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Unlike gas molecules at equilibrium, the spatial organization of self-propelled particles
can be very sensitive to what happens at the boundaries of their container. Under-
standing the link between boundary phenomena and bulk stationary distributions
could enable the design of optimized container shapes for the geometric control of
confined active particles. Here, we propose a boundary method based on the flux
transfer formalism typical of radiometry problems, where surface elements transmit
and receive “rays” of active particles with infinite persistence length. We demonstrate
the power of this boundary method in the case of the swimming microalgae Euglena
gracilis trapped in light-defined billiard geometries. Quite surprisingly, we found that
Euglena scatters with a nearly Lambertian cosine law, resembling the behavior of
blackbody radiation and consequently resulting in nearly uniform distributions inside
simple cavity geometries. Nevertheless, leveraging our boundary method, we were able
to design a stacked multistage billiard geometry, with a connection scheme between
subunits that breaks spatial symmetry and achieves an exponential amplification of cell
concentration between its two ends. Our method can be applied to confined active
matter in contexts ranging from spatial control and sorting of microorganisms to the
design of efficient navigation strategies for microscopic and macroscopic robots.

active matter | microswimmers | dynamical billiards

An equilibrium gas will fill any container with a homogeneous density regardless of
its shape and material. Conversely, nonequilibrium gases of self-propelled particles are
extremely sensitive to boundary geometry and interactions. Asymmetric walls can produce
currents and give rise to spontaneous accumulation (1–4), while the mechanical pressure
exerted by an active gas over container walls can be strongly influenced by the details of
interactions (5, 6). The connection between boundaries and bulk phases is extremely rich
in active systems (7), including effects such as the appearance of Casimir-type forces (8),
or the suppression of bulk phase separation by wall roughness (9). Moreover, if particle
density is so sensitive to the boundary geometry, a feedback mechanism can emerge in
which boundaries are actively remodeled by the density-dependent mechanical forces
exerted by the particles (10, 11).

When active particles collide with a wall, the irreversible nature of self-propulsion
results in scattering laws that break time reversal symmetry (12, 13). Microswimmers
like Escherichia coli or catalytic Janus particles always end up to be aligned along the wall
surface regardless of the incoming angle (14, 15). In contrast, ciliary contact interactions
cause puller swimmers such as the single-celled algae Chlamydomonas reinhardtii to leave
the surface at a constant angle, losing memory of incidence (16–18). This microscopic
irreversibility has been exploited to design structured surfaces that could trap, sort, repel,
and rectify the motion of microswimmers (1, 19–23). Moreover, thanks to a rich sensory
apparatus, the concept of boundary for living systems is broader than just physical
walls. Chemotactic bacteria are pushed out of regions where repellents are present, while
photosensitive microorganisms can bounce back at abrupt transitions between light and
dark (24).

Given the crucial role of boundaries in determining bulk properties, and the wide vari-
ety of particle-wall scattering behaviors, there is a clear need for new modeling frameworks
that can provide a quantitative connection between the spatial distribution of active parti-
cles, the geometry of the confining boundary, and their specific scattering dynamics at the
walls. On the practical side this could guide the engineering of boundary shapes to control
the internal spatial distribution of active particles, transport and segregate cell types based
on wall interactions, or simply inhibit unwanted accumulation for biofilm prevention. A
theoretical framework for the steady states of active Brownian particles near boundaries
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was proposed in ref. 25. This analytical approach relies on the
diffusion approximation, which restricts its validity to regimes
where the persistence length is much smaller than the character-
istic length scale of the boundary geometry. Since the persistence
length of many microswimmers can reach several tens of
microns, this framework offers only a good approximation when
applied to macroscopic confinement geometries. Moreover, for
complex boundary geometries, analytical solutions are generally
not accessible, and numerical approaches require solving partial
differential equations on a finite element discretization of the
entire domain enclosed by the boundaries. In the opposite regime,
where the confinement size is small compared to the persistence
length, an analytical relation between particle distribution and
boundary shape can be derived for the simple case in which walls
do not affect the direction of particle self-propulsion (26, 27). In
this limit, all particles accumulate on the boundary in the steady
state, with a density proportional to the local curvature, while
the bulk remains empty. However, to reproduce experimental
observations one must incorporate boundary scattering and
previous studies have typically addressed this through particle-
based simulations (18, 28). Thus, despite the progress made, a
general framework that can predict the steady-state distribution
of real active particles, taking into account their specific scattering
laws and arbitrary confinement geometries, is still lacking.

