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As industries progress toward integrating more complex technologies within Industry 4.0 frameworks, 
ensuring work instructions that balance cognitive load and performance is increasingly critical, 
especially under the human-centric principles of the 5th industrial revolution. Drawing on Cognitive 
Load Theory (CLT), this study compares two instructional methods-visual-based and code-based-to 
determine whether cognitive overload can be reduced without compromising task outcomes in a 
controlled, assembly-like scenario derived from industrial tasks. We recruited 30 participants from the 
academic field (students and researchers), who completed assembly tasks under both visual-based and 
code-based instructions. Cognitive load was measured objectively by (Galvanic Skin Response, Heart 
Rate Variability, and hand motion acceleration) and subjectively through (NASA Task Load Index, 
short Dundee Stress State Questionnaire). Operational efficiency was assessed via task completion 
time (TCT), number of task repetitions (NTR), and assembly precision based on the standard deviation. 
The findings demonstrated that visual-based instructions significantly reduced cognitive load with a 
p − value < 0.001. It also showed an improvement in two of the performance metrics during the 
use of visual-based instructions for the TCT and NTR with p − values < 0.001. However, although 
code-based instructions increased cognitive load, they showed better assembly precision with a 
p − value < 0.001. These results suggest that while simple and direct instructions facilitate task 
execution and reduce cognitive loads, deep thinking approaches may still hold value for tasks requiring 
high precision.
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In modern industrial settings, the dynamic nature of the workforce and the rising costs of human labor 
necessitate implementing efficient and effective training and assembly procedures1. The introduction of Operator 
4.0, a framework that integrates technological advancements with a human-centric approach, aims to enhance 
operational efficiency and worker well-being2. As industries evolve to embrace more advanced technologies 
and complex processes, there is a pressing need to ensure that human operators are not only efficient but 
also resilient and well-supported in their roles3. Human operators in these environments face multifaceted 
challenges, intensified by the rise in product variants that require precise cognitive engagement. Supporting 
these operators effectively involves not only enhancing the clarity and accessibility of work instructions but also 
customizing these instructions to reduce cognitive load-a concept grounded in Cognitive Load Theory (CLT)4,5. 
Given these escalating complexities and the imperative for human-centric approaches, re-assessing conventional 
work instructions emerges as a vital step to maintain productivity, reduce errors, and manage operator strain in 
increasingly dynamic manufacturing scenarios4,6.

In the industrial setting, poorly designed instructions can significantly undermine productivity, increase 
the likelihood of errors, and lower overall job satisfaction. Moreover, the detrimental economic and social 
consequences of poor instruction have been extensively documented, resulting in reduced levels of customer 
satisfaction, increased operational costs, and inefficient decision-making processes7. This highlights the necessity 
for companies to prioritize high-quality information in their operational instructions7–10. Although numerous 
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studies have explored the benefits of simplified or digital work instructions-such as textual guides or augmented 
reality (AR)-based solutions11,12-these approaches often do not systematically validate the objective metrics with 
the subjective experience of workers based on the utilized instructions. Furthermore, research that integrates 
subjective questionnaires and objective physiological metrics to comprehensively evaluate worker cognitive load 
and efficiency based on work instructions remains limited. This gap is particularly pressing in modern assembly 
environments, where rising task complexity calls for instruction designs that are both cognitively considerate 
and operationally effective.

To address this gap, the present study systematically compares two distinct instructional approaches-
code-based and visual-based-within an assembly-like scenario. Specifically, we hypothesize that code-based 
instructions, which rely on alphanumeric codes to guide the assembly process, impose a higher subjective 
cognitive load due to the increased mental effort required to decipher the codes. By contrast, visual-based 
instructions are expected to reduce cognitive load by offering more intuitive, graphical representations of the 
same tasks. However, this simplified approach may induce more frequent hand movements and repeated task 
cycles-potentially resulting in more pronounced changes in physiological signals (Galvanic Skin Response GSR 
and Photoplethysmogram PPG) due to increased physical activity. In evaluating these hypotheses, we measure 
both subjective cognitive load (using the NASA Task Load Index ‘NASA_TLX’ and short Dundee Stress State 
Questionnaire ‘short DSSQ’) and objective indicators (physiological signals and task performance metrics) 
to capture a comprehensive view of how work instructions influence operator well-being and efficiency. We 
therefore pose the central question: How do subjective perceptions of cognitive load and performance align with 
objectively measured changes in cognitive load and performance when different instructional methods are employed?

The next subsections detail the theoretical and practical frameworks-Cognitive Load Theory and Worker 
Performance-to further contextualize our research.

Cognitive load theory (CLT)
CLT serves as the primary framework for assessing the effectiveness of work instructions in this study. Cognitive 
load refers to the amount of mental resources and effort required to process information and carry out a 
particular task. It represents the demand placed on working memory during task execution. CLT highlights 
that while our long-term memory has an expansive capacity, our working memory is significantly more limited. 
The theory defines three types of cognitive loads, each impacting the efficiency of our information processing. 
The first type, ”Intrinsic Cognitive Load”, deals with the degree of complexity associated with the acquisition of 
new knowledge5,13. In this research, the intrinsic cognitive load is highlighted through the task of constructing 
specific patterns using ”Make ‘N’ Break Extreme” pieces, which are intentionally designed to possess a consistent 
level of intrinsic complexity.

The second type within CLT is known as ”Extraneous Cognitive Load”. This arises from the manner in which 
instructions are presented and the design of the instructional system itself. This type of load, which often results 
from less effective instructional designs, should preferably be reduced since it has the potential to improperly 
complicate the learning processes. Fortunately, instructors can manage extraneous cognitive load through 
careful planning and execution, thereby optimizing instructional delivery to reduce or eliminate its impact5,13. In 
our study, we have applied this concept by incorporating two different instructional methods: visual and code-
based to examine their respective influences on cognitive load and performance. The last type defined by CLT is 
referred to as ”Germane Cognitive Load”. This concept relates to the cognitive processes that motivate workers 
to engage actively and exert effort in the learning process. This type of load is crucial for facilitating knowledge 
acquisition5,13. However, in our experimental design, we did not specifically address Germane Cognitive Load 
as our focus was primarily on examining the effects of work instructions (Extraneous Cognitive Load) while 
controlling the other types of cognitive load.

In this study, we assess cognitive load both subjectively and objectively. Subjective measures are obtained 
using both the NASA_TLX14 and the short form of the DSSQ15, which together provide a comprehensive 
assessment of multidimensional cognitive workload and dynamic stress states. Short DSSQ focuses on three 
key psychological states: engagement, distress, and worry. Task engagement refers to the individual’s energy 
level, personal concentration, and task motivation, indicating how strongly someone applies themselves toward 
achieving goals. Low task engagement is characterized by low energy, reduced motivation, and easy distraction, 
often manifesting as fatigue. Distress, on the other hand, is associated with negative emotional states; it reflects 
an overload of processing capacity that leads to feelings of lost control and reduced capability. Finally, worry 
involves negative self-assessments and intrusive thoughts that distract from task performance by shifting focus 
to the personal relevance of the task16. Objective cognitive load assessment is evaluated through multiple 
variables, including physiological indicators: GSR and Heart Rate Variability (HRV) derived from recorded PPG 
data, hand-motion acceleration, and performance measures like the number of task repetitions, task completion 
times, and assembly precision.

