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1. Introduction

Studying the maximum possible size of a subset of a vector space over a finite field 
which contain either no (non-trivial) solution to a given linear equation or not too many 
collinear points is a classical yet vibrant research area [1,13,15,17,31,21,32,40,41]. The 
most notable examples are the Sidon sets and the so-called cap-set problem. The latter 
one is to determine the largest subset of Fn

3 containing no complete line, or in other terms, 
no arithmetic progression of length 3 (3-AP), or no collinear triplets. In general, point 
sets of finite a˙ine or projective spaces with no three in line are called caps. Recently 
Ellenberg and Gijswijt proved a breakthrough result regarding caps in Fn

3 [17] building 
on the ideas of Croot, Lev and Pach [9], and they also proved that the size of a 3-AP
free set of Fn

p is always bounded from above by (p− δp)n for some small constant δp > 0
depending only on p, see also [18].

For the general case of abelian groups, the maximum size of 3-AP free sets was 
discussed in the classical paper of Frankl, Graham and Rödl [21]. A nice and general 
overview on additive combinatorial and extremal results concerning arithmetic progres
sions is by Shkredov [41].

A finite point set (with respect to a property) is called complete if it does not contained 
as a subset in a larger point set, satisfying the same property. In extremal problems 
described above, usually constructions of maximum size are in the centre of attention. 
These are complete by definition. However, in several cases, the whole spectra of sizes 
matters for complete structures, and the structure of smallest size in particular. For 
example, in the case of complete caps over PG(n, q), the point set is corresponding to 
the parity check matrix of a q-ary linear code with codimension n+1, Hamming distance 
4, and covering radius 2, see [27].

In this paper we investigate the less studied lower end of the spectrum of possible sizes 
of complete 3-AP free sets, the minimum size. We discuss the minimum size in arbitrary 
abelian groups of odd order and highlight the case of finite vector spaces.

A 3-term arithmetic progression of the abelian group G, 3-AP for short, is a set of 
three distinct elements of G of the form g, g + d, g + 2d, where g, d ∈ G. We will call 
d the difference. If d is the difference of a 3-AP in G, then the order of d is at least 3. 
Let Fq denote the Galois field of q elements, and oq(a) denotes the multiplicative order 
of a ∈ Fq. In order to have a 3-AP in Fn

q we need q to be odd, so we will only consider 
this case. A + B denotes the sumset {a+ b : a ∈ A, b ∈ B} of sets A and B, while A+̇B

denotes the restricted sumset where the summands must be distinct.

Definition 1.1. A ⊆ G is called 3-AP-free if it does not contain a 3-AP of G. Moreover, 
A is complete 3-AP-free if it is 3-AP free and not contained in a larger 3-AP free set.

The completeness of a 3-AP free set can be interpreted via saturation as well: S is 
complete 3-AP free if S is 3-AP free and a saturating set w.r.t. 3-APs.
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Definition 1.2. For a subset S ⊆ G we say that S is 3-AP saturating or in other words, 
S 3-AP saturates G if for each x ∈ G \ S there is a 3-AP of G consisting of x and two 
elements of S. In a broader context, we say that S 3-AP saturates a set H ⊂ G if similar 
condition holds for the elements of H \ S.

In this paper we will mostly consider the problem of 3-AP saturation in groups of odd 
order.

Definition 1.3. For g ∈ G if � ∈ Z is positive, then �g = g + g + . . . + g︸ ︷︷ ︸
� 

∈ G and 

(−�)g = − (�g) ∈ G. If the order of G is odd then we define 1
2g as the unique element 

x ∈ G such that x + x = g, that is, x = (k + 1)g, where the order of g is 2k + 1.

Observation 1.4. A set A ⊆ G is 3-AP saturating, iff for every x ∈ G\A there is a 3-AP
consisting of x and {a1, a2} ⊆ A such that (i) either x = 2a1 − a2, or (ii) 2x = a1 + a2.

If G has odd order then (ii) is equivalent to x = 1
2a1 + 1

2a2.

Saturation and completeness with respect to 3-APs were considered in integer se
quences as well, see [6,20,30].

