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Impact of work instruction
difficulty on cognitive load and
operational efficiency

Abdulrahman K. Eeseel:¢, Vera Varga?, Gyorgy Eigner®* & Tamas Ruppert%>™*

As industries progress toward integrating more complex technologies within Industry 4.0 frameworks,
ensuring work instructions that balance cognitive load and performance is increasingly critical,
especially under the human-centric principles of the 5th industrial revolution. Drawing on Cognitive
Load Theory (CLT), this study compares two instructional methods-visual-based and code-based-to
determine whether cognitive overload can be reduced without compromising task outcomesin a
controlled, assembly-like scenario derived from industrial tasks. We recruited 30 participants from the
academic field (students and researchers), who completed assembly tasks under both visual-based and
code-based instructions. Cognitive load was measured objectively by (Galvanic Skin Response, Heart
Rate Variability, and hand motion acceleration) and subjectively through (NASA Task Load Index,
short Dundee Stress State Questionnaire). Operational efficiency was assessed via task completion
time (TCT), number of task repetitions (NTR), and assembly precision based on the standard deviation.
The findings demonstrated that visual-based instructions significantly reduced cognitive load with a

p — value < 0.001. It also showed an improvement in two of the performance metrics during the
use of visual-based instructions for the TCT and NTR with p — values < 0.001. However, although
code-based instructions increased cognitive load, they showed better assembly precision with a

p — value < 0.001.These results suggest that while simple and direct instructions facilitate task
execution and reduce cognitive loads, deep thinking approaches may still hold value for tasks requiring
high precision.
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In modern industrial settings, the dynamic nature of the workforce and the rising costs of human labor
necessitate implementing efficient and effective training and assembly procedures'. The introduction of Operator
4.0, a framework that integrates technological advancements with a human-centric approach, aims to enhance
operational efficiency and worker well-being®. As industries evolve to embrace more advanced technologies
and complex processes, there is a pressing need to ensure that human operators are not only efficient but
also resilient and well-supported in their roles®. Human operators in these environments face multifaceted
challenges, intensified by the rise in product variants that require precise cognitive engagement. Supporting
these operators effectively involves not only enhancing the clarity and accessibility of work instructions but also
customizing these instructions to reduce cognitive load-a concept grounded in Cognitive Load Theory (CLT)**.
Given these escalating complexities and the imperative for human-centric approaches, re-assessing conventional
work instructions emerges as a vital step to maintain productivity, reduce errors, and manage operator strain in
increasingly dynamic manufacturing scenarios*®.

In the industrial setting, poorly designed instructions can significantly undermine productivity, increase
the likelihood of errors, and lower overall job satisfaction. Moreover, the detrimental economic and social
consequences of poor instruction have been extensively documented, resulting in reduced levels of customer
satisfaction, increased operational costs, and inefficient decision-making processes’. This highlights the necessity
for companies to prioritize high-quality information in their operational instructions’-!?. Although numerous
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studies have explored the benefits of simplified or digital work instructions-such as textual guides or augmented
reality (AR)-based solutions!"1>-these approaches often do not systematically validate the objective metrics with
the subjective experience of workers based on the utilized instructions. Furthermore, research that integrates
subjective questionnaires and objective physiological metrics to comprehensively evaluate worker cognitive load
and efficiency based on work instructions remains limited. This gap is particularly pressing in modern assembly
environments, where rising task complexity calls for instruction designs that are both cognitively considerate
and operationally effective.

To address this gap, the present study systematically compares two distinct instructional approaches-
code-based and visual-based-within an assembly-like scenario. Specifically, we hypothesize that code-based
instructions, which rely on alphanumeric codes to guide the assembly process, impose a higher subjective
cognitive load due to the increased mental effort required to decipher the codes. By contrast, visual-based
instructions are expected to reduce cognitive load by offering more intuitive, graphical representations of the
same tasks. However, this simplified approach may induce more frequent hand movements and repeated task
cycles-potentially resulting in more pronounced changes in physiological signals (Galvanic Skin Response GSR
and Photoplethysmogram PPG) due to increased physical activity. In evaluating these hypotheses, we measure
both subjective cognitive load (using the NASA Task Load Index ‘NASA_TLX’ and short Dundee Stress State
Questionnaire ‘short DSSQ’) and objective indicators (physiological signals and task performance metrics)
to capture a comprehensive view of how work instructions influence operator well-being and efficiency. We
therefore pose the central question: How do subjective perceptions of cognitive load and performance align with
objectively measured changes in cognitive load and performance when different instructional methods are employed?

The next subsections detail the theoretical and practical frameworks-Cognitive Load Theory and Worker
Performance-to further contextualize our research.

Cognitive load theory (CLT)

CLT serves as the primary framework for assessing the effectiveness of work instructions in this study. Cognitive
load refers to the amount of mental resources and effort required to process information and carry out a
particular task. It represents the demand placed on working memory during task execution. CLT highlights
that while our long-term memory has an expansive capacity, our working memory is significantly more limited.
The theory defines three types of cognitive loads, each impacting the efficiency of our information processing.
The first type, “Intrinsic Cognitive Load”, deals with the degree of complexity associated with the acquisition of
new knowledge™!3. In this research, the intrinsic cognitive load is highlighted through the task of constructing
specific patterns using "Make ‘N’ Break Extreme” pieces, which are intentionally designed to possess a consistent
level of intrinsic complexity.

The second type within CLT is known as “Extraneous Cognitive Load”. This arises from the manner in which
instructions are presented and the design of the instructional system itself. This type of load, which often results
from less effective instructional designs, should preferably be reduced since it has the potential to improperly
complicate the learning processes. Fortunately, instructors can manage extraneous cognitive load through
careful planning and execution, thereby optimizing instructional delivery to reduce or eliminate its impact>!3. In
our study, we have applied this concept by incorporating two different instructional methods: visual and code-
based to examine their respective influences on cognitive load and performance. The last type defined by CLT is
referred to as "Germane Cognitive Load”. This concept relates to the cognitive processes that motivate workers
to engage actively and exert effort in the learning process. This type of load is crucial for facilitating knowledge
acquisition>!®. However, in our experimental design, we did not specifically address Germane Cognitive Load
as our focus was primarily on examining the effects of work instructions (Extraneous Cognitive Load) while
controlling the other types of cognitive load.

In this study, we assess cognitive load both subjectively and objectively. Subjective measures are obtained
using both the NASA_TLX! and the short form of the DSSQ!®, which together provide a comprehensive
assessment of multidimensional cognitive workload and dynamic stress states. Short DSSQ focuses on three
key psychological states: engagement, distress, and worry. Task engagement refers to the individual’s energy
level, personal concentration, and task motivation, indicating how strongly someone applies themselves toward
achieving goals. Low task engagement is characterized by low energy, reduced motivation, and easy distraction,
often manifesting as fatigue. Distress, on the other hand, is associated with negative emotional states; it reflects
an overload of processing capacity that leads to feelings of lost control and reduced capability. Finally, worry
involves negative self-assessments and intrusive thoughts that distract from task performance by shifting focus
to the personal relevance of the task!®. Objective cognitive load assessment is evaluated through multiple
variables, including physiological indicators: GSR and Heart Rate Variability (HRV) derived from recorded PPG
data, hand-motion acceleration, and performance measures like the number of task repetitions, task completion
times, and assembly precision.