Worker performance
In evaluating the effectiveness of work instructions in industrial environments, the performance of workers 
emerges as a crucial metric. It provides tangible evidence of how well instructions support task execution. 
This study focuses on several key performance metrics to assess the effectiveness of different instructional 
methods. One of the primary indicators of effective work instructions is Task Completion Time (TCT). It 
measures the amount of time required for workers to finish a given task. Successfully accomplishing the task 
within the designated timeframe, or even earlier, could indicate that the instructions are clear and promote 
efficient comprehension and implementation. Conversely, prolonged completion times could potentially signify 
cognitive overload or confusion17.
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Moreover, evaluating the Number of Task Repetitions (NTR) experienced by workers across sessions will 
provide insight into their ability to efficiently execute and repeat the tasks based on the provided instructions. A 
higher number of task repetitions can indicate more effective work instructions that facilitate quicker familiarity 
and mastery of tasks18,19. We have utilized a video-based assessment as a method to measure the precision of the 
worker’s assembly process. Specifically, we define precision as the degree of positional accuracy in placing the 
blocks, which is quantified by tracking the centers of the attached Aruco markers on each piece. The lower the 
variance or standard deviation of these positions, the higher the precision. This metric is critical for gauging the 
relationship between task execution quality and NTR under different instructional methods7,20,21.

Related work
The transition toward Industry 4.0 and 5.0 has brought us to the end of Tayloristic industrial production, a 
system that breaks tasks into small, standardized steps to maximize efficiency. Modern industrial settings are 
now distinguished by higher complexity and greater flexibility22. Manual assembly is not exempt from these 
transitions through reducing production depth and increasing reliance on suppliers, and small and more diverse 
batches22,23. This shift leads to less predictability and routine for assembly workers. This uncertainty has increased 
workers’ workloads and put more pressure on designers to design efficient assembly instructions.

One of the suggested scenarios that has received great attention in recent years is the digital management 
system, which includes digitally designing and delivering work instructions to individuals. A few examples of 
these digital techniques are extended reality (XR), augmented reality (AR)11,24,25, mixed reality (MR)26, digital 
work instruction supported by multiple video streams27, visual contents of work instructions (pictures)4 and an 
approach based on gesture recognition for a self-learning digital assistant system28. These techniques can help 
workers complete their tasks with higher productivity and fewer errors by continuously updating information on 
the current assembly product, including updates on parts, tools, and processes22. However, implementing these 
new technologies can increase cognitive demands26. Furthermore, a significant limitation of many studies is their 
reliance on subjective metrics, such as questionnaires, and basic performance metrics, like task completion time, 
without incorporating physiological signals to monitor workers’ cognitive load and performance. While some 
studies have explored objective indicators using physiological signals, they often lack thorough validation of 
correlating these objective measures with subjective assessments of both cognitive load and worker performance.

Researchers have employed a wide range of physiological signals to assess cognitive load, including skin 
conductivity (GSR)29–32, photoplethysmography (PPG)33–35, electrocardiograms (ECG)36, electrooculograms 
(EOG)37, electromyograms (EMG)38,39, speech signals40, electroencephalograms (EEG)36,41–43, acceleration35,36, 
eye blinks, gaze, and movements44–46, breathing rate36,38,46, skin temperature36,39, and blood volume pulse36. 
Most of the studies that utilized these physiological markers to monitor workers’ cognitive load have ranged 
from standard lab tasks like mathematical problems29, the Stroop test33, IQ tasks34, and constructing with LEGO 
bricks37 to more industrially relevant scenarios such as pushing/pulling wagons and sorting tasks31.

Within these contexts, GSR is frequently cited for its sensitivity to stress and arousal47, whereas HRV has 
demonstrated distinct responsiveness to both mental and physical demands. For instance, a study by Taelman 
et al.48 using the wavelet transform of HRV found that tasks involving both mental and physical effort showed 
similar trends in the High Frequency (HF) parameter as purely physical tasks. However, these tasks had Low 
Frequency (LF) values, similar to those seen in tasks that were only mentally demanding. In contrast, Garde et 
al.49 found that adding mental challenges to a physical task did not significantly impact HRV parameters. Cheng 
et al. conducted a study on HRV in individuals engaged in cognitive activities under medium and high physical 
conditions. The study revealed substantial changes in HRV compared to situations without physical load50,51. 
Given that our experiment encompasses a code-based condition expected to impose significant mental effort yet 
involve fewer repetitive motions, alongside a visual-based condition anticipated to have lower mental demands 
but increased physical activity, we integrate HRV and GSR as complementary measures to monitor workers’ 
cognitive load. Additionally, relatively few studies have systematically evaluated work instructions in assembly 
tasks while concurrently measuring both subjective (questionnaires) and objective (GSR, HRV) markers of 
cognitive load.

Following the model proposed by Eesee et al.52, who recommended a strategy to manage cognitive load by 
adjusting workers’ surroundings and the nature of the activity or providing supplementary aids, we designed our 
experiment that keeps intrinsic task complexity constant-through assembling collections with the same number 
of pieces each time- while manipulating extraneous load through code-based and visual-based instructions. By 
doing so, we are applying their criterion to explore how task difficulty management influences the extraneous 
cognitive load on workers.

This approach extends existing research on digital or simplified instruction methods22,26 by explicitly 
contrasting two instructional formats and validating the outcomes with physiological and self-report data. By 
examining how workers respond differently in terms of mental effort, stress arousal, and operational efficiency, 
our study clarifies the balance between offering intuitive guidance and avoiding information overload. This 
integrated perspective addresses a critical gap in understanding how instructional design can optimize both 
cognitive and performance outcomes in modern, high-mix industrial environments.

Methodology
Given the gap identified in the literature, we designed a controlled experiment in which participants assembled 
“Make ‘N’ Break Extreme” blocks using two instructional methods: code-based and visual-based instructions. 
This protocol was chosen specifically to isolate extraneous load while maintaining consistent intrinsic load 
across tasks. The present study aims to investigate the impact of work instructions on operator cognitive load 
and performance within a controlled, assembly-like scenario. The experiment was carried out in the Industry 
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5.0 laboratory of the University of Pannonia53. In the following subsections of the methodology, we detail the 
participant recruitment, experimental procedure, data collection, and processing methods used to extract the 
features from the physiological responses and performance outcomes under each instructional approach.

Participants
This study recruited 30 participants from the academic field, a mix of university students and researchers with 
different demographic and ethnic backgrounds. Twelve of them were male and eighteen were female, with ages 
ranging from 19 to 39 years (M = 24.733, SD = 5.252). Ethical approval for this study was obtained from 
the Institutional Review Board of the University of Pannonia (Approval number: KEB_MK_FIT_2024_01). All 
methods were performed in accordance with the relevant guidelines and regulations. All participants provided 
written informed consent prior to participation. Since both the visual-based and the code-based instructions 
rely on colors, participants were required to fill out a vision questionnaire to make sure none of them had color 
blindness. Three of the participants were wearing contact lenses, and 17 of them had glasses. We also asked the 
participant to fill out an Edinburgh-handedness questionnaire54. Three of the participants were left-handed, and 
none of the participants had limited hand or finger movements.

Instructional design
The study involved the use of two instructional approaches for two distinct sessions: Visual-based instructions 
for the low cognitive load session and Code-based instructions for the high cognitive load session. In the visual-
based session, the participants see a series of step-by-step images depicting exactly how each pair of blocks should 
connect. In other words, each image clearly shows which sides of the pieces should touch, allowing participants 
to visually align the blocks until they match the illustrated pattern. The visual instructions presented in this 
context are characterized by their clarity as they provide a straightforward and unambiguous representation of 
the final goal. This approach aims to minimize the need for interpretive effort from the participants.