Here, we focus on a class of active particles that move along
straight trajectories and undergo memoryless scattering processes
at the boundary of an arbitrarily shaped region. Using a formalism
borrowed from radiometry, we show that the problem of finding
the steady state spatial distribution of these particles can be cast
into a boundary problem to be solved numerically. To verify
the correctness of our model, we study how different scattering
laws produce different density modulations depending on the
shape of the boundary and compare these theoretical results with
numerical simulations of active particles. In many equilibrium sit-
uations, like photons in a blackbody cavity or rarefied molecules
in a Knudsen gas (29), scattering follows a Lambertian cosine
law, which in the case of active particles also results in perfectly
uniform distributions inside cavities of any shape. Deviations
from Lambert’s law result in regions of high concentration that
shift from the bulk to the boundary as the scattering angles change
from normal to tangential directions. In addition, we provide
a direct experimental application of our method to a system
of flagellated microalgae Euglena gracilis swimming in optically
defined arenas. Upon encountering a light–dark interface, light-
responsive Euglena cells undergo random scattering events that
reorient the cells toward the cavity interior and keep them
confined. We found that Euglena scatters from light–dark
interfaces with a nearly Lambertian law so that cells spread almost
uniformly inside simple cavity shapes. Nevertheless, using the
results of our boundary method, we were able to design a stacked

multistage structure that results in a three-fold concentration
of Euglena cells between its two ends. Model predictions are
quantitatively confirmed by experiments, demonstrating the
accuracy of our method and its practical applications.

1. A Boundary Element Method for Confined
Active Particles

When the persistence length of active particles exceeds the size of
the container, they will travel in straight lines from one element
of the boundary to the next. Every time a particle “feels” a
boundary through mechanical, hydrodynamical, chemical, or
optical signals it quickly reorients to a new swimming direction.
We call S(�′, �) the scattering law representing the probability
density of being scattered to a new direction � given the incident
angle �′. We will assume that the boundary is impenetrable so that
both � and �′, defined as in Fig. 1, vary between −90◦ and 90◦.

Then we discretize the boundary in finite elements of lengths
Δi and call Ji(�)d� the stationary flux of particles emerging from
the i-th boundary element within an angle d� centered around
�. This flux results from scattered particles arriving in Δi from
all other elements Δk so that we can write:

Ji(�)Δi =
∑
k 6=i

Jk(�ki)Δk
Δi cos �ik

rik
S(�ik, �). [1]

Although, in principle, the above equation could be solved
for Ji(�) for a given scattering law S(�′, �) (for instance by
discretizing Ji(�) into an array of values for equally spaced angles
between −90◦ and 90◦ and so turning it into a linear algebra
problem), the solution simplify noticeably when active particles
lose memory during the scattering event so that S(�′, �) = �(�).
Substituting in Eq. 1, we get

Ji(�)Δi = �(�)
∑
k 6=i

Jk(�ki)ΔkΔi
cos �ik
rik

= �(�)Δipi [2]

with

piΔi =
∑
k 6=i

Jk(�ki)ΔkΔi
cos �ik
rik

=
∑
k 6=i

WikpkΔk, [3]

where we introduced the variables pi representing the stationary
flux of particles colliding/emerging on boundary element i per
unit time and unit length. The matrixWik = �(�ki)Δi cos �ik/rik
represents the probability that a particle scattered from boundary
element k will hit next at i so that it must satisfy the normalization
rules

∑
i Wik = 1. The matrix Wik is fully determined by the

geometry of the boundary and the scattering law. In concave

Fig. 1. Geometric description of the boundary
model.
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Table 1. List of the examined scattering laws

1 1 isotropic

2 cos � Lambert

3 cos2 � normal

4 cos8 � normal narrow
5 1− cos � wall aligning
6 (1− cos 3�)4 shallow angle

boundaries, the connection of segment pairs can be occluded, for
which case Wik must be set to 0. Once these are fixed the pi values
can be found by solving the linear algebra problem in Eq. 3 that
in matrix form reads:
−Δ1 W12 Δ2 · · · W1n Δn

W21 Δ1 −Δ2 · · · W2n Δn
...

...
. . .

