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Abstract. The industry remains highly dependent on human labor and
due to high turnover rates, supportive systems are necessary to maintain
efficiency and quality. The basis of every process is the work instruction,
but in many cases these instructions are overly complicated and contain
excessive information, which can overwhelm operators. This research fo-
cuses on observing operators’ learning curve, particularly in terms of
improvements in time and quality, and how they interpret and engage
with the provided work instructions and abstractions of it. We aim to
track how the time spent focusing on instructions decreases as operators
become more proficient. This allows the creation of more abstract and
simplified work instructions that highlight only essential information.
By emphasizing key elements, operators can work better after the ini-
tial training phase. An experiment was designed, targeted measurements
were performed, and the results were analyzed. The learning curves were
recorded during a disassembly process to find the critical elements in the
created work instruction and later simplify it. The results indicate that
simplified instructions, introduced after an initial learning phase, led to
shorter task completion times without increasing error rates. These find-
ings suggest that instruction abstraction can support operator efficiency
during repetitive tasks. Future research will explore adaptive instruction
systems and their integration in industrial environments with larger and
more diverse participant groups.

Keywords: Work instruction - Human-centered - Learning-curve - Ab-

straction

1 Introduction

This study aims to explore the usefulness of the work instructions during repet-
itive tasks. By examining how instruction abstraction impacts operator perfor-
mance and learning efficiency, the research seeks to determine if combining steps
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within instructions can reduce task completion time without sacrificing accuracy.
Through detailed time measurements our study investigates the potential to sim-
plify instructions as operators become more familiar with the task, ultimately
enhancing productivity and reducing the cognitive load.

In modern industrial environments, high operator turnover and product vari-
ability demand flexible and effective training methods to maintain productivity
and minimize errors [5, 8]. As new workers are often introduced to complex man-
ual tasks, the design of work instructions becomes critical for task efficiency
and accuracy. Yet, overly detailed instructions can overwhelm novices, while
abstract ones may fail to provide sufficient early guidance [11,13]. From a cogni-
tive ergonomics perspective, effective instructions must manage cognitive load by
minimizing extraneous mental effort [1,11]. Prior studies emphasize that visual
clarity, step segmentation, and multimodal presentation significantly influence
learning and task performance [9,17,15].

This study is an exploratory investigation into how instruction simplification,
specifically merging low-complexity steps into fewer visual cues, affects operator
performance in a repetitive disassembly task. Following an initial familiarization
phase, we hypothesize that simplified instructions can reduce task time without
increasing error rates. The paper is structured as follows: Section 2 reviews
related literature; Section 3 presents the experimental setup; Section 4 discusses
the results; and Section 5 concludes with implications, limitations, and future
directions.

2 Related works

2.1 Worker performance

Overall Labour Effectiveness (OLE) is a key performance indicator (KPI) in
human-centered manufacturing [12]. It is essential to assess labor efficiency along-
side equipment performance. While metrics like Overall Equipment Effectiveness
(OEE) and Overall Throughput Effectiveness (OTE) evaluate machine perfor-
mance, OLE focuses on human factors. OLE and its revised version, ROLE
(Revised Overall Labour Effectiveness), measure labor effectiveness by analyz-
ing availability, performance, and quality [5]. Gordon (2008) adapted the original
OEE formula and introduced OLE as a performance indicator for labor efficiency
8]

Employee availability, including absenteeism and shift planning, significantly
impacts whether production targets are met. Attendance issues and scheduling
mismatches reduce workforce and equipment utilization. Indirect disruptions af-
fect efficiency, such as material delays, idle time, or shift transitions. OLE data
can support better scheduling, absence management, and material flow align-
ment, helping avoid delays and unnecessary operator movement. Performance
reflects how efficiently the workforce delivers output. A lack of trained staff or
unfamiliarity with equipment can hinder operations, highlighting the need for
proper task-specific training [8]. Quality in OLE focuses on whether employees
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follow proper instructions, use the right tools, and adhere to set processes. Super-
visors can ensure quality products by maintaining high output standards while
reducing rework and waste. This component is essential in preventing errors that
can undermine productivity and profitability [8].