On the other hand, we utilized a color-based coding system for the assembly instructions to increase the 
difficulty level in the code-based hard session. A code, usually consisting of the first two letters of its color, 
references each piece. For example, ‘Re’ signifies the red piece and appears in red text, while ‘Gr’ signifies the green 
piece and appears in green text. The instructional material provides participants with these codes, which they 
must use to determine the position and contact points between pieces. The representation of spatial relationships 
between pieces is denoted by ‘A’ for Above, ‘B’ for Below, ‘L’ for Left of, and ‘R’ for Right of. We denote the degree 
of contact between two adjacent pieces as ‘T1’ for a single contact region and progressively increase it to ‘T4’ 
for four contact regions. The codes require participants to translate abstract instructions into the concrete task 
of assembling the blocks, reflecting a cognitive challenge often encountered in real-life situations where such 
instructions can be difficult to interpret. Figure 1 shows the setup of the experiment in this study.

Experiment design and procedure
The experimental setup utilized a customized ”Make ‘N’ Break Extreme Game” construction block set. This 
set comprises ten distinct blocks, each with a unique color and shape, which are used as the main tools for the 
work. We attached Aruco markers-square black and white barcode-like stickers-to each block. These stickers 
enable computer vision algorithms through video-based monitoring to track and verify the precision of the 
constructions made by the participants.

Each participant completed both visually based and code-based assembly tasks. To counterbalance task 
difficulty, half of the participants started with the visually-based assembly task, and the other half of the 
participants started with the code-based assembly task. We created four unique assembly patterns (labeled 1, 
2, 3, and 4), each consisting of six distinct blocks. This is to make the tasks more varied and make sure that 
participants can be properly tested across both instructional approaches. Each participant went through all of 
them, two for visual-based and two for code-based instructions. To provide a counterbalance and control for the 
order effect in learning and performance, we further allocated the participants in these two main groups into 
two subgroups each. Table 1 shows the distributions of the participants for the sessions and the assembly of the 
patterns.

Before each session, participants engaged in a brief training that corresponds to the specific instructional 
format, visual, or code-based. The experiment commenced with a three-minute baseline physiological recording. 
Subsequently, the participants proceeded to complete the pre-DSSQ15 to evaluate their stress levels before 
starting the experiment. Upon finishing the first session, participants completed the post-DSSQ and NASA_TLX 
questionnaires to evaluate their subjective cognitive load and stress post-task. The process of filling out the post-
DSSQ and the NASA_TLX was then repeated at the end of the second session.

Physiological responses during task execution were monitored using the Shimmer3 sensor. Electrodes 
were attached to the index and middle fingers of the non-dominant hand to record the GSR signal, with its 
PPG electrode affixed to the earlobe or the thumb for HRV extraction. As physiological signals are sensitive to 
motion55, participants were asked to use their dominant hands only during the assembly task. Furthermore, a 
Metamotion sensor was employed to track the acceleration of the hand, utilizing its capability as a wearable, 
wristwatch-like device strapped to the participant’s dominant wrist.

Each session was limited to a total duration of five minutes, during which participants were required to create 
each specified pattern a minimum of three times for the purpose of learning curve analysis. The duration of the 
sessions could be longer than five minutes, just in the cases where the participant has not met the minimum 
number of task repetitions (NTR). Time-stamped data from each session was captured to track progress and 
performance.
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Data preprocessing
In this experiment, we set the sampling frequency of the Shimmer3 sensor to 250 Hz to capture the physiological 
signals GSR and PPG. Low-frequency trend noise accompanies most of the recorded PPG signals, which 
complicates direct HRV extraction. We started with mean correction by removing the DC level offset to make 
sure that the signals are oscillating around the zero baseline. Following this step, we implemented the Savitzky-
Golay filter to remove the low-frequency trend noise. We then implemented the peak detection technique to 
extract the distances between the peaks and obtain the HRV. Figure 2 shows a sample of a 60-second PPG signal 
before and after removing the DC offset and low-frequency trend.

Groups Sub_Groups Baseline Questionnaires 1st Session Questionnaires 2nd Session Questionnaires

G1
Sub_G1.1 3 minutes Pre-DSSQ Code-based

(1 , 2)
Post-DSSQ
+NASA_TLX

Visual-based
(3 , 4)

Post-DSSQ
+NASA_TLX

Sub_G1.2 3 minutes Pre-DSSQ Code-based
(3 , 4)

Post-DSSQ
+NASA_TLX

Visual-based
(1, 2)

Post-DSSQ
+NASA_TLX

G2
Sub_G2.1 3 minutes Pre-DSSQ Visual-based

(1, 2)
Post-DSSQ
+NASA_TLX

Code-based
(3 , 4)

Post-DSSQ
+NASA_TLX

Sub_G2.2 3 minutes Pre-DSSQ Visual-based
(3 , 4)

Post-DSSQ
+NASA_TLX

Code-based
(1 , 2)

Post-DSSQ
+NASA_TLX

Table 1.  Participants distribution and session sequencing in the study of visual and code-Based assembly 
tasks.

 

Fig. 1.  This figure illustrates the comprehensive setup used in our experiment: Participant (A): The 
participant sits on a chair facing a table where the tasks take place. Building Blocks (B): Displayed on the table 
are the building blocks used in the experiment, each tagged with an Aruco marker to identify them during 
the tasks. Shimmer3 Sensor (C): This sensor is attached to the arm of the participant’s non-dominant hand 
to monitor the physiological signals (GSR and PPG). GSR Electrodes (D): These electrodes are fixed to the 
proximal phalanx of the index and middle fingers of the non-dominant hand to measure skin conductance. 
PPG Electrode (E): Positioned on the thumb’s distal phalanx of the non-dominant hand, this electrode 
monitors the PPG signal. Metamotion Sensor (F): an accelerometer worn on the dominant hand’s wrist; this 
sensor tracks the participant’s physical motion while engaging in the tasks. Video Camera (G): This camera 
is mounted on a stand to capture a top-view of the task area. It records the activities during the experiment. 
Code-based Instructions (H): A sample of code-based instructions provided to participants for task guidance. 
Visual-based Instructions (I): This is a sample of visual instructions used to direct participants in the 
experiment.
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To increase the data size, we applied a 60-second segmentation window to the filtered signals. We extracted 
HRV signals for each 60-second window by calculating the variation between consecutive detected peaks on 
the time axis. We extracted 19 features from the HRV signals for each window. The summarized HRV features 
extracted in this study are presented in Table 2.

HRV acronyms Description

RMSSD The square root of the average of the squared differences between consecutive intervals:√∑N−1
i=1

(RRi+1−RRi)2

N−1 , RR is the interval between the peaks56.

MEAN The mean of the RR intervals.

MEDIAN The median of the RR intervals.

SDRR Standard Deviation of the RR intervals.

SDSD Standard deviation of the differences between consecutive RR intervals.

SDRR_RMSSD Ratio of SDRR to RMSSD.

HR Heart Rate (beats per minute).

PNN25 Percentage of consecutive RR intervals differing by more than 25 ms.

PNN50 Percentage of consecutive RR intervals differing by more than 50 ms.

SD1 Descriptor of short-term HRV from the Poincaré plot.

SD2 Descriptor of long-term HRV from the Poincaré plot.

KURT_RR Kurtosis calculated from all RR intervals.

SKEW_RR Skewness calculated from all RR intervals.

VRL Power spectrum of the Very low frequency band (0.003 Hz to 0.04 Hz) of the HRV.