The postage stamp problem seeks the greatest integer r = rk such that there exists a 
set Ak of k positive integers together with 0 such that

i ∈ Ak + Ak for all i = 0, 1, . . . , r.

Mrose [33] and independently, Fried [22] showed that the rk is at least 2
7k

2 +O(k). A set 
of non-negative integers A is called a basis of order two if A + A = N holds for the 
sumset. Note that a variation of Mrose’s construction can be extended to an additive 
2-basis of N, see [26,28]. Such constructions lead to small sets S of Fp for which every 
element of Fp is an arithmetic mean of a pair of elements from S, hence S saturates the 
3-APs. We will discuss this in Section 4.

These constructions provide further motivations to introduce the saturation with re
spect to a set of (coefficient) vectors. For a subset S of elements of a group G (written 
additively) we will write S∗ to denote S minus the neutral element.

Definition 1.5 (W -avoiding and W -saturating sets). Let W denote a set of vectors from 
F∗
q × F∗

q . We define W -avoiding and W -saturating sets in Fn
q as follows.

A ⊆ Fn
q is W -avoiding, if there is no w = (λ1, λ2) ∈ W such that a = λ1a

′ + λ2a
′′ has 

a non-trivial solution with a, a′, a′′ pairwise distinct vectors of A.
A ⊆ Fn

q is W -saturating in Fn
q if for each x ∈ Fn

q \A there exists a w = (λ1, λ2) ∈ W

such that x = λ1a
′ + λ2a

′′ for a pair (a′, a′′) ∈ A2, a′ �= a′′.
A ⊆ Fn

q is complete W -avoiding if it is W -avoiding and W -saturating.

If W consists of a single vector W = {w}, we omit the brackets for brevity.
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Definition 1.6 (Avoiding and saturating sets in groups). Let W denote a subset of Z×Z. 
We define W -avoiding, W -saturating and complete W -avoiding sets in abelian groups 
G similarly to Definition 1.5. We will be mostly interested in the cases when W is an 
element of {(2,−1), (1, 1), (1,−1)}.

If G has odd order then we also define (1
2 ,

1
2 )-saturating sets.

Remark 1.7. For a subset A ⊆ Fn
q and for (λ1, λ2) ∈ F∗

q × F∗
q the following properties 

are equivalent: (i) A is (λ1, λ2)-avoiding, (ii) A is (1/λ1,−λ2/λ1)-avoiding, (iii) A is 
(1/λ2,−λ1/λ2)-avoiding.

In a group G the following properties are equivalent: (i) A is 3-AP free (ii) A is 
(2,−1)-avoiding, (iii) there is no three pairwise distinct elements x, y, z ∈ A such that 
2x = y+z. (If the order of G is odd, then it is equivalent to say that A is (1

2 ,
1
2 )-avoiding.)

Similarly, for A ⊆ G\{0} the following properties are equivalent in any abelian group 
G: (i) A is restricted sum-free, i.e., (A+̇A) ∩ A = ∅, (ii) A is (1, 1)-avoiding, (iii) A is 
(1,−1)-avoiding.

Note that Definition 1.5 can be extended naturally to any set of vectors of 
⋃∞

t=2(F∗
q )t.

Our main (but not only) focus will be the case W = {(2,−1)} for its correspondence 
to 3-APs, see Observation 1.4, and in general, the case when W consists of a single 
vector.

We will also apply the fact that the field Fqn is itself a vector space over Fqh for h | n. 
This will enable us to alter the dimension of the underlying structure at times, which 
will provide improvements on the estimates. If q = pr, p prime, and W ⊆ F∗

p × F∗
p , then 

studying W -saturating and W -avoiding sets in the vector space Fn
q is equivalent to study 

the same questions in the elementary abelian group Frn
p .

Now we introduce the functions we wish to study.

Definition 1.8. For a group G we define the following: 

(1) Let a(3 − AP, G) denote the minimum size of a complete 3-AP free set of G.
(2) Let sat(3 − AP, G) denote the minimum size of a 3-AP saturating set of G.
(3) Let a(W,G) denote the minimum size of a complete W -avoiding set of G. If there is 

no W -avoiding set of G, then put a(W,G) = ∞.
(4) Let sat(W,G) denote the minimum size of a W -saturating set of G.

