Transient Receptor Potential (TRP) channels in cancer: Implications for drug discovery and development

Lina Hudhud^{1,2,3}, Éva Szőke^{1,2,4}, Noémi Bencze^{1,2}, Krisztina Pohóczky^{1,2,5,a} and Zsuzsanna Helyes^{1,2,4,a}

¹Department of Pharmacology and Pharmacotherapy & Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary; ²National Laboratory for Drug Research and Development, Budapest, Hungary; ³Department of Nursing, Umeå University, Umeå, Sweden; ⁴Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary; ⁵Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary

Background and general aspects

In the last decade, many studies have shown the expression of different ion channels in human cancers and suggested their role in several cellular processes, including proliferation, migration, and invasion. Cellular responses induced by Ca²⁺ influx are context-specific and dependent on both the amplitude and pattern of the responses and the presence of specific regulatory signals and/or partner proteins [1-3]. Transient receptor potential (TRP) channels have recently emerged as potential targets in cancer therapy. They are expressed in a broad range of mammalian tissues and cells, and they are of special interest as they play key roles in regulating Ca²⁺, Na⁺, and Mg²⁺ ions [4]. Therefore, they have been directly linked to the hallmarks of cancer pathophysiology. Besides being expressed by several types of cancer cells, the tumor microenvironment contains TRP channels such as Canonical 1 and 6 (TRPC1, TRPC6), Melastatin 1, 2, 4, 7, and 8 (TRPM1, TRPM2, TRPM4, TRPM7, TRPM8), Vanilloid 1 (TRPV1, TRPV4), and Ankyrin 1 (TRPA1) mainly expressed by cancer cells and by immune, vascular endothelial smooth muscle, stromal cells, and sensory nerve endings that can influence the cancer characteristics by complex sensory-vascular-immune-tumor interactions and feedback mechanisms [5,6]. Previously, TRP-channel-targeted drug discovery focused only on pain-related conditions, but as our knowledge has grown about the role and function of these channels, these efforts expanded into new clinical indications such as cancer growth, metastatic features, and cancer-related pain. Studies looking into different type of cancers have demonstrated that tumor progression is often associated with altered expression of the TRP channels. Some TRP channels are functionally linked to different cellular events and structures that are important for cell migration and invasion, such as focal adhesion and actin cytoskeleton [7]. These findings suggest that TRP channels might be potential targets for drug developmental purposes in cancer therapy. This chapter summarizes the current literature data regarding the expression and potential function of several TRP channels in different types of cancer tissues and cell lines.

The TRPC channel family

The TRPC channel family consists of seven members (TRPC1-7), but TRPC2 is a pseudogene not expressed in humans [8]. TRPCs possess two coiled-coil domains, one in the N terminus and the other in the C terminus, four ankyrin domains in the N terminus, a TRP domain, a calmodulin, and IP3R-binding site in the C terminus. These highly conserved regions within the TRPC family are shown to be involved in protein interactions and regulation of their functions [9,10]. TRPC channels participate in both receptor-operated calcium entry (ROCE) and store-operated Ca²⁺ entry (SOCE) together with

^a These authors Krisztina Pohóczky and Zsuzsanna Helyes are shared last authors.

Orai1 and STIM1 proteins [11]. The role of TRPC channels in tumor proliferation, migration, invasion, and neovascularization has been studied in a wide range of malignancies. Reports on critical role of the calcineurin pathway or other downstream targets such as the Na⁺/Ca²⁺ exchanger or chlorine channels suggest possible pathways underlying their cancer-related roles [12]. Both up- and downregulation of TRPC proteins were shown to be associated with different phases of tumor progression in several types of human cancers. To date, research exploring the role of TRPC channels in cancer mainly focuses on TRPC1 and TRPC6, while TRPC2 and TRPC7 have not yet been investigated. High expression of TRPC1 in breast cancer [13,14], TRPC3 in glioblastoma [15], TRPC5 in colon cancer [16], and TRPC6 in prostate cancer (PCa) [17] and esophageal squamous cell carcinoma samples [18] have been linked to poor prognosis or bad therapeutic response. In addition, it was reported that TRPC1, TRPC4, and TRPC5 may mediate cancer cell resistance to certain chemotherapeutics and contribute to the adverse effects caused by some anticancer treatments [12,19–23].

TRPC1

Both in vitro and in vivo studies have demonstrated the expression levels of TRPC1 in different types of cancers. In breast cancer, TRPC1 expression is different depending on the type of tumor. TRPC1 was found to be overexpressed in human breast ductal adenocarcinoma compared with the normal tissues, and this overexpression strongly correlated with proliferation, tumor size, and prognosis [24]. Low expression of TRPC1 in basal-like and triple-negative breast cancer was associated with better prognosis, while in cases of luminal breast cancer patients, high expression of TRPC1 resulted in better outcomes [13] (Table 23.1). It was also shown that blocking TRPC1 can reduce cancer cell proliferation. TRPC1 knockdown in ML-1 thyroid cancer cells [25], in human hepatocellular carcinoma Huh7 cell line [26], in non-small-cell lung carcinoma (NSCLC) cell lines [27] remarkably attenuated cancer cell proliferation. Disruption of TRPC1 by shRNA knockdown approach caused incomplete cytokinesis and slowed malignant glioma growth in a flank tumor mouse model [28]. TRPC1 overexpression promoted colorectal tumor growth and progression both in vitro and in vivo by activating calmodulin-mediated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway [29]. In addition, TRPC1 activation inhibited the proliferation and migration of estrogen receptor-positive breast cancer and improved the prognosis by inhibiting the PI3K/AKT pathway [30]. Other studies have employed different pharmacological modulators to determine the role of TRPC1 in ROCE and SOCE pathways related to cancer. For example, the selective TRP channel inhibitor 2-APB, the SOCE pathway inhibitor MRS1845, and the multitarget (SOCE, TRPC channels, and voltage-gated K⁺ and Ca²⁺ channels) inhibitor SKF96365 were used [31]. Suppression of the SOCE pathways using 2-APB and La³⁺ reduced cytosolic Ca²⁺ entry induced by tumor growth factor-β (TGFβ), a key modulator of epithelial-mesenchymal transition through TRPC1 [32]. Knockdown of TRPC1 or treatment with 2-APB reversed TGFβ-induced pancreatic cancer cell motility [31]. Moreover, 2-APB, SKF96365, and MRS1845 largely reduced Ca²⁺ influx, proliferation, and the formation of multinucleated cells in D54MG malignant glioma cell as well as disrupted cells migration. To confirm the selective role of TRPC1 in SOCE, its function was blocked by a polyclonal antibody, which decreased the Ca²⁺ entry, reduced proliferation of enlarged multinucleated cells, whereas no effect was observed with TRPC5 inhibitors [28]. Blocking TRPC1 channels by 2-APB or a specific antibody inhibited proliferation of A549 human NSCLC [33]. Furthermore, TRPC1 was shown to be involved in regulating migration and invasion both in vivo and in vitro as it is an important component of a Ca²⁺-dependent phosphorylation and activation of epidermal growth factor (EGF)-evoked cell proliferation and migration. TRPC1 also activates PI3K/AKT and mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK, Ras-Raf-MEK-ERK pathway) signaling pathway [34]. Therefore, TRPC1 acts as a key player in both normal and cancer cell functions and might be a potential diagnostic and/or therapeutic target for cancer.

TRPC6

TRPC6 membrane expression and activation are regulated by receptor tyrosine kinases and diacylglycerol generated by G-protein-coupled receptors. Consequent Ca²⁺ influx leads to activation of intracellular pathways involved in pathological cell proliferation and human malignancies [35,95]. TRPC6 was shown to be overexpressed at both mRNA and protein levels in human esophageal cancer specimen [18] and gastric cancer cells compared with the healthy epithelium [35]. The expression of TRPC6 in human head and neck squamous cell carcinomas was also greatly upregulated, and knockdown of TRPC6 in these tumors significantly attenuated invasion [36]. TRPC6 expression was higher in isolated human hepatoma cells compared with healthy hepatocytes [37]. TRPC6 was overexpressed in human glioma cells and found to be highly important in Notch-driven glioblastoma invasiveness and growth by regulating G2/M phase transition [38,39]. Cell proliferation and invasion were increased in TRPC6-overexpressing A549 human NSCLC, and its knockdown decreased invasion and suppressed the expression of the adhesion protein fibronectin and the tight junction protein ZO-1 [40].