The concept of learning curves offers valuable insights into workforce effi-
ciency as operators gain experience with specific tasks. Documented initially by
Wright (1936), learning curves illustrate how task repetition leads to reduced
time per unit, demonstrating a characteristic pattern in automotive, aerospace,
and manufacturing industries [22]. Learning curves are mathematical models
that monitor how performance improves with practice, enabling management to
predict time and cost reductions as operators become more skilled [2]. Various
models, including the log-linear and exponential, track this efficiency gain, offer-
ing valuable planning data for production schedules and workforce allocation [7].
Research indicates that task complexity, prior experience, and training signifi-
cantly impact the learning curve slope, denoting a faster or slower adaptation to
tasks [3,4]. Notably, the effectiveness of a learning curve model in practice de-
pends on ensuring opportunities for operators to engage with varied yet related
tasks, which fosters cognitive development and enables the transfer of learned
routines [21]. Integrating learning curve data with OLE can refine workforce per-
formance evaluations by highlighting areas for skill enhancement and potential
efficiency improvements. For example, in mass customization settings, learning
curves aid in managing diverse product requirements while minimizing initial
losses associated with low proficiency [2].

The OLE framework is a useful tool for interpreting human performance,
though it has limitations. Its reliance on time-based and observational data can
introduce subjectivity, especially in small-scale studies. Continuous monitoring
may also raise privacy concerns |5, §].

2.2 Work instruction

Adequate work instructions are essential for enhancing operator performance, es-
pecially in environments with high product variability [13]. Well-designed work
instructions can reduce errors, improve assembly speed, and decrease cognitive
load, contributing to smoother workflows and increased efficiency. Work instruc-
tions can be static (e.g., text or images) or dynamic (e.g., animations). Studies
indicate [20, 19] that dynamic instructions often yield superior outcomes in terms
of efficiency and learning. For example, animated instructions can reduce initial
assembly times and improve task comprehension by making the process visually
intuitive. Watson et al. (2023) found that using animated instructions led to a
37% faster initial build time compared to text-only instructions. High-quality
work instructions are essential for ensuring efficient operations and reducing er-
ror rates. The critical dimensions affecting instructional quality include clarity,
accessibility, and accuracy. Poor quality instructions can lead to delays, higher
cognitive load, and even safety issues, particularly in high-risk environments like
manufacturing. By focusing on unambiguous, complete, and accessible instruc-
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tions, organizations can significantly improve the reliability of task execution
and operator satisfaction. [9]

However, static instructions, especially those that combine text and images
can also be effective [18]. They tend to require deeper cognitive processing, which
may enhance retention and understanding of complex tasks. Effective assembly
instructions often use a combination of visual and text cues to build a mental
model of the assembly sequence. This approach allows operators to navigate tasks
with clarity and precision, making visual work instructions particularly valuable
in high-complexity environments [1]. McAlinden et al. (2017) explored the effec-
tiveness of pictogram-based instructions in reducing assembly times and errors.
Their study compared pictograms with traditional static images in an aerospace
assembly task, finding that pictograms led to a 20% reduction in build times and
fewer mistakes. Pictograms are also advantageous because they overcome lan-
guage barriers, making them effective internationally. This approach aligns with
cognitive load theory by minimizing the mental effort needed to understand each
step, allowing operators to focus directly on the assembly without the additional
burden of interpreting language-specific instructions [13].

As industries transition to a human-centered manufacturing approach, per-
sonalized work instructions have gained prominence. Ergonomically optimized
work instructions are essential, noting that digital interfaces such as Augmented
Reality (AR) and Mixed Reality (MR) can reduce physical strain and minimize
cognitive load by presenting relevant information directly at the workstation [6].
By superimposing instructions on the work area, AR-based instructions eliminate
the need for operators to shift their gaze or physically turn to access information,
thereby improving task flow and reducing ergonomic risk [15]. Tailoring instruc-
tions to individual skill levels and experience is vital, ensuring that operators are
neither overwhelmed nor under-challenged. Personalized instructions that adapt
to the user’s familiarity with the task can enhance learning and engagement,
fostering a more effective learning curve [17]. A critical aspect of work instruc-
tion design is managing cognitive load. Li et al. (2018) explored various types
of information presentation, finding that combining visual aids with concise text
reduces cognitive demands on operators. Precise, targeted information supports
operators in managing complex tasks by allowing them to focus on the essential
steps, which is particularly valuable in multi-variant production environments
[11]. The design of effective work instructions involves understanding the task
and the user’s needs and cognitive constraints. Integrating findings from cog-
nitive psychology, such as the necessity for a step-by-step hierarchy and visual
grouping in instructions, enhances usability and reduces error rates. As industries
increasingly adopt digital work instructions, the choice of media—whether static
images, text, or animations—should consider both the immediate and long-term
goals of task performance and learning [1].

