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ABSTRACT
This study investigates the learning curve in an assembly process under distraction, highlighting the use of video‐based
monitoring to evaluate changes in human performance over time. The experimental setup involving camera‐ and timer‐
based monitoring to evaluate operator performance in different metrics, including time‐based indicators and accuracy of the
assembled product. Participants were tasked with replicating patterns until they got a flat learning curve without any dis-
tractions during the process. After learning the process, they were also asked to repeat the task with conversation‐based dis-
tractions to assess its influence during the main task. In our developed framework, an ArUco marker‐based video recognition
enabled the accuracy assessment. Statistical analyses of the collected data provided insight into performance variations. The
study evaluates changes in the learning curve during verbal distraction, highlighting the need to understand and consider its
effect during the process. The experiments revealed significant effects of distraction on the completion time, but the camera‐
based recognition system showed no notable decline in work quality.

1 | Introduction

The skills gap and labour shortage are pressing issues that
emphasise the importance of understanding and addressing
learning curves. It is important to discuss the ambiguity and
challenges in defining and measuring skill gaps. The fourth
industrial revolution involves the integration of digital tech-
nologies in industrial processes, which has significantly trans-
formed the skills requirements of the workforce [1]. Speed and
accuracy in completing tasks are the main performance metrics
for human workers. When focusing on the speed aspect of a
repetitive task, individuals tend to become faster with each
repetition. This can be observed by plotting a scatter graph of
time per repetition against the repetition number. The trend line

that fits these data points, known as a learning curve, was first
proposed by Wright [2]. Learning curves have served as valuable
management tools [3], enabling prediction and monitoring of
performance at multiple levels and in various areas, such as
manufacturing, education, banking, and many more [4]. The
occurrence and characteristics of human learning and forgetting
are extensively studied across various fields. Learning curves in
production and operations management describe workers' per-
formance improvements due to repetition or experience. This
concept is particularly relevant for labour‐intensive
manufacturing firms, especially where labour costs are high [5].

Several factors can influence the shape and steepness of the
learning curve. Learning is often modelled as a combination of
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cognitive and motor elements [6]. These factors shape the
learning curves [7] and highlight differences between low‐
fidelity and high‐fidelity simulations. For example, training
time [8] is a significant measure. In ref. [9], they used different
training systems and compared them and their effect on the
learning curve. Another factor affecting learning can be the
complexity of the task [10]. In their study [11], the authors
found that member turnover and task complexity are vital
predictors of group productivity gains. Both variables signifi-
cantly affected productivity, which increased as groups gained
experience over time. The concept of learning curves has
evolved significantly since Wright's introduction. This founda-
tional model demonstrated that production time decreases
constantly with each doubling of produced parts. Over time,
estimating learning curve parameters has become crucial for
categorising production runs or batches and understanding the
behaviour of similar processes. Technological advances have
provided new data collection methods, which improve tradi-
tional learning curve theories [12]. Gender also has an impact
on the learning curve. Ben‐Gal et al. [13] found that female
dental students outperformed male students in motor learning
tasks, particularly during the initial weeks and the final
assessment of a 12‐week manual skills course. Kostiuk and
Follmann [14] observed that female recruiters performed
slightly better than their male counterparts. At the same time,
academic background had no positive effect on performance
and, in some cases, higher education was associated with lower
productivity.

The ability to perform multiple tasks simultaneously is limited
[15]. Disruptions during the learning process can significantly
impact task performance. Immediate interruptions cause the
most errors and slowdowns, while negotiated and mediated
interruptions reduce errors and are less disruptive. Scheduled
interruptions result in slower performance but fewer errors than
immediate interruptions [16]. Frequent interruptions also have
an effect on the quality of the work [17].

Verbal distractions have an impact on working memory and
attentional processes. Recent studies have shown that irrelevant
speech significantly impairs visual‐verbal serial recall perfor-
mance, particularly when the speech is meaningful and variable
[18]. Recent studies indicate that individuals frequently under-
estimate the disruptive effects of familiar or fluent speech on
cognitive tasks, primarily due to the processing‐fluency heuris-
tic [19].

Various physiological sensors and machine learning‐based al-
gorithms can help optimise task allocation and reduce cognitive
load [20]. It is valuable to see how different methods of pre-
sentation of material and information affect assembly time and
workload. Better organised materials and visual instructions can
enhance efficiency and reduce stress in manual assembly tasks
[21]. Carvalho et al. [22] highlight that cognitive manufacturing
focuses on reducing mental workload through digitalised work
instructions, real‐time analytics dashboards, and augmented
reality interfaces. Sensors, Internet of Things, and Artificial
Intelligence can also optimise workload and improve worker
well‐being [23]. It is important to consider the cognitive inter-
ference experienced when transitioning from one repetition to
the next during the learning process [24].