Channel	Cancer type	Cell line/Tissue	Function	References
TRPC1	Thyroid cancer	ML-1	Proliferation, migration, invasion	[25]
	Hepatocellular carcinoma	Huh7	Proliferation	[26]
	Lung cancer	NSCLC A549	Proliferation, invasion	[27,33]
	Breast cancer	MCF-7, MDA-MB-468, MDA- MB-23 /Tissue	Tumor growth, proliferation, migration, invasion	[13,24,30]
	Glioma	Tissue	Tumor growth	[28]
	Colorectal cancer	SW620, HT29/Tissue	Tumor growth	[29]
TRPC6	Esophageal cancer	KYSE30, KYSE140, KYSE180, KYSE 410, KYSE510, KYSE520, HKESC1, EC9706/ Tissue	Tumor growth and proliferation	[18]
	Gastric adenocarcinoma	AGS and MKN45/Tissue	Tumor growth and proliferation	[35]
	Head and neck cancer	SCC2, SCC40, SCC38, SCC42b /Tissue	Invasion	[36]
	Liver cancer	Huh7/Tissue	Proliferation	[37]
	Glioblastoma	U373MG, HMEC-1	Proliferation, invasion, angiogenesis	[38,39]
	Lung cancer	NSCLC A549	Proliferation, invasion	[40]
	Breast cancer	MCF-7 and MDA-MB-231	Proliferation, migration, invasion	[41]
TRPM2	Neuroblastoma	Neuroblastoma tumor cells and xenograft mouse model	Proliferation	[42,43]
	Acute myeloid leukemia	Human AML cell line	Proliferation	[44]
	Prostate cancer	PCa, PC3	Tumor growth	[45,46]
	Breast cancer	MDA-MB-231, MCF-7	Tumor growth, proliferation	[47,48]
TRPM4	Prostate cancer	PCa, DU145, PEC	Proliferation	[49]
	Breast cancer	4T1, T47D	Contractility, migration	[50]
	Leukemia	MLL-gene-rearranged leukemia cells	Proliferation	[51]
	Endometrial cancer	Tissue	Pathogenesis	[52,53]
TRPM7	Pancreatic ductal adenocarcinoma (PDAC)	Human PDAC, PANC-1 and MIA PaCa-2	Progression, invasion	[54,55]
	Prostate cancer	PCa, DU145, PC3	Proliferation, migration, invasion	[56,57]
	Breast cancer	MDA-MB-435	Migration, invasion	[58,59]
	Urinary bladder cancer	UMUC3, T24, xenograft mouse model	Proliferation, motility, migration, invasion, colony-formation	[60,61]
	Lung cancer	A549, 95D	Proliferation	[62,63]
	Glioblastoma	U87	Tumor growth, proliferation, migration,	[64]
	Hepatocellular carcinoma	HCC	Tumor growth, proliferation	[65]

Channel	Cancer type	Cell line/Tissue	Function	References
TRPM8	Oral squamous cell carcinoma	HSC3 and HSC4	Migration, invasion	[66]
	Prostate cancer	LNCaP, PC3, DU145, xeno- graft mouse model	Tumor growth, proliferation	[67-73]
	Pancreatic adenocarcinoma	PANC-1, BxPC-3	Tumor growth, proliferation	[74]
	Glioblastoma	GBM, U251, T98G, U-87MG	Migration, proliferation	[75,76]
	Osteosarcoma	MG-63, U2OS,143B, HOS, xenograft mouse model	Tumor growth, proliferation	[77,78]
TRPV1	Breast cancer	MCF-7, BT-20	Tumor growth and progression	[79,80]
	Human papillary thyroid carcinoma	Thyroid cancer BCPAP cells	Tumor growth and progression	[81]
	Prostate cancer	LNCaP, PC-3	Tumor growth, proliferation	[82,83]
	Glioma	U373, U87, FC1 and FLS	Pro-apoptotic activity, tumor growth and progression	[84,85]
	Gastric cancer	MKN45, SGC7901, AGS, MGC803, BGC823, GES-1/ Tissue	Progression, proliferation, and migration	[86,87]
TRPA1	Pancreatic adenocarcinoma	Panc-1, MIA Paca-2, BxPC-3	Migration, cell cycle progression	[88]
	Hepatocellular carcinoma	HepG2	DNA damage, viability, migration	[89]
	Breast tumor	Breast tumor derived spheroids and endothelial cells, SUM149PT	ROS induced malignant transformation, migration,	[90,91]
	Bladder cancer	T24	Cell proliferation, cell morphology	[92]
	Cervix cancer	HeLa	Viability, apoptosis	[93]
	Lung cancer	Lung tumor derived spheroids, SCLC NCI-H146/SCLC tissue	ROS induced malignant trans- formation, cell survival, antia- poptotic effect	[90,94]

Furthermore, TRPC6 upregulation has been found in MCF-7 and MDA-MB-231 breast adenocarcinoma cell lines compared with normal breast epithelial MCF10A cells, which enhanced proliferation, migration, and invasion of these cells [41] (Table 23.1). The majority of studies suggest this critical role to be through Ca²⁺-related cell cycle modulation in these cells [34]. In this context, blocking TRPC6 activity may be a novel strategy to arrest cancer cells at G2/M phase rendering them responsive for radiotherapy. For example, it was demonstrated that inhibition of TRPC6 arrests human umbilical vein endothelial cells (HUVECs) at G2/M phase and attenuate vascular endothelial growth factor-induced HUVEC proliferation [96]. Blocking TRPC6 channels in human esophageal cancer cells depleted intracellular Ca²⁺ concentration and suppressed the activation of cyclin-dependent kinase 1 leading to cell cycle arrest and attenuation of tumor cell growth both in vitro and in vivo [97]. Moreover, in renal cell carcinoma, TRPC6 blockage prolonged the transition through G2/M phase and reduced tumor cell proliferation [98]. Based on that, targeting TRPC6 channel function may bring benefit to the treatment of different diseases, including cancers. Due to the highly conserved sequence among

TRPC channels, very few selective TRPC6 inhibitors have been developed and shown strong growth-inhibitory effects on cancer. Interestingly, vitamin D greatly reduced Ca²⁺-mediated prostate tumorigenesis by suppressing calcium sensing receptor and TRPC6 both in vitro and in vivo [99]. SKF96365 inhibited Ca²⁺ elevation mediated by TRPC6 channels and supported the results from siRNA silencing to arrest the cell cycle in G2/M phase and suppress growth of gastric cancer cells and tumor formation in a mouse xenograft model [35,100]. Several other TRPC6 antagonists were reported, but very few of them were employed in vivo because they showed poor selectivity, low potency, or low oral bioavailability. Recently, some pyrazolo[1,5-a] pyrimidine-based selective TRPC6 inhibitors [100] and benzothiazole amides [101] effectively inhibited gastric cancer cell growth in cultures and mouse xenograft models. Based on these data, it is suggested that TRPC6 antagonists offer anticancer therapeutic potential, which needs further studies to confirm.

The TRPM channel family

TRPM channels represent the most diverse TRP receptor family consisting of eight members. TRPMs are activated by Ca²⁺, Mn²⁺, Na⁺, K⁺, Ba²⁺, Cs⁺, and Mg²⁺ ions, voltages, temperatures, and lipid compounds [102]. Some TRPM channels compose cytoskeletal complexes, which regulate ion homeostasis. Recent observations highlight the role of TRPMs in autophagy, cancer metabolic reprogramming, and tumor epithelial mesenchymal transition leading to cancer cell growth, survival, or death.

TRPM1

TRPM1 has been implicated in malignant skin diseases such as cutaneous melanoma, dysplastic and benign nevi [103]. Its reduced expression was found in more advanced melanomas [104]. The increase in miR-211 expression reduces the gene expression of the growth factor receptors IGF2R and TGFBR2, as well as the nuclear factor of activated T cells 5, thus the invasion of malignant melanoma cell lines [105].

TRPM2

Pathological processes triggering oxidative stress activate TRPM2 [42,106,107], which increase intracellular Ca²⁺ concentration leading to cell death [108-110]. In contrast, there are also data that Ca²⁺ entry can play a protective role in damaged cells [111]. TRPM2 activation modulates both antioxidant responses and ROS production in neuroblastoma cells and xenograft mouse models leading to cell survival and proliferation through transcription factors and kinases [42,43]. Inhibition of TRPM2 induces mitochondrial dysfunction and increased ROS generation, while depletion of antioxidants results in cell death. A mechanism of action similar to that observed in neuroblastoma is seen in in vitro and in vivo models of acute myeloid leukemia. Deletion of TRPM2 in cells causes decreased Ca²⁺ uptake, along with reduced antioxidant response. These effects inhibit leukemia proliferation and at the same time increase sensitivity to doxorubicin [44]. TRPM2 expression is increased in PCa cells [45]. In PC3 PCa cells, H₂O₂ increases intracellular Ca²⁺ levels, decreases levels of the autophagy marker LC3-II, and leads to apoptotic cell death [46]. TRPM2 was also detected in human breast cancer (MDA-MB-231 and MCF-7 cells), and tumor cell proliferation could be reduced with an inhibitor (2-APB) or RNAi gene silencing. TRPM2 inhibition led to cell death after treatment with doxorubicin or N-methyl-N'-nitro-N-nitrosoguanidine in MDA-MB-231 cells, and in both MDA-MB-231 and MCF-7 cells, TRPM2 silencing increased both tamoxifen- and doxorubicin-induced cell death [47,48] (Table 23.1).