...
Wn1 Δ1 Wn2 Δ2 · · · −Δn

 ·

p1
p2
...
pn

 =


0
0
...
0

 . [4]

Once the boundary fluxes pi have been determined the particle
density at a generic internal point q with coordinates r = (x, y)

can be obtained as the sum of density contributions from all
elements:

�(r) =
n∑

i=1
piΔi

�(�iq)
vriq

, [5]

where v is the particle speed. A possible way of seeing it is
shown in Fig. 1 where piΔi�(�iq)d� represents the flow of
particle emerging from element Δi within an angle d� around
the direction �iq. This flow can be also written as �i(r)v riq d�,
where �i(r) is the density of particle emitted from Δi. Form that
we find �i(r) = piΔi�(�iq)/vriq and summing over all elements
we get the total density in Eq. 5. The values pi derived from
Eq. 4 are defined within an arbitrary multiplicative factor so that
we can absorb the factor v in the pi values and normalize in the
end by imposing the condition

∫
A �(r)d

2r = 1, where A is the
surface enclosed by the boundary.

2. The Role of Geometry and Scattering Law

As a first application of our boundary method, we investigate how
the combined effects of boundary shape and scattering function
affect the spatial distribution of active particles in the interior.
We choose four different geometries: a generic shape, a circle,
an ellipse, and an equilateral triangle. For every geometry, we

1

2

3

4

5

6

shape

sc
at

te
rin

g 
la

w

Fig. 2. The role of geometry and scattering law. Spatial probability density distributions calculated with the boundary method in four different confinement
geometries for the set of scattering angle distributions defined in Table 1.
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consider the six different scattering laws in Table 1. The first one
represents isotropic scattering, particles emerge with an angle
that is uniformly distributed between −90 and 90 degrees. The
second, third, and fourth scattering laws describe cases where
particles emerge with an increasingly narrow distribution around
the surface normal, represented mathematically as the cosine of
the outgoing angle raised to increasingly larger powers. The fifth
case describes particles that are preferentially aligned parallel to
the wall while the last one corresponds to a shallow scattering
angle as found for Chlamydomonas algae scattering from solid
surfaces.

Solving the boundary problem, we obtain spatial distributions
of active particles within the cavity that are very sensitive to
both geometry and scattering law (Fig. 2). As expected, the
wall-aligning and the shallow angle scattering law result in a
high probability of finding active particles close to the boundary,
favoring regions of higher convex curvature. Results for shallow
angle scattering in the circle and ellipse confinements also match
with the previously reported experimental observations of single
Chlamydomonas microalga cells in such compartments (28, 30).
Wall accumulation is a general feature of active particles and is
often the consequence of slowing down due to wall repulsion
counteracting self-propulsion (31). But here we are considering
instantaneous scattering events with particles that do not slow
down when they hit the boundary, so it is somewhat surprising
to find this wall accumulation even for isotropic scattering. In
contrast, scattering distributions that favor outgoing directions
close to the surface normal tend to generate concentration peaks
in the inner region, while maintaining a low density at the edge.
Interestingly, in the equilateral triangle very narrow and normal
directed scattering results in an almost uniform distribution.
Another notable exception is when the scattering probability
is in the form of cos � (number 2 in Table 1), which produces
a uniform concentration for any geometry. Interestingly, this
kind of particle scattering is analogous to Lambert’s cosine
law for photons, where the cosine shaped scattering makes the
brightness of Lambertian surfaces invariant to the observation
angle. It also characterizes the emission of radiation from the
surface of a blackbody cavity, a consequence of the isotropic
radiation (uniform energy density) inside the cavity. In terms of
our boundary model, when the scattering law is �(�) = cos �/2
then we have the detailed balance condition:

WikΔk =
cos �ki cos �ikΔiΔk

2rik
= WkiΔi [6]

so that Eq. 3 admits the constant solution pi = p∗

p∗Δi =
∑
k 6=i

Wikp∗Δk =
∑
k 6=i

Wkip∗Δi = p∗Δi
∑
k 6=i

Wki, [7]

where the identity follows from the normalization condition∑
k 6=i Wki = 1. A uniform boundary flux p∗ produces a uniform

bulk density �(r) as can be easily deduced from Eq. 5 noting
that for Lambert scattering Δi cos �iq/riq is just the angular size
of element Δi from point q.