Several studies have addressed different aspects of human per-
formance, learning, and task disruption. However, few have
integrated these elements into a unified framework. While
learning curves have been extensively studied in manufacturing,
training systems, and motor learning tasks, the inclusion of
cognitive distractions in experimental designs remains limited.
Moreover, most studies do not incorporate objective, visual‐
based accuracy measurements, nor do they use real‐world as-
sembly tasks as part of their experimental protocol. To position
our work within the existing body of research, Table 1 sum-
marises key prior studies and highlights their focus areas. The
table shows whether the studies addressed (Y) learning curves
(L), included distractions (D), used real‐world tasks (R), and
evaluated spatial accuracy (A).

Our study introduces a comprehensive experimental setup using
camera monitoring and ArUco markers to precisely evaluate
task accuracy and time efficiency. We developed an approach to
assess the impact of distraction and its subsequent effect on task
performance by evaluating the learning curve. The study un-
derscores the importance of practice in improving performance,
offering valuable insights into how skill acquisition can be
optimised over time. The findings of this research contribute to
a broader understanding of cognitive load management and
human efficiency in manual assembly tasks, offering practical
implications for improving productivity and accuracy in such
environments.

This study aims to address these gaps by proposing a framework
that evaluates human learning efficiency under distraction with
both time‐based and visual accuracy metrics using marker‐
based computer vision systems such as ArUco tracking.

Following this introduction and the literature review, in Sec-
tion 2 the hypothesis and experiment design will be presented.
Section 3 shows the developed video‐based evaluation method.
In Section 4, the findings and results from the experiment are
detailed. The paper concludes with a synthesis of findings in
Section 5.

2 | Hypothesis and the Design of Experiment

Our study aims to assess the effect of verbal distraction on the
human learning curves while participants perform a specific
task repeatedly. Zickerick et al. [25] investigated the differential
effects of interruptions and distractions on working memory
using ERP (Event Related Potential) analysis, and found that

TABLE 1 | Comparison of related studies by learning (L), distraction
(D), realism (R), and accuracy (A).

Study L D R A
Ben‐Gal et al. [13] Y — Y —

Kolbeinsson et al. [16] — Y Y —

Leist et al. [18] — Y — —

Zickerick et al. [25] — Y — —

Jaber and Glock [4] Y — — —

Carvalho et al. [22] — — Y —
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even task‐irrelevant distractions can alter subsequent atten-
tional allocation. Their findings support the idea that both
foreknowledge and the type of interference affect the availability
of attentional resources. This justifies our focus on verbal dis-
tractions that mimic everyday low‐level interruptions, as they
are most similar to real work environments where people
interact verbally with one another in group settings.

The developed experiment investigates how individuals learn
and improve their performance over time, particularly in tasks
requiring precision and speed. We aim to measure the time it
takes participants to complete a given task and the accuracy of
their performance with and without additional distraction. By
analysing these metrics, we can determine each participant's
learning curve, indicating how quickly they can master the task.
We also want to observe how much it changes after they have
learnt it, if they are disturbed (as a secondary task) by an oral
questionnaire. We formulate two hypotheses for the study:

� H1—The quality of the work will be reduced due to the
distraction.

� H2—The completion time will increase due to the
distraction

2.1 | Participants

Seventeen people participated in the experiment. Eight of them
were female, and nine of them were male. All of them have
academic backgrounds; they were either researchers or stu-
dents. The participants ages ranged from 18 to 38, with an
average of 25.82 and a standard deviation of 5.69. All partici-
pants first encountered the task during the experiment; they
only knew they had to build something with blocks, but the
shape and the pattern were unknown. All the participants
provided their consent.

2.2 | Experiment Design

The use case is presented through a pattern‐building process. It
was chosen because, in a relatively short time, the participants
could learn it, and the quality assessment could be performed
automatically.

Others have used pattern building as part of their experiment.
The Block Design Test, introduced by Kohs [26], is a classic
example of a pattern replication task used to assess nonverbal
intelligence. Participants recreate complex geometric patterns
using coloured cubes. Landau et al. [27] examined children's
step‐by‐step constructions using Lego blocks. They discovered
that even young participants followed a systematic, layer‐by‐
layer building approach, emphasising stability and efficiency.
These findings align with our focus on learning dynamics,
although their analysis did not consider time pressure or
external distractions.