LF Power spectrum of the low frequency band (0.04 Hz to 0.15 Hz) of the HRV.

HF Power spectrum of the high frequency band (0.15 Hz to 0.4 Hz) of the HRV.

TP Total power spectrum of the HRV.

LF_HF The ratio of the LF to HF.

HF_LF The ratio of HF to LF.

Table 2.  The list of the extracted HRV features and their description.

 

Fig. 2.  (1) A sample of Raw PPG signal for 60 seconds, (2) The same sample of the PPG signal after being 
filtered and removing the DC offset and low-frequency trend with its detected peaks.
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The GSR signal (also known as the skin conductance SC) is formed by superimposing the phasic SC, also 
called the skin conductance response (SCR), on the tonic SC (also called the skin conductance level SCL), which 
is slowly changing57. This concept dictates that SC = SCtonic + SCphasic. Monitoring SCR is a simple way 
to detect sympathetic activity in response to an event58. Based on these facts, using the SC as a monitor for 
the change in sympathetic activity requires a technique to separate the signal into its phasic and tonic levels. 
We have utilized the Matlab-based Ledalab software V3.4.9, which uses a standard deconvolution algorithm to 
separate the SC into its two components58. Before starting the separation process, we applied a built-in adaptive 
smoothing filter to the signals to remove their noise. We initiated the separation process by applying continuous 
decomposition analysis (CDA).

We also employed a 60-second segmentation on the extracted signals, ensuring consistency in sample size 
with previous HRV measurements. From the GSR and its two components, SCR and tonic SC, we extracted 9 
features. Personal differences in skin conductivities influenced the amplitudes of both SC components (SCR and 
tonic SC). As our study focuses on the effects of work instructions, we manually checked the processing steps 
during feature extraction. This approach enhanced the robustness of our methods, helping us avoid irrelevant 
details and preserve critical and subtle features. Figure 3 shows a sample of 2 minutes of GSR recording with its 
two components (SCR and SCL). Table 3 shows the list of the extracted GSR features.

For acceleration data recorded from the sensor on the dominant hand’s wrist, we captured three data axes: X, 
Y, and Z. Consistent with previous physiological data, we applied 60-second segmentation on the acceleration 
signals. We calculated the resultant of these three axes and extracted six features from each axis, resulting in 24 

GSR acronyms Description

AreaSCR Total area under the SCR curve

AreaGSR Total area under the SC curve

No_Peakes Number of the detected peaks in the SCR

AvgRiseTime Average of the rising time of the peaks

AvgDecayTime Average of the decaying time of the peaks

Entropy Measured entropy of the SC signal

STDGSRdata Standard deviation of the SC

STDSCRdata Standard deviation of the SCR

BandPower Summation of the power spectrum of the SCR

Table 3.  The list of the extracted GSR features and their description.

 

Fig. 3.  (1) A sample of the recorded GSR for 120 seconds; (2) The extracted SCR through continuous 
decomposition analysis (CDA) with extracted peaks and bottoms that are utilized for feature extraction; and 
(3) The extracted SCL through the same CDA analysis.
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features. These features included mean, median, standard deviation, minimum, and maximum. All the signal 
processing steps, including filtration, feature extraction, and segmentation for GSR, HRV, and acceleration data, 
were conducted using MATLAB 2024b59.

Finally, the precision of each constructed pattern was evaluated through a customized algorithm. This 
algorithm processes video-captured images and analyzes the placement and orientation of each piece via Aruco 
markers. It calculates the Euclidean distance between the centers of the markers in the constructed pattern 
and compares it against a reference, whereby variances are determined as a measure of standard deviation. A 
higher value of the standard deviation indicates lower assembling precision, while a lower value suggests higher 
precision. This analysis was implemented using Python within the Spyder 5 environment60

Results
Subjective data analyses
In this subsection, we analyze the subjective data collected from participants during the three sessions of 
the experiment. We utilized two questionnaires, the NASA_TLX and the short version of the DSSQ. These 
questionnaires capture the perceptions of the participants after each session of the experiment.

NASA_TLX questionnaire
The NASA_TLX expresses six categories as percentages: mental demand, physical demand, temporal demand, 
performance, effort, and frustration. Figure 4a is a radar chart to visually compare these categories between 
the code-based and visual-based work instructions sessions. It shows that the code-based instructions induced 
higher levels of mental demand, frustration, and effort compared to the visual-based instructions. The statistical 
paired t-test confirmed significant differences between them, with p − values < 0.001 and effect sizes of 
−1.522 for mental demand, −0.788 for frustration, and −0.913 for effort. These findings indicate that code-based 
instructions were more mentally demanding and frustrating, requiring more effort to decipher than visual-based 
instructions. Additionally, the results showed slightly higher levels of both physical and temporal demand for 
the code-based instructions compared to the visual-based instructions. However, these differences were not 
statistically significant. The p − value for physical demand was 0.775 with an effect size of −0.082, and for 
temporal demand, the p − value was 0.339 with an effect size of −0.177. This suggests that participants did 
not feel rushed by time constraints, but they were more challenged by aspects related to their limited working 
memory.

Finally, the nature of the NASA_TLX scale interprets the “performance” dimension in the opposite direction 
of the other five categories, yet assigns its weight in the same direction as the others. This means that a higher 
perceived performance results in a lower NASA_TLX score, contributing to a lower overall cognitive load. 
For visual clarity in our radar chart, we assigned the performance weight in the reverse direction to the other 
categories to reflect each participant’s self-perceived performance. According to the radar chart and the paired 
t-test, participants reported higher perceived performance with the visual-based instruction compared to the 
code-based instruction, with a significant difference (p − value < 0.001 and Effect Size = −0.852).

The cognitive loads (CLs) for the visual-based (Visual) and code-based (Code) sessions were compared 
in Fig. 4b. These CLs were calculated from the NASA_TLX categories. The figure presented a combination of 
individual data points (personal CLs) with paired lines and box plots. The lines connecting the dots across the 
two sessions indicate the shift in CL for each participant from ”Visual” to ”Code”, highlighting a general increase 
in CLs in the code-based session.

Fig. 4.  Comparative analysis of subjective Cognitive Load and NASA_TLX dimensions across visual-based 
and code-based sessions.
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The box plot shows the distribution of CLs in both sessions, with a higher median and wider interquartile 
range in the code-based session. This suggests more variability and a higher overall CL. The mean values of the 
two sessions align with these box plots, where the visual-based session gave a Mean of 39.84 with an SD of 13.74 
compared to the code-based session, which gave a Mean of 57.24 with an SD of 14.71. An analysis using a paired 
t-test supported these observations. It showed that CL increased significantly from the visual-based session to 
the code-based session (P < 0.001), with an effect size of −1.182. This indicates that code-based instructions, 
compared to visual-based ones, place a significantly higher cognitive demand on participants. The statistical 
results for the comparisons of cognitive load and each NASA_TLX dimension between the visual-based and 
code-based sessions are summarized in Table 4.

Short DSSQ questionnaire
The second questionnaire we utilized in this experiment was the short version of DSSQ. Participants in this 
study completed the DSSQ three times under the following conditions: pre-experiment, post-visual-based 
session, and post-code-based session. The scores for each of the three psychological states were in the range of 
(0 − 32). Figure 5a displays the engagement scores of each individual, connecting them across the sessions to 
illustrate changes in engagement for each participant. Boxplots summarize the distribution of scores within each 
condition, providing a clear visual comparison.