To validate the results of our method we have performed
numerical simulations of active particle dynamics (Materials and
Methods) whose results are reported for a selected geometry in
Fig. 3. As shown by density profiles along two sample lines the
agreement between theory and simulation is perfect.

1 2

3 4

51:3 6
1:2

Fig. 3. Validation of the boundary method with active particle simulations.
Two-dimensional spatial probability density distributions obtained with
particle simulations are shown for a generic shape and a set of scattering
laws. Results of the two methods are compared on plots of density profiles
along two sample lines, with the simulation results represented by gray circles
and the boundary model results by black lines.

3. Distributions of Euglena in Optical
Confinement

We now want to test the predictive power of our method in a real
system composed of the flagellated photosynthetic alga E. gracilis.
Euglena are unicellular microorganisms with an elongated body
shape of approximately 50 μm in length and 10 μm diameter.
As their single flagellum beats at 20 to 40 Hz, they swim at 50
to 140 μm s−1, while simultaneously rolling at 1 to 2 Hz along
their longitudinal axis (32).

Euglena cells are known to be trapped in regions of light
surrounded by darkness if the illumination intensity is not too
high (33). The flagellar beat can change in response to light
variations detected by a photoreceptor located at the base of
the flagellum (34) resulting in an inverse photophobic response
at the boundary of the illuminated region, where the cells are
essentially scattered back inward. Using a blue light projection
system with a properly adjusted intensity, we confined cells into
two-dimensional light domains with reconfigurable geometries
(Movie S1). Within a light pattern, the cells swim in straight
paths until they reach the boundary between light and dark.
Here, they perform a stochastic rotation until they find a new
swimming direction pointing inward. We have recorded a large
number (∼20,000) of these scattering events within a rectangular
light patch with two circular holes included to increase the
probability of observing scattering events with shallow angles
of incidence (Fig. 4A) (Movie S2). We track individual cells
and analyze trajectories to fully characterize the scattering law
S(�′, �) reported in Fig. 4C as a density map. The outgoing
angle distributions, represented by the columns in the density
map, displays a weak dependence on the incoming angle �′.
Therefore, memoryless scattering, S(�′, �) = �(�), seems to
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B

C

A

Fig. 4. Scattering angle distribution of E. gracilis cells. (A) Image of the
measurement’s light pattern with a sample timelapse of swimming cells
superimposed. The enlarged area shows a zoomed view on two cells going
through scattering at the light–dark boundary. White arrows depict the local
boundary normal. (B) Polar histogram of the measured scattering angles.
The blue line plots the best fit with cos�(� + �0), while the red line shows
the Lambert cosine law. (C) Dependence of the outgoing angle � from
the incoming angle �′. The white plot shows the mean outgoing angle in
respective intervals of the incoming angle.

be a good approximation for Euglena. In that approximation
�(�) can be directly obtained as the outgoing angle distribution
averaged over all incoming angles. The result is shown as a polar
histogram in Fig. 4B together with a Lambert cosine law (red line)
and a best fit representation with the model cos�(� + �0) (blue
line, best fit parameters � = 1.7 and �0 = 4.2). This scattering
law is roughly intermediate between Lambert cosine and normal
scattering (models 2 and 3 in Table 1). Based on the previous
discussion, we would expect to find a mild accumulation in the
interior of the light region.

As a first test of our boundary method we studied Euglena
distribution inside a circular region of radius R = 630 μm
(Fig. 5A and Movie S3). A sample of the measured cell trajectories
is shown in Fig. 5B, obtained after stuck and strongly curving
trajectories were removed by a trajectory filter (Materials and

Methods and SI Appendix, Fig. S1). At a first qualitative sight, the
experimental 2D density map (Fig. 5D) shows a slight depletion
of cells at the boundary which compares well with the boundary
method prediction shown in (Fig. 5C ). For a more quantitative
comparison, we make a radial histogram of cell density for which
we can also derive a semianalytical prediction from our model.
Assuming isotropic dynamics, symmetry considerations imply
a uniform boundary flux p and a stationary density that only
depends on the distance r from the center. Rewriting Eq. 5 in
integral form, we get

�(r) = p
∫

�(�)
d

ds = 2p
∫ �

0

�(�)
cos �

d�, [8]

where the variable � can be expressed as a function of � and r
using the condition R sin � = r sin�. For scattering laws of the
form �(�) ∝ cosm � we get

