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Let D denote the set of directions determined by the graph of
a polynomial f of F[z], where q is a power of the prime p. If D
is contained in a multiplicative subgroup M of F, then by a

result of Carlitz and McConnel it follows that f(z) = ax?” +b
for some k € N. Of course, if D C M, then 0 ¢ D and hence
f is a permutation. If we assume the weaker condition D C
M U {0}, then f is not necessarily a permutation, but Sziklai
conjectured that f(z) = aazP" + b follows also in this case.
When q is odd, and the index of M is even, then a result of
Ball, Blokhuis, Brouwer, Storme and Szényi combined with a
result of Gologlu and McGuire proves the conjecture. Assume
deg f > 1. We prove that if the size of D™'D = {d~1d’ :
d € D\ {0}, d € D} is less than ¢ — deg f 4+ 2, then f is a
permutation of F,;. We use this result to prove the conjecture
of Sziklai.
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open access article under the CC BY license (http://
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1. Introduction

Let I, denote the finite field of ¢ = p™ elements, where p is a prime. If f isan F; — F,
function then the affine g-set Uy := {(z, f(z)) : © € F,} C AG(2,q) is called the graph
of f, the subset Dy i= {(f(z) - f())/(z —y) : @,y € Fy.x # y} of F, is called the
set of directions, or slopes, determined by (the graph of) f. Each F, — F, function can
be uniquely represented by a polynomial of F,[z] with degree at most ¢ — 1, so we will
consider polynomials instead of functions. For a subset A of F, we will denote A\ {0}
by A*.

When d > 1 is a divisor of ¢ — 1, put

My = {a:d:sce]F;}.

The following result was proved first by Carlitz in the case of d = 2 [4] and then gener-
alized by McConnel for other divisors d of ¢ — 1 [9].

Result 1.1. If Dy C My, then f is of the form f(x) = a + bzP" for some non-negative
integer k, a € F,, b € My and (p* — 1) a multiple of d.

There are several generalizations and different proofs of this result, due to Bruen and
Levinger [3], Grundhofer [6], Lenstra [8], see [7, Section 9] for a survey on these results
and their relation with the Paley graph.

Since 0 ¢ Dy yields f(z) # f(y) for each x # y, it is obvious that only permutations
can satisfy the condition D C M. This is not the case anymore if we allow D C M;U{0}.
In [10, pg. 114] Sziklai conjectured that f(z) = az?" +b holds also when one replaces My
with My U {0} in the statement of Result 1.1. To present what is known regarding this
conjecture, we need to recall some definitions. An [F; — IF, function f is called additive
if f(a+b) = f(a) + f(b) for each a,b € Fy. Such functions correspond to polynomials
apx + arxP + -+ + an_lxpnfl € Fylz]. If f is additive and a € F,, then we will call
f + a an affine polynomial. An important result on directions is the following, due to
Ball, Blokhuis, Brouwer, Storme, Szényi [2] and Ball [1].

Result 1.2. If [Dy¢| < (¢ + 1)/2, then f is an affine polynomial.

If f is additive, then for the affine polynomial g = f + « it holds that Dy, = {f(z)/x :
v € Fy} = Dy. The following result is due to McGuire and Gologlu [5].

Result 1.3. If ¢ is odd, f is additive and Dy C M, U {0}, then f(z) = ax?" for some
non-negative integer k and a € M, U {0}.

If Dy, € My U {0}, then |Dgy| < (¢+1)/2 and hence by Result 1.2 g = f + « for some
additive f with Dy = Dy, thus Result 1.3 proves Sziklai’s conjecture in case of odd ¢
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and even d. In [5] the authors used Gauss sums and it seems to be that their technique
cannot be used to prove the conjecture when d is odd.

Our key result is Theorem 2.1. Its proof was inspired by the recent manuscript [11] of
C. H. Yip who used Result 1.2 in a clever way to strengthen Result 1.1. In Corollary 2.5 we
extend Yip’s result to polynomials which are not necessarily permutations. Our notation
is standard, if A,B C F, then A~ = {a':a € A*} and AB = {ab:a € A, b € B}.
If ce Fy, then A—c={a—c:a € A}. In Theorem 2.2 and Corollary 2.3 we present
conditions on the size of D;lD  which ensure that f is a permutation. In Corollary 2.4
we prove Conjecture 18.11 from [10, pg. 114] by Sziklai:

Conjecture 1.4. If Dy C My U {0}, then f is of the form f(z) = a + ba?" for some
non-negative integer k, a € F,, b € My U {0} and (p* — 1) a multiple of d.