Observe that in Z5 there are no complete (2,−1)-avoiding sets.

Example 1.9. As an example, we show complete 3-AP sets for G = F2
3 and G = F2

5 in 
Fig. 1. These are of minimum size, cf. Lemma 2.1. We note in advance that in F2

q we 
can always find complete 3-AP sets of size q when −2 is not a square element in Fq, cf. 
Theorem 3.2.
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Fig. 1. Complete 3-AP free sets of minimum size in F2
3 and in F2

5 . 

Remark 1.10. Any complete 3-AP free set is 3-AP saturating, any complete W -avoiding 
set is W -saturating by definition, thus

a(W,G) ≥ sat(W,G).

Since (2,−1)-saturating sets are clearly satisfying the 3-AP saturating property in 
view of Observation 1.4, we have

sat((2,−1), G) ≥ sat(3 − AP, G)

≥ ≥

a((2,−1), G) ≥ a(3 − AP, G)

(1)

Our main results are as follows.

Theorem 1.11. Let p be an odd prime and k a positive integer. Then we have 

(1)

√
2/3 · p2k−1 < a(3 − AP,F4k−2

p ) ≤ p2k−1,

provided that −2 is not a square element in Fp. Also,
(2)

√
2/3 · pn/2 < a(3 − AP,Fn

p ) ≤ a((2,−1),Fp)n.

Observe that (2) of Theorem 1.11 motivates the study of a((2,−1),Fp), or in general 
a((2,−1),Zm), where Zm is the cyclic group of order m.

Theorem 1.12. Let m denote a positive odd integer. Then 
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(1) sat((2,−1),Zm) < √
cm ·m where cm ∈ [1, 3] is a constant depending only on m.

(2) a((2,−1),Zm) < √
cm ·m for cm ∈ [1, 1.5], a constant depending only on m, provided 

that 2
3 (4n − 1) < m < 4n holds for some positive integer n.

(3)
√

2m− 0.5 < sat((1/2, 1/2),Zm) ≤ (
√

3.5 + o(1))
√
m ≈ 1.87

√
m.

(4) a((2,−1),Zm) = 
√m�, provided that m is if form m = 22t+2t+1 for some positive 
integer t.

The close connection between the sat function and the size of the complete 3-AP-free 
sets, see Remark 1.10, motivates the theorem below.

Theorem 1.13. Let 3 < p be a prime and k a positive integer. Then we have 
(1)

√
2/3 · pk < sat(3 − AP,F2k

p ) ≤
(

4
3 + r

3 · op(−2)

)
(pk − 1),

where r is the residue modulo 3 of the order op(−2) of −2 in F×
p .

(2)

√
2/3 · pk+ 1

2 < sat(3 − AP,F2k+1
p ) ≤ 2

3(pk+1 + pk − 2) + r(pk+1 + pk − 2)
3 · op(−2) ,

where r is the residue modulo 3 of the order op(−2) of −2 in F×
p .

(3)

pk < sat((2,−1),F2k
p ) ≤

(
3
2 + r

2 · op(−2)

)
(pk − 1),

where r is the residue modulo 2 of the order op(−2) of −2 in F×
p .

(4)

pk+ 1
2 < sat((2,−1),F2k+1

p ) ≤ √
cp

(
3
2 + r

2 · op(−2)

)
(pk − 1)√p,

where r is the residue modulo 2 of the order op(−2) of −2 in F×
p and cp ≤ 3 is the 

same constant depending on p as in Theorem 1.12.

Remark 1.14. The same ideas as in Theorem 1.13 work to prove analogous results in 
Zk

m, when gcd(m, 6) = 1. Then op(−2) should be replaced by the multiplicative order 
of −2 in the ring Zm. In the proofs Theorems 3.10 and 3.11 should be used instead of 
Propositions 3.5 and 3.9, respectively.