�(r) = Z
∫ �

0

[
1−

( r
R

)2
sin2 �

]m−1
2

d� [9]

with Z a normalization factor. By numerical integration, we
obtain the density profiles for n = 1, 8 which agree perfectly
with simulation results as shown in Fig. 5E. On the same
figure we also show experimental data for Euglena together
with the corresponding theoretical prediction for m = 1.7.
The agreement is remarkably good in all interior points. The
experimental density profile however displays a softer decay to
zero at r = R which we attributed to the cell’s light sensing
apparatus. As in many unicellular algae, the photoreceptor is
periodically shaded by a light absorber (eyespot) as the cell rolls
during forward swimming. This produces a finite resolution in
sensing the location of dark to light transition which we can
estimate as the distance traveled in a half rotation during which
the cell is “blind.” Using average values for speed (98 μm /s) and
rolling frequency (0.8 Hz), we get a distance of 62 μm, or about
0.1 R, which is enough to account for the extent of the smooth
transition at the circle boundary.

    A

C D

B E

Fig. 5. Spatial distribution of E. gracilis cells confined in a circular light patch. (A) Bright-field image snapshot of cells during a measurement. The light pattern’s
edge is marked by the magenta line. (B) A random sample of persistent cell trajectories. (C) Boundary model results. (D) Two-dimensional spatial distribution
of the cells (smoothed with a 0.5 bin wide Gaussian). (E) Radial spatial probability density distributions calculated from measurement data (black squares) and
from simulation results of particles with scattering distributions of cos � (purple circles) and cos8 � (orange circles). Theoretically calculated density curves are
shown as solid lines. (Scale bars, 0.5 mm.).
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4. Amplification of Cell Concentration in
Pattern Sequences with Broken Spatial
Symmetry

Due to the scattering law for Euglena differing only slightly
from the Lambert cosine case, we observed a rather flat cell
concentration profile in circular confinement. The average
density within a central disk of radius R/2 is only 13% higher
than in the outer region. Looking at other shapes in Fig. 2,
we find similar mild concentration enhancements in the central
region for scattering laws close to Euglena (row no. 3). However,
if we focus on the ellipse, we find a noticeable depletion region
at the high curvature poles (left and right) compared to the low
curvature poles (top and bottom). From Eq. 5, we see that when
we move close to a generic boundary segment i, local density
will be dominated by the total flux pi through that i segment.
This consideration suggests a possible strategy to reach higher
concentrations of cells by joining together equal shapes. If we start
with a shape that, like the ellipse, shows an evident p variation
along the boundary, we can connect a high p edge in one shape
to a low p edge in a following shape, and so on. For ellipses, this
means connecting them as in Fig. 6 by repeatedly overlapping
low and high curvature poles and thereby creating a sequential
pattern that breaks spatial symmetry.

We have performed experiments with two horizontally mir-
rored versions of the designed sequential ellipse pattern, collecting
tens of millions of cell position data points. Testing the pattern
in two orientations and merging the results allowed us to exclude
any additional effects that might bias the cell’s movement. Mea-
surements were started with approximately uniform cell densities
in each ellipse by turning on the light pattern projection over
areas of homogeneously spread cells. Starting from uniformity,
the cell count in each ellipse stage evolves over time until the
system reaches steady state (Fig. 6C ). Let us assume that the

net flow of cells across the connections of neighboring ellipses
is small enough that their spatial distribution remains close to
equilibrium as the integrated cell number in each area slowly
varies. Calling N(t) = {N0, . . . , N5} the vector of normalized
cell counts in each area at time t, we can write

Ṅ(t) = K ·N(t) [10]

with K the tridiagonal matrix

Ki,i = −(�+ + �−) , Ki,i+1 = �− , Ki,i−1 = �+ [11]

with �+ and �− are respectively forward and backward transition
rates and with boundary conditions K11 = −�+, K66 = −�−.
The formal solution is

N(t) = eKt ·N(0), [12]

which can be used to fit the time series of measured normalized
cell counts in Fig. 6C.