The descriptive statistics for the engagement scores revealed variations across the three sessions. Prior to the 
experiment (Pre), the Mean engagement score was 25.06, with an SD of 5.33. Following the visual-based session 
(P_Visual), the Mean engagement score increased to 27.43, accompanied by a SD of 5.21. Following the code-
based session (P_Code), the Mean engagement score decreased slightly to 26.83, with a SD of 4.75.

To check if study sessions had a significant effect on task engagement, we decided to implement the Repeated 
Measures RM ANOVA. To check the assumption of sphericity, we applied Mauchly’s test, which revealed a 
violation of assumptions with a p − value of 0.043. Therefore, we applied the Huynh-Feldt correction to account 
for this violation. The corrected repeated measures ANOVA identified significant differences in engagement 
scores across the conditions, with a significant p − value of 0.012.

Following the main RM ANOVA test, we also applied the Post-Hoc analysis. We observed a significant 
increase in engagement from the pre-experiment to the post-visual-based session, as evidenced by a significant 
p − value of 0.041 and an effect size of −0.464. Although the increase in engagement from the pre-experiment 
to the post-code-based session had a p-value of 0.059 with effect size of −0.346, it did not meet the conventional 

Fig. 5.  Engagement, distress, and worry psychological states derived from the short DSSQ across three 
different conditions.

 

Measure 1
Visual-session

Measure 2
Code-session

Shapiro-Wilk
p-value Test Z Effect size

t-test
p-value

Cognitive load Cognitive load 0.208 Student N/A −1.182 <0.001

Mental demand Mental demand 0.150 Student N/A −1.522 <0.001

Physical demand Physical demand <0.001 Wilcoxon signed-rank −0.305 −0.082 0.775

Temporal demand Temporal demand 0.575 Student N/A −0.177 0.339

Performance Performance 0.114 Student N/A −0.852 <0.001

Effort Effort 0.942 Student N/A −0.913 <0.001

Frustration Frustration 0.125 Student N/A 0.788 <0.001

Table 4.  Statistical comparison of NASA_TLX Cognitive Load and its dimensions between visual-based and 
code-based instruction sessions.
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significance threshold of 0.05. Finally, a p-value of 0.323 and an effect size of 0.118 indicated no significant 
differences between the post-visual-based and post-code-based sessions. This suggests that both types of 
instructions managed to sustain similar levels of engagement (see Fig. 5a). These results indicate that while both 
instructional methods effectively boosted engagement compared to the baseline, the visual-based instructions 
proved particularly effective, as reflected in higher mean engagement scores.

We further looked into the distress scores of participants across three different sessions. There was a notable 
variation in these scores. Initially, before the experiment (Pre), the Mean distress score was 9.00, with an SD of 
5.52. After the visual-based session (P_Visual), the distress scores decreased to a Mean of 6.56 with an SD of 
4.76. However, following the code-based session (P_Code), the Mean distress score increased to 11.83, with an 
SD of 6.02 (see Fig. 5b).

To figure out if these changes in distress scores were statistically significant, we applied the RM ANOVA test, 
followed by the Post-Hoc tests. As before, for robust analysis, we applied Mauchly’s test to check for sphericity. 
The test results showed no violations (p − value = 0.792), which meant that we could use a standard repeated 
measures ANOVA without any adjustments. The ANOVA results indicated that there were indeed significant 
differences in distress scores across the conditions, with a highly significant p − value of less than 0.001.

In the Post-Hoc tests of the ANOVA results, we took a closer look at the changes in distress scores between the 
sessions. We found a significant decrease in distress from the pre-experiment to the post-visual-based session, 
with a p − value of 0.030 and an effect size of 0.446. Furthermore, the transition from the pre-experiment to the 
post-code-based session revealed a similar significant increase in distress, with a p − value of 0.030 and an effect 
size of −0.519. Most notably, the transition from the post-visual-based session to the post-code-based session 
marked a substantial increase in distress levels, with a p − value < 0.001 and a high effect size of −0.964.

Distress, which is linked to negative emotional states, was initially high, as demonstrated by the pre-
experiment mean scores, indicating significant initial stress among participants. However, after using visual 
instructions, there was a noticeable drop in distress levels, indicating a sense of relief. In contrast, the distress 
levels increased sharply after the code-based sessions, suggesting that these instructions significantly heightened 
negative emotional states which is related to the overload of processing capacity. This pattern demonstrates 
the substantial impact that different instructional designs can have on participants’ psychological stress. The 
marked differences between the visual and code-based sessions highlight the need to carefully consider the type 
of instructional material used and its potential psychological effects on learners. (Refer to Fig. 5b for a visual 
representation of these results.)

Next, we looked into the final psychological state, Worry. The worry scores changed notably across sessions. 
At the pre-experiment (Pre), the Mean worry score was quite high, at 15.86, with an SD = 5.85. After the 
visual-based session (P_Visual), this score significantly dropped to 8.60 (SD = 4.86), showing a large reduction 
in worry. However, after the code-based session (P_Code), the Mean worry score increased slightly to 9.23, 
with an SD = 6.88 (see Fig. 5c). To validate these observations, we first looked at the assumption of sphericity 
using Mauchly’s test. It showed a violation (p − value = 0.037). Consequently, we applied the Huynh-Feldt 
correction before proceeding with a RM ANOVA. This analysis confirmed that there were significant differences 
in worry scores across the sessions, with a highly significant p − value < 0.001.

In the Post-Hoc tests of the ANOVA, worry greatly decreased from the pre-experiment to the post-visual-
based session, with a p − value < 0.001 and a large effect size of 1.226. Similarly, worry significantly decreased 
from the pre-experiment to the post-code-based session, with a p − value < 0.001 and an effect size of 1.120. 
However, the worry scores did not significantly change from the post-visual-based to the post-code-based 
session (p − value = 0.397, effect size = −0.107). This suggests that the code-based session did not negatively 
affect the initial reduction in worry. These statistics for the DSSQ’s three variables-engagement, distress, and 
worry-along with the Post-Hoc analysis, are presented in Table 5.

These findings show that the way instructions are designed can greatly affect worry, which is linked to 
negative self-assessments. The large decrease in worry scores after the visual-based session suggests that this 
method can effectively reduce worry, helping participants focus better and feel more comfortable. On the other 
hand, the slight increase in worry after the code-based session, although not significant compared to the visual 
session, shows that certain instructional methods might make anxiety worse under specific conditions. The 

DSSQ states
Sphericity test
Mauchly p-value

Sphericity
Correction

RM ANOVA
p-value

ANOVA Post-Hoc

Cases p-value Effect size

Engagement 0.043 Huynh-Feldt 0.012

Pre vs. P_Visual 0.041 −0.464

Pre vs. P_Code 0.059 −0.346

P_Visual vs. P_Code 0.323 0.118

Distress 0.792 None <0.001

Pre vs. P_Visual 0.030 0.446

Pre vs. P_Code 0.030 −0.519

P_Visual vs. P_Code <0.001 −0.964

Worry 0.037 Huynh-Feldt <0.001

Pre vs. P_Visual <0.001 1.226

Pre vs. P_Code <0.001 1.120

P_Visual vs. P_Code 0.397 −0.107

Table 5.  Statistical analyses of DSSQ variables (Engagement, Distress, and Worry) with Post-Hoc 
comparisons. Pre: Pre-experiment, P_Visual: Post Visual-based session, and P_Code: Post Code-based session.
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visual representation of these results is shown in Fig. 5c. All statistical analyses, including t-tests, RM ANOVA, 
and Post-Hoc comparisons, were conducted using JASP statistical software (version 0.19.2)61.