Worker performance

In evaluating the effectiveness of work instructions in industrial environments, the performance of workers
emerges as a crucial metric. It provides tangible evidence of how well instructions support task execution.
This study focuses on several key performance metrics to assess the effectiveness of different instructional
methods. One of the primary indicators of effective work instructions is Task Completion Time (TCT). It
measures the amount of time required for workers to finish a given task. Successfully accomplishing the task
within the designated timeframe, or even earlier, could indicate that the instructions are clear and promote
efficient comprehension and implementation. Conversely, prolonged completion times could potentially signify
cognitive overload or confusion'”.
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Moreover, evaluating the Number of Task Repetitions (NTR) experienced by workers across sessions will
provide insight into their ability to efficiently execute and repeat the tasks based on the provided instructions. A
higher number of task repetitions can indicate more effective work instructions that facilitate quicker familiarity
and mastery of tasks'®!°. We have utilized a video-based assessment as a method to measure the precision of the
worker’s assembly process. Specifically, we define precision as the degree of positional accuracy in placing the
blocks, which is quantified by tracking the centers of the attached Aruco markers on each piece. The lower the
variance or standard deviation of these positions, the higher the precision. This metric is critical for gauging the
relationship between task execution quality and NTR under different instructional methods”?%2!.

Related work

The transition toward Industry 4.0 and 5.0 has brought us to the end of Tayloristic industrial production, a
system that breaks tasks into small, standardized steps to maximize efficiency. Modern industrial settings are
now distinguished by higher complexity and greater flexibility?2. Manual assembly is not exempt from these
transitions through reducing production depth and increasing reliance on suppliers, and small and more diverse
batches?>?. This shift leads to less predictability and routine for assembly workers. This uncertainty has increased
workers’ workloads and put more pressure on designers to design efficient assembly instructions.

One of the suggested scenarios that has received great attention in recent years is the digital management
system, which includes digitally designing and delivering work instructions to individuals. A few examples of
these digital techniques are extended reality (XR), augmented reality (AR)!"?*25, mixed reality (MR)?, digital
work instruction supported by multiple video streams?, visual contents of work instructions (pictures)? and an
approach based on gesture recognition for a self-learning digital assistant system?3. These techniques can help
workers complete their tasks with higher productivity and fewer errors by continuously updating information on
the current assembly product, including updates on parts, tools, and processes?’. However, implementing these
new technologies can increase cognitive demands®®. Furthermore, a significant limitation of many studies is their
reliance on subjective metrics, such as questionnaires, and basic performance metrics, like task completion time,
without incorporating physiological signals to monitor workers’ cognitive load and performance. While some
studies have explored objective indicators using physiological signals, they often lack thorough validation of
correlating these objective measures with subjective assessments of both cognitive load and worker performance.

Researchers have employed a wide range of physiological signals to assess cognitive load, including skin
conductivity (GSR)?*-32, photoplethysmography (PPG)**-3, electrocardiograms (ECG)®, electrooculograms
(EOG)¥, electromyograms (EMG)**%, speech signals?, electroencephalograms (EEG)3*4!-43, acceleration®*,
eye blinks, gaze, and movements*~*5, breathing rate3¢3846, skin temperature>*°, and blood volume pulse™.
Most of the studies that utilized these physiological markers to monitor workers’ cognitive load have ranged
from standard lab tasks like mathematical problems?®’, the Stroop test*?, IQ tasks®, and constructing with LEGO
bricks®” to more industrially relevant scenarios such as pushing/pulling wagons and sorting tasks’..

Within these contexts, GSR is frequently cited for its sensitivity to stress and arousal?’, whereas HRV has
demonstrated distinct responsiveness to both mental and physical demands. For instance, a study by Taelman
et al.*8 using the wavelet transform of HRV found that tasks involving both mental and physical effort showed
similar trends in the High Frequency (HF) parameter as purely physical tasks. However, these tasks had Low
Frequency (LF) values, similar to those seen in tasks that were only mentally demanding. In contrast, Garde et
al.* found that adding mental challenges to a physical task did not significantly impact HRV parameters. Cheng
et al. conducted a study on HRV in individuals engaged in cognitive activities under medium and high physical
conditions. The study revealed substantial changes in HRV compared to situations without physical load>®°!.
Given that our experiment encompasses a code-based condition expected to impose significant mental effort yet
involve fewer repetitive motions, alongside a visual-based condition anticipated to have lower mental demands
but increased physical activity, we integrate HRV and GSR as complementary measures to monitor workers’
cognitive load. Additionally, relatively few studies have systematically evaluated work instructions in assembly
tasks while concurrently measuring both subjective (questionnaires) and objective (GSR, HRV) markers of
cognitive load.

Following the model proposed by Eesee et al.”*, who recommended a strategy to manage cognitive load by
adjusting workers’ surroundings and the nature of the activity or providing supplementary aids, we designed our
experiment that keeps intrinsic task complexity constant-through assembling collections with the same number
of pieces each time- while manipulating extraneous load through code-based and visual-based instructions. By
doing so, we are applying their criterion to explore how task difficulty management influences the extraneous
cognitive load on workers.

This approach extends existing research on digital or simplified instruction methods?>? by explicitly
contrasting two instructional formats and validating the outcomes with physiological and self-report data. By
examining how workers respond differently in terms of mental effort, stress arousal, and operational efficiency,
our study clarifies the balance between offering intuitive guidance and avoiding information overload. This
integrated perspective addresses a critical gap in understanding how instructional design can optimize both
cognitive and performance outcomes in modern, high-mix industrial environments.

1.52

Methodology

Given the gap identified in the literature, we designed a controlled experiment in which participants assembled
“Make ‘N’ Break Extreme” blocks using two instructional methods: code-based and visual-based instructions.
This protocol was chosen specifically to isolate extraneous load while maintaining consistent intrinsic load
across tasks. The present study aims to investigate the impact of work instructions on operator cognitive load
and performance within a controlled, assembly-like scenario. The experiment was carried out in the Industry
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5.0 laboratory of the University of Pannonia®>. In the following subsections of the methodology, we detail the
participant recruitment, experimental procedure, data collection, and processing methods used to extract the
features from the physiological responses and performance outcomes under each instructional approach.

Participants

This study recruited 30 participants from the academic field, a mix of university students and researchers with
different demographic and ethnic backgrounds. Twelve of them were male and eighteen were female, with ages
ranging from 19 to 39 years (M = 24.733, SD = 5.252). Ethical approval for this study was obtained from
the Institutional Review Board of the University of Pannonia (Approval number: KEB_MK_FIT_2024_01). All
methods were performed in accordance with the relevant guidelines and regulations. All participants provided
written informed consent prior to participation. Since both the visual-based and the code-based instructions
rely on colors, participants were required to fill out a vision questionnaire to make sure none of them had color
blindness. Three of the participants were wearing contact lenses, and 17 of them had glasses. We also asked the
participant to fill out an Edinburgh-handedness questionnaire®*. Three of the participants were left-handed, and
none of the participants had limited hand or finger movements.

Instructional design

The study involved the use of two instructional approaches for two distinct sessions: Visual-based instructions
for the low cognitive load session and Code-based instructions for the high cognitive load session. In the visual-
based session, the participants see a series of step-by-step images depicting exactly how each pair of blocks should
connect. In other words, each image clearly shows which sides of the pieces should touch, allowing participants
to visually align the blocks until they match the illustrated pattern. The visual instructions presented in this
context are characterized by their clarity as they provide a straightforward and unambiguous representation of
the final goal. This approach aims to minimize the need for interpretive effort from the participants.

