 0.0075 0.0074 0.005 0.001

min𝑢ℎ -0.0170 -8.3e-11 -8.8e-14 0 0 0 

Table 2
Minima of the FE solutions of (4.67) for some values of ℎ.

ℎ 0.25 0.01 0.0078 0.0077 0.005 0.001

min𝑢ℎ -0.6157 -0.2689 -9.0e-05 +7.6e-14 +1.6e-11 +4.4e-11 

We employ bilinear FEM a uniform square mesh, where the mesh parameter is the edge length ℎ. Since the boundary function is 
𝑔 = 0, from (2.14) we expect the discrete nonegativity, in fact

min
Ω

𝑢ℎ = 0 (4.66)

should hold.
Table 1 illustrates the minima of some FE solutions 𝑢ℎ . It was experienced in the tests that the discrete nonnegativity (4.66) fails 

(that is, min𝑢ℎ < 0) when ℎ ≥ 0.0075, i.e. 𝑛 ≤ 132 nodes are used on the edges, whereas (4.66) already holds when ℎ ≤ 0.0074, i.e. 
𝑛 ≥ 133 nodes are used.

The results cofirm that the numerical solution satifies the nonnegativity 𝑢ℎ ≥ 0 only for sufficiently small mesh sizes ℎ. Moreover, 
let us compare the obtained results with the theoretical sufficient condition. From (4.28) we have ℎ ≤ ℎ0 = 0.0054, and in the runs we 
obtained nonnegative minima for ℎ ≤ 0.0074, hence the magnitude of the estimation was reasonable. (We note that the theoretical 
value of ℎ0 is the same for all right-hand sides 𝑓 and does not just concern the given one, hence ℎ0 can be pessimistic for a given 
problem.)

Qualitatively, the right-hand side of (4.65), which is concentrated near two edges of the square domain, forces the solution to a 
similar behaviour. The arising jumps seem to induce the numerical solution to violate nonnegativity.

4.6.2. Michaelis-Menten nonlinearity with bilinear FEM: non-homogeneous case

Let us modify the boundary condition of (4.65) to an inhomogeneous one with 𝑔 ≡ 1:

⎧⎪⎨⎪⎩
− 𝜇0Δ𝑢+

𝑢 
1+𝜖𝑢 = 𝑓 in Ω ∶= [0,1]2,

𝑢 = 1 on 𝜕Ω,
(4.67)

and use the same uniform bilinear FEM as above. Since 𝑓 ≥ 0 and 𝑔 ≡ 1, we expect the discrete analogue of (2.13), i.e.

min
Ω

𝑢ℎ ≥min{0,min
𝜕Ω 1} = 0, (4.68)

i.e. discrete nonegativity should hold again. Now we do not expect the equality (4.66), however, away from the two edges we expect 
𝑢ℎ ≈ 0 since 𝑓 ≈ 0 there.

Table 2 shows a similar behaviour to Table 1, now the discrete nonnegativity fails above almost the same threshold as before, 
and it is satified below this threshold, i.e. for ℎ ≤ 0.0077. (The theoretical sufficient condition is the same, ℎ ≤ ℎ0 = 0.0054, as in the 
homogeneous case.)

4.6.3. Exponential nonlinearity for hexagonal bars: prismatic elements

Now we consider a 3D domain discretized by prismatic elements. Our goal is to reproduce the behaviour of the previous two 
tests, i.e. to dfine a problem where the experimental threshold is close to the theoretical one ℎ0 . For this we use a uniform mesh 
where we can easily control the parameters. Further, ℎ0 does not depend on the r.h.s, but the previous two tests suggest that discrete 
nonnegativity can fail if 𝑓 is close or equal to zero an a large part of Ω and has sudden jumps on some portion, enforcing a similar 
behaviour of the solution if the diffusion is small and thus has no considerable smoothing effect. 
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Table 3
Minima of the FE solutions of (4.69) for some values of ℎ.

ℎ 0.3333 0.1666 0.1111 0.0833

𝑘 1 2 3 4

𝐷𝑂𝐹𝑘 57 637 2387 5955 
min𝑢ℎ -0.0048 -0.0028 -2.1e-11 0 

Table 4
Minima of the FE solutions of the 2D version of (4.69) for 
some values of ℎ.