Objective data analyses
In this subsection, we present the results of the analyses based on the captured objective data. Starting with the 
recorded physiological data, we extracted 19 HRV features, and nine GSR features listed before respectively in 
Tables 2 and 3. Feeding all of these physiological features for classification purposes or even statistical analyses 
can lead to poor accuracy and precision because some of these features could be highly correlated while others 
may not show a high contribution to predicting the target. Based on this criterion, it is inevitable to implement 
the feature selection technique prior to classification processes. Wrapper methods are the most effective for 
feature selection, according to Rezaei and Jabbari62. We implemented a feature selection technique that belongs 
to the wrapper methods: backward elimination. This technique is based on employing the entire set of features 
in the first step and gradually iterating and removing the features. Each iteration removes the feature that 
contributes the least to the target. This process continues as long as the model improves with feature removal.

Due to the nature of our experiment design, the data from the three sessions is not equally sized. Repeated 
analyses with varying sizes contravene standard statistical analyses such as the ANOVA and paired t-test. 
However, we can use logistic regression analysis for this purpose. The rationale for utilizing logistic regression 
lies in its ability to provide classification properties, in addition to displaying the contribution of each feature 
to the target along with its p-value. We have utilized SPSS statistical software for this purpose. We fed the 29 
extracted features into the model, using the backward elimination method to iterate over them and select the 
most significant ones. Following the designed sessions of this experiment (refer to Table 1), we will compare the 
whole three sessions and each session with the other two sessions separately, similar to the Post-Hoc tests in the 
subjective analyses.

We aim to provide a comprehensive overview of the impact of the type of work instruction on physiological 
features. We used a multinomial logistic regression model, setting the baseline session as the reference category 
for the visual and code-based sessions. This means that the features of both sessions of work instructions will be 
compared to the baseline session. The fitness of the model was assessed using the Chi-Square test, which revealed 
a significant improvement over the null model with Chi-Square = 270.503, d = 30, and a p − value < 0.001.

The backward elimination method removed 14 features and selected the top 15 contributing features, 
resulting in the optimal model classification parameters. Table 6 presents a list of the selected features, as well 
as their coefficient magnitudes and p-values. We also implemented three binary logistic regression models to 
compare each session with the others and see which features had contributed significantly to the target. We once 
again assessed the models’ fitness using the Chi-Square test. The results revealed a significant improvement in 
the models compared to the null models without predictors. The visual-based vs. baseline model has shown Chi-
Square = 140.358, d = 12, and a p − value < 0.001, the code-based vs. baseline model has shown Chi-Square 
= 176.691, d = 13, and a p − value < 0.001, and the code-based vs. visual-based model has shown Chi-Square 
= 91.401, d = 14, and a p − value < 0.001. Table  7 presents the results of the selected features with their 
coefficient magnitudes and significance evaluation parameter, p-values. Negative coefficients suggest that as the 
predictor (a specific feature) increases, the likelihood of the outcome being in the respective condition (target) 
decreases compared to the reference category.

By comparing the three conditions in our study, we calculated and presented the average of the models’ 
performance parameters-accuracy, precision, and recall-in Table  8. We used the following abbreviations for 
each condition, B: Baseline (Pre-experiment) session, V: Visual-based instruction session, and C: Code-based 
instruction session. The high-performance classification metrics (B-C, B-V) showed that the models found a 

Condition Features B p-value Condition B p-value

Visual-based

AreaGSR 0.007 < 0.001

Code-based

0.007 < 0.001

NoPeakes 0.295 < 0.001 0.133 0.049

avgRiseTime 0.238 0.11 0.338 0.017

avgDecayTime − 0.0001 0.957 −0.228 0.006

STDGSRdata −17.15 < 0.001 −13.008 < 0.001

STDSCRdata 29.078 < 0.001 27.274 < 0.001

spectralEnergy −0.215 < 0.001 −0.389 < 0.001

MEAN_RR −0.018 0.006 −0.028 < 0.001

SDRR −0.147 < 0.001 −0.015 0.634

SDSD 0.139 < 0.001 0.049 0.114

SDRR_RMSSD 2.708 0.028 0.068 0.953

HR −0.218 0.01 −0.344 < 0.001

pNN25 −0.019 0.301 −0.059 < 0.001

LF_HF −0.004 0.034 −0.006 0.001

HF_LF 0.544 0.784 1.809 0.362

Table 6.  Estimated parameters for selected features using multinomial logistic regression with baseline session 
as reference. The reference category is: Baseline session. B: Coefficient Magnitudes
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clear boundary between the baseline condition (Pre-experiment) and both the visual-based and code-based 
conditions. This pattern aligns with the trends observed in the ANOVA and Post-Hoc tests of the DSSQ 
psychological states: engagement, distress, and worry. Although all selected features of condition 3 (Code based 
vs. Visual based) in Table 7 demonstrated significant differences, model V-C in Table 8 exhibited the lowest 
performance metrics when compared to the other binary classifier models. This is somewhat consistent with the 
previous statistical tests that compare these two conditions within the subjective DSSQ states.

To analyze participants’ performance, we analyzed three key metrics: the Number of Task Repetitions 
(NTR), Task Completion Time (TCT) (a minimum of five minutes), and the precision of the assembly process. 
We represented this precision by the average of the standard deviation (SD) of Euclidean distances between 
the centers of the building pieces, derived from video-captured images; the lower the SD value, the better the 
assembly process. We calibrated the camera setup and averaged the trials within each instruction session to 
minimize potential algorithmic inaccuracies. We conducted Shapiro-Wilk tests to assess the normality of the 
data, followed by paired t-tests to evaluate differences between sessions.

Table 9 shows the main parameters extracted from these tests. We observed significant differences in the 
three parameters between the two sessions, with p-values < 0.001. In Fig. 6, we present the descriptive plots 

Measure 1 Measure 2
Shapiro-Wilk
p-value Test Z

Effect
size

t-test
p-value

V_NTR C_NTR 0.027 Wilcoxon signed-rank 4.286 1.00 < 0.001

V_TCT C_TCT 0.018 Wilcoxon signed-rank −4.573 −0.972 < 0.001

V_SD_Precision C_SD_Precision 0.3 Student N/A 0.709 < 0.001

Table 9.  Comparison of participant performance metrics between Visual- and Code-based sessions using 
paired t-tests. V_NTR and C_NTR are the Number of Task Repetitions in the visual- and code-based sessions 
respectively, V_TCT and C_TCT are the Task Completion Time (in minute) of the visual- and code-based 
sessions respectively, and V_SD_Precision and C_SD_Precision are the SDs that reflect the precision of the 
assembly process for the visual- and code-based sessions respectively

 

Classifier Conditions Accuracy Precision Recall

Multinomial
Logistic Regression B–V–C 78.04 67.79 63.12

Binary
Logistic Regression

B–V 83.88 82.99 82.2

B–C 90.42 89.97 85

V–C 75.51 74.92 71.95

Table 8.  Average of performance metrics of logistic regression models under various conditions based on the 
physiological features (GSR and HRV). B: Baseline (Pre-experiment), V: Visual-based session, and C: Code-
based session

 

Condition 1 Features B p-value Condition 2 Features B p-value Condition 3 Features B p-value

