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Let D denote the set of directions determined by the graph of 
a polynomial f of Fq [x], where q is a power of the prime p. If D
is contained in a multiplicative subgroup M of F×

q , then by a 
result of Carlitz and McConnel it follows that f(x) = axpk +b
for some k ∈ N. Of course, if D ⊆ M , then 0 / ∈ D and hence 
f is a permutation. If we assume the weaker condition D ⊆
M ∪ {0}, then f is not necessarily a permutation, but Sziklai 
conjectured that f(x) = axpk + b follows also in this case. 
When q is odd, and the index of M is even, then a result of 
Ball, Blokhuis, Brouwer, Storme and Szőnyi combined with a 
result of Göloğlu and McGuire proves the conjecture. Assume 
deg f ≥ 1. We prove that if the size of D−1D = {d−1d′ :
d ∈ D \ {0}, d′ ∈ D} is less than q − deg f + 2, then f is a 
permutation of Fq . We use this result to prove the conjecture 
of Sziklai.
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1. Introduction

Let Fq denote the finite field of q = pn elements, where p is a prime. If f is an Fq → Fq

function then the a˙ine q-set Uf := {(x, f(x)) : x ∈ Fq} ⊆ AG(2, q) is called the graph 
of f , the subset Df := {(f(x) − f(y))/(x − y) : x, y ∈ Fq, x ̸= y} of Fq is called the 
set of directions, or slopes, determined by (the graph of) f . Each Fq → Fq function can 
be uniquely represented by a polynomial of Fq[x] with degree at most q − 1, so we will 
consider polynomials instead of functions. For a subset A of Fq we will denote A \ {0}
by A∗.

When d > 1 is a divisor of q − 1, put

Md := {xd : x ∈ F∗
q }.

The following result was proved first by Carlitz in the case of d = 2 [4] and then gener
alized by McConnel for other divisors d of q − 1 [9].

Result 1.1. If Df ⊆ Md, then f is of the form f(x) = a + bxpk for some non-negative 
integer k, a ∈ Fq, b ∈ Md and (pk − 1) a multiple of d.

There are several generalizations and different proofs of this result, due to Bruen and 
Levinger [3], Grundhöfer [6], Lenstra [8], see [7, Section 9] for a survey on these results 
and their relation with the Paley graph.

Since 0 / ∈ Df yields f(x) ̸= f(y) for each x ̸= y, it is obvious that only permutations 
can satisfy the condition D ⊆ Md. This is not the case anymore if we allow D ⊆ Md∪{0}. 
In [10, pg. 114] Sziklai conjectured that f(x) = axpk +b holds also when one replaces Md

with Md ∪ {0} in the statement of Result 1.1. To present what is known regarding this 
conjecture, we need to recall some definitions. An Fq → Fq function f is called additive 
if f(a + b) = f(a) + f(b) for each a, b ∈ Fq. Such functions correspond to polynomials 
a0x + a1x

p + · · · + an−1x
pn−1 ∈ Fq[x]. If f is additive and α ∈ Fq, then we will call 

f + α an a˙ine polynomial. An important result on directions is the following, due to 
Ball, Blokhuis, Brouwer, Storme, Szőnyi [2] and Ball [1].

Result 1.2. If |Df | ≤ (q + 1)/2, then f is an a˙ine polynomial.

If f is additive, then for the a˙ine polynomial g = f +α it holds that Dg = {f(x)/x :
x ∈ F∗

q } = Df . The following result is due to McGuire and Göloğlu [5].

Result 1.3. If q is odd, f is additive and Df ⊆ M2 ∪ {0}, then f(x) = axpk for some 
non-negative integer k and a ∈ M2 ∪ {0}.

If Dg ⊆ M2 ∪ {0}, then |Dg| ≤ (q + 1)/2 and hence by Result 1.2 g = f + α for some 
additive f with Df = Dg, thus Result 1.3 proves Sziklai’s conjecture in case of odd q



B. Csajbók / Finite Fields and Their Applications 108 (2025) 102683 3

and even d. In [5] the authors used Gauss sums and it seems to be that their technique 
cannot be used to prove the conjecture when d is odd.

Our key result is Theorem 2.1. Its proof was inspired by the recent manuscript [11] of 
C. H. Yip who used Result 1.2 in a clever way to strengthen Result 1.1. In Corollary 2.5 we 
extend Yip’s result to polynomials which are not necessarily permutations. Our notation 
is standard, if A,B ⊆ Fq then A−1 = {a−1 : a ∈ A∗} and AB = {ab : a ∈ A, b ∈ B}. 
If c ∈ Fq, then A − c = {a − c : a ∈ A}. In Theorem 2.2 and Corollary 2.3 we present 
conditions on the size of D−1

f Df which ensure that f is a permutation. In Corollary 2.4
we prove Conjecture 18.11 from [10, pg. 114] by Sziklai:

Conjecture 1.4. If Df ⊆ Md ∪ {0}, then f is of the form f(x) = a + bxpk for some 
non-negative integer k, a ∈ Fq, b ∈ Md ∪ {0} and (pk − 1) a multiple of d.

2. New results

Our first result shows how a simple combinatorial property of the graph of f implies 
an algebraic property of Df . Recall that the graph Uf of f is a set of q points in the finite 
a˙ine plane AG(2, q). The common points of a line ℓ of equation y = mx + b and the 
graph Uf are exactly those points (x, f(x)), for which f(x) = mx+b. Now f(x)−mx−b

is either the zero polynomial, in which case ℓ = Uf , or it has at most deg f distinct 
roots in Fq. It might be that x0 is a multiple root of f(x) − mx − b, but also in that 
case there is only one corresponding point in the intersection of the point sets Uf and ℓ, 
namely (x0, f(x0)), and we count this point like the others with multiplicity one. If the 
intersection of the point sets Uf and ℓ has size k then we will say that ℓ meets Uf in k
points and this happens exactly when deg gcd(f(x) −mx− b, xq − x) = k.