Instructional design should consider individual differences in working mem-
ory and reasoning, as these influence how users handle abstraction [16]. Vary-
ing abstraction levels affect user performance and satisfaction, especially when
matched to expertise [10]. Supporting cognitive processes like pattern recog-
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nition and structure identification can enhance instructional abstraction [14].
While prior studies explored how instruction format affects cognitive load and
task performance [1, 11, 13], few have investigated how abstraction over time im-
pacts learning and efficiency. Most research emphasizes initial performance, not
long-term learning curves or instruction transitions. This study contributes by
examining how instruction simplification interacts with operator learning in an
industrial context.

3 Design of experiment

The experiment involved disassembling a battery control unit as seen in Fig-
ure 1. The goal was to see the role and significance of the work instructions.
During the process, participants had to unscrew different parts, remove cables
and components, and place these elements and the corresponding nuts in desig-
nated boxes. The participants encountered the task for the first time during the
experiment, so nothing influenced their performance in the task presented.

The disassembly task was selected for its relevance to industrial settings
and its suitability for controlled experimentation. Its structured, low-complexity
steps allow for clear instruction, observation, and analysis. Visual instructions
were used due to their clarity, ease of interpretation, and ability to reduce cog-
nitive load by emphasizing key actions and components that are crucial in tasks
requiring speed and precision.

The order of the subtasks was predetermined and clearly outlined in the
work instructions. Two different screwdriver heads, necessary to complete the
task, were provided and readily available to the participants. The work instruc-
tions were displayed on a monitor placed in front of them, allowing them to
navigate forward and backward if they made any errors during the process. The
total time to complete the task and the time spent on each instruction image
were measured. The quality was checked during the experiment and noted down
in each round. To ensure measurement consistency, a predefined checklist of ex-
pected task steps and common errors was used throughout all sessions. The same
researcher observed each session and recorded it using Tobii eye-tracking glasses.
This enabled post-experiment verification of time logs and error detection.

3.1 Participants

Eight individuals participated in the experiment, seven female and one male. The
group included seven BSc students and one PhD student. Three participants had
prior experience with using screwdrivers and performing similar technical tasks,
which could influence their familiarity with the disassembly process. Participants
were chosen through a call for volunteers distributed within the university, and
they joined the study voluntarily. This open recruitment ensured a diverse but
motivated participant pool. All participants provided their informed consent
before participating in the study. While the participants were selected based on
availability, the small sample size (n = 8) and gender imbalance (7 female, 1
male) may limit the generalizability of our findings.
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3.2 Instructional design

The work instructions for the disassembly task were presented as images on
a monitor, showing the participants what they needed to do. Four types of
instructional images were used as seen in Figure 2:

1. Screwdriver Head Change: These images indicated when the participants
needed to change the screwdriver head to fit the task (Figure 2a).

2. Part Placement: The second type of instruction showed where the removed
components should be placed out of the three storage containers (Figure 2b).

3. Nut Removal: The third type of instruction showed which nut in the bat-
tery control unit needed to be unscrewed (Figure 2c).

4. Part Removal: The fourth type of image indicated which part should be
removed during the disassembly process (Figure 2d).

Each task within the instruction sequence was numbered to guide partici-
pants through the disassembly process step-by-step. Critical elements in each
instructional image were highlighted to ensure clarity. Specifically, the part par-
ticipants needed to work on was marked with a red rectangle. Additional visual
cues included a red screw icon, as seen in Figure 2c, signaling when a nut needed
to be unscrewed, and a red arrow, as seen in Figure 2d, indicating which part
should be pulled off or removed. These markers were designed to make the in-
structions intuitive and reduce potential errors in following the sequence of tasks.

Additionally, two different types of work instructions were presented to the
participants as seen in Figure 3: one semi-detailed and one short. In the first
arrangement, both the action of removing a part and the storage location where
it should be placed were combined into a single image, but the main steps were
displayed in a separate image. In the short version, multiple steps were performed
on the same image, and the place of storage was indicated only once for each
variety. The instructions were grouped based on the the cables. Each cable had
at least one nut, which had to be screwed off, and one connector, which had to
be removed.

Fig.1: The part that needed to be disassembled
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3.3 Data processing

The data collected in this study comprises two main areas: work instruction data
and worker performance assessment. These data enable a comprehensive analysis
of task efficiency, instructional interaction, and individual learning progress.