Theorem 1.15. For abelian groups G of order n > 5 odd, it holds that

sat(3 − AP, G) ≤ sat((1/2, 1/2), G) ≤
√

(n− 1) ln (n− 1) +
√

(n− 1) + 1.
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The paper is organized as follows. In Section 2 we present some preliminary results 
and useful tools. First we prove lower bounds on the size of saturating and complete W
avoiding sets. Then we show the strength and limitation of direct product constructions, 
which will enable us to prove the upper bound results for vector spaces (Theorems 1.11
and 1.13). To have upper bounds close to our lower bounds, we will rely on further 
avoiding and saturating set constructions in finite fields which are small enough. Finally, 
we point out the relation of these results to results concerning caps and 3-AP covering 
sequences.

In Section 3 we prove the upper bounds of Theorem 1.11 by analysing point sets 
of conics in the respected vector spaces. We also prove some general constructions of 
saturating sets in direct product of groups. Then we deduce the upper bounds of Theo
rem 1.13 and Theorem 1.11 (1). Section 4 is devoted to the proof of Theorem 1.12 and 
1.15, where we provide constructions based on numeral systems, additive basis, Sidon 
sets and random constructions, using tools from additive number theory to design theory.

2. Preliminary results

2.1. Double counting and direct sum constructions

We begin this section by demonstrating some trivial lower bounds on the size of 3-AP
saturating and W -saturating sets.

Proposition 2.1. 

(1) Suppose that H is a 3-AP saturating set in the abelian group G of odd order. Then

|H| ≥
√

2
3 |G| + 1 

36 + 1
6 .

Hence, sat(3 − AP,Fn
q ) > 0.8164 · qn/2.

(2) Suppose that H is a w-saturating set in the group G, where w ∈ Z × Z or w =
(λ1, λ2) ∈ F∗

q × F∗
q if G = Fn

q . Then

|H| ≥ 

√
|G|�.

Hence, sat(w,Fn
q ) ≥ 
qn/2�.

(3) Suppose that H is a w-saturating set in the group G, where w = (1, 1), or w = (1
2 ,

1
2 )

if G has odd order, or w = (λ, λ) for some λ ∈ F∗
q if G = Fn

q . Then

|H| ≥
√

2|G| + 1
4 − 1

2 .

So in this case sat(w,Fn
q ) >

√
2 · qn/2 − 0.5
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Proof. Part (1). By definition, ∀x ∈ G \ H, we have a �= b ∈ H s.t. x = 1
2a + 1

2b, or 
x = 2a− b, or x = −a + 2b. Thus by double counting,

|G \H| ≤ 3
(
|H|
2 

)
,

from which the lower bound follows.
Part (2). Let w = (λ1, λ2). By definition, ∀x ∈ G \ H, we have h �= h′ ∈ H s.t. 

x = λ1h + λ2h
′. Then by double counting,

|G| − |H| ≤ 2
(
|H|
2 

)
.

After rearranging, we get the desired bound.
Part (3). By double counting,

|G| − |H| ≤
(
|H|
2 

)
,

and the bound follows after rearranging. �
Remark 2.2. We will see later that the lower bound above for sat((2,−1), G) is sharp in 
some cyclic groups, cf. Theorems 4.3 and 4.13. Subsection 4.5 provides further instances 
when Proposition 2.1 (2) is sharp.

Next we show that the direct sum construction preserves certain properties concerning 
saturation and W -avoidance. Note however that saturation with respect to 3-APs is not 
preserved.

Proposition 2.3 (Avoiding and saturation property in direct products). 

(1) Suppose that H and H ′ are subsets of the abelian groups G and G′, respectively.
(a) Assume that H and H ′ are 3-AP free in the corresponding groups. Also, if G

(or G′) has even order, then assume that the order of x− y is larger than 2 for 
any two distinct x, y ∈ H (∈ H ′). Then H ×H ′ is 3-AP free in G×G′.

(b) If H and H ′ are (1, 1)-avoiding in the corresponding groups and 0G / ∈ H, 0G′ / ∈
H ′ then H ×H ′ is (1, 1)-avoiding in H ×H ′.