On the other hand, we utilized a color-based coding system for the assembly instructions to increase the
difficulty level in the code-based hard session. A code, usually consisting of the first two letters of its color,
references each piece. For example, ‘Re’ signifies the red piece and appears in red text, while ‘Gr’ signifies the green
piece and appears in green text. The instructional material provides participants with these codes, which they
must use to determine the position and contact points between pieces. The representation of spatial relationships
between pieces is denoted by ‘A’ for Above, ‘B’ for Below, L for Left of, and ‘R’ for Right of. We denote the degree
of contact between two adjacent pieces as “T1’ for a single contact region and progressively increase it to ‘T4’
for four contact regions. The codes require participants to translate abstract instructions into the concrete task
of assembling the blocks, reflecting a cognitive challenge often encountered in real-life situations where such
instructions can be difficult to interpret. Figure 1 shows the setup of the experiment in this study.

Experiment design and procedure
The experimental setup utilized a customized "Make ‘N’ Break Extreme Game” construction block set. This
set comprises ten distinct blocks, each with a unique color and shape, which are used as the main tools for the
work. We attached Aruco markers-square black and white barcode-like stickers-to each block. These stickers
enable computer vision algorithms through video-based monitoring to track and verify the precision of the
constructions made by the participants.

Each participant completed both visually based and code-based assembly tasks. To counterbalance task
difficulty, half of the participants started with the visually-based assembly task, and the other half of the
participants started with the code-based assembly task. We created four unique assembly patterns (labeled 1,
2, 3, and 4), each consisting of six distinct blocks. This is to make the tasks more varied and make sure that
participants can be properly tested across both instructional approaches. Each participant went through all of
them, two for visual-based and two for code-based instructions. To provide a counterbalance and control for the
order effect in learning and performance, we further allocated the participants in these two main groups into
two subgroups each. Table 1 shows the distributions of the participants for the sessions and the assembly of the
patterns.

Before each session, participants engaged in a brief training that corresponds to the specific instructional
format, visual, or code-based. The experiment commenced with a three-minute baseline physiological recording.
Subsequently, the participants proceeded to complete the pre-DSSQ!’ to evaluate their stress levels before
starting the experiment. Upon finishing the first session, participants completed the post-DSSQ and NASA_TLX
questionnaires to evaluate their subjective cognitive load and stress post-task. The process of filling out the post-
DSSQ and the NASA_TLX was then repeated at the end of the second session.

Physiological responses during task execution were monitored using the Shimmer3 sensor. Electrodes
were attached to the index and middle fingers of the non-dominant hand to record the GSR signal, with its
PPG electrode affixed to the earlobe or the thumb for HRV extraction. As physiological signals are sensitive to
motion®, participants were asked to use their dominant hands only during the assembly task. Furthermore, a
Metamotion sensor was employed to track the acceleration of the hand, utilizing its capability as a wearable,
wristwatch-like device strapped to the participant’s dominant wrist.

Each session was limited to a total duration of five minutes, during which participants were required to create
each specified pattern a minimum of three times for the purpose of learning curve analysis. The duration of the
sessions could be longer than five minutes, just in the cases where the participant has not met the minimum
number of task repetitions (NTR). Time-stamped data from each session was captured to track progress and
performance.
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Fig. 1. This figure illustrates the comprehensive setup used in our experiment: Participant (A): The
participant sits on a chair facing a table where the tasks take place. Building Blocks (B): Displayed on the table
are the building blocks used in the experiment, each tagged with an Aruco marker to identify them during

the tasks. Shimmer3 Sensor (C): This sensor is attached to the arm of the participant’s non-dominant hand

to monitor the physiological signals (GSR and PPG). GSR Electrodes (D): These electrodes are fixed to the
proximal phalanx of the index and middle fingers of the non-dominant hand to measure skin conductance.
PPG Electrode (E): Positioned on the thumb’s distal phalanx of the non-dominant hand, this electrode
monitors the PPG signal. Metamotion Sensor (F): an accelerometer worn on the dominant hand’s wrist; this
sensor tracks the participant’s physical motion while engaging in the tasks. Video Camera (G): This camera

is mounted on a stand to capture a top-view of the task area. It records the activities during the experiment.
Code-based Instructions (H): A sample of code-based instructions provided to participants for task guidance.
Visual-based Instructions (I): This is a sample of visual instructions used to direct participants in the
experiment.

Groups | Sub_Groups | Baseline | Questionnaires | 1st Session | Questionnaires | 2nd Session | Questionnaires

o Sub_G1.1 3 minutes | Pre-DSSQ (Clo)dze)-based E(;\]SL? IASE'IQLX zgis’gsl-based E(I)\]S;é) :E'IQLX
Sub_Gl.2 | 3 minutes | Pre-DSSQ P B P D BRI

. Sub_G2.1 |3 minutes | Pre-DSSQ Xif‘zlj‘l‘based E?XES%X gﬁd:)'based E‘I’\]SX?S%X
Sub_G2.2 3 minutes | Pre-DSSQ ?gis’lza)l—based E?\?;E I\Sf"lgLX gtidze)-based E(I)\ISItXSD ASE"?LX

Table 1. Participants distribution and session sequencing in the study of visual and code-Based assembly
tasks.

Data preprocessing

In this experiment, we set the sampling frequency of the Shimmer3 sensor to 250 Hz to capture the physiological
signals GSR and PPG. Low-frequency trend noise accompanies most of the recorded PPG signals, which
complicates direct HRV extraction. We started with mean correction by removing the DC level offset to make
sure that the signals are oscillating around the zero baseline. Following this step, we implemented the Savitzky-
Golay filter to remove the low-frequency trend noise. We then implemented the peak detection technique to
extract the distances between the peaks and obtain the HRV. Figure 2 shows a sample of a 60-second PPG signal
before and after removing the DC offset and low-frequency trend.
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Fig. 2. (1) A sample of Raw PPG signal for 60 seconds, (2) The same sample of the PPG signal after being
filtered and removing the DC offset and low-frequency trend with its detected peaks.

HRYV acronyms | Description
RMSSD The square root of the average of the squared differences between consecutive intervals:
\/Z (RRl+1—RR )2
, RR is the interval between the peaks®.
MEAN The mean of the RR intervals.
MEDIAN The median of the RR intervals.
SDRR Standard Deviation of the RR intervals.
SDSD Standard deviation of the differences between consecutive RR intervals.
SDRR_RMSSD | Ratio of SDRR to RMSSD.
HR Heart Rate (beats per minute).
PNN25 Percentage of consecutive RR intervals differing by more than 25 ms.
PNN50 Percentage of consecutive RR intervals differing by more than 50 ms.
SD1 Descriptor of short-term HRV from the Poincaré plot.
SD2 Descriptor of long-term HRV from the Poincaré plot.
KURT_RR Kurtosis calculated from all RR intervals.
SKEW_RR Skewness calculated from all RR intervals.
VRL Power spectrum of the Very low frequency band (0.003 Hz to 0.04 Hz) of the HRV.
LF Power spectrum of the low frequency band (0.04 Hz to 0.15 Hz) of the HRV.
HF Power spectrum of the high frequency band (0.15 Hz to 0.4 Hz) of the HRV.
TP Total power spectrum of the HRV.
LF_HF The ratio of the LF to HE.
HF_LF The ratio of HF to LE.