Theorem 2.1. Assume that the line of equation y = mx + b meets the graph of f ∈ Fq[x]
in k points for some 1 < k < q. Then

|(Df −m)−1(Df −m)| ≥ q − k + 2.

Proof. Put g(x) := f(x) −mx − b. Then g has exactly k distinct roots in Fq. Let a be 
one of them and define h(x) := g(x + a). Clearly h is again a polynomial over Fq with 
exactly k distinct roots in Fq and 0 is one of them. Also,

Dh =
{︃
h(x) − h(y)

x− y 
: x, y ∈ Fq, x ̸= y

}︃
=

{︃
f(x + a) − f(y + a) −m(x− y)

(x + a) − (y + a) : x, y ∈ Fq, x ̸= y

}︃
= Df −m.

Denote by r1, r2, . . . , rk−1 the distinct non-zero roots of h in Fq.
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We claim that

H :=
{︃

x 
x− y

: x, y ∈ Fq, h(x) ̸= 0, h(y) = 0
}︃

⊆ D−1
h Dh, (1)

and

|H| ≥ q − k + 1. (2)

To prove (1) take an element x/(x − y) from H (i.e., h(x) ̸= 0, h(y) = 0) and put 
c = x/h(x). Since h(0) = 0, we have

c = x 
h(x) = x− 0 

h(x) − h(0) ∈ D−1
h .

Also, since h(y) = 0, we have

x 
x− y

= c
h(x) − h(y)

x− y 
∈ D−1

h Dh.

To prove (2) first note that 0, 1 ∈ D−1
h Dh, 0 / ∈ H and 1 ∈ H. Assume that α ∈ Fq \{0, 1}

is not contained in H. Then the solutions in x of the equations

x/(x− ri) = α, i ∈ {1, 2, . . . , k − 1}, (3)

are in {r1, r2, . . . , rk−1}. If x is a solution of x/(x− ri) = α, then x = riα/(α− 1), so if 
α / ∈ H, then

α

α− 1 · {r1, r2, . . . , rk−1} ⊆ {r1, r2, . . . , rk−1},

and hence

α

α− 1 · {r1, r2, . . . , rk−1} = {r1, r2, . . . , rk−1}.

Put β = α/(α− 1) and R = {r1, r2, . . . , rk−1}. Then βR = R. Clearly there are at most 
k − 1 such βs: r1/r1, r2/r1, . . . , rk−1/r1, but β ̸= 1 and hence there are at most k − 2
values of α ∈ Fq \ {0, 1} for which (3) does not have a solution with h(x) ̸= 0. It follows 
that |H| ≥ (q − 2) − (k − 2) + 1 (because of 1 ∈ H). Since 0 ∈ D−1

h Dh \ H, we have 
|D−1

h Dh| ≥ |H| + 1, which proves the assertion. □
Corollary 2.2. Let f ∈ Fq[x] be a polynomial of degree k for some 0 < k < q. If 
|D−1

f Df | < q − k + 2, then f is a permutation of Fq.
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Proof. If k = 1, then f is a permutation. Assume k > 1. If f was not a permutation, 
then there would be a line with slope 0 meeting Uf in at least two and at most k points 
(since f(x) = c has at most deg f roots for each c ∈ Fq). By Theorem 2.1 it follows that 
|D−1

f Df | ≥ q − k + 2, contradicting the assumption. □
Corollary 2.3. If |D−1

f Df | ≤ (q + 1)/2 holds for some Fq → Fq non-constant function f , 
then f permutes Fq.

Proof. f is non-constant, hence there is a non-zero element in Df , so D−1
f ̸= ∅ and 

|Df | ≤ |D−1
f Df |. By Result 1.2 f can be represented by an a˙ine polynomial of degree 

at most q/p ≤ q/2. Then

|D−1
f Df | ≤ q + 1

2 
< q − q/2 + 2 ≤ q − deg f + 2,

and the result follows from Theorem 2.2. □
The next result proves Conjecture 18.11 from [10, pg. 114].

Corollary 2.4. If Df ⊆ Md ∪ {0}, then f is of the form f(x) = a + bxpk for some 
non-negative integer k, a ∈ Fq, b ∈ Md ∪ {0} and (pk − 1) a multiple of d.

Proof. D−1
f Df ⊆ M−1

d (Md∪{0}) = Md∪{0} and hence |D−1
f Df | ≤ |Md|+1 ≤ (q+1)/2. 

By Corollary 2.3 f is a constant function (that is, b = 0), or it is a permutation and 
hence 0 / ∈ Df . The assertion follows from Result 1.1. □

The next result weakens the condition on f from [11, Theorem 1.2], since we do not 
require f to be a permutation.

Corollary 2.5. If for some Fq → Fq function f it holds that |D−1
f DfD

−1
f | ≤ (q + 1)/2, 

then f(x) = a + bxpk .

Proof. For each subset Df of Fq it holds that |D−1
f Df | ≤ |D−1

f DfD
−1
f |, thus by Corol

lary 2.3 f is a constant function or a permutation. In the former case the result trivially 
holds, in the latter case the statement follows from [11, Theorem 1.2]. □
Data availability

No data was used for the research described in the article.
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