The fixed pattern (shown in Figure 1) is presented to the par-
ticipants who were required to replicate it. The experiment was
carried out in the Industry 5.0 laboratory of the University of

Pannonia. Each session was designed to last approximately
30 min, which allowed each participant to complete the task
comfortably. In Figure 2, the experiment setup can be seen. A
laptop was placed in front of the participants, showing the
pattern that needed to be built. The whole assembled pattern
was shown. The pieces were always in the same spot, with four
pieces on the left and four on the right side of the participant.
They could grab and place the pieces in an order they preferred
with both hands, only the final pattern was specified. They had
to build the pattern over black paper, which had four red circles
on the corners to help with the quality assessment. A mobile
phone was also there to record the time, the participants put the
phone in a suitable place for them.

The pattern design is formed using eight cubes of various
shapes. Participants are introduced to this pattern at the
experiment for the first time. The participants repeatedly
perform the same task. They continue assembling the pattern
until they consistently complete the task in nearly the same
amount of time. This steady performance signifies mastery of
the process, as participants become skilled at arranging the
cubes as required. Familiarity with the cube locations enables
participants to develop strategies and optimise their approach.

FIGURE 1 | The predefined pattern of the building process.

FIGURE 2 | The setup of the experiment.
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The participants were sitting at a table where they assembled the
pattern. A camera was looking above the area to take a picture of
the finished pattern. The experiment process consisted of two
parts, as seen in Figure 3. First was the training phase, where they
repeated the pattern without any interruptions at least 20 times,
and we got a learning curve from it. After that was the distraction
phase, where they were asked 10 questions that they had to
answer as a secondary task during the building in 10 rounds.
During this distraction phase, the participants were subjected to
interruptions during the pattern‐building task to assess the in-
fluence of disturbances on performance. Distractions included
verbal enquiries (see Appendix A) and required participants to
respond while maintaining focus on the task. The aim was to
observe how the distraction as a secondary task affected
completion time and pattern accuracy. As detailed in the
Appendix A, participants were asked about collaboration and
relationships with robots. The standardised set of 10 questions
ensured similar conditions between all participants. The role of
the questions was only to distract the participant from their task,
so they had to think about their answers.

2.3 | Recorded Measures and Processing Methods

We measured performance and quality of work during both
phases of the experiment. The timing process involved partici-
pants starting and halting the stopwatch on their own. A mobile
phone was used with the aTimeLogger application [28]. Before
they began, they started the timer, and after they placed the last
piece, they pressed it again. Evaluating time is crucial because it
directly reflects the efficiency and performance of the partici-
pants under different circumstances. By analysing the times, we
can quantify the impact of distractions on task performance.

In the experiment, the number of attempts at which the learning
phase ended was observed. This helped determine the point
where the participants had become proficient in the task. The
average time taken in the learnt phase without any distractions
was also calculated, providing a baseline for performance under
ideal conditions. Additionally, the average time taken during

distractions was calculated to evaluate how interruptions
affected task completion times. The main variable of the
experiment was the measurement of distraction versus non-
distraction. The objective was to investigate the impact of this
variable on the quality of the work and the time required to
complete the pattern.

Quality is also an important indicator, the method about how
we assessed it is explained more in the next section. This ac-
curacy metric is meaningful in our context for several reasons.
The task is spatial and visual; accurately placing the cubes
demonstrates cognitive understanding and motor execution of
the learnt pattern. Small misalignments, although not neces-
sarily indicative of complete failure, can reveal how distractions
affect fine‐motor coordination and attention to detail. Further-
more, since the task was repeated until participants exhibited a
plateau in performance, deviations from the reference pattern
serve as an objective, quantifiable indicator of degraded per-
formance during distraction. The use of angles and distances
between the pieces/markers allows a more subtle and scalable
assessment than a simple yes/no evaluation, allowing the
detection of subtle quality degradations that may result from
increased cognitive demands during distractions.

In our study, statistical data analysis is crucial in understanding
the learning curves and performance under distraction. We used
t‐tests to compare performance metrics such as completion
times and accuracy between the learning and distracted phases.
The cut‐off points for identifying the learning phase were
determined by visual inspection.