Table 2. The list of the extracted HRV features and their description.

To increase the data size, we applied a 60-second segmentation window to the filtered signals. We extracted
HRYV signals for each 60-second window by calculating the variation between consecutive detected peaks on
the time axis. We extracted 19 features from the HRV signals for each window. The summarized HRV features
extracted in this study are presented in Table 2.
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Fig. 3. (1) A sample of the recorded GSR for 120 seconds; (2) The extracted SCR through continuous
decomposition analysis (CDA) with extracted peaks and bottoms that are utilized for feature extraction; and
(3) The extracted SCL through the same CDA analysis.

GSR acronyms | Description

AreaSCR Total area under the SCR curve
AreaGSR Total area under the SC curve
No_Peakes Number of the detected peaks in the SCR

AvgRiseTime | Average of the rising time of the peaks

AvgDecayTime | Average of the decaying time of the peaks

Entropy Measured entropy of the SC signal
STDGSRdata Standard deviation of the SC
STDSCRdata Standard deviation of the SCR

BandPower Summation of the power spectrum of the SCR

Table 3. The list of the extracted GSR features and their description.

The GSR signal (also known as the skin conductance SC) is formed by superimposing the phasic SC, also
called the skin conductance response (SCR), on the tonic SC (also called the skin conductance level SCL), which
is slowly changing®. This concept dictates that SC' = SCltonic + SCphasic. Monitoring SCR is a simple way
to detect sympathetic activity in response to an event®. Based on these facts, using the SC as a monitor for
the change in sympathetic activity requires a technique to separate the signal into its phasic and tonic levels.
We have utilized the Matlab-based Ledalab software V3.4.9, which uses a standard deconvolution algorithm to
separate the SC into its two components®. Before starting the separation process, we applied a built-in adaptive
smoothing filter to the signals to remove their noise. We initiated the separation process by applying continuous
decomposition analysis (CDA).

We also employed a 60-second segmentation on the extracted signals, ensuring consistency in sample size
with previous HRV measurements. From the GSR and its two components, SCR and tonic SC, we extracted 9
features. Personal differences in skin conductivities influenced the amplitudes of both SC components (SCR and
tonic SC). As our study focuses on the effects of work instructions, we manually checked the processing steps
during feature extraction. This approach enhanced the robustness of our methods, helping us avoid irrelevant
details and preserve critical and subtle features. Figure 3 shows a sample of 2 minutes of GSR recording with its
two components (SCR and SCL). Table 3 shows the list of the extracted GSR features.

For acceleration data recorded from the sensor on the dominant hand’s wrist, we captured three data axes: X,
Y, and Z. Consistent with previous physiological data, we applied 60-second segmentation on the acceleration
signals. We calculated the resultant of these three axes and extracted six features from each axis, resulting in 24
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features. These features included mean, median, standard deviation, minimum, and maximum. All the signal
processing steps, including filtration, feature extraction, and segmentation for GSR, HRV, and acceleration data,
were conducted using MATLAB 2024b%.

Finally, the precision of each constructed pattern was evaluated through a customized algorithm. This
algorithm processes video-captured images and analyzes the placement and orientation of each piece via Aruco
markers. It calculates the Euclidean distance between the centers of the markers in the constructed pattern
and compares it against a reference, whereby variances are determined as a measure of standard deviation. A
higher value of the standard deviation indicates lower assembling precision, while a lower value suggests higher
precision. This analysis was implemented using Python within the Spyder 5 environment®

Results

Subjective data analyses

In this subsection, we analyze the subjective data collected from participants during the three sessions of
the experiment. We utilized two questionnaires, the NASA_TLX and the short version of the DSSQ. These
questionnaires capture the perceptions of the participants after each session of the experiment.

NASA_TLX questionnaire

The NASA_TLX expresses six categories as percentages: mental demand, physical demand, temporal demand,
performance, effort, and frustration. Figure 4a is a radar chart to visually compare these categories between
the code-based and visual-based work instructions sessions. It shows that the code-based instructions induced
higher levels of mental demand, frustration, and effort compared to the visual-based instructions. The statistical
paired t-test confirmed significant differences between them, with p — values < 0.001 and effect sizes of
—1.522 for mental demand, —0.788 for frustration, and —0.913 for effort. These findings indicate that code-based
instructions were more mentally demanding and frustrating, requiring more effort to decipher than visual-based
instructions. Additionally, the results showed slightly higher levels of both physical and temporal demand for
the code-based instructions compared to the visual-based instructions. However, these differences were not
statistically significant. The p — value for physical demand was 0.775 with an effect size of —0.082, and for
temporal demand, the p — value was 0.339 with an effect size of —0.177. This suggests that participants did
not feel rushed by time constraints, but they were more challenged by aspects related to their limited working
memory.

Finally, the nature of the NASA_TLX scale interprets the “performance” dimension in the opposite direction
of the other five categories, yet assigns its weight in the same direction as the others. This means that a higher
perceived performance results in a lower NASA_TLX score, contributing to a lower overall cognitive load.
For visual clarity in our radar chart, we assigned the performance weight in the reverse direction to the other
categories to reflect each participant’s self-perceived performance. According to the radar chart and the paired
t-test, participants reported higher perceived performance with the visual-based instruction compared to the
code-based instruction, with a significant difference (p — value < 0.001 and Effect Size = —0.852).

The cognitive loads (CLs) for the visual-based (Visual) and code-based (Code) sessions were compared
in Fig. 4b. These CLs were calculated from the NASA_TLX categories. The figure presented a combination of
individual data points (personal CLs) with paired lines and box plots. The lines connecting the dots across the
two sessions indicate the shift in CL for each participant from ”Visual” to Code’, highlighting a general increase
in CLs in the code-based session.
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Fig. 4. Comparative analysis of subjective Cognitive Load and NASA_TLX dimensions across visual-based
and code-based sessions.
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Measure 1 Measure 2 Shapiro-Wilk t-test
Visual Cod i p-value Test z Effect size | p-value
Cognitive load Cognitive load 0.208 Student N/A -1.182 <0.001
Mental demand Mental demand 0.150 Student N/A —-1.522 <0.001
Physical demand | Physical demand | <0.001 Wilcoxon signed-rank | —0.305 | —-0.082 0.775
Temporal demand | Temporal demand | 0.575 Student N/A -0.177 0.339
Performance Performance 0.114 Student N/A —-0.852 <0.001
Effort Effort 0.942 Student N/A —-0.913 <0.001
Frustration Frustration 0.125 Student N/A 0.788 <0.001

Table 4. Statistical comparison of NASA_TLX Cognitive Load and its dimensions between visual-based and
code-based instruction sessions.
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Fig. 5. Engagement, distress, and worry psychological states derived from the short DSSQ across three
different conditions.

The box plot shows the distribution of CLs in both sessions, with a higher median and wider interquartile
range in the code-based session. This suggests more variability and a higher overall CL. The mean values of the
two sessions align with these box plots, where the visual-based session gave a Mean of 39.84 with an SD of 13.74
compared to the code-based session, which gave a Mean of 57.24 with an SD of 14.71. An analysis using a paired
t-test supported these observations. It showed that CL increased significantly from the visual-based session to
the code-based session (P < 0.001), with an effect size of —1.182. This indicates that code-based instructions,
compared to visual-based ones, place a significantly higher cognitive demand on participants. The statistical
results for the comparisons of cognitive load and each NASA_TLX dimension between the visual-based and
code-based sessions are summarized in Table 4.