Visual-based
vs
Baseline

AreaGSR 0.006 0.003

Code-based
vs
Baseline

AreaSCR 0.465 < 0.001

Code-based
vs
Visual-based

NoPeakes −0.158 < 0.001

NoPeakes 0.164 0.005 NoPeakes 0.165 0.010 avgDecayTime −0.200 0.032

STDGSRdata −13.921 0.001 STDGSRdata −9.952 0.006 STDGSRdata 8.201 0.001

STDSCRdata 22.950 < 0.001 spectralEnergy −3.746 0.005 STDSCRdata −8.528 0.016

spectralEnergy −0.177 0.006 bandPower 7.032 0.018 spectralEnergy −1.177 0.016

RMSSD 0.091 < 0.001 MEAN_RR −0.031 < 0.001 bandPower 2.152 0.036

MEDIAN_RR −0.011 0.027 SDSD 0.092 < 0.001 MEAN_RR −0.078 0.008

SDRR −0.054 0.003 HR −0.753 0.003 SDSD −0.056 < 0.001

HR −0.129 0.025 pNN25 −0.047 0.034 SDRR_RMSSD −2.664 < 0.001

pNN25 −0.048 0.023 pNN50 −0.095 0.020 HR −0.546 0.005

KURT_RR −0.072 0.087 KURT_RR −0.093 0.007 pNN50 −0.051 0.003

LF_HF −0.003 0.117 VLF 0.000 0.048 SD2 0.076 < 0.001

LF_HF −0.005 0.029 LF 0.000 0.015

HF_LF 1.543 0.002

Table 7.  Estimated parameters for selected features using three binary logistic regression models. Baseline 
is the reference category for Conditions 1, and 2, while Visual-based is the reference in the Condition 3. B: 
Coefficient Magnitudes
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of these three parameters as means with their confidence intervals 95%. Figure 6a presents the means of the 
NTR during the two sessions of the work instructions. In the code-based session, most of the participants 
found themselves stuck at the minimum number of iterations (Mean = 6.379), whereas they showed a greater 
capability to repeat the task in the visual-based session (Mean = 9.828).

Despite the higher number of repetitions in the visual-based session, the majority of participants did not 
exceed the allocated time for this session and showed a mean of 5.342 minutes compared to 8.363 minutes 
in the code-based session (refer to Fig. 6b). These results are aligned with the subjective results from NASA_
TLX, where participants showed a significant increase in the cognitive load from visual-based instructions to 
code-based instructions. Figure 6c, however, showed intriguing results with lower SD values for code-based 
instructions (which means better precision) compared to visual-based instructions. This does not align with the 
subjective results of the NASA_TLX performance category, where participants evaluated themselves as having 
better visual instructions performance.

The higher number of task repetitions NTR and lower task completion time TCT in the visual-based session 
indicate that participants made more hand movements in this session compared to the code-based session. 
Table 10 shows the t-test analyses of the hand movements in the three coordinates (X, Y, Z) during two work 
instructions. The p-values from these analyses (< 0.05) indicate significant differences in hand movement 
across the three coordinates during the visual-based session compared to the code-based session, highlighting 
variations in NTR and TCT between the two sessions.

The accelerometer data in the three coordinates provided 24 features as already explained in the Data 
Preprocessing subsection. Combining these features with 29 features that were previously extracted from the 
physiological signals (GSR and PPG) will establish a clear boundary between the two instruction sessions. 
Feeding these 53 features into the binary logistic regression model with the backward elimination method has 
produced promising results. We again assessed the fitness of the model using the Chi-square test, revealing a 
significant improvement over the null model with Chi-square = 368.234, d = 27, and a p − value < 0.001. 
The model showed excellent performance metrics with average accuracy = 92.91, precision = 92.67, and 
recall = 92.35. These values outperform the model performance in Table  8 V-C condition. All statistical 
analyses related to the logistic regression modeling were conducted using IBM SPSS Statistics software (version 
29)63.

Discussion
This study investigated the impact of work instruction methods on the human cognitive load and their 
operational efficiency. In a controlled, assembly-like scenario inspired by industrial tasks, the study used two 
work instructions-visual-based and code-based-and a range of subjective and objective assessment methods. The 
study also examined the alignment between subjective and objective evaluation methods, in order to enhance 
the accuracy of conclusions by providing context for physiological responses and validating our experimental 
conditions. The findings revealed that code-based instructions imposed a higher subjective cognitive load on 
participants compared to visual-based instructions. This aligns with Cognitive Load Theory (CLT), which 

Visual-based Code-based Test Z p-value

meanX meanX Wilcoxon signed-rank 2.411 0.016

meanY meanY Student N/A 0.002

meanZ meanZ Wilcoxon signed-rank 2.038 0.042

Table 10.  Results of t-test analyses comparing the mean accelerometer values across the three coordinates (X, 
Y, Z) during two work instruction sessions: visual-based and code-based. meanX, meanY, and meanZ are the 
mean values of the accelerometer data at the three coordinates X, Y, and Z respectively

 

Fig. 6.  Comparative analysis of task performance across visual and code-based instruction sessions.
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posits that extraneous cognitive load-stemming from the way information is presented-can hinder learning and 
performance13.

The results are also consistent with previous studies indicating that visual aids can enhance comprehension 
and reduce cognitive load in assembly tasks. For instance, Li et al. (2018) found that supporting the work 
instructions with pictures can reduce the cognitive load and improve task performance compared to the 
traditional text instructional methods4. Similarly, our study suggests that visual-based instructions lead to faster 
task completion and higher task repetition rates. This is likely due to the reduced mental effort required to 
interpret the instructions, as visual-based instructions are less abstract and easier to interpret than code-based 
instructions. Furthermore, Vanneste et al. (2024) demonstrated that augmented reality (AR) visual instructions 
led to lower assembly times and a lower perceived physical effort compared to traditional methods11. This 
supports the idea that technologically advanced visual aids can further enhance the effectiveness of work 
instructions, which aligns with our findings on the superiority of visual-based instructions in most cases.

Taking each of the six categories in the NASA_TLX and comparing them between the two instructional 
sessions has produced profound results. The t-test analyses of each pair of the six categories within the NASA_
TLX have shown a significant increase in mental demand, frustration, and effort in the code-based session. 
While there was a slight increase in physical demand in the code-based session, there was no significant increase. 
Conversely, the t-test analyses of hand movements in the X, Y, and Z coordinates, as well as the NTR, indicated 
higher means and significant differences in the visual-based session compared to the code-based session. As the 
hand movements were not exertive, participants focused on their goal of repeating the task during the visual-
based session, where a higher repetition rate was intended to lead to better outcomes. Consequently, they did 
not perceive the task as physically demanding when filling out the Physical Demand category of NASA_TLX.

However, body movement significantly impacts physiological signals due to the alterations in autonomic 
sympathetic arousal resulting from increased energy expenditure64. Subjectively, the code-based instructions 
were more cognitively demanding. We also expected these instructions to influence the objective physiological 
data. On the other hand, although visual-based instructions posed subjectively lower cognitive demands, their 
straightforward nature objectively led to a higher number of hand movements. We expect the higher hand 
movements to impact the objective physiological data. These were clearly reflected in the performance metrics 
of the logistic regression models in Table 8. Classifying the code-based instruction session from the baseline 
session yielded the highest performance metrics, with the visual-based instruction session from the baseline 
session following closely behind. Both cognitively demanding tasks and tasks involving body movements 
significantly influence the physiological signals, justifying this. Simultaneously, when we attempted to classify 
the code visual-based sessions, the logistic regression models displayed relatively low-performance metrics 
because both tasks were objectively influencing the physiological signals.