3 | The Developed Video‐Based Evaluation
Method

Each cube is marked with an ArUco code attached to its top
surface (see Figure 1), allowing the camera to recognise whether
the pattern has been correctly assembled. Each ArUco code is
associated with a unique numerical identifier, which can be
identified using the corresponding OpenCV library. The

FIGURE 3 | The process of the experiment.
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integration of ArUco codes serves a dual purpose. Firstly, it ver-
ifies whether the pattern has been successfully reproduced. Sec-
ondly, it provides a means of assessing the accuracy of the
participant's arrangement. In the images, the locations of the
markers were determined, and the pixel coordinates were ob-
tained from these. To achieve this precision assessment, a refer-
ence image is initially created. A specific cube is selected as the
anchor point. The angles at which the other cubes are arranged
are calculated relative to this anchor point (see Figure 4). This
reference data serves as a reference for evaluating subsequent
attempts.

Using the obtained pixel coordinates, the angles and distances
were calculated. The four red dots in the corners of the work
area (see Figure 4) help reduce each picture to this area so that
distances can be compared. A reference point mentioned pre-
viously is the cube marked with the marker 2 in the bottom left
corner. In addition, an image was created where the pattern was
perfectly arranged (the reference image), and the ones made by
the participants were compared with this. pi and pr are the
individual 2D positions of the markers, pi pointing to the in-
dividual points (i = 1…N, where N is the number of pattern
elements), while pr points to the reference. By subtracting these,
we obtain a vector vi

vi = pi − pr (1)

and the angle of vi is calculated (αi), where xi is the x‐direction
component of vi:

αi = arccos(
xi
|vi|
) (2)

Reference angles are also calculated for the perfect pattern (βi)

using the same method. The reference angles and the calculated

angles were subtracted from each other to get the di as a devi-
ation from the reference product:

d(a)i = αi − βi (3)

The mean of the deviations of all the N elements (d) is calcu-
lated. The standard deviation of these angular deviations is as
follows:

σa =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑
N

i=1
(d(a)i − d(a))

2
√
√
√

(4)

Similarly, the distance between each participant marker and its
reference is as follows:

d(d)i =
⃦
⃦pi − pr

⃦
⃦ (5)

The standard deviation of these distances is as follows:

σd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑
N

i=1
(d(d)i − d(d))

2
√
√
√

(6)

This approach ensures a more prices and automatic evaluation,
capturing subtle variations that may not be apparent when
assessing distances or angles alone.

To validate the described quality assessment method, a series of
pictures of different completed patterns was created. Each was
slightly worse than the previous one, and the last two patterns
were built in a wrong way. The standard deviations were
calculated for these pictures as described previously. After
trying different combinations, multiplying the two deviations,
the standard deviation of the angles (σa) and the standard de-
viation of the distances (σd) together gave the same order of the

FIGURE 4 | Comparison of patterns.
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built patterns and this gave us the quality (Q). If the Q value is
low, it means the pattern is well assembled; if it is higher, then it
is not as good.

To exclude the limitations of the multiplicative quality metric,
we introduce a weighted formulation that provides greater
interpretability and avoids the nullification effect when either
deviation is zero. The quality metric Q is defined as a combi-
nation of the angular and distance standard deviations:

Q = 0.5 ⋅ σa + 0.5 ⋅ σd (7)

4 | Results and Discussion

During our experiments, 17 participants assembled a pattern as
seen in Figure 1. Participants were required to replicate the
pattern at least 20 times in a controlled environment without
any distractions. Afterwards, they repeated the task 10 times
while responding to questions asked (as a secondary task). After
each round, pictures of the completed patterns were taken for
the quality analysis as described in the previous section.

After evaluating the images, we categorised them into four
groups according to the standard deviation as the quality of the
constructed pattern. The groups consist of perfectly constructed
patterns indicated with 1, good with 2, slightly flawed with 3,
and completely incorrect with 4. The limits can be seen in
Table 2. These limits were determined using the qualities of the
reference picture series. With this approach, real‐time analysis
can be performed on the arrangement.

As a demonstration, Figure 4 shows two images, one repre-
senting a well‐assembled pattern, and the other displaying a less
accurate assembly. Markers in these images were analysed and
the standard deviation of angles, when subtracted from the
reference, provided insights into the patterns' spatial accuracy.
The Q of the well‐assembled pattern was blue 2.09, indicating a
tight cluster of blocks, which belongs to Group 2. However, the
less precise pattern showed a higher Q value of 3.86, indicating a
greater spread of angles and, hence, a less accurate assembled
pattern, and it belongs to Group 3.