TRPM4

The TRPM4 channel has been identified as a protective prognostic gene in endometrial cancer (EC) [52,53]. TRPM4 silencing downregulates the p53 and PI3K/AKT signaling pathways, which are involved in the pathogenesis of EC. Low TRPM4 expression in EC patient tissues is associated with worse recurrence-free and overall survival [53]. TRPM4 is one of the leading genes in nonhormonal PCa. Its increased expression has been detected in PCa and prostatic intraepithelial neoplastic tissues [49]. TRPM4 knockdown significantly increased SOCE in normal prostate epithelial cells and the DU145 PCa cells, which is a human cell line with epithelial morphology. TRPM4 and K⁺ channel tetramerization domain

5 protein are overexpressed in breast cancer, which increases the Ca²⁺ sensitivity of the channel and promotes cell contractility and migration [50] (Table 23.1). TRPM4 knockdown arrested the cell cycle at the G0/G1 phase in mixedlineage leukemia rearranged (MLL-r) leukemia cells, therefore decreased tumor proliferation. TRPM4 has been described to be involved in the regulation of the AKT/GLI1/Cyclin D1 pathway, therefore in the pathogenesis of this type of leukemia [51].

TRPM7

TRPM7 was found to be essential for pancreatic progression and invasion of ductal adenocarcinoma via inducing Mg²⁺ entry [54], therefore silencing TRPM7 reduced cancer cell invasion [55]. TRPM7 was overexpressed in PCa cells and tissues leading to poor survival [56], and its activation leads to increased serum Ca²⁺/Mg²⁺ ratio and cell proliferation in PCa [57]. Knockdown of TRPM7 in androgen-independent DU145 and PC3 PCa cells suppressed migration and invasion [56]. Increased expression level of TRPM7 reduced survival in luminal A breast cancer patients, deadhesion of cell—matrix interactions and myosin-II-based cell strains are TRPM7-dependent [58]. TRPM7 also had a role in the migration and invasion of MDA-MB-435 breast cancer cells through the regulation of the Src and MAPK pathways [59]. TRPM7 upregulation was described in urinary bladder cancer proliferation, motility, and apoptosis [60,61]. Its silencing decreased c-Jun N-terminal kinase, Akt and Src phosphorylation, therefore the migration and invasion ability of the human epithelial urinary bladder cancer UMUC3 and T24 cells. In addition, the TRPM7 antagonist oridonin inhibited the T24 cell proliferation, migration, and colony formation [60]. Another TRPM7 inhibitor, carvacrol, diminished the bladder tumor size in a xenograft mouse model [61]. TRPM7 is overexpressed in the most commonly used A549 human NSCLC after EGF stimulation [62]. The lipid raft constituent Cav-1 overexpressed in lung adenocarcinoma is decreased by TRPM7 inhibition [63]. In U87 glioblastoma cells, the TRPM7 agonist, naltriben, evoked Ca²⁺-related MAPK/ERK signaling pathway activation. In addition, carvacrol induced apoptosis and diminished cell growth, cell viability, migration, and matrix metalloprotease 2 protein expression in these glioblastoma cells [64]. In hepatocellular carcinoma, inhibition of the TRPM7/myocardin-related transcription factors A and B inhibited cell growth. TRPM7 blockade arrested cell cycle in G1 phase. Meanwhile, TRPM7 activation induced Mg²⁺ influx too, which is required for kinase activity resulting in TRPM7-Ras homolog family member A (RhoA) interaction and myocardin-related transcription factor transcriptional activity [65].

TRPM8

TRPM8 was reported to be overexpressed in oral squamous cell carcinoma (SCC) cells, and the TRPM8 antagonist RQ-00203078 reduced migration and invasion capability of HSC3 and HSC4 SCC cell lines [66]. TRPM8 was also upregulated in several prostate cancer types. In prostate epithelial cells, the TRPM8 gene promoter activation was found to be androgen receptor activation-dependent [67,68]. Overexpression of TRPM8 transcript has been described in the androgenresponsive LNCaP PCa cells [69], in which TRPM8 silencing or capsazepine blockade decreased cell viability and induced apoptosis [67]. Other TRPM8 blockers BCTC, AMT, and JNJ41876666 decreased cell proliferation in both the androgenresponsive LNCaP and the androgen-unresponsive PC3 and DU145 cell lines. TRPM8 silencing in different prostatic tumor cells arrested cells in the G0/G1 phases [70] TRPM8 depletion increased p38 MAPK and c-Jun N-terminal kinase (JNK) phosphorylation and inhibited cell proliferation in LNCaP and PC3 cells [71]. The TRPM8 agonist menthol induced antiproliferative effect in PC3 cells and in a Pca xenograft mouse model [72]. A novel, selective tetrahydroisoquinolinebased TRPM8 antagonist had strong antiproliferative effect in LNCaP cells [73]. Pancreatic adenocarcinoma cell lines also overexpressed TRPM8 channels, and its silencing decreased cell proliferation and arrested the cell cycle in the G1 in PANC-1 and BxPC-3 cell lines [54]. The TRPM8 agonists menthol and icilin increased glioblastoma cell migration rate [75] and increased proliferation of U251 glioblastoma cells [76]. Icilin also increased migration speed in T98G and U-87MG glioblastoma cell lines through the activation of the large-conductance Ca²⁺⁻activated K⁺ membrane ion channels (BK) [75]. TRPM8 was found upregulated in human osteosarcoma cancer cell lines MG-63 and U2OS leading to increased proliferation [77]. TRPM8 silencing arrested cell cycle in G0/G1 through decreased p-GSK-3β and p-Akt expressions. TRPM8 silencing not only negatively influences the cell proliferation and metastasis but also increases epirubicin-evoked cell apoptosis [112]. The TRPM8 antagonist AMTB resulted in suppressed proliferation and apoptosis induction in 43B, U2OS, HOS, and MG-63 osteosarcoma cells. In nude mice xenograft model, AMTB repressed the activation of TGFβ signaling and increased the sensitivity of tumor cells to cisplatin [78] (Table 23.1).

The TRPV channel family

TRPV receptors are structurally similar to the other TRP channels, but they contain additional three to five ankyrin repeat domains in the N-terminus. TRPV family members are related to specific activation mechanisms and physiological functions [1]. They are activated by multiple stimuli (noxious heat, protons, vanilloids such as capsaicin) and participate in the activation of several downstream cascades [113].

Based on their homology, the six members of the TRPV subfamily can be classified into four groups: TRPV1/TRPV2, TRPV3, TRPV4, and TRPV5/TRPV6 [114]. Among these, TRPV1 is the most thoroughly investigated member in relation to pain, inflammation, neural functions, and cancer.

TRPV1

TRPV1 is expressed in a wide range of tissues, most importantly on the capsaicin-sensitive sensory neurons, but also in the skin, airways, GI tract, immune cells, pancreatic B cells, and urinary epithelial cells [115]. Noxious heat (>43°C), protons, capsaicin and other vanilloids, and bacterial toxins such as lipopolysaccharide activate this channel [116,117], TRPV1 was originally associated with thermosensation, nociception, and pain. It can also be sensitized by inflammatory molecules, such as bradykinin, through G-protein-coupled receptors and substance-P, which generate second messengers such as phosphatidylinositol-4,5-biphosphate, inositol triphosphate, and diacylglycerol [118]. The TRPV1 agonists capsaicin and resiniferatoxin, as well as antagonists such as capsazepine, BCTC, SB-705,498, NEO6860 were investigated to manage migraine, osteoarthritis, bladder, dermatitis, and neuropathic pain. Activation of TRPV1 receptors can be associated with antiinflammatory and anticancer effects [119].

Different studies indicated TRPV1 to be a potential as a drug target for cancer genesis and development. Functional expression of TRPV1 was demonstrated in several tumor types such as human breast cancer MCF-7 and BT-20 cells, human papillary thyroid carcinoma BCPAP cells, LNCaP and PC-3 prostate adenocarcinoma cells, urothelial cancer cells, and glioma [79,81,82,84]. The role of TRPV1 in tumorigenesis is not clear. Its capsaicin-induced activation was shown to significantly reduce proliferation and induce apoptosis of aggressive triple-negative breast cancer SUM149PT cells [79]. Increased TRPV1 expression was shown in high-grade astrocytoma, and its stimulation induced tumor cell death through activating the transcription factor-3 [120]. On the other hand, studies showed that despite the presence of TRPV1 in breast (MCF7, MDA-MB- 231, BT-474) and prostate carcinoma (PC-3, Du 145, LNCaP) cell lines, capsaicin administration at high concentration (50 μM) did not exhibit cytotoxic effect [80]. TRPV1 uniquely extinguished gastric cancer development through a novel Ca²⁺/calmodulin-dependent protein kinase kinase/adenosine 5'monophosphate-activated protein kinase (Ca²⁺/CaMKKβ/AMPK) pathway, and its downregulation relates to poor survival of gastric cancer patients [86] (Table 23.1).

TRPV1 channels play unique role in the pathogenesis of lung adenocarcinoma. Hyperexpression of TRPV1 increased the proliferation and migration of tumor cells through the nuclear accumulation of the hypoxia-inducible factor 1α and Nitric oxide synthase 1 (NOS1-NO) pathway in multiple lung cancer cells, including A549 cells and clinical tissue samples from lung cancer patients. Newly discovered mechanism, which photothermal nanoparticles (CuS-TRPV1 mAb) targeted to TRPV1, may kill tumor cells with TRPV1 overexpression, causes inhibited tumor proliferation and metastasis [121].