In the stationary state the net flux over each junction must be
zero

Nn�+ − Nn+1�− = 0 [13]

resulting in a cell count growing exponentially after each stage

Nn = N0

(
�+

�−

)n
. [14]

The ratio �+/�− can be estimated by our previous inves-
tigation on an isolated ellipse. Suppose we have two initially
disjoint and equilibrated ellipses each one containing N cells.
The moment we connect them as ellipses number 0 and 1 in
Fig. 6A a larger number of cells will cross from 0 to 1 in unit

C

DB

A

Fig. 6. Rectification of E. gracilis cells confined in a two-dimensional light pattern. (A) Measured steady state density map of Euglena cells (smoothed with a 0.5
bin wide Gaussian). (Scale bar, 0.5 mm.) (B) Boundary model result. (C) Time evolution of the normalized cell counts within the light pattern’s segments (lines
with markers) and their fit with Eq. 12 (solid lines). (D) Normalized cell counts in the pattern’s segments in steady-state (t > 250 s).
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time (pH ) than in the opposite direction (pL). The values of pH
and pL can be estimated as the cumulative values of piΔi over the
overlapping sections of the low and high curvature boundaries
of the isolated ellipses (Fig. 6A), respectively. Since pH ' N�+
and pL ' N�−, we obtain that �+/�− ' pH/pL = 1.45 for the
Euglena scattering law. The measured steady state (t > 250 s)
density map is shown in Fig. 6A. Similar to the analysis of
circle trajectories, a filter was used to remove trajectory portions
corresponding to stationary cells because they were stuck or
turning at the edge. The spatial distribution of cells matches
very well the prediction of the boundary model (Fig. 6B): within
each ellipse, cell concentration is depleted at the high curvature
poles while it progressively increases as we move from left to
right. It is worth noting that the left–right symmetry is broken
by the specific connection scheme, in which flat poles are joined
to curved poles as the segment index i increases. For a quantitative
comparison we count the number of cells in each elliptical
segment and plot it as gray circles in Fig. 6D. The boundary
model (black crosses) seems to predict a larger concentration
gradient than what was found experimentally. However, if we
subtract from raw data a modest (half of the smallest count)
background value and renormalize (blue squares), we get an
almost perfect agreement with boundary model predictions. The
uniform density background may result from a small fraction
of cells with low persistence lengths (SI Appendix, Fig. S2) and
new cells entering the pattern from outside, without having had
sufficient time to be influenced by the shape of the confinement.
Normalized cell counts can be very well fitted by the exponential
law [14] with a fitted value for �+/�− = 1.3 which is satisfacto-
rily close to 1.45 that was theoretically estimated above from the
ratio pH/pL.

5. Conclusions

The nonequilibrium nature of active systems allows for new
spatial control strategies that are not available in equilibrium
systems. While boundary shape is generally irrelevant for the bulk
distribution of confined equilibrium systems, we demonstrate
that active particles can be spatially organized solely by acting on
the boundary geometry. Here, we provide a boundary method
that combines the geometric shape of the container with the
particle-specific scattering law at the container walls to make
fast and accurate predictions of how active particles distribute in
a confined environment. We applied this method to an active
system composed of E. gracilis microalgae cells, which bounce
like active billiards off the walls of regions whose geometry
can be dynamically and arbitrarily reconfigured with light.
We demonstrated that the proposed boundary method enables
fast and accurate prediction of experimental cell distributions.
Building on these results, we designed a static periodic structure
that breaks spatial symmetry in a way that is specifically tailored
for the directed transport of active particles with a scattering law
like that of Euglena. As a result, we observed an exponential
amplification of cell concentration, leading to a threefold
increase in a six-stage structure, as predicted by our boundary
method.

Our results expand our understanding of the propagation
and distribution of active particles in confined spaces, enabling
control over their arrangement through the shape of the con-
tainer. From a fundamental point of view, this expands the
field of dynamical billiards to include active systems for which
the scattering laws are stochastic and not constrained by the
laws of equilibrium physics (35). Unlike classical deterministic

billiards, the presence of stochasticity guarantees ergodicity
so that densities are always well defined. As a result, this
class of billiards offers a valuable framework for understand-
ing, and controlling, how complex biological systems explore
space.

Future research directions include the design of boundary
geometries that efficiently sort active particles based on their
distinct scattering behavior, or that generate targeted flow
patterns in confined spaces. To this end, our method could
serve as the basis for a general framework for solving the inverse
problem of determining the optimal geometry that maximizes
certain figures of merit, such as the density ratio between
two sites. In this context, it will be important to address
fundamental questions such as what constraints a given scattering
law imposes on the creation of arbitrarily complex patterns.
Finally, the proposed boundary method approach may facilitate
the engineering of custom scattering laws for programmable
micro- and macroscopic robots, enabling controlled navigation
and exploration of complex or unknown spaces (36).