The difference in results emphasises how distractions can affect
one's ability to complete a task effectively. In particular, the time
required for the initial completion of the pattern ranged from 20
to 30 s, gradually decreasing to approximately 10–15 s over
subsequent attempts, indicating a learning effect and improved
efficiency. The cut‐off points for the learning curves were
determined individually for each participant. The difference
between each consecutive attempt were calculated, and where

this stayed consistently around plus or minus 2 s, that was
determined the ‘learnt’ phase. The learnt phase is typically
initiated around the 15th attempt, and participants consistently
achieve the pattern within a fixed time frame after the 17th
attempt. Figure 5 shows the times of each round for each
participant. The overall learning can also be seen on this figure
as after the 13th attempt the curve is relatively flat. In Figure 6,
it can be seen how the times between the different phases
looked. The light grey shows the times after learning and during
distraction, and most of these are between 10 and 20 s. The
darker grey shows the times during each participants ‘learnt’
phase.

Thirteen out of 17 participants exhibited decreased perfor-
mance during the secondary task (under distraction), and
three participants maintained or improved their performance
while answering questions as seen in Table 3. This may be
because the number of learning tests was not enough for
them to learn, so they could improve even more during
distraction. The standard deviation was mostly between 1 and
3 s. In addition, the analysis included a comparison of the
average time taken during the distraction phase with that
during the learning phase. The results showed that the
average time of all participants during disturbances exceeded
their best completion time. The difference ranged from 6% to
46%, emphasising the varied impact of disturbances on indi-
vidual performance. These results highlight the complex
relationship between human thinking, task performance, and
external distractions.

The quality of the patterns of the participants was analysed. As
we described in the previous section, the assessment involves
calculating the angles between recognised markers in the
assembled patterns relative to a reference marker that measures
the distances between markers due to potential misalignments
and provides a robust measure of pattern quality.

As mentioned above, the quality was calculated by multiplying
the two deviations by 0.5 and then summarising them; this gave
a number for each image. Based on these, four groups were

TABLE 2 | The limits of the quality groups.

Group Lower limit Upper limit
1 0≤ < 1.45

2 1.45≤ < 2.45

3 2.45≤ < 3.45

4 3.45≤ — FIGURE 5 | The times for each round.
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created. The groups are categorised as described in the previous
section. As illustrated in Figure 7a, there was just a slight dif-
ference in pattern quality between the standard phase and the
distracted phase; however, there was almost no difference (a
higher value indicates lower quality). However, our hypothesis
(H1) is not supported by this.

A paired t‐test was conducted on the average completion
times of the participants during the learnt phase (without

distraction) and the distraction phase as seen in Figure 7b.
Before conducting the test, the Shapiro–Wilk test was used to
evaluate the normality of the differences in task completion
times and quality scores. Both datasets satisfied the normality
assumption (p = 0.089 for time and p = 0.298 for quality),
justifying the use of the parametric test. The p‐value, a key
determinant in hypothesis testing, was found to be 0.01. This
value signifies that the likelihood of observing such a differ-
ence by random chance is less than 5%, which falls below the

FIGURE 6 | The times it took to build the pattern during the experiment's ‘learnt’ and ‘distracted’ phase.

TABLE 3 | The means and standard deviations of the participants' building times and qualities.

ID

Time Quality group
‘Learnt’ phase With distraction ‘Learnt’ phase With distraction

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
1 17.40 2.01 19.20 1.93 1.45 0.69 1.50 0.71

2 12.64 2.21 12.70 1.34 1.62 0.77 2.20 0.79

3 17.47 1.23 17.00 1.15 1.53 0.64 1.56 1.01

4 14.93 1.49 18.20 2.04 1.88 0.96 2.40 0.84

5 12.55 1.86 14.00 1.49 3.27 0.65 2.10 1.20

6 13.65 1.66 11.90 1.29 1.94 0.68 1.71 0.95

7 18.63 2.28 14.20 1.03 1.87 0.92 1.90 0.88

8 7.42 0.79 8.80 0.92 2.64 0.81 2.80 1.03

9 11.50 1.64 12.78 1.79 2.83 0.41 2.11 0.78

10 13.27 1.10 15.60 2.07 2.83 0.75 2.43 0.79

11 15.55 1.75 16.70 1.89 2.58 0.67 1.67 0.87

12 10.56 0.81 12.41 1.43 4.00 0.00 4.00 0.00

13 12.78 1.06 16.47 3.26 3.75 0.62 3.60 0.52

14 6.66 0.66 6.24 1.08 3.00 — 3.14 1.07

15 9.49 0.78 9.62 1.10 — 4.00 0

16 11.58 0.92 12.78 1.25 3.60 0.70 4.00 0

17 9.66 1.16 10.13 0.75 — — — —
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conventional threshold of 0.05. Consequently, the null hy-
pothesis can be confidently rejected, affirming a statistically
significant difference between the completion times under
normal and distracted conditions.