TRPA1

TRPA1 is the sole member of the TRP ankyrin family expressed in a wide range of human and animal cell types. TRPA1 is a promiscuous channel activated by numerous exogenous (cinnamaldehyde, allyl-isothiocyanate- AITC, cold temperature) and endogenous irritants and inflammatory substances (formalin, H₂O₂), as well as environmental pollutants (acrolein, nicotine, tear gases). It plays a role in both proinflammatory and protective responses such as tearing, airway resistance, and cough [122]. Recent studies suggest that since TRPA1 is activated by both reactive and nonreactive compounds, it acts as an important chemosensor being responsible for tissue homeostasis [123,124].

TRPA1 has been described to be overexpressed in some tumors; however, data are controversial on its role. TRPA1 activation in glioblastoma cells by excessive production of intracellular reactive oxygen species [125] or a synthetic agonist leads to apoptosis [126]. Furthermore, in glioma cells, TRPA1 activation resulted in decreased expressions of the DNA repair enzyme O6-methylguanine DNA-methyltransferase and several antioxidant enzymes. These led to mitochondrial dysfunction and ultimate cell apoptosis, while receptor antagonism exerted the opposite effect [126]. In contrast, TRPA1 activation increases intracellular Ca²⁺ level and consequently antiapoptotic pathway activation leading to cell migration and presumably tumor cell invasion [90]. Elevated TRPA1 expression was detected in human small cell lung cancer (SCLC). In contrast to glioma cells, TRPA1 activation prevented apoptosis and thus promoted cell survival in this type of cancer cells [94] (Table 23.1).

In poorly differentiated pancreatic adenocarcinoma MIA-Paca-2 and Panc-1cell lines, TRPA1 expression has been reported, but only a modest proportion of cells responded to the TRPA1 agonist AITC during both Ca²⁺ microfluorimetry and patch-clamp experiments. These results were contradictory with immunofluorescence results showing high TRPA1 protein expression in 90% of pancreatic cells [88]. This suggests either nonspecific TRPA1 immunostaining or other factors regulating TRPA1 receptor translocation and functional expression in these tumor cells. In HepG2 human hepatocellular carcinoma cells, high dose (≥20 μM) AITC induced significant DNA-damage and reduced the cell viability and migration [89]. The anticancer effects of AITC treatment were also demonstrated in bladder [92] and cervix cancer cells [93].

Moving toward head and neck located cancers, upregulated TRPA1-like immunopositivity was described in nasopharyngeal carcinoma with negative predictive value for disease-specific metastasis and local recurrence-free survival [6,127] (Table 23.1). Elevated TRPA1 mRNA expression was observed in human oral squamous cell carcinoma (OSCC) samples compared with healthy oral mucosa using RT-qPCR and RNAScope in situ hybridization. The functionality of TRPA1 was also proved after AITC administration in PECA/PJ-41 oral squamous cell carcinoma cell line. Furthermore, incubation with AITC significantly reduced the viability of the OSCC cell line [128].

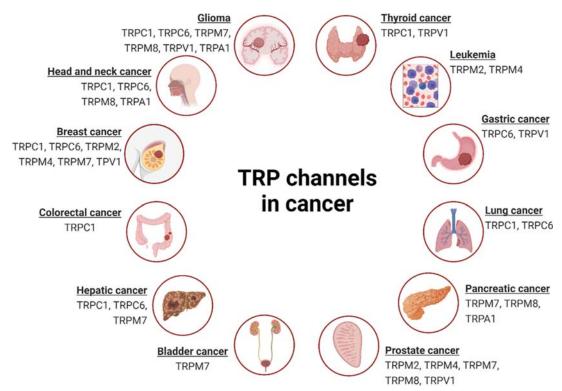
TRP channels in cancer pain

Chronic pain is a common symptom during cancer progression, which represents a unique and distinct mechanism. It is caused by the cancer proliferation and metastasis formation (e.g., bones) and/or the cancer treatment (chemotherapy, targeted treatments), which further complicates the prognosis and significantly decreases the quality of life [129]. Moderate and severe cancer pain is often treated with opioid-based pharmacotherapy, but these drugs have many side effects; therefore, it is a huge unmet need where novel drug targets and mechanisms are inevitable.

TRP channels are crucial in the transduction of nociceptive stimuli. Mediators released in the tumor microenvironment can modulate the activity of TRP channels through the regulation of intracellular signaling pathways. Their modulation is related to the peripheral sensitization observed in cancer patients, which results in mild noxious sensory stimuli being perceived as severe spontaneous pain, hyperalgesia, and allodynia. TRPV1 expression in cells involved in detecting cancer pain and their role in pain processing makes them potential targets for analgesics. Although their direct activation on primary sensory neurons plays a key role in the development of cancer pain [130], oxidizing agents produced by the cancer and other cells (e.g., immune, vascular, endothelial cells and fibroblasts) sensitize these channels [131,132]. TRPV1 sensitization is also mediated by protease-activated receptor 2 signaling in these fibers innervating the cancer microenvironment [133].

TRPV1 is upregulated on sensory neurons that innervate oral cancers by which it mediates pain [134,135].

Pharmacological modulation of TRPV1 represents a strategy for the treatment of chronic pain. The validation of TRPV1 as a therapeutic target for the control of pain and inflammatory conditions in a variety of diseases has prompted the development of several TRPV1 agonists and antagonists that have entered clinical trials. There are several distinct outcomes in preclinical pain models in the case of TRPV1 antagonists (AMG517, ABT-102, JTS653, AZD-1386, MK-2295) such as affecting core body temperature causing adverse effects (hyperthermia and impaired noxious heat sensation) in humans, leading to their withdrawal from clinical trials [136].


TRPV1 is unique among drug targets in that its initial excitation by agonists is followed by a lasting refractory state (traditionally referred to as desensitization) in which TRPV1-expressing neurons are not responsive to stimulation. Currently, there are several clinical trials with therapeutic formulation of capsaicin, as capsaicin patch (Qutenza, 8%) or gel (0.025%) for the treatment of neuropathic pain in various diseases [136,137].

The transdermal capsaicin patch was approved as effective adjuvant therapy, either alone or in combination with other analgesics and offers a low-risk choice for patients for pain control. Its systemic absorption has severe side effects on blood pressure and respiration, but several improvements of topical and injectable agents are tested [137]. In the future, there are alternative approaches, such as gene editing of the expression or posttranslational modification of TRPV1 [21]. Finally, in cancer and chemotherapy-induced pain, either pharmacological blockade or genetic manipulation of TRPV1 has proved to be effective experimentally [134,138].

Similar to TRPV1, TRPA1 is also highly expressed on nociceptors and involved in pain and inflammation [136]. TRPA1 has the greatest sensitivity to oxidative stress and can be activated by a diverse series of oxidative by-products such as H₂O₂, nitrooleic acid, 4-hydroxy-trans-2-nonenal, 4-oxononenal, and acrolein [139] that are present at high amount in cancerous tissues [140]. Furthermore, irradiation and antineoplastic agents such as anthracyclines (e.g., doxorubicin, epirubicin, daunorubicin), alkylating agents, platinum containing complexes (e.g., cisplatin, carboplatin, oxaliplatin), epipodophyllotoxins (e.g., etoposide, teniposide), and camptothecins (e.g., topotecan, irinotecan) generate high levels of oxidative stress [141,142]. Moreover, in vivo studies also demonstrated that TRPA1 can directly be activated by the chemotherapeutic agent dacarbazine used in the treatment of Hodgkin lymphoma and melanoma [143], and aromatase inhibitors such as letrozole and anastrozole representing first-line chemotherapeutic agents in breast cancer [144]. Various preclinical models have shown the involvement of TRPA1 in cancer pain. Genetic deletion of TRPA1 attenuated both mechanical and cold allodynia and thigmotaxis behavior of mice injected with B16—F10 melanoma cells. TRPA1 mRNA expression was elevated in cultured trigeminal ganglion neurons of these animals [145]. In a mouse model of breast cancer, both the TRPA1 receptor antagonist HC-030,031 and the TRPA1 receptor antisense oligonucleotide exerted antiallodynic and antinociceptive effects. Moreover, the antioxidant lipoic acid (shown to act as a TRPA1 antagonist [146] reduced pain thresholds in this model [147]. TRPA1 deletion decreased pain behaviors in a mouse model of chemotherapy-induced peripheral neuropathy [139,148].

Summary

All these data demonstrate the expression and activity changes of a broad range of TRP channels in different types of cancers (Fig. 23.1) and suggest that these receptors may serve as valuable biomarkers to predict cancer prognosis or as potential therapeutic targets. Several mechanisms including mitochondrial dysfunction and caspase3 (Casp3) activation, focal adhesion kinase (FAK) activation, the MAPK/ERK, and PI3K/AKT through TRP-dependent Ca²⁺ signaling may affect apoptosis, proliferation, migration, and invasion ability of cancer cells altering progression and metastasis formation in both directions depending on cancer type and complex tumor—neuro—vascular—immune interactions in the microenvironment [7] (Fig. 23.2).

FIGURE 23.1 Overview of the expression and/or functional changes of several TRP channels in different types of cancers. Adapted from "increased risk of cancers with Obesity template", by BioRender.com (2023). Retrieved from https://app.biorender.com/biorender-templates.