Short DSSQ questionnaire

The second questionnaire we utilized in this experiment was the short version of DSSQ. Participants in this
study completed the DSSQ three times under the following conditions: pre-experiment, post-visual-based
session, and post-code-based session. The scores for each of the three psychological states were in the range of
(0 — 32). Figure 5a displays the engagement scores of each individual, connecting them across the sessions to
illustrate changes in engagement for each participant. Boxplots summarize the distribution of scores within each
condition, providing a clear visual comparison.

The descriptive statistics for the engagement scores revealed variations across the three sessions. Prior to the
experiment (Pre), the Mean engagement score was 25.06, with an SD of 5.33. Following the visual-based session
(P_Visual), the Mean engagement score increased to 27.43, accompanied by a SD of 5.21. Following the code-
based session (P_Code), the Mean engagement score decreased slightly to 26.83, with a SD of 4.75.

To check if study sessions had a significant effect on task engagement, we decided to implement the Repeated
Measures RM ANOVA. To check the assumption of sphericity, we applied Mauchly’s test, which revealed a
violation of assumptions with a p — value of 0.043. Therefore, we applied the Huynh-Feldt correction to account
for this violation. The corrected repeated measures ANOVA identified significant differences in engagement
scores across the conditions, with a significant p — value of 0.012.

Following the main RM ANOVA test, we also applied the Post-Hoc analysis. We observed a significant
increase in engagement from the pre-experiment to the post-visual-based session, as evidenced by a significant
p — value of 0.041 and an effect size of —0.464. Although the increase in engagement from the pre-experiment
to the post-code-based session had a p-value of 0.059 with effect size of —0.346, it did not meet the conventional
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significance threshold of 0.05. Finally, a p-value of 0.323 and an effect size of 0.118 indicated no significant
differences between the post-visual-based and post-code-based sessions. This suggests that both types of
instructions managed to sustain similar levels of engagement (see Fig. 5a). These results indicate that while both
instructional methods effectively boosted engagement compared to the baseline, the visual-based instructions
proved particularly effective, as reflected in higher mean engagement scores.

We further looked into the distress scores of participants across three different sessions. There was a notable
variation in these scores. Initially, before the experiment (Pre), the Mean distress score was 9.00, with an SD of
5.52. After the visual-based session (P_Visual), the distress scores decreased to a Mean of 6.56 with an SD of
4.76. However, following the code-based session (P_Code), the Mean distress score increased to 11.83, with an
SD of 6.02 (see Fig. 5b).

To figure out if these changes in distress scores were statistically significant, we applied the RM ANOVA test,
followed by the Post-Hoc tests. As before, for robust analysis, we applied Mauchly’s test to check for sphericity.
The test results showed no violations (p — value = 0.792), which meant that we could use a standard repeated
measures ANOVA without any adjustments. The ANOVA results indicated that there were indeed significant
differences in distress scores across the conditions, with a highly significant p — value of less than 0.001.

In the Post-Hoc tests of the ANOVA results, we took a closer look at the changes in distress scores between the
sessions. We found a significant decrease in distress from the pre-experiment to the post-visual-based session,
with a p — value of 0.030 and an effect size of 0.446. Furthermore, the transition from the pre-experiment to the
post-code-based session revealed a similar significant increase in distress, with a p — value of 0.030 and an effect
size of —0.519. Most notably, the transition from the post-visual-based session to the post-code-based session
marked a substantial increase in distress levels, with a p — value < 0.001 and a high effect size of —0.964.

Distress, which is linked to negative emotional states, was initially high, as demonstrated by the pre-
experiment mean scores, indicating significant initial stress among participants. However, after using visual
instructions, there was a noticeable drop in distress levels, indicating a sense of relief. In contrast, the distress
levels increased sharply after the code-based sessions, suggesting that these instructions significantly heightened
negative emotional states which is related to the overload of processing capacity. This pattern demonstrates
the substantial impact that different instructional designs can have on participants’ psychological stress. The
marked differences between the visual and code-based sessions highlight the need to carefully consider the type
of instructional material used and its potential psychological effects on learners. (Refer to Fig. 5b for a visual
representation of these results.)

Next, we looked into the final psychological state, Worry. The worry scores changed notably across sessions.
At the pre-experiment (Pre), the Mean worry score was quite high, at 15.86, with an SD = 5.85. After the
visual-based session (P_Visual), this score significantly dropped to 8.60 (SD = 4.86), showing a large reduction
in worry. However, after the code-based session (P_Code), the Mean worry score increased slightly to 9.23,
with an SD = 6.88 (see Fig. 5¢). To validate these observations, we first looked at the assumption of sphericity
using Mauchly’s test. It showed a violation (p — value = 0.037). Consequently, we applied the Huynh-Feldt
correction before proceeding with a RM ANOVA. This analysis confirmed that there were significant differences
in worry scores across the sessions, with a highly significant p — value < 0.001.

In the Post-Hoc tests of the ANOVA, worry greatly decreased from the pre-experiment to the post-visual-
based session, with a p — value < 0.001 and a large effect size of 1.226. Similarly, worry significantly decreased
from the pre-experiment to the post-code-based session, with a p — value < 0.001 and an effect size of 1.120.
However, the worry scores did not significantly change from the post-visual-based to the post-code-based
session (p — value = 0.397, effect size = —0.107). This suggests that the code-based session did not negatively
affect the initial reduction in worry. These statistics for the DSSQ’s three variables-engagement, distress, and
worry-along with the Post-Hoc analysis, are presented in Table 5.

These findings show that the way instructions are designed can greatly affect worry, which is linked to
negative self-assessments. The large decrease in worry scores after the visual-based session suggests that this
method can effectively reduce worry, helping participants focus better and feel more comfortable. On the other
hand, the slight increase in worry after the code-based session, although not significant compared to the visual
session, shows that certain instructional methods might make anxiety worse under specific conditions. The

Sphericity test | Sphericity | RM ANOVA | ANOVA Post-Hoc

DSSQ states | Mauchly p-value | Correction | p-value Cases p-value | Effect size
Pre vs. P_Visual 0.041 | —0.464

Engagement | 0.043 Huynh-Feldt | 0.012 Pre vs. P_Code 0.059 | —0.346
P_Visual vs. P_Code | 0.323 0.118
Pre vs. P_Visual 0.030 0.446

Distress 0.792 None <0.001 Pre vs. P_Code 0.030 | -0.519

P_Visual vs. P_Code | <0.001 | -0.964
Pre vs. P_Visual <0.001 1.226
Worry 0.037 Huynh-Feldt | <0.001 Pre vs. P_Code <0.001 1.120
P_Visual vs. P_Code | 0.397 | —0.107

Table 5. Statistical analyses of DSSQ variables (Engagement, Distress, and Worry) with Post-Hoc
comparisons. Pre: Pre-experiment, P_Visual: Post Visual-based session, and P_Code: Post Code-based session.
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visual representation of these results is shown in Fig. 5c. All statistical analyses, including t-tests, RM ANOVA,
and Post-Hoc comparisons, were conducted using JASP statistical software (version 0.19.2)°!.