6. Materials and Methods
6.1. Numerical Implementation of theBoundaryMethod. We have imple-
mented our boundary method in MATLAB and CUDA. We have written two CUDA
GPU kernels for the calculation of the matrix W and for the calculation of the
in-confinement spatial probability density distributions using Eq. 5. The CUDA
kernels were directly called from MATLAB using the ptx programming model. To
use the CUDA GPU’s best performance, we have chosen to use single precision
in the GPU code. A standard desktop computer was used with an NVIDIA TITAN
XP GPU.

6.2. Active Particle Simulation. In the simulation, a point-like particle is
moved in finite steps inside a confining polygon, such that when the particle
reaches the boundary, it will be scattered into a new swimming direction defined
by an angle relative to the boundary normal, that is chosen randomly from a
given angular probability distribution. The final result of the simulation is the
spatial position distribution of the particle calculated from the accumulated
position data.

6.3. E. gracilis Cultures. Cultures were grown mixotrophically in Tris-acetate-
phosphate medium (37) (TAP) in 25-mL Erlenmeyer flasks on a rotatory shaker at
130 rpm, at 23 ◦C and 80μmol photon m−2 s−1. The cultures were transferred
to fresh TAP medium every 2 wk, and 1-wk-old cultures were used for the
experiments.

6.4. E. gracilis Experiments. We have performed experiments with E. gracilis
in a custom built, but simple optical setup. We used a Texas Instruments
DLP® LightCrafter™ DM365 digital light projector with a blue LED (470
nm) light source to project binary intensity patterns onto the sample of the
cells over an 8-by-4 mm area. Illumination intensity was 0.4 µW /mm2 to
achieve positive phototactic response from the cells. Cells were placed in
samples consisting of two microscope coverglasses separated by 100 μm thick
double sided tape. Imaging was performed under red light illumination with a
Point Grey Grasshopper3 USB3 (GS3-U3-23S6M-C) camera at a magnification
of 1×.

The persistence length of the cells was measured by tracking cells trapped in
a rectangular light pattern of 4.2× 1.5 mm size. The persistence length of the
measured trajectories was obtained by fitting a Worm-like chain model:〈

R2
〉
= 2PL

[
1−

P
L

(
1− e−L/P

)]
, [15]

where
〈
R2〉 and L are the mean squared end-to-end distance and the length of a

trajectory, and P is the persistence length. Trajectories with lengths shorter than
0.5 mm were not considered in the analysis. Results are shown on SI Appendix,
Fig. S2.
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6.5. Cell Tracking and Trajectory Filtering. Cells were tracked with a custom
software written in MATLAB, that is capable of tracking cells even when they swim
over each other. The recorded bright-field images were background subtracted
and inverted to obtain dark background images with bright cells. After a threshold
operation, imageobjectsarematchedtoalreadyexistingtrajectories.Unmatched
objects are assigned to new trajectories, unless the object’s morphological
parameters(area,solidity)donotmatchthatofasinglecell. Imageobjects thatgot
matched to multiple trajectories are further processed as overlapping cell objects.
These overlapping cells are segmented with a contour curvature segmentation
algorithmdesignedtodetect thecell’sends.Fromthedetectedcell-ends,newcell
positions are calculated and are then matched to the prematched trajectories
considering both the position and the orientation of the detections and the
trajectories.

To remove stuck and low persistence cells from our trajectory data, we applied
a trajectory filter. Here, a trajectory is first segmented by its heading angle using
MATLAB’s ischange function. This way we are able to segment a trajectory into
moving and turning segments. Then, for each segment, we calculate the slope of
the trajectory’s direction angle, which we use to remove turning cells undergoing
scattering and cells whose trajectory direction changes rapidly. To remove stuck
cells we also apply a speed filter, where the mean speed of with which a
trajectory segment is going away from its starting point is calculated. For the
circle measurement, we used a trajectory angle slope threshold of 15 degree/s,
while for the ratchet measurements, we used a value of 60 degree/s. The speed-
filter threshold was 40 μm/s for both types of measurements.

Data, Materials, and Software Availability. All original data consist of large
size video recordings that we will make available to anyone upon request.
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