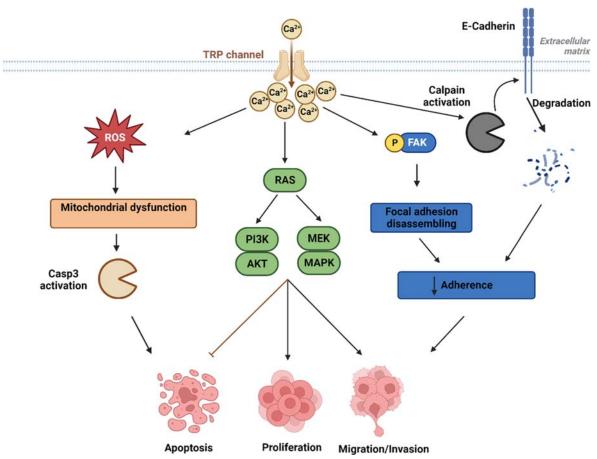


FIGURE 23.2 Representative image of the role of TRP channels-mediated Ca²⁺ signaling on cancer cellular processes. *Created with http://www.BioRender.com.*

References

- [1] T. Kärki, S. Tojkander, Trpv protein family—from mechanosensing to cancer invasion, Biomolecules 11 (7) (July 01, 2021), https://doi.org/10.3390/biom11071019.
- [2] D.E. Clapham, Calcium signaling, Cell 131 (6) (December 14, 2007) 1047–1058, https://doi.org/10.1016/j.cell.2007.11.028.
- [3] P.J. Cullen, P.J. Lockyer, Integration of calcium and ras signalling, Nat. Rev. Mol. Cell Biol. 3 (5) (2002) 339-348, https://doi.org/10.1038/nrm808
- [4] H.P. Fallah, et al., A review on the role of TRP Channels and their potential as drug Targets_An insight into the TRP channel drug discovery methodologies, Front. Pharmacol. 13 (May 2022), https://doi.org/10.3389/FPHAR.2022.914499.
- [5] N. Prevarskaya, L. Zhang, G. Barritt, TRP channels in cancer, Biochim. Biophys. Acta 1772 (8) (August 2007) 937—946, https://doi.org/10.1016/ J.BBADIS.2007.05.006.
- [6] F. Kiss, K. Pohóczky, A. Szállási, Z. Helyes, Transient receptor potential (Trp) channels in head-and-neck squamous cell carcinomas: diagnostic, prognostic, and therapeutic potentials, Int. J. Mol. Sci. 21 (17) (September 01, 2020) 1–19, https://doi.org/10.3390/ijms21176374.
- [7] D. Yang, J. Kim, Emerging role of transient receptor potential (TRP) channels in cancer progression, BMB Rep. 53 (3) (2020) 125–132, https://doi.org/10.5483/BMBREP.2020.53.3.016.
- [8] K. Formoso, S. Susperreguy, M. Freichel, L. Birnbaumer, RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways, Sci. Rep. 10 (1) (April 2020) 1–20, https://doi.org/10.1038/s41598-020-61177-x.
- [9] S. Feng, TRPC channel structure and properties, Adv. Exp. Med. Biol. 976 (2017) 9-23, https://doi.org/10.1007/978-94-024-1088-4_2.
- [10] H. Wang, et al., TRPC channels: structure, function, regulation and recent advances in small molecular probes, Pharmacol. Ther. 209 (May 2020), https://doi.org/10.1016/J.PHARMTHERA.2020.107497.
- [11] Y. Liao, et al., Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels, Proc. Natl. Acad. Sci. U. S. A. 105 (8) (February 2008) 2895—2900, https://doi.org/10.1073/PNAS.0712288105.
- [12] S. Curcic, O. Tiapko, K. Groschner, Photopharmacology and opto-chemogenetics of TRPC channels-some therapeutic visions, Pharmacol. Therapeut. 200 (August 01, 2019) 13–26, https://doi.org/10.1016/j.pharmthera.2019.04.003.

- [13] I. Azimi, et al., TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells, J. Cell Sci. 130 (14) (July 2017) 2292-2305, https://doi.org/10.1242/jcs.196659.
- [14] Y. Zhang, X. Lun, W. Guo, Expression of TRPC1 and SBEM protein in breast cancer tissue and its relationship with clinicopathological features and prognosis of patients, Oncol. Lett. 20 (6) (December 2020), https://doi.org/10.3892/ol.2020.12255.
- [15] H.H. Chang, Y.C. Cheng, W.C. Tsai, M.J. Tsao, Y. Chen, Pyr3 induces apoptosis and inhibits migration in human glioblastoma cells, Cell. Physiol. Biochem. 48 (4) (August 2018) 1694-1702, https://doi.org/10.1159/000492293.
- [16] Z. Chen, et al., Overexpression of TrpC5 promotes tumor metastasis via the HIF-1α-twist signaling pathway in colon cancer, Clin. Sci. 131 (19) (October 2017) 2439-2450, https://doi.org/10.1042/CS20171069.
- [17] D. Yue, Y. Wang, J.Y. Xiao, P. Wang, C.S. Ren, Expression of TRPC6 in benign and malignant human prostate tissues, Asian J. Androl. 11 (5) (2009) 541-547, https://doi.org/10.1038/aja.2009.53.
- [18] S.S. Zhang, et al., High expression of transient potential receptor C6 correlated with poor prognosis in patients with esophageal squamous cell carcinoma, Med. Oncol. 30 (3) (September 2013), https://doi.org/10.1007/s12032-013-0607-7.
- [19] X. Ma, et al., Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells, Proc. Natl. Acad. Sci. U. S. A. 109 (40) (October 2012) 16282—16287, https://doi.org/10.1073/pnas.1202989109.
- [20] X. Ma, et al., Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance, Proc. Natl. Acad. Sci. U. S. A. 111 (17) (April 2014) 6389-6394, https://doi.org/10.1073/pnas.1400272111.
- [21] T. Wang, et al., Inhibition of transient receptor potential channel 5 reverses 5-fluorouracil resistance in human colorectal cancer cells, J. Biol. Chem. 290 (1) (January 2015) 448-456, https://doi.org/10.1074/jbc.M114.590364.
- [22] T.A. Stewart, I. Azimi, E.W. Thompson, S.J. Roberts-Thomson, G.R. Monteith, A role for calcium in the regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition, Biochem. Biophys. Res. Commun. 458 (3) (March 2015) 509-514, https://doi.org/10.1016/j.bbrc.2015.01.141.
- [23] T. Wang, K. Ning, X. Sun, C. Zhang, L. fang Jin, D. Hua, Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer, BMC Cancer 18 (1) (February 2018), https://doi.org/10.1186/s12885-018-4123-1.
- [24] I. Dhennin-Duthille, et al., High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters, Cell. Physiol. Biochem. 28 (5) (2011) 813-822, https://doi.org/10.1159/000335795.
- [25] M.Y. Asghar, et al., Transient receptor potential canonical 1 (TRPC1) channels as regulators of sphingolipid and VEGF receptor expression: implications for thyroid cancer cell migration and proliferation, J. Biol. Chem. 290 (26) (June 2015) 16116-16131, https://doi.org/10.1074/ jbc.M115.643668.
- [26] C. Selli, Y. Erac, B. Kosova, E.S. Erdal, M. Tosun, Silencing of TRPC1 regulates store-operated calcium entry and proliferation in Huh7 hepatocellular carcinoma cells, Biomed. Pharmacother. 71 (April 2015) 194-200, https://doi.org/10.1016/j.biopha.2015.02.024.
- [27] N. Tajeddine, P. Gailly, TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling, J. Biol. Chem. 287 (20) (May 2012) 16146-16157, https://doi.org/10.1074/jbc.M112.340034.
- [28] V.C. Bomben, H. Sontheimer, Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas, Glia 58 (10) (August 2010) 1145-1156, https://doi.org/10.1002/glia.20994.
- [29] Y. Sun, et al., TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis, Oncogenesis 10 (10) (October 2021), https://doi.org/10.1038/s41389-021-00356-5.
- [30] L.Y. Zhang, et al., TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway, Breast Cancer Res. Treat. 182 (1) (July 2020) 21-33, https://doi.org/10.1007/s10549-020-05673-8.
- [31] H. Dong, et al., Molecular mechanisms underlying Ca 2-mediated motility of human pancreatic duct cells, Am. J. Physiol. Cell Physiol. 299 (2010) 1493-1503, https://doi.org/10.1152/ajpcell.00242.2010.-We.
- [32] O.M. Elzamzamy, R. Penner, L.A. Hazlehurst, Cells the role of TRPC1 in modulating cancer progression 9 (2020), https://doi.org/10.3390/ cells9020388.
- [33] H.N. Jiang, et al., Involvement of TRPC channels in lung cancer cell differentiation and the correlation analysis in human non-small cell lung cancer, PLoS One 8 (6) (June 2013), https://doi.org/10.1371/journal.pone.0067637.
- [34] C. Zhan, Y. Shi, TRPC channels and cell proliferation, in: Advances in Experimental Medicine and Biology, Springer New York LLC, 2017, pp. 149-155, https://doi.org/10.1007/978-94-024-1088-4_13.
- [35] R. Cai, et al., Blockade of TRPC6 channels induced G2/M phase arrest and suppressed growth in human gastric cancer cells, Int. J. Cancer 125 (10) (November 2009) 2281–2287, https://doi.org/10.1002/ijc.24551.
- [36] S. Bernaldo de Quirós, et al., Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas, BMC Cancer 13 (March 2013), https://doi.org/10.1186/1471-2407-13-116.
- [37] C. El Boustany, G. Bidaux, A. Enfissi, P. Delcourt, N. Prevarskaya, T. Capiod, Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation, Hepatology 47 (6) (June 2008) 2068-2077, https://doi.org/10.1002/hep.22263.
- [38] S. Chigurupati, et al., Receptor channel TRPC6 is a key mediator of notch-driven glioblastoma growth and invasiveness, Cancer Res. 70 (1) (January 2010) 418-427, https://doi.org/10.1158/0008-5472.CAN-09-2654.
- [39] X. Ding, et al., Essential role of trpc6 channels in G2/M phase transition and development of human glioma, J. Natl. Cancer Inst. 102 (14) (July 2010) 1052-1068, https://doi.org/10.1093/jnci/djq217.
- [40] L.L. Yang, et al., Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion, Oncotarget 8 (3) (2017) 5123-5134, https://doi.org/10.18632/ONCOTARGET.14034.