Objective data analyses

In this subsection, we present the results of the analyses based on the captured objective data. Starting with the
recorded physiological data, we extracted 19 HRV features, and nine GSR features listed before respectively in
Tables 2 and 3. Feeding all of these physiological features for classification purposes or even statistical analyses
can lead to poor accuracy and precision because some of these features could be highly correlated while others
may not show a high contribution to predicting the target. Based on this criterion, it is inevitable to implement
the feature selection technique prior to classification processes. Wrapper methods are the most effective for
feature selection, according to Rezaei and Jabbari®?. We implemented a feature selection technique that belongs
to the wrapper methods: backward elimination. This technique is based on employing the entire set of features
in the first step and gradually iterating and removing the features. Each iteration removes the feature that
contributes the least to the target. This process continues as long as the model improves with feature removal.

Due to the nature of our experiment design, the data from the three sessions is not equally sized. Repeated
analyses with varying sizes contravene standard statistical analyses such as the ANOVA and paired t-test.
However, we can use logistic regression analysis for this purpose. The rationale for utilizing logistic regression
lies in its ability to provide classification properties, in addition to displaying the contribution of each feature
to the target along with its p-value. We have utilized SPSS statistical software for this purpose. We fed the 29
extracted features into the model, using the backward elimination method to iterate over them and select the
most significant ones. Following the designed sessions of this experiment (refer to Table 1), we will compare the
whole three sessions and each session with the other two sessions separately, similar to the Post-Hoc tests in the
subjective analyses.

We aim to provide a comprehensive overview of the impact of the type of work instruction on physiological
features. We used a multinomial logistic regression model, setting the baseline session as the reference category
for the visual and code-based sessions. This means that the features of both sessions of work instructions will be
compared to the baseline session. The fitness of the model was assessed using the Chi-Square test, which revealed
a significant improvement over the null model with Chi-Square = 270.503, d = 30, and a p — value < 0.001.

The backward elimination method removed 14 features and selected the top 15 contributing features,
resulting in the optimal model classification parameters. Table 6 presents a list of the selected features, as well
as their coeflicient magnitudes and p-values. We also implemented three binary logistic regression models to
compare each session with the others and see which features had contributed significantly to the target. We once
again assessed the models’ fitness using the Chi-Square test. The results revealed a significant improvement in
the models compared to the null models without predictors. The visual-based vs. baseline model has shown Chi-
Square = 140.358, d = 12, and a p — value < 0.001, the code-based vs. baseline model has shown Chi-Square
=176.691,d = 13,and ap — value < 0.001, and the code-based vs. visual-based model has shown Chi-Square
= 91401, d = 14, and a p — value < 0.001. Table 7 presents the results of the selected features with their
coefficient magnitudes and significance evaluation parameter, p-values. Negative coeflicients suggest that as the
predictor (a specific feature) increases, the likelihood of the outcome being in the respective condition (target)
decreases compared to the reference category.

By comparing the three conditions in our study, we calculated and presented the average of the models’
performance parameters-accuracy, precision, and recall-in Table 8. We used the following abbreviations for
each condition, B: Baseline (Pre-experiment) session, V: Visual-based instruction session, and C: Code-based
instruction session. The high-performance classification metrics (B-C, B-V) showed that the models found a

Condition | Features B p-value | Condition | B p-value
AreaGSR 0.007 | <0.001 0.007 | <0.001
NoPeakes 0.295 | <0.001 0.133 0.049
avgRiseTime 0.238 0.11 0.338 0.017
avgDecayTime | —0.0001 0.957 -0.228 0.006
STDGSRdata -17.15 <0.001 -13.008 | <0.001
STDSCRdata 29.078 | <0.001 27.274 | <0.001
spectralEnergy | —0.215 | <0.001 -0.389 | <0.001
Visual-based | MEAN_RR -0.018 0.006 | Code-based | —0.028 | <0.001
SDRR -0.147 | <0.001 -0.015 0.634
SDSD 0.139 | <0.001 0.049 0.114
SDRR_RMSSD 2.708 0.028 0.068 0.953
HR -0.218 0.01 —-0.344 | <0.001
PNN25 -0.019 0.301 -0.059 | <0.001
LF_HF -0.004 0.034 -0.006 0.001
HF_LF 0.544 0.784 1.809 0.362

Table 6. Estimated parameters for selected features using multinomial logistic regression with baseline session
as reference. The reference category is: Baseline session. B: Coefficient Magnitudes
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Condition 1 | Features B p-value | Condition 2 | Features B p-value | Condition 3 | Features B p-value
AreaGSR 0.006 | 0.003 AreaSCR 0.465 | <0.001 NoPeakes -0.158 | <0.001

NoPeakes 0.164 0.005 NoPeakes 0.165 0.010 avgDecayTime | —0.200 0.032

STDGSRdata | —-13.921 0.001 STDGSRdata -9.952 0.006 STDGSRdata 8.201 0.001

STDSCRdata 22,950 | <0.001 spectralEnergy | —3.746 | 0.005 STDSCRdata | —8.528 | 0.016
spectralEnergy | -0.177 | 0.006 bandPower 7.032 | 0.018 spectralEnergy | —1.177 | 0.016

RMSSD 0.091 | <0.001 MEAN_RR -0.031 | <0.001 bandPower 2.152 0.036

Visual-based | MEDIAN_RR | -0.011 | 0.027 | Code-based | spsD 0.092 | <0.001 | Code-based | MEAN_RR | -0.078 | 0.008
lvgsasehne SDRR ~0.054 | 0.003 lvgsasehne HR -0.753 | 0.003 X/Sisual_based SDSD ~0.056 | <0.001
HR -0.129 0.025 pNN25 -0.047 0.034 SDRR_RMSSD | —2.664 | < 0.001

PNN25 —-0.048 0.023 PNNS50 -0.095 0.020 HR —-0.546 0.005

KURT_RR -0.072 0.087 KURT_RR -0.093 0.007 pNN50 -0.051 0.003

LF_HF -0.003 0.117 VLF 0.000 0.048 SD2 0.076 | <0.001

LF_HF -0.005 0.029 LF 0.000 0.015

HF_LF 1.543 0.002

Table 7. Estimated parameters for selected features using three binary logistic regression models. Baseline
is the reference category for Conditions 1, and 2, while Visual-based is the reference in the Condition 3. B:
Coefficient Magnitudes

Classifier Conditions | Accuracy | Precision | Recall
Multinomial 5y ¢ 78.04 67.79 63.12
Logistic Regression

B-V 83.88 82.99 82.2
Binary _|Bc 90.42 |89.97 |85
Logistic Regression

V-C 75.51 74.92 71.95

Table 8. Average of performance metrics of logistic regression models under various conditions based on the
physiological features (GSR and HRV). B: Baseline (Pre-experiment), V: Visual-based session, and C: Code-
based session

Shapiro-Wilk Effect | t-test
Measure 1 Measure 2 p-value Test z size p-value
V_NTR C_NTR 0.027 Wilcoxon signed-rank | 4.286 1.00 | <0.001
V_TCT C_TCT 0.018 Wilcoxon signed-rank | —4.573 | —0.972 | < 0.001
V_SD_Precision | C_SD_Precision | 0.3 Student N/A 0.709 | <0.001

Table 9. Comparison of participant performance metrics between Visual- and Code-based sessions using
paired t-tests. V_NTR and C_NTR are the Number of Task Repetitions in the visual- and code-based sessions
respectively, V_TCT and C_TCT are the Task Completion Time (in minute) of the visual- and code-based
sessions respectively, and V_SD_Precision and C_SD_Precision are the SDs that reflect the precision of the
assembly process for the visual- and code-based sessions respectively

clear boundary between the baseline condition (Pre-experiment) and both the visual-based and code-based
conditions. This pattern aligns with the trends observed in the ANOVA and Post-Hoc tests of the DSSQ
psychological states: engagement, distress, and worry. Although all selected features of condition 3 (Code based
vs. Visual based) in Table 7 demonstrated significant differences, model V-C in Table 8 exhibited the lowest
performance metrics when compared to the other binary classifier models. This is somewhat consistent with the
previous statistical tests that compare these two conditions within the subjective DSSQ states.