2. New results

Our first result shows how a simple combinatorial property of the graph of f implies
an algebraic property of D¢. Recall that the graph Uy of f is a set of ¢ points in the finite
affine plane AG(2,¢q). The common points of a line ¢ of equation y = ma + b and the
graph U are exactly those points (x, f(z)), for which f(z) = max+b. Now f(x) —max—b
is either the zero polynomial, in which case ¢ = Uy, or it has at most deg f distinct
roots in F,. It might be that z( is a multiple root of f(x) — maz — b, but also in that
case there is only one corresponding point in the intersection of the point sets Uy and ¢,
namely (zo, f(z0)), and we count this point like the others with multiplicity one. If the
intersection of the point sets Uy and ¢ has size k then we will say that £ meets U in k
points and this happens exactly when deg ged(f(z) — ma — b, 2% — x) = k.

Theorem 2.1. Assume that the line of equation y = maxz + b meets the graph of f € Fy[z]
in k points for some 1 < k < q. Then

(Dy —m)"H(Dy —m)| > ¢ —k+2.

Proof. Put g(x) := f(z) — ma — b. Then ¢ has exactly k distinct roots in F,. Let a be
one of them and define h(z) := g(x + a). Clearly h is again a polynomial over F, with
exactly k distinct roots in F; and 0 is one of them. Also,

_ [ h(=) = h(y)
Dh_{ z—y
{f($+a)—f(y+a)—m(w—y)
(z+a)—(y+a)

:l'ayquwT?éy}:

:m,yGFq,x#y}:Df—m.

Denote by r1,7g,...,7x—1 the distinct non-zero roots of h in [F,.
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We claim that

H = {xfy 2,y € Fy, h(z) £ 0, h(y) :o} c D;'py, 1)
and
H|>q—k+1. 2)

To prove (1) take an element z/(x — y) from H (i.e., h(z) # 0, h(y) = 0) and put
¢ =z /h(x). Since h(0) = 0, we have

Also, since h(y) = 0, we have

L Ch(a:) — h(y) c DﬁlD}p

r—=y r—=Yy

To prove (2) first note that 0,1 € D; ' Dy, 0 ¢ H and 1 € H. Assume that a € F,\ {0,1}
is not contained in H. Then the solutions in x of the equations

xf(x—r)=a, i€{1,2,...,k—1}, (3)
are in {ry,72,...,rx—1}. If z is a solution of z/(x — r;) = «, then z = r;a/(a — 1), so if
a ¢ H, then

s e }

Ary,re, o, TR 1,72, ., The
a—_1 1,72, y k=15 = 1,72, sy Tk—17,
and hence

o b={ }

Ary,ro, oo 1y ={r, e, TR_1 }
a—_1 1,72, s Tk—1 1,72, s Tk—1

Put s =a/(a—1) and R = {ry,72,...,7x—1}. Then SR = R. Clearly there are at most
k — 1 such Bs: ri/ry,ra/71,...,7k—1/71, but B # 1 and hence there are at most k — 2
values of o € Fy \ {0, 1} for which (3) does not have a solution with h(x) # 0. It follows
that |H| > (¢ —2) — (k — 2) + 1 (because of 1 € H). Since 0 € D; ' Dy, \ H, we have
|D;; ' Dy| > |H| + 1, which proves the assertion. 0

Corollary 2.2. Let f € F,[z] be a polynomial of degree k for some 0 < k < q. If
|Df_1Df| < q—k+2, then f is a permutation of IF,.
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Proof. If £ = 1, then f is a permutation. Assume k& > 1. If f was not a permutation,
then there would be a line with slope 0 meeting Uy in at least two and at most k points
(since f(x) = ¢ has at most deg f roots for each ¢ € ;). By Theorem 2.1 it follows that
|D;1Df| > q — k + 2, contradicting the assumption. 0O

Corollary 2.3. If |DJI1Df| < (g+1)/2 holds for some F, — F, non-constant function f,
then f permutes Fy.

Proof. f is non-constant, hence there is a non-zero element in Dy, so D;l # () and
|Dy| < |D]71Df|. By Result 1.2 f can be represented by an affine polynomial of degree
at most ¢/p < q/2. Then

_ +1
|D7'Dy| < qT <q—q/24+2<q—degf+2,
and the result follows from Theorem 2.2. O

The next result proves Conjecture 18.11 from [10, pg. 114].

Corollary 2.4. If Dy C My U {0}, then f is of the form f(z) = a + ba?" for some
non-negative integer k, a € F,, b € My U {0} and (p* — 1) a multiple of d.

Proof. D;'D; C My '(MyU{0}) = MqU{0} and hence |D; ' Dy| < [My|+1 < (q+1)/2.

By Corollary 2.3 f is a constant function (that is, b = 0), or it is a permutation and
hence 0 ¢ Dy. The assertion follows from Result 1.1. O

The next result weakens the condition on f from [11, Theorem 1.2], since we do not
require f to be a permutation.

Corollary 2.5. If for some F, — F, function f it holds that |D;1DfDJ71| < (¢g+1)/2,
then f(x) =a+ ba?"

Proof. For each subset Dy of Fy it holds that ‘D;lDf‘ < \D;lDij?lL thus by Corol-
lary 2.3 f is a constant function or a permutation. In the former case the result trivially
holds, in the latter case the statement follows from [11, Theorem 1.2]. O
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