- [41] I. Jardin, et al., Trpc6 channels are required for proliferation, migration and invasion of breast cancer cell lines by modulation of orai1 and orai3 surface exposure, Cancers 10 (9) (September 2018), https://doi.org/10.3390/cancers10090331.
- [42] B.A. Miller, TRPM2 in cancer, Cell Calcium 80 (2019) 8-17, https://doi.org/10.1016/j.ceca.2019.03.002.
- [43] L. Bao, et al., Depletion of the human ion channel TRPM2 in neuroblastoma demonstrates its key role in cell survival through modulation of mitochondrial reactive oxygen species and bioenergetics, J. Biol. Chem. 291 (47) (2016) 24449—24464, https://doi.org/10.1074/jbc.M116.747147.
- [44] S. Jen Chen, et al., Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy, Cell Death Dis. 11 (4) (2020), https://doi.org/10.1038/s41419-020-2454-8.
- [45] X. Zeng, et al., Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation, Prost. Cancer Prost. Dis. 13 (2) (2010) 195–201, https://doi.org/10.1038/pcan.2009.55.
- [46] Q. Wang, L. Huang, J. Yue, Oxidative stress activates the TRPM2-Ca²⁺-CaMKII-ROS signaling loop to induce cell death in cancer cells, Biochim. Biophys. Acta Mol. Cell Res. 1864 (6) (June 2017) 957–967, https://doi.org/10.1016/j.bbamcr.2016.12.014.
- [47] M.M. Hopkins, X. Feng, M. Liu, L.P. Parker, D.W. Koh, Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells, Int. J. Oncol. 46 (5) (2015) 2267–2276, https://doi.org/10.3892/ijo.2015.2919.
- [48] D.W. Koh, D.P. Powell, S.D. Blake, J.L. Hoffman, M.M. Hopkins, X. Feng, Enhanced cytotoxicity in triple-negative and estrogen receptor-positive breast adenocarcinoma cells due to inhibition of the transient receptor potential melastatin-2 channel, Oncol. Rep. 34 (3) (September 2015) 1589—1598, https://doi.org/10.3892/or.2015.4131.
- [49] E.N. Schinke, et al., A novel approach to identify driver genes involved in androgen-independent prostate cancer, Mol. Cancer 13 (1) (2014) 1–12, https://doi.org/10.1186/1476-4598-13-120.
- [50] J. Rivas, et al., KCTD5, a novel TRPM4-regulatory protein required for cell migration as a new predictor for breast cancer prognosis, FASEB (Fed. Am. Soc. Exp. Biol.) J. 34 (6) (2020) 7847-7865, https://doi.org/10.1096/fj.201901195RRR.
- [51] F. Wang, et al., Aberrant TRPM4 expression in MLL-rearranged acute myeloid leukemia and its blockade induces cell cycle arrest via AKT/GLI1/ Cyclin D1 pathway, Cell. Signal. 72 (January) (2020) 109643, https://doi.org/10.1016/j.cellsig.2020.109643.
- [52] L. Liu, J. Lin, H. He, Identification of potential crucial genes associated with the pathogenesis and prognosis of endometrial cancer, Front. Genet. 10 (APR) (2019), https://doi.org/10.3389/fgene.2019.00373.
- [53] X.C. Li, et al., Decreased expression of TRPM4 is associated with unfavorable prognosis and aggressive progression of endometrial carcinoma, Am. J. Transl. Res. 12 (7) (2020) 3926—3939. https://pubmed.ncbi.nlm.nih.gov/32774746/. (Accessed 14 September 2023).
- [54] N.S. Yee, et al., TRPM8 ion channel is aberrantly expressed and required for preventing replicative senescence in pancreatic adenocarcinoma: potential role of TRPM8 as a biomarker and target, Cancer Biol. Ther. 13 (8) (2012) 592–599, https://doi.org/10.4161/cbt.20079.
- [55] P. Rybarczyk, et al., The transient receptor potential melastatin 7 channel regulates pancreatic cancer cell invasion through the Hsp90α/uPA/MMP2 pathway, Neoplasia 19 (4) (April 2017) 288–300, https://doi.org/10.1016/j.neo.2017.01.004.
- [56] L. Chen, et al., Downregulation of TRPM7 suppressed migration and invasion by regulating epithelial—mesenchymal transition in prostate cancer cells, Med. Oncol. 34 (7) (July 2017), https://doi.org/10.1007/s12032-017-0987-1.
- [57] Y. Sun, S. Selvaraj, A. Varma, S. Derry, A.E. Sahmoun, B.B. Singh, Increase in serum Ca²⁺/Mg²⁺ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels, J. Biol. Chem. 288 (1) (January 2013) 255–263, https://doi.org/10.1074/jbc.M112.393918.
- [58] A. Guilbert, et al., Transient receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration through its kinase domain, Eur. J. Cancer 49 (17) (2013) 3694–3707, https://doi.org/10.1016/j.ejca.2013.07.008.
- [59] X. Meng, et al., TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway, Cancer Lett. 333 (1) (2013) 96–102, https://doi.org/10.1016/j.canlet.2013.01.031.
- [60] X. Che, et al., Oridonin promotes apoptosis and restrains the viability and migration of bladder cancer by impeding TRPM7 expression via the ERK and AKT signaling pathways, BioMed Res. Int. 2021 (2021), https://doi.org/10.1155/2021/4340950.
- [61] E.H. Lee, et al., Knockdown of TRPM7 prevents tumor growth, migration, and invasion through the Src, Akt, and JNK pathway in bladder cancer, BMC Urol. 20 (1) (September 2020), https://doi.org/10.1186/s12894-020-00714-2.
- [62] H. Gao, X. Chen, X. Du, B. Guan, Y. Liu, H. Zhang, EGF enhances the migration of cancer cells by up-regulation of TRPM7, Cell Calcium 50 (6) (2011) 559–568, https://doi.org/10.1016/j.ceca.2011.09.003.
- [63] S. Luanpitpong, et al., A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma, Br. J. Cancer 123 (8) (October 2020) 1289—1301, https://doi.org/10.1038/s41416-020-0991-7.
- [64] W.L. Chen, et al., Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion, Oncotarget 6 (18) (June 2015) 16321, https://doi.org/10.18632/ONCOTARGET.3872.
- [65] S. Voringer, et al., Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity, Oncogene 39 (11) (March 2020) 2328–2344, https://doi.org/10.1038/s41388-019-1140-8.
- [66] Y. Okamoto, T. Ohkubo, T. Ikebe, J. Yamazaki, Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines, Int. J. Oncol. 40 (5) (May 2012) 1431–1440, https://doi.org/10.3892/ijo.2012.1340.
- [67] L. Zhang, G.J. Barritt, Evidence that TRPM8 is an androgen-dependent Ca²⁺ channel required for the survival of prostate cancer cells, Cancer Res. 64 (22) (November 2004) 8365–8373, https://doi.org/10.1158/0008-5472.CAN-04-2146.
- [68] G. Bidaux, et al., Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement, Endocr. Relat. Cancer 12 (2) (June 2005) 367–382, https://doi.org/10.1677/erc.1.00969.
- [69] S. Asuthkar, L. Demirkhanyan, S.R. Mueting, A. Cohen, E. Zakharian, High-throughput proteome analysis reveals targeted TRPM8 degradation in prostate cancer, Oncotarget 8 (8) (2017) 12877—12890, https://doi.org/10.18632/oncotarget.14178.