To analyze participants’ performance, we analyzed three key metrics: the Number of Task Repetitions
(NTR), Task Completion Time (TCT) (a minimum of five minutes), and the precision of the assembly process.
We represented this precision by the average of the standard deviation (SD) of Euclidean distances between
the centers of the building pieces, derived from video-captured images; the lower the SD value, the better the
assembly process. We calibrated the camera setup and averaged the trials within each instruction session to
minimize potential algorithmic inaccuracies. We conducted Shapiro-Wilk tests to assess the normality of the
data, followed by paired t-tests to evaluate differences between sessions.

Table 9 shows the main parameters extracted from these tests. We observed significant differences in the
three parameters between the two sessions, with p-values < 0.001. In Fig. 6, we present the descriptive plots
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Fig. 6. Comparative analysis of task performance across visual and code-based instruction sessions.

Visual-based | Code-based | Test VA p-value
meanX meanX Wilcoxon signed-rank | 2.411 | 0.016
meanY meanY Student N/A | 0.002
meanZ meanZ Wilcoxon signed-rank | 2.038 | 0.042

Table 10. Results of t-test analyses comparing the mean accelerometer values across the three coordinates (X,
Y, Z) during two work instruction sessions: visual-based and code-based. meanX, meanY, and meanZ are the
mean values of the accelerometer data at the three coordinates X, Y, and Z respectively

of these three parameters as means with their confidence intervals 95%. Figure 6a presents the means of the
NTR during the two sessions of the work instructions. In the code-based session, most of the participants
found themselves stuck at the minimum number of iterations (M ean = 6.379), whereas they showed a greater
capability to repeat the task in the visual-based session (Mean = 9.828).

Despite the higher number of repetitions in the visual-based session, the majority of participants did not
exceed the allocated time for this session and showed a mean of 5.342 minutes compared to 8.363 minutes
in the code-based session (refer to Fig. 6b). These results are aligned with the subjective results from NASA_
TLX, where participants showed a significant increase in the cognitive load from visual-based instructions to
code-based instructions. Figure 6¢, however, showed intriguing results with lower SD values for code-based
instructions (which means better precision) compared to visual-based instructions. This does not align with the
subjective results of the NASA_TLX performance category, where participants evaluated themselves as having
better visual instructions performance.

The higher number of task repetitions NTR and lower task completion time TCT in the visual-based session
indicate that participants made more hand movements in this session compared to the code-based session.
Table 10 shows the t-test analyses of the hand movements in the three coordinates (X, Y, Z) during two work
instructions. The p-values from these analyses (< 0.05) indicate significant differences in hand movement
across the three coordinates during the visual-based session compared to the code-based session, highlighting
variations in NTR and TCT between the two sessions.

The accelerometer data in the three coordinates provided 24 features as already explained in the Data
Preprocessing subsection. Combining these features with 29 features that were previously extracted from the
physiological signals (GSR and PPG) will establish a clear boundary between the two instruction sessions.
Feeding these 53 features into the binary logistic regression model with the backward elimination method has
produced promising results. We again assessed the fitness of the model using the Chi-square test, revealing a
significant improvement over the null model with Chi-square = 368.234, d = 27, and a p — value < 0.001.
The model showed excellent performance metrics with average accuracy = 92.91, precision = 92.67, and
recall = 92.35. These values outperform the model performance in Table 8 V-C condition. All statistical
analyses related to the logistic regression modeling were conducted using IBM SPSS Statistics software (version
29)%.

Discussion

This study investigated the impact of work instruction methods on the human cognitive load and their
operational efficiency. In a controlled, assembly-like scenario inspired by industrial tasks, the study used two
work instructions-visual-based and code-based-and a range of subjective and objective assessment methods. The
study also examined the alignment between subjective and objective evaluation methods, in order to enhance
the accuracy of conclusions by providing context for physiological responses and validating our experimental
conditions. The findings revealed that code-based instructions imposed a higher subjective cognitive load on
participants compared to visual-based instructions. This aligns with Cognitive Load Theory (CLT), which
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posits that extraneous cognitive load-stemming from the way information is presented-can hinder learning and
performance!®.

The results are also consistent with previous studies indicating that visual aids can enhance comprehension
and reduce cognitive load in assembly tasks. For instance, Li et al. (2018) found that supporting the work
instructions with pictures can reduce the cognitive load and improve task performance compared to the
traditional text instructional methods®. Similarly, our study suggests that visual-based instructions lead to faster
task completion and higher task repetition rates. This is likely due to the reduced mental effort required to
interpret the instructions, as visual-based instructions are less abstract and easier to interpret than code-based
instructions. Furthermore, Vanneste et al. (2024) demonstrated that augmented reality (AR) visual instructions
led to lower assembly times and a lower perceived physical effort compared to traditional methods'!. This
supports the idea that technologically advanced visual aids can further enhance the effectiveness of work
instructions, which aligns with our findings on the superiority of visual-based instructions in most cases.

Taking each of the six categories in the NASA_TLX and comparing them between the two instructional
sessions has produced profound results. The t-test analyses of each pair of the six categories within the NASA_
TLX have shown a significant increase in mental demand, frustration, and effort in the code-based session.
While there was a slight increase in physical demand in the code-based session, there was no significant increase.
Conversely, the t-test analyses of hand movements in the X, Y, and Z coordinates, as well as the NTR, indicated
higher means and significant differences in the visual-based session compared to the code-based session. As the
hand movements were not exertive, participants focused on their goal of repeating the task during the visual-
based session, where a higher repetition rate was intended to lead to better outcomes. Consequently, they did
not perceive the task as physically demanding when filling out the Physical Demand category of NASA_TLX.

However, body movement significantly impacts physiological signals due to the alterations in autonomic
sympathetic arousal resulting from increased energy expenditure®®. Subjectively, the code-based instructions
were more cognitively demanding. We also expected these instructions to influence the objective physiological
data. On the other hand, although visual-based instructions posed subjectively lower cognitive demands, their
straightforward nature objectively led to a higher number of hand movements. We expect the higher hand
movements to impact the objective physiological data. These were clearly reflected in the performance metrics
of the logistic regression models in Table 8. Classifying the code-based instruction session from the baseline
session yielded the highest performance metrics, with the visual-based instruction session from the baseline
session following closely behind. Both cognitively demanding tasks and tasks involving body movements
significantly influence the physiological signals, justifying this. Simultaneously, when we attempted to classify
the code visual-based sessions, the logistic regression models displayed relatively low-performance metrics
because both tasks were objectively influencing the physiological signals.