This significant p‐value suggests that distractions have a
measurable impact on participant performance, confirming
quantitative observations of increased completion times and
variability during the distracted phase. In conclusion, we can
state that our second hypothesis (H2) is confirmed by the results
of the experiment.

The complexity of the pattern‐building tasks may influence
how distractions affect performance. Based on prior findings
(e.g., Nnaji and Gambatese [17]), we hypothesise that more
complex tasks increase sensitivity to interruptions. In highly
demanding tasks, even brief distractions could lead to a com-
plete stop in task execution, as dual‐tasking becomes less
feasible. This suggests that complexity could amplify the
negative effects of distraction, a direction worth exploring in
future work.

5 | Conclusion

This study aimed to explore the effects of distractions, on the
accuracy and efficiency of pattern replication tasks. The
experiment involved 17 participants who assembled a pre-
defined pattern multiple times, both in undisturbed conditions
and while responding to questions. The results demonstrated
an apparent learning effect, with participants' completion times
decreasing significantly after repeated attempts. However,
when distractions were introduced, completion times
increased, indicating that interruptions affected task perfor-
mance. These results align with previous research on the ef-
fects of cognitive load and task interruptions, such as the work
by Kolbeinsson et al. [16], which demonstrated that immediate
interruptions mostly impact efficiency rather than accuracy, as
in our case, the interruptions were scheduled, the participants
know that they have to answer the questions. Statistical anal-
ysis of completion times and pattern accuracy supports our
hypothesis.

Hypothesis 1 is rejected. The pattern quality between the
standard phase and the distracted phase showed minimal vari-
ation; the quality did not decline during the distracted phase.

Hypothesis 2 is confirmed. The significant p‐value in-
dicates that distractions significantly affect participant perfor-
mance, verifying quantitative findings of completion times and
variability during the distraction phase. Therefore, we conclude
that our second hypothesis is validated by the experimental
results.

The study has some limitations. The number of participants
was limited, and task complexity was not systematically var-
ied. Furthermore, the controlled experimental setting may not
fully reflect real‐world distractions. Future research could
examine how different levels of task complexity influence
sensitivity to distraction, and whether similar patterns emerge
in more naturalistic environments. Expanding the sample size
and task types would also help confirm and generalise the
findings.

In summary, the results of this study underscore the significant
impact of distractions on task performance. The findings reveal
that while pattern quality only slightly decreases under
distraction, completion times and variability markedly increase,
demonstrating the measurable effects of distraction load. The
observed learning curve highlights how repeated practice can
improve efficiency, but also how external interruptions can
hinder this progress. These insights emphasise the importance
of managing distractions to maintain performance quality, with
implications for fields where precision and efficiency are
essential, such as industrial environments.

This study contributes to the current body of knowledge by
bridging underexplored areas: it combines the evaluation of
learning curves with cognitive load effects using verbal
distraction, applies a repeatable manual assembly task in a
lifelike setting, and introduces a marker‐based computer vision
method to assess spatial accuracy. These aspects are rarely
studied together, especially with quantifiable metrics for both
timing and quality. Future work could build on this by
expanding the experimental setup to include tasks of varying
complexity or duration, introducing other forms of distraction

FIGURE 7 | Comparison of different metrics between distracted and nondistracted phases.
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(e.g., visual or auditory), and further automating the quality
assessment pipeline for real‐time feedback in industrial
applications.
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Appendix A: Questionary

1. Have you ever watched videos or played games that included
robots?

2. Have you ever been close or in the same space with a robot before?

3. Have you ever worked with a robot before?

4. How do you feel about the environment, and what do you think
about the workload?

5. Is the operation consistent and predictable?

6. Do you understand thoroughly the task requirements?

7. Do you think your skills are sufficient and helpful for the tasks?

8. Is the robot's presence pleasant to you?

9. Are you happy with your performance?

10. Are you ready to collaborate with this robot on more important
tasks?
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