ℎ 0.3333 0.1666 0.1111 0.0833

𝑘 1 2 3 4

DOF 19 91 217 397 
min𝑢ℎ -0.0099 -0.0113 -0.0057 0 

Based on the above, we consider an analogue of the electrostatic problem (2.26) with proper data:

⎧⎪⎨⎪⎩
− 𝜇0 Δ𝑢+ 𝑒𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,
(4.69)

where Ω is a hexagonal bar, i.e. Ω=𝑋 × [0,𝐿], where 𝑋 is a regular hexagon with edge length 𝑎. We note that hexagonal bars arise 
in certain applications for their favourable shapes, e.g. such a so-called honeycomb geometry can represent electrostatic precipitators 
[29]. We set 𝜇0 = 1.85 ⋅ 10−3 and 𝑎 =𝐿 = 1. We let 𝑓 be a source function of the form

𝑓 = 1 + 𝜚, (4.70)

where 𝜚 is concentrated along a portion of the boundary, namely, 𝜚 ≡ 0.1 on Ω𝜀 =𝑋 × [0, 𝜀] for 𝜀 = 1∕16, and 𝜚 ≡ 0 on Ω ⧵Ω𝜀. Now 
a constant 1 r.h.s would lead to the constant 0 solution, hence 𝜚 ≥ 0 implies that the discrete nonnegativity

min
Ω

𝑢ℎ = 0

from (4.66) is expected again, and the small support of 𝜚 should induce the behaviour described above.
We employ prismatic elements, using the case described in Remark 4.2 (i). We dfine an equilateral triangular plane partition for 

the hexagonal base 𝑋 of the prisms, denoting by ℎ the edge length of the triangles. The height of the prismatic cells is 𝐻 = 3ℎ∕4
based on (4.43). To enable a partition of the given Ω with these mesh parameters, we dfine an integer 𝑘 ∈ 𝐍+ and let ℎ = 1∕(3𝑘), 
𝐻 = 1∕(4𝑘). The number of unknowns is then

𝐷𝑂𝐹𝑘 =
(
(3 − 1)9𝑘+ 1

)
(4𝑘− 1).

Table 3 shows that discrete nonnegativity fails again until a threshold is attained by ℎ. The computed threshold is obtained from 
the inequality ℎ2 ≤ 8𝜇0

3𝛽0
, as seen in Remark 4.2 (i), where now 𝛽0 = 1, hence we get ℎ0 = 0.0702. This is again slightly pessimistic, 

since we see nonnegativity already for ℎ = 0.0833. 

4.6.4. Exponential nonlinearity for hexagonal cross-sections: Courant elements

Finally we consider a domain being a 2D cross-section of the bar discussed in the previous subsection, and solve the same type 
of PDE as (4.69)--(4.70). Now 𝜚 is concentrated in a thin layer along an edge of the boundary. The mesh is also identical to the one 
used in the hexagonal base above, i.e. an equilateral triangular partition is dfined, and Courant elements are used.

Table 4 shows similar conclusions as above. We find that discrete nonnegativity fails again until a threshold is attained by ℎ. The 
computed threshold from (4.11) is ℎ0 =

√
6𝜇0: now we set 𝜇0 = 10−3, hence ℎ0 = 0.0774, which is not far from the experimental 

value where nonnegativity already holds.

Applied Numerical Mathematics 210 (2025) 222–244 

241 



M.T. Bahlibi, J. Karátson and S. Korotov 

Fig. 3. Left: ℎ= 0.25, min𝑢ℎ = −0.0170. Right: ℎ = 0.01, min𝑢ℎ = −0.0421. 

Fig. 4. Left: ℎ = 0.0075, min𝑢ℎ = −8.8𝑒− 14. Right: ℎ = 0.0074, min𝑢ℎ = 0. 

4.6.5. Graphical illustration of the mesh sensitivity

For an illustration we enclose the graphs of the numerical solutions for the Michaelis-Menten problems with bilinear FEM from 
subsections 4.6.1--4.6.2 for some mesh sizes.

(a) Homogeneous case. The solution has large values in layers concentrated near two edges of the square domain, but it is close 
to zero in the remaining main part of Ω. The arising jumps induce that the approximation 𝑢ℎ on a coarse mesh violates nonnegativity 
with an oscillatory behaviour, since the average of 𝑢ℎ should be close to 0 (Figs. 3, 4).

(b) Inhomogeneous case. The solution has large values on the whole boundary and on neighbouring layers, but again it is close 
to zero in the remaining main part of Ω and thus provides jumps. Hence the violation of nonnegativity on coarse meshes can have 
the same explanation as in item (a) (Figs. 5, 6).
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Fig. 5. Left: ℎ= 0.25, min𝑢ℎ = −0.6157. Right: ℎ = 0.01, min𝑢ℎ = −0.2689. 

Fig. 6. Left: ℎ = 0.0078, min𝑢ℎ = −2.5𝑒− 04. Right: ℎ = 0.0077, min𝑢ℎ = +7.1𝑒− 14. 
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