The work instruction data includes the time metrics recorded during each
step of the disassembly task. These measurements capture the start and end
times for each instruction, allowing the calculation of the total time spent on
each step. Metrics such as average times, standard deviations, and learning curve
trends are derived from these data, offering insights into how participants’ effi-
ciency improved over the trials. Learning curves, in particular, reveal the reduc-
tion in time as participants advance through repeated task sequences, indicating
familiarity and increasing proficiency.

Performance assessment in this study is based on time data and observed
errors during the experiment. Completion times serve as a primary performance
metric, with time improvements reflecting the impact of familiarity and instruc-
tional design on task efficiency. In addition, errors observed during the exper-
iment provide a qualitative aspect to the performance evaluation. All sessions
were monitored by the same facilitator, who manually noted any observable task
errors based on a predefined checklist of expected actions (e.g., missed screw, in-
correct part placement). By examining both time efficiency and accuracy, we can
gain insights into participants’ skill acquisition and the instructional elements
that either facilitated or hindered their success.

4 Exploratory results

This section presents an initial analysis of the data collected during the exper-
iment, focusing on the patterns observed in task performance and instruction
efficiency. By examining learning curves and time metrics, we can understand
how participants adapted to the disassembly task over repeated trials. These
exploratory results provide a foundation for understanding the impact of in-
struction design and highlight potential areas for refinement in future tasks.

(a) Head Change (b) Placement (¢) Nut Removal (d) Part Removal

Fig. 2: The four types of visual instructions used in the study.
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(b) The shortened version of the instruc-
(a) A semi-detailed instruction tions

Fig. 3: Example instructions from the experiment

Participants were divided into two groups to assess the impact of initial
instruction type on long-term performance. Group A (participants 1, 3, 5, 6)
started with the shortest version of the instructions, while Group B (participants
2,4, 7, 8) began with the slightly longer, semi-detailed variant. Two weeks later,
all participants repeated the disassembly task using only the shortest version.

4.1 Experiment protocol and procedure

The experiment was carried out in the Industry 5.0 laboratory of the University
of Pannonia. Each session was designed to last approximately one hour, which
allowed each participant to complete the task comfortably. Eight people partici-
pated in the experiment, and they were divided into two groups. The experiment
was repeated with the same participants two weeks later to study the effect of
the forgetting factor. One of the groups used the short instruction set in both
sessions, while the other group began with a more detailed instruction set in the
first session and used the short instruction set in the second session.

Before the experiment, the participants were introduced to the task and tools
to ensure they were familiar with the procedure and equipment. They were shown
the battery control unit they would disassemble, instructed on how to change the
screwdriver heads, and introduced to each type of instruction image, clarifying
what actions each visual cue represented.

A laptop was placed in front of them in a comfortable position to press
the buttons to switch between tasks. The disassembly task was initiated by
displaying a "start" image on the laptop screen, which allowed participants to
begin by clicking to proceed to the first instruction. There were no distractions
during the experiment, ensuring a focused environment and that all sessions
proceeded smoothly. We were present throughout each experiment to observe
the process and note any mistakes made by the participants.

The "instruction-showing" program was developed in Python environment
and displayed step-by-step instructions on the laptop. The start and end times
were recorded for each step, creating precise time data for each action. This setup
resulted in 12 individual Excel files per participant, each containing detailed time
data.
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4.2 Learning curves

The data collected from each participant across the two sessions provides in-
sights into learning trends throughout the experiment. The time taken for each
disassembly reveals how task familiarity impacts efficiency and highlights the
learning curve for repetitive disassembly tasks. Initial trials indicate that partic-
ipants spent more time completing each step, likely due to unfamiliarity with the
task sequence and the instruction format. For example, average completion times
were higher in the first rounds, reflecting the need for more careful attention to
instructions. As participants progressed through the trials, the time per task de-
creased significantly. This suggests a reduction in cognitive load as participants
internalized more straightforward actions, allowing for faster performance with
fewer instructions.

In Figure 4, all participants’ completion times can be seen. It can be seen
that after four-five rounds in the session, their performance got fairly even. In
the first session, the start times were mostly above 2 minutes. In the second
session, only two rounds’ time were above 2 minutes, showing that in the two
weeks between the sessions, they retained most of the information about the
task. By analysing the times, other information can be obtained.