- [70] M.L.l. Valero, F. Mello de Queiroz, W. Stühmer, F. Viana, L.A. Pardo, TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells, PLoS One 7 (12) (2012) 2-13, https://doi.org/10.1371/journal.pone.0051825.
- [71] T. Liu, et al., RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells, Oncol. Lett. 15 (4) (2018) 4129-4136, https://doi.org/10.3892/ol.2018.7847.
- [72] G.P. Grolez, et al., TRPM8 as an anti-tumoral target in prostate cancer growth and metastasis dissemination, Int. J. Mol. Sci. 23 (12) (June 2022), https://doi.org/10.3390/ijms23126672.
- [73] L. De Petrocellis, et al., Tetrahydroisoquinoline-derived urea and 2,5-diketopiperazine derivatives as selective antagonists of the transient receptor potential melastatin 8 (TRPM8) channel receptor and antiprostate cancer agents, J. Med. Chem. 59 (12) (2016) 5661-5683, https://doi.org/ 10.1021/acs.jmedchem.5b01448.
- [74] N.S. Yee, W. Zhou, M. Lee, Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma, Cancer Lett. 297 (1) (November 2010) 49-55, https://doi.org/10.1016/j.canlet.2010.04.023.
- [75] R. Wondergem, J.W. Bartley, Menthol increases human glioblastoma intracellular Ca²⁺, BK channel activity and cell migration, J. Biomed. Sci. 16 (1) (2009), https://doi.org/10.1186/1423-0127-16-90.
- [76] J. Zeng, et al., Identification of the role of TRPM8 in glioblastoma and its effect on proliferation, apoptosis and invasion of the U251 human glioblastoma cell line, Oncol. Rep. 42 (4) (2019) 1517-1526, https://doi.org/10.3892/or.2019.7260.
- [77] N.S. Yee, Roles of TRPM8 ion channels in cancer: proliferation, survival, and invasion, Cancers 7 (4) (2015) 2134–2146, https://doi.org/10.3390/ cancers7040882.
- [78] Y. Liu, et al., AMTB, a TRPM8 antagonist, suppresses growth and metastasis of osteosarcoma through repressing the TGF\$\beta\$ signaling pathway, Cell Death Dis. 13 (3) (2022) 1–10, https://doi.org/10.1038/s41419-022-04744-6.
- [79] L.V. Weber, et al., Expression and functionality of TRPV1 in breast cancer cells, Breast Cancer 8 (December 2016) 243-252, https://doi.org/ 10.2147/BCTT.S121610.
- [80] L. Pecze, et al., Activation of endogenous TRPV1 fails to induce overstimulation-based cytotoxicity in breast and prostate cancer cells but not in pain-sensing neurons, Biochim. Biophys. Acta Mol. Cell Res. 1863 (8) (August 2016) 2054-2064, https://doi.org/10.1016/j.bbamcr.2016.05.007.
- [81] S. Xu, L. Zhang, X. Cheng, H. Yu, J. Bao, R. Lu, Capsaicin inhibits the metastasis of human papillary thyroid carcinoma BCPAP cells through the modulation of the TRPV1 channel, in: Food and Function, Royal Society of Chemistry, January 2018, pp. 344-354, https://doi.org/10.1039/ c7fo01295k.
- [82] M.G. Sánchez, et al., Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue, Eur. J. Pharmacol. 515 (1-3) (May 2005) 20-27, https://doi.org/10.1016/j.ejphar.2005.04.010.
- [83] B.G. Sánchez, A. Bort, J.M. Mora-Rodríguez, I. Díaz-Laviada, The natural chemotherapeutic capsaicin activates AMPK through LKB1 kinase and TRPV1 receptors in prostate cancer cells, Pharmaceutics 14 (2) (February 2022), https://doi.org/10.3390/pharmaceutics14020329.
- [84] C. Amantini, et al., Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation, J. Neurochem. 102 (3) (August 2007) 977-990, https://doi.org/10.1111/j.1471-4159.2007.04582.x.
- [85] R. Nie, Q. Liu, X. Wang, TRPV1 is a potential tumor suppressor for its negative association with tumor proliferation and positive association with antitumor immune responses in pan-cancer, J Oncol 2022 (2022), https://doi.org/10.1155/2022/6964550.
- [86] N. Gao, F. Yang, S. Chen, H. Wan, X. Zhao, H. Dong, The role of TRPV1 ion channels in the suppression of gastric cancer development, J. Exp. Clin. Cancer Res. 39 (1) (October 2020), https://doi.org/10.1186/s13046-020-01707-7.
- [87] L. Li, et al., The impact of trpv1 on cancer pathogenesis and therapy: a systematic review, Int. J. Biol. Sci. 17 (8) (2021) 2034–2049, https:// doi.org/10.7150/ijbs.59918.
- [88] F. Cojocaru, et al., Functional expression of the transient receptor potential ankyrin type 1 channel in pancreatic adenocarcinoma cells, Sci. Rep. 11 (1) (December 2021), https://doi.org/10.1038/s41598-021-81250-3.
- [89] P. Liu, et al., Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots, Sci. Rep. 8 (1) (December 2018), https://doi.org/ 10.1038/s41598-018-19353-7.
- [90] N. Takahashi, et al., Cancer cells Co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance, Cancer Cell 33 (6) (June 2018) 985–1003.e7, https://doi.org/10.1016/j.ccell.2018.05.001.
- [91] G. Scarpellino, et al., Purinergic calcium signals in tumor-derived endothelium, Cancers 11 (6) (June 2019), https://doi.org/10.3390/ cancers11060766.
- [92] A.L.V. Sávio, G.N. da Silva, D.M.F. Salvadori, Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil), Mutat. Res., Fundam. Mol. Mech. Mutagen. 771 (January 2015) 29-35, https://doi.org/10.1016/j.mrfmmm.2014.11.004.
- [93] G. Qin, P. Li, Z. Xue, Effect of allyl isothiocyanate on the viability and apoptosis of the human cervical cancer heLa cell line in vitro, Oncol. Lett. 15 (6) (June 2018) 8756-8760, https://doi.org/10.3892/ol.2018.8428.
- [94] E.A.M. Schaefer, S. Stohr, M. Meister, A. Aigner, T. Gudermann, T.R.H. Buech, Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells, Biochem. Pharmacol. 85 (3) (February 2013) 426-438, https:// doi.org/10.1016/j.bcp.2012.11.019.
- [95] S.E. Dryer, E.Y. Kim, The effects of TRPC6 knockout in animal models of kidney disease, Biomolecules 12 (11) (November 01, 2022), https:// doi.org/10.3390/biom12111710.
- [96] R. Ge, et al., Critical role of TRPC6 channels in VEGF-mediated angiogenesis, Cancer Lett. 283 (1) (September 2009) 43-51, https://doi.org/ 10.1016/j.canlet.2009.03.023.