The low-performance metrics for classifying the two sessions based on physiological data do not necessarily
indicate a lack of alignment between the subjective and objective data metrics. However, they do imply that
differentiating operators’ conditions using the objective physiological data may not be entirely reliable, especially
in scenarios combining cognitive and physical tasks. On the other hand, supporting the features extracted from
the physiological signals (GSR and HRV) with the features extracted from the accelerometer has provided a
clear boundary between the two instruction sessions. This is due to the higher levels of hand movements in the
visual-based session. This supports the use of these kinds of signals in conjunction with other objective data to
support operator condition analyses.

This study also used performance as a metric. We informed the participants about the criteria for evaluating
their performance prior to the experiment. We analyzed this metric in two ways: subjectively using the NASA_
TLX, and objectively using the parameters in Table 9: the number of task repetitions (NTR) within the given
time, the task completion time (TCT), and the precision of the assembly process, as indicated by the standard
deviation SD of the Euclidean distances between the assembled pieces. Participants subjectively rated their
performance significantly higher in the visual-based instruction session. Participants seem to prioritize the
possibility of repeating the task beyond its lower limit, disregarding the precision of their work. This higher
repetition number gave them a sense of achieving their task with high performance in the visual-based session
compared to the code-based session. The objective performance metrics aligned the subjective rate with respect
to the NTR and TCT, as shown in Table 9 and Fig. 6a and b. In most cases, participants repeated the task
significantly more during the visual-based session without exceeding the allocated time.

However, while the industry aims to increase production batches with short production times, it does not
overlook the importance of product quality. In this study, the SD of the assembly process represented this metric.
Due to their increased focus on the NTR, participants did not pay as much attention to their assembly precision.
This resulted in a higher SD for the visual-based session, indicating lower precision compared to the code-based
instruction session, where participants thoughtfully assembled each assembly piece without rushing through the
process (See Fig. 6¢). This suggests that while visual instructions may enhance speed and reduce perceived effort,
they may inadvertently encourage less attention to detail. This objective metric is primarily not aligned with
the subjective performance in the NASA_TLX. This contrast highlights the strengths and limitations of each
measurement approach: subjective tools, such as NASA_TLX, can capture perceived workload or satisfaction, but
they might miss more complex aspects of actual task performance. Objective measures like assembly precision
provide quantifiable outcomes but do not fully account for internal states such as confidence or perceived effort.

The mismatch between objective metric and the subjective metric of performance might be understood
within the framework of the Dynamic Model of Sustained Attention and Stress®®. According to this model,
individuals adjust their attention and effort allocation dynamically based on perceived task demands, available
cognitive resources, and stress level. Thus, when task demands decrease, attention can become less focused,
leading to a drop in task performance. Therefor, while the visual-based instruction optimize speed and effort, it
may not sufficiently maintaine the level of attention needed for precision. These findings highlight the impratnce
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of achieving the optimal cognitive load during tasks. Although visual instruction can reduce cognitive load and
increase assembly speed, it may not result in optimal cognitive performance in terms of precision. This indicates
that while visual instruction may lower cognitive load and enhance efficiency, it might compomise attention and
precision. Thus, in high-stakes or precision-demanding tasks, a certain level of cognitive load might be necessary
to ensure attention and accurate performance. Therefore, instruction design should consider not just reducing
cognitive load but also achieve optimal cognitive load that supports both efficiency and precision, optimizing
overall task performance.

Future research can explore hybrid or modified methods to mitigate this trade-off. For instance, adaptive
or context-sensitive instructions could primarily use visual aids for most assembly steps, yet incorporate code-
based details during critical high-precision tasks. Alternatively, layered instructions-where a simple visual
overview is supplemented by optional, more detailed code-based guidance-could preserve the clarity of visual
methods while ensuring precision where it is needed. Such approaches might achieve a more optimal balance
between efficiency and precision without overstressing the operator’s cognitive resources.

Limitations and future research

This study faced several limitations that suggest directions for future research. One key limitation of this study
is that the experiment was conducted in a controlled laboratory environment, which does not fully mirror
the complexity of real-world industrial settings. In actual production lines, factors like noise, teamwork,
multitasking, and real-time pressures can substantially influence the operators’ cognitive load and performance.
Consequently, the results presented here should be interpreted as foundational insights rather than direct
predictions of on-site outcomes. Nonetheless, our findings highlight the importance of minimizing extraneous
cognitive load in designing effective work instructions. Future research may further validate these insights by
integrating realistic workplace parameters-such as time constraints, loud machinery, and group-based tasks-into
experimental protocols.

Another limitation of this study is the sample representativeness, where the participant pool was restricted
to university students and researchers. While this homogeneous sample allowed for consistent baseline
characteristics, it may not adequately represent the demographic and experiential diversity of industrial workers.
Therefore, caution is warranted in generalizing our findings to actual industrial environments. In future work,
we plan to broaden our sample to include operators from various industrial settings. This expanded approach
will help validate our current results and further refine guidelines for optimal instructional design.

Additionally, physiological sensor placement on the non-dominant hand limited task execution to one-
handed, which was another limiting factor in this study. This constraint potentially affected both the pace and
strategies used, reducing the ecological validity of our findings. In future studies, we plan to adopt less intrusive
sensor placements (e.g., wearable wristbands, arm and chest straps, or forehead sensors) to enable two-handed
operation and better replicate industrial conditions.

Moreover, the study utilized a limited set of physiological signals (GSR and PPG). Incorporating a
broader array of biosignals, such as eye tracking, body motion or posture tracking, electromyography (EMG),
electroencephalography (EEG), and electrooculography (EOG), can provide deeper insights into the cognitive
and physical states of workers, offer more robust support for the study’s hypotheses, or even provide a different
point of view. Furthermore, while the sample size of 30 participants was substantial, future studies can expand it
to enhance the statistical power and generalizability of the findings.

Finally, the five-minute time limit for the instruction sessions, which could only be extended if the specific
pattern was not repeated three times, restricted most participants to completing the code-based session only
three times. This prevented us from examining the full learning curve. It is possible that with more practice,
participants could become more efficient with code-based instructions, potentially improving task performance
over time.

Conclusion

In this study, we found that visual-based instructions significantly reduce cognitive load and improve some
operational aspects, such as shorter TCT and higher NTR compared to code-based instructions. However, our
findings show a clear divergence between participants’ subjective ratings of performance through the NASA_TLX
and the objective performance metric, assembly precision. While subjective measures are valuable for gauging
perceived workload and emotional states, they can be influenced by factors like self-efficacy and momentary
satisfaction. Conversely, the objective precision metric provides a direct measure of actual task outcomes but
may overlook internal experiences of strain. As a result, high subjective performance scores did not always
correspond to high objective precision.

Our study suggests that simple and direct instructions (visually based in this study) can enhance some of
the operational aspects and reduce cognitive load, demonstrating that these kinds of instructional strategies are
particularly beneficial in environments where quick task execution is critical. On the other hand, for tasks that
require high precision and meticulous attention to detail, instructions that require deep thinking (code-based in
this study) may be more appropriate. This discrepancy underscores the importance of a multi-method approach.
Future research should explore more granular correlations between subjective and objective measures-perhaps
by collecting in-task self-reports or by utilizing continuous physiological monitoring that can be compared
against real-time performance logs. These insights can aid in developing customized training and operational
protocols that improve productivity and enhance worker satisfaction.

Data availability
Data available upon request to Tamas Ruppert.
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