The time data presented in Table 1 shows the participant performance across
the two sessions in the experiment. A general trend of improvement can be ob-
served: for nearly all participants, the average task completion time (¢mean)
decreased in the second session. This indicates that participants became more
efficient as they became familiar with the task and the simplified instructions. Be-
sides the mean times, the standard deviation of the task completion times (ts:q)
dropped significantly in the second session for every participant. This means
that their consistency increased. For example, Participant 7’s standard devia-
tion dropped from 42.46 to 18.07 seconds, which shows significant improvement.
The minimum and maximum completion times (¢, and tpm,q.) showed a sim-

Overall Learning Curves Overall Learning Curves
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Fig. 4: Learning curves during the experiment
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ilar pattern. Most participants completed the tasks more quickly and within a
narrower time frame during the second session.

A notable exception is Participant 1, whose average time slightly increased
(from 73.25 to 73.85 seconds), but their standard deviation lowered from 12.91
to 4.62 seconds. It is possible that because of familiarity with similar tasks, they
improved less as can be seen from their max time, which was way lower in the
first session than other participants’. While they may have not improved in the
second session, they executed the task with greater consistency.

A Wilcoxon signed-rank test was conducted to compare task completion
times between Week 1 and Week 2. The results indicated a statistically sig-
nificant improvement in performance (W = 35.0, z = 2.38, p = 0.016). Prior
to this, a Shapiro-Wilk test confirmed that the distribution of differences did
not deviate significantly from normality (W = 0.861, p = 0.123), supporting
the robustness of the test. These results suggest a clear learning effect between
sessions.

Overall, the results show that participants became faster, more accurate, and
more consistent as they progressed through the rounds and the sessions.

4.3 Analysis of performance improvement with merged instructions

The hypothesis that merging instructions would decrease the overall task com-
pletion time, as participants could perform multiple related actions in a single
step, minimizing pauses for instruction changes but longer, detailed instructions
help in the beginning.

Participant| 1 3 5 6 2 4 7 8
tmean1  [13.25|101.24| 82.63 |108.38| 92.11 | 97.58 [126.03(116.07
tmean2 |73.85] 72.19 | 69.50 | 72.33 | 68.07 | 67.30 | 99.38 | 89.37
tstdl 12.91| 27.25 | 21.73 | 42.46 | 18.15 | 26.25 | 22.84 | 32.45
tstdz 4.62 | 13.68 | 11.32 | 18.07 | 7.83 | 12.25 | 7.39 | 17.25
tminl 59.02| 77.79 | 65.35 | 78.12 | 74.25 | 69.15 {110.64| 90.67
tmin2 65.70| 60.20 | 56.99 | 59.22 | 56.93 | 53.59 | 92.17 | 77.70
tmazl 97.37|177.27|142.87|222.67(140.46|166.92|192.96|215.07
tmaz2 81.49(112.17( 98.96 [127.16| 87.68 | 98.92 {119.69(140.73

Table 1: The time data from the experiment. The grey background indicates

Group A, the white background indicates Group B.

Task type |Number of occurrences|Average time
head change 3 3-6 s
placing 10 1-2s
removing 5 2-6 s
screwing 5 7-15 s

Table 2: Average time for each task
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In Table 2, it can be seen how much time each task took on average. In
the short version, these related actions were combined, reducing the instruction
count to 5 tasks, which can be seen in Table 3. The merged, short instructions
were created from two, three, or four semi-detailed instructions.

Short | Semi-detailed
1. 1.-2.
2. 3.-4.-5.
3. 16.-7.-8.-9.
4. 10. - 11.
5. 12. - 13.
Table 3: The task numbers that were merged

The results can be seen in Table 4. Participants who received shorter instruc-
tions completed the task faster during the first session, with an average time of
91.37 seconds, compared to 107.95 seconds for those using longer instructions.
This suggests that some individuals were able to intuitively follow concise guid-
ance without the need for detailed breakdowns. In the second session of the
experiment, the group that had originally received longer instructions showed
a more significant improvement. Their average time dropped to 69.30 seconds,
while the short-instruction group achieved a slightly higher average of 71.97
seconds.

As shown in Tables 2—4, merged instruction steps appeared in later stages of
the task and generally clustered low-effort actions (for example, part removal and
placement) into single frames. This likely reduced the frequency of instruction
switches and visual referencing, potentially lowering cognitive load.

Besides participants’ time performance, errors were also recorded during both
sessions to evaluate task accuracy. For most participants, the number of mistakes
generally decreased between the first and second sessions. Group A made 8 errors
initially, which dropped to 4 in the second session. Group B started with fewer
errors (5), and also reduced them to 4.