- [97] Y. Shi, X. Ding, Z.H. He, K.C. Zhou, Q. Wang, Y.Z. Wang, Critical role of TRPC6 channels in G2 phase transition and the development of human oesophageal cancer, Gut 58 (11) (November 2009) 1443–1450, https://doi.org/10.1136/gut.2009.181735.
- [98] J. Song, et al., Critical role of TRPC6 channels in the development of human renal cell carcinoma, Mol. Biol. Rep. 40 (8) (August 2013) 5115-5122, https://doi.org/10.1007/s11033-013-2613-4.
- [99] S. Bernichtein, et al., Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation, Cancer Res. 77 (2) (January 2017) 355–365, https://doi.org/10.1158/0008-5472.CAN-16-0687.
- [100] M. Ding, et al., Pyrazolo[1,5-a]pyrimidine TRPC6 antagonists for the treatment of gastric cancer, Cancer Lett. 432 (September 2018) 47–55, https://doi.org/10.1016/j.canlet.2018.05.041.
- [101] Y. Wei, et al., Benzothiazole amides as TRPC3/6 inhibitors for gastric cancer treatment, ACS Omega 6 (13) (April 2021) 9196—9203, https://doi.org/10.1021/acsomega.1c00514.
- [102] T. Ciaglia, V. Vestuto, A. Bertamino, R. González-Muñiz, I. Gómez-Monterrey, On the modulation of TRPM channels: current perspectives and anticancer therapeutic implications, Front. Oncol. 12 (February 09, 2023), https://doi.org/10.3389/fonc.2022.1065935.
- [103] I. Jimenez, et al., TRPM channels in human diseases, Cells 9 (12) (December 04, 2020), https://doi.org/10.3390/cells9122604.
- [104] J. Deeds, F. Cronin, L.M. Duncan, Patterns of melastatin mRNA expression in melanocytic tumors, Hum. Pathol. 31 (11) (November 2000) 1346–1356, https://doi.org/10.1053/hupa.2000.19441.
- [105] C. Levy, et al., Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma, Mol. Cell 40 (5) (December 2010) 841–849, https://doi.org/10.1016/j.molcel.2010.11.020.
- [106] F. Simon, D. Varela, C. Cabello-Verrugio, Oxidative stress-modulated TRPM ion channels in cell dysfunction and pathological conditions in humans, Cell. Signal. 25 (7) (2013) 1614—1624, https://doi.org/10.1016/j.cellsig.2013.03.023.
- [107] L.H. Jiang, X. Li, S.A. Syed Mortadza, M. Lovatt, W. Yang, The TRPM2 channel nexus from oxidative damage to Alzheimer's pathologies: an emerging novel intervention target for age-related dementia, Ageing Res. Rev. 47 (May) (2018) 67–79, https://doi.org/10.1016/j.arr.2018.07.002.
- [108] Y. Hara, et al., LTRPC2 Ca 2-permeable channel activated by changes in redox status confers susceptibility to cell death cal cellular processes, Mattson (2002). http://www.molecule.
- [109] S. Yamamoto, et al., TRPM2-mediated Ca²⁺ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration, Nat. Med. 14 (7) (July 2008) 738-747, https://doi.org/10.1038/nm1758.
- [110] A. Sumoza-Toledo, R. Penner, TRPM2: a multifunctional ion channel for calcium signalling, J. Physiol. 589 (7) (April 2011) 1515–1525, https://doi.org/10.1113/jphysiol.2010.201855.
- [111] A. Di, et al., The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation, Nat. Immunol. 13 (1) (January 2012) 29—34, https://doi.org/10.1038/ni.2171.
- [112] Y. Wang, et al., Knockdown of TRPM8 suppresses cancer malignancy and enhances epirubicin-induced apoptosis in human osteosarcoma cells, Int. J. Biol. Sci. 10 (1) (2013) 90–102, https://doi.org/10.7150/ijbs.7738.
- [113] H. Mutai, S. Heller, Vertebrate and invertebrate TRPV-like mechanoreceptors, Cell Calcium 33 (5-6) (2003) 471-478, https://doi.org/10.1016/ S0143-4160(03)00062-9.
- [114] R.L. Baylie, J.E. Brayden, TRPV channels and vascular function, Acta Physiol. 203 (1) (September 2011) 99—116, https://doi.org/10.1111/j.1748-1716.2010.02217.x.
- [115] J.K. Bujak, D. Kosmala, I.M. Szopa, K. Majchrzak, P. Bednarczyk, Inflammation, cancer and immunity—implication of TRPV1 channel, Front. Oncol. 9 (October 16, 2019), https://doi.org/10.3389/fonc.2019.01087.
- [116] E. Aneiros, L. Cao, M. Papakosta, E.B. Stevens, S. Phillips, C. Grimm, The biophysical and molecular basis of TRPV1 proton gating, EMBO J. 30 (6) (March 2011) 994—1002, https://doi.org/10.1038/emboj.2011.19.
- [117] B. Boonen, Y.A. Alpizar, V.M. Meseguer, K. Talavera, TRP channels as sensors of bacterial endotoxins, Toxins 10 (8) (August 11, 2018), https://doi.org/10.3390/toxins10080326.
- [118] G. Bhave, et al., cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (vr1) by direct phosphorylation knockout mice exhibit deficits in strong thermal stimulus detection and inflammatory thermal hypersensitivity, confirming a prominent role for VR1 in thermal transduction, particularly in mediating inflammatory hyperalgesia, Neuron 35 (4) (2002).
- [119] K.W. Huynh, M.R. Cohen, S. Chakrapani, H.A. Holdaway, P.L. Stewart, V.Y. Moiseenkova-Bell, Structural insight into the assembly of TRPV channels, Structure 22 (2) (February 2014) 260–268, https://doi.org/10.1016/J.STR.2013.11.008.
- [120] K. Stock, et al., Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1, Nat. Med. 18 (8) (August 2012) 1232–1238, https://doi.org/10.1038/nm.2827.
- [121] Y. Nie, et al., Overexpressed transient receptor potential vanilloid 1 (TRPV1) in lung adenocarcinoma harbours a new opportunity for therapeutic targeting, Cancer Gene Ther. 29 (10) (October 2022) 1405–1417, https://doi.org/10.1038/s41417-022-00459-0.
- [122] A.P. Koivisto, M.G. Belvisi, R. Gaudet, A. Szallasi, Advances in TRP channel drug discovery: from target validation to clinical studies, Nat. Rev. Drug Discov. 21 (1) (January 01, 2022) 41–59, https://doi.org/10.1038/s41573-021-00268-4.
- [123] K. Talavera, et al., Nicotine activates the chemosensory cation channel TRPA1, Nat. Neurosci. 12 (10) (October 2009) 1293—1299, https://doi.org/10.1038/nn.2379.
- [124] B.F. Bessac, M. Sivula, C.A. Hehn, A.I. Caceres, J. Escalera, S.-E. Jordt, Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases, Faseb. J. 23 (4) (April 2009) 1102—1114, https://doi.org/10.1096/fj.08-117812.

- [125] H.A. Deveci, Y. Akyuva, G. Nur, M. Nazõroğlu, Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line, Biomed. Pharmacother. 111 (March 2019) 292-304, https:// doi.org/10.1016/j.biopha.2018.12.077.
- [126] H. Chen, C. Li, H. Hu, B. Zhang, Activated TRPA1 plays a therapeutic role in TMZ resistance in glioblastoma by altering mitochondrial dynamics, BMC Mol Cell Biol 23 (1) (December 2022), https://doi.org/10.1186/s12860-022-00438-1.
- [127] Y.T. Wu, et al., Overexpression of transient receptor protein cation channel subfamily a member 1, confers an independent prognostic indicator in nasopharyngeal carcinoma, J. Cancer 7 (10) (2016) 1181-1188, https://doi.org/10.7150/jca.15326.
- [128] F. Kiss, et al., Functional transient receptor potential ankyrin 1 and vanilloid 1 ion channels are overexpressed in human oral squamous cell carcinoma, Int. J. Mol. Sci. 23 (3) (February 2022), https://doi.org/10.3390/ijms23031921.
- [129] A.S. de Almeida, L. de B. Bernardes, G. Trevisan, TRP channels in cancer pain, Eur. J. Pharmacol. 904 (August 05, 2021), https://doi.org/10.1016/ j.ejphar.2021.174185.
- [130] B.L. Schmidt, The neurobiology of cancer pain, Neuroscientist 20 (5) (October 2014) 546-562, https://doi.org/10.1177/1073858414525828.
- [131] J. Zheng, Molecular mechanism of TRP channels, Compr. Physiol. 3 (1) (2013) 221–242, https://doi.org/10.1002/cphy.c120001.
- [132] T. Masuoka, et al., Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity, Br. J. Pharmacol. 172 (4) (2015) 1020-1033, https://doi.org/10.1111/bph.12962.
- [133] N.N. Scheff, et al., Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment, Sci. Rep. 12 (1) (December 2022), https://doi.org/10.1038/s41598-022-08005-6.
- [134] J.R. Ghilardi, et al., Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain, J. Neurosci. 25 (12) (March 2005) 3126-3131, https://doi.org/10.1523/JNEUROSCI.3815-04.2005.
- [135] L. Karai, et al., Deletion of vanilloid receptor 1_expressing primary afferent neurons for pain control, J. Clin. Invest. 113 (9) (May 2004) 1344-1352, https://doi.org/10.1172/jci200420449.
- [136] M. Trevisani, R. Gatti, TRPV1 antagonists as analgesic agents, Open Pain J. 6 (1) (March 2013) 108-118, https://doi.org/10.2174/ 1876386301306010108.
- [137] M. Iftinca, M. Defaye, C. Altier, TRPV1-Targeted drugs in development for human pain conditions, Drugs 81 (1) (January 2021) 7-27, https:// doi.org/10.1007/s40265-020-01429-2.
- [138] Y. Chen, C. Yang, Z.J. Wang, Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain, Neuroscience 193 (October 2011) 440-451, https://doi.org/ 10.1016/j.neuroscience.2011.06.085.
- [139] S. Materazzi, et al., TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism, Pflugers Arch 463 (4) (April 2012) 561-569, https://doi.org/10.1007/s00424-011-1071-x.
- [140] S. Arfin, et al., Oxidative stress in cancer cell metabolism, Antioxidants 10 (5) (2021), https://doi.org/10.3390/antiox10050642.
- [141] K.A. Conklin, Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness, Integr. Cancer Ther. 3 (4) (December 2004) 294-300, https://doi.org/10.1177/1534735404270335.
- [142] J. Nuszkiewicz, A. Woźniak, K. Szewczyk-Golec, Ionizing radiation as a source of oxidative stress—the protective role of melatonin and vitamin d, Int. J. Mol. Sci. 21 (16) (August 02, 2020) 1-22, https://doi.org/10.3390/ijms21165804.
- [143] I. Brusco, et al., Dacarbazine alone or associated with melanoma-bearing cancer pain model induces painful hypersensitivity by TRPA1 activation in mice, Int. J. Cancer 146 (10) (May 2020) 2797-2809, https://doi.org/10.1002/ijc.32648.
- [144] C. Fusi, et al., Steroidal and non-steroidal third-generation aromatase inhibitors induce pain-like symptoms via TRPA1, Nat. Commun. 5 (2014), https://doi.org/10.1038/ncomms6736.
- [145] C.T.D.D. Antoniazzi, et al., Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain, Int. J. Cancer 144 (2) (January 2019) 355-365, https://doi.org/10.1002/ijc.31911.
- [146] R. Gualdani, et al., Lipoic-based TRPA1/TRPV1 antagonist to treat orofacial pain, ACS Chem. Neurosci. 6 (3) (March 2015) 380-385, https:// doi.org/10.1021/cn500248u.
- [147] A.S. de Almeida, et al., Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma, Pharmacol. Res. 152 (Feb) (2020), https://doi.org/10.1016/j.phrs.2019.104576.
- [148] R. Nassini, et al., Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation, Pain 152 (7) (July 2011) 1621-1631, https://doi.org/10.1016/j.pain.2011.02.051.