The low-performance metrics for classifying the two sessions based on physiological data do not necessarily 
indicate a lack of alignment between the subjective and objective data metrics. However, they do imply that 
differentiating operators’ conditions using the objective physiological data may not be entirely reliable, especially 
in scenarios combining cognitive and physical tasks. On the other hand, supporting the features extracted from 
the physiological signals (GSR and HRV) with the features extracted from the accelerometer has provided a 
clear boundary between the two instruction sessions. This is due to the higher levels of hand movements in the 
visual-based session. This supports the use of these kinds of signals in conjunction with other objective data to 
support operator condition analyses.

This study also used performance as a metric. We informed the participants about the criteria for evaluating 
their performance prior to the experiment. We analyzed this metric in two ways: subjectively using the NASA_
TLX, and objectively using the parameters in Table 9: the number of task repetitions (NTR) within the given 
time, the task completion time (TCT), and the precision of the assembly process, as indicated by the standard 
deviation SD of the Euclidean distances between the assembled pieces. Participants subjectively rated their 
performance significantly higher in the visual-based instruction session. Participants seem to prioritize the 
possibility of repeating the task beyond its lower limit, disregarding the precision of their work. This higher 
repetition number gave them a sense of achieving their task with high performance in the visual-based session 
compared to the code-based session. The objective performance metrics aligned the subjective rate with respect 
to the NTR and TCT, as shown in Table  9 and Fig.  6a and b. In most cases, participants repeated the task 
significantly more during the visual-based session without exceeding the allocated time.

However, while the industry aims to increase production batches with short production times, it does not 
overlook the importance of product quality. In this study, the SD of the assembly process represented this metric. 
Due to their increased focus on the NTR, participants did not pay as much attention to their assembly precision. 
This resulted in a higher SD for the visual-based session, indicating lower precision compared to the code-based 
instruction session, where participants thoughtfully assembled each assembly piece without rushing through the 
process (See Fig. 6c). This suggests that while visual instructions may enhance speed and reduce perceived effort, 
they may inadvertently encourage less attention to detail. This objective metric is primarily not aligned with 
the subjective performance in the NASA_TLX. This contrast highlights the strengths and limitations of each 
measurement approach: subjective tools, such as NASA_TLX, can capture perceived workload or satisfaction, but 
they might miss more complex aspects of actual task performance. Objective measures like assembly precision 
provide quantifiable outcomes but do not fully account for internal states such as confidence or perceived effort.

The mismatch between objective metric and the subjective metric of performance might be understood 
within the framework of the Dynamic Model of Sustained Attention and Stress65. According to this model, 
individuals adjust their attention and effort allocation dynamically based on perceived task demands, available 
cognitive resources, and stress level. Thus, when task demands decrease, attention can become less focused, 
leading to a drop in task performance. Therefor, while the visual-based instruction optimize speed and effort, it 
may not sufficiently maintaine the level of attention needed for precision. These findings highlight the impratnce 
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of achieving the optimal cognitive load during tasks. Although visual instruction can reduce cognitive load and 
increase assembly speed, it may not result in optimal cognitive performance in terms of precision. This indicates 
that while visual instruction may lower cognitive load and enhance efficiency, it might compomise attention and 
precision. Thus, in high-stakes or precision-demanding tasks, a certain level of cognitive load might be necessary 
to ensure attention and accurate performance. Therefore, instruction design should consider not just reducing 
cognitive load but also achieve optimal cognitive load that supports both efficiency and precision, optimizing 
overall task performance.

Future research can explore hybrid or modified methods to mitigate this trade-off. For instance, adaptive 
or context-sensitive instructions could primarily use visual aids for most assembly steps, yet incorporate code-
based details during critical high-precision tasks. Alternatively, layered instructions-where a simple visual 
overview is supplemented by optional, more detailed code-based guidance-could preserve the clarity of visual 
methods while ensuring precision where it is needed. Such approaches might achieve a more optimal balance 
between efficiency and precision without overstressing the operator’s cognitive resources.

Limitations and future research
This study faced several limitations that suggest directions for future research. One key limitation of this study 
is that the experiment was conducted in a controlled laboratory environment, which does not fully mirror 
the complexity of real-world industrial settings. In actual production lines, factors like noise, teamwork, 
multitasking, and real-time pressures can substantially influence the operators’ cognitive load and performance. 
Consequently, the results presented here should be interpreted as foundational insights rather than direct 
predictions of on-site outcomes. Nonetheless, our findings highlight the importance of minimizing extraneous 
cognitive load in designing effective work instructions. Future research may further validate these insights by 
integrating realistic workplace parameters-such as time constraints, loud machinery, and group-based tasks-into 
experimental protocols.

Another limitation of this study is the sample representativeness, where the participant pool was restricted 
to university students and researchers. While this homogeneous sample allowed for consistent baseline 
characteristics, it may not adequately represent the demographic and experiential diversity of industrial workers. 
Therefore, caution is warranted in generalizing our findings to actual industrial environments. In future work, 
we plan to broaden our sample to include operators from various industrial settings. This expanded approach 
will help validate our current results and further refine guidelines for optimal instructional design.

Additionally, physiological sensor placement on the non-dominant hand limited task execution to one-
handed, which was another limiting factor in this study. This constraint potentially affected both the pace and 
strategies used, reducing the ecological validity of our findings. In future studies, we plan to adopt less intrusive 
sensor placements (e.g., wearable wristbands, arm and chest straps, or forehead sensors) to enable two-handed 
operation and better replicate industrial conditions.

Moreover, the study utilized a limited set of physiological signals (GSR and PPG). Incorporating a 
broader array of biosignals, such as eye tracking, body motion or posture tracking, electromyography (EMG), 
electroencephalography (EEG), and electrooculography (EOG), can provide deeper insights into the cognitive 
and physical states of workers, offer more robust support for the study’s hypotheses, or even provide a different 
point of view. Furthermore, while the sample size of 30 participants was substantial, future studies can expand it 
to enhance the statistical power and generalizability of the findings.

Finally, the five-minute time limit for the instruction sessions, which could only be extended if the specific 
pattern was not repeated three times, restricted most participants to completing the code-based session only 
three times. This prevented us from examining the full learning curve. It is possible that with more practice, 
participants could become more efficient with code-based instructions, potentially improving task performance 
over time.

Conclusion
In this study, we found that visual-based instructions significantly reduce cognitive load and improve some 
operational aspects, such as shorter TCT and higher NTR compared to code-based instructions. However, our 
findings show a clear divergence between participants’ subjective ratings of performance through the NASA_TLX 
and the objective performance metric, assembly precision. While subjective measures are valuable for gauging 
perceived workload and emotional states, they can be influenced by factors like self-efficacy and momentary 
satisfaction. Conversely, the objective precision metric provides a direct measure of actual task outcomes but 
may overlook internal experiences of strain. As a result, high subjective performance scores did not always 
correspond to high objective precision.

Our study suggests that simple and direct instructions (visually based in this study) can enhance some of 
the operational aspects and reduce cognitive load, demonstrating that these kinds of instructional strategies are 
particularly beneficial in environments where quick task execution is critical. On the other hand, for tasks that 
require high precision and meticulous attention to detail, instructions that require deep thinking (code-based in 
this study) may be more appropriate. This discrepancy underscores the importance of a multi-method approach. 
Future research should explore more granular correlations between subjective and objective measures-perhaps 
by collecting in-task self-reports or by utilizing continuous physiological monitoring that can be compared 
against real-time performance logs. These insights can aid in developing customized training and operational 
protocols that improve productivity and enhance worker satisfaction.

Data availability
Data available upon request to Tamás Ruppert.
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