For example, Participant 1 made two errors during the first session and none
during the second. This suggests that participants not only became faster but
also more precise as they became more familiar with the task structure and the
simplified instruction format. Analyzing the types of errors revealed that the
most common mistakes were dropping the screws, failure to change the screw-
driver head and removing an incorrect screw. In total, five instances of screw

tgmeanl tgmeanQ tgminl tgmin2 tgmazl tgmazQ

Group A| 91,37 | 71,97 | 59,02 | 56,99 |222,67|127,16
Group B| 107,95 | 69,30 | 69,15 | 53,59 |215,07|140,73
Table 4: Time data in the two groups
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drops and four instances of missed head changes occurred during the first ses-
sion, while these numbers dropped to four and one respectively in the second
session. The order of removing the fuse and the metal plate was a bigger mistake
and it only got mixed up in Group A by two people in the first session, because
in the short instruction set they were both on one page and it was easier to mess
up and not pay attention as opposed to the semi-detailed version, where the
instruction images were after one another so it was harder to get confused. Er-
rors were categorized as omissions (e.g., skipping a screw or part) or commissions
(e.g., incorrect placement). Omission errors decreased more significantly between
sessions, indicating that routine steps were internalized. Commission errors re-
mained mostly stable, reflecting persistent challenges with spatial reasoning and
tool handling. This improvement further supports the learning effect observed
through the time metrics. Simplifying the instruction set did not increase the
number of errors; in contrast, fewer errors were committed after the transition to
the shorter format, suggesting that participants effectively internalized the task
sequence. This finding indicates a positive shift in the speed-accuracy trade-off
as participants became more familiar with the process.

These results support the assumption that starting with detailed instructions
provides a more solid foundation for learning. Group B, which began with the
semi-detailed instruction set, showed a sharper performance improvement and
lower error rates in the second session, suggesting that initial clarity helped them
more easily understand the task.

Figures 5 and 6 present boxplots illustrating task completion times in both
sessions and across both participant groups. These visualizations provide addi-
tional insight into the performance distribution, variation, and improvements
that occurred due to instruction simplification and repetition. Figures 5 com-
pares the overall performance in the two sessions. In the first session, as seen
in Figure 5a, the boxplots show a wide range of completion times with several
outliers, indicating variability in participant performance and a higher cognitive
load when the task was still unfamiliar. The session after two weeks, shown in

Time distributicn by instruction group - Group A vs. Group B (Session 1) Time distribution by instruction group - Group A vs. Group B (Sessicn 2)
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sa : - Fi - ¢ ;
L= R
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3 : )
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(a) Boxplot from the first session (b) Boxplot from the second session

Fig. 5: Boxplots of the two sessions
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Fig. 6: Boxplots from the two groups

Figure 5a reveals more compact boxes and shorter whiskers, suggesting that par-
ticipants completed the task more consistently and with fewer extreme delays.

Figure 6 breaks this down by group. Group A is shown on Figure 6a, which
started with the short version of the instructions, exhibited relatively lower vari-
ance even in the first session. This implies that some participants could adapt
quickly to minimal instructions, perhaps due to intuition or prior experience.
Group B (seen on Figure 6b), who did their first session with the semi-detailed
instructions, showed greater variance in the first session but a more significant
improvement in the second. Their boxplot becomes much narrower, aligning
closely with Group A’s performance, indicating successful adaptation and inter-
nalization of the task flow. Together, the figures highlight that while minimal
instructions may work well for some participants from the beginning, starting
with more detailed guidance can better support others in building a robust
mental model of the task. In both cases, by the second session, the performance
became more stable and efficient, confirming the positive impact of instruction
simplification and practice over time.

5 Conclusion

This study explored how simplifying work instructions influences operator perfor-
mance and learning during a repetitive disassembly task. Using two instruction
types, one semi-detailed and one short. We observed that once the task structure
was understood, simplified instructions supported faster and more consistent
task execution without increasing errors. Participants improved across sessions
regardless of the initial instruction type, highlighting the potential of gradually
reducing instruction detail after familiarization. These findings align with cogni-
tive load theory, suggesting that instruction abstraction can enhance efficiency
once a mental model is formed. While the results are promising, this research
is best viewed as an exploratory study or proof of concept. The small sample
size (n = 8) and controlled lab setting limit broader generalization. Nonetheless,
the experiment demonstrates a viable method for testing instruction strategies
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and reveals performance trends worthy of further investigation. These insights
suggest that training could begin with detailed guidance and then shift toward
simplified instructions to optimize learning and execution time. Future work
could examine how other instruction formats, such as animations or icons, inter-
act with task familiarity and abstraction level to affect operator performance.
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