(2) Suppose that H and H ′ are W -avoiding subsets of the vector spaces Fm
q and Fn

q , 
respectively for some W ⊆ F∗

q × F∗
q . Then H × H ′ is W -avoiding in Fm

q × Fn
q , 

provided that λ1 + λ2 = 1 for all w = (λ1, λ2) ∈ W .
(3) Suppose that the set W consists of a single vector w = (λ1, λ2) ∈ F∗

q × F∗
q , provided 

that λ1+λ2 = 1. If H ⊆ Fm
q and H ′ ⊆ Fn

q are W -saturating sets of the corresponding 
vector space, then H ×H ′ is also a W -saturating set in Fm

q × Fn
q .
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(4) Suppose that w = (2,−1), or G and G′ are of odd order and w = (1/2, 1/2). If 
H ⊆ G and H ′ ⊆ G′ are w-saturating sets of the corresponding groups, then H×H ′

is also a w-saturating set in G×G′.

Note that the condition λ1 +λ2 = 1 holds if and only if w1, w2 and λ1w1 +λ2w2 ∈ Fn
q

are collinear in the a˙ine space Fn
q . Observe also that by choosing w = (2,−1) in part 

(3), the direct product will be 3-AP saturating as well.

Proof. (1a) Assume to the contrary that there is a 3-AP:

(h1, h
′
1), (h2, h

′
2), (h3, h

′
3) ∈ H ×H ′

with difference (d, d′) ∈ G×G′. Since (d, d′) is not the neutral element of the group G×G′, 
w.l.o.g. we may assume that d is not the neutral element of G. Then h1, h2, h3 is a 3-AP
of G, contradicting the assumption on H, or the order of G is even and h1 + h3 = 2h2
holds because the size of {h1, h2, h3} is 2, i.e. h1 = h3 and hence the order of h1 − h2 is 
2, a contradiction.

(1b) Assume to the contrary (h1, h
′
1) = (h2, h

′
2) + (h3, h

′
3) for some h1, h2, h3 ∈ H

and h′
1, h

′
2, h

′
3 ∈ H ′. W.l.o.g. we may assume h2 �= h3. Then h1 = h2 + h3 are 3 distinct 

elements of H contradicting the fact that H is (1, 1)-avoiding (recall 0G / ∈ H).
Proof of (2). Assume to the contrary the existence of w = (λ1, λ2) ∈ W such that 

(h1, h
′
1) = λ1(h2, h

′
2) + λ2(h3, h

′
3) for some elements of H ×H ′. Hence
{
h1 = λ1h2 + λ2h3,

h′
1 = λ1h

′
2 + λ2h

′
3.

Since (h2, h
′
2) �= (h3, h

′
3), we may assume w.l.o.g. that h2 �= h3. We have h1 = λ1h2+λ2h3

and this is a contradiction if h1, h2, h3 are three pairwise distinct elements since H is 
W -avoiding. If we had h1 = h2, then h1(1 − λ1) = h3(1 − λ1) and hence also h1 = h3, a 
contradiction since h2 �= h3 (and the same argument shows h1 �= h3 as well).

Proof of (3). Take any (g, g′) ∈ (Fm
q × Fn

q ) \ (H ×H ′). If g / ∈ H and g′ / ∈ H ′, then by 
the assumption, there exist h1, h2 ∈ H and h′

1, h
′
2 ∈ H ′ such that

{
g = λ1h1 + λ2h2,

g′ = λ1h
′
1 + λ2h

′
2,

g, h1, h2 and g′, h′
1, h

′
2 are sets of pairwise distinct elements. This in turn shows that

(g, g′) = λ1(h1, h
′
1) + λ1(h2, h

′
2),

where (g, g′), (h1, h
′
1), (h2, h

′
2) are pairwise distinct elements.

We cannot have g ∈ H and g′ ∈ H ′ at the same time, hence w.l.o.g. we may assume 
g ∈ H and g′ / ∈ H ′. Then by the assumption, there exist h′

1, h
′
2 ∈ H ′ such that
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g′ = λ1h
′
1 + λ2h

′
2,

g′, h′
1, h

′
2 are pairwise distinct elements. This in turn shows that

(g, g′) = λ1(g, h′
1) + λ2(g, h′

2),

where (g, g′), (g, h′
1), (g, h′

2) are pairwise distinct elements.
The proof of (4) is the same as the proof of (3). �
A generalisation of some of the results above will be discussed in Subsection 4.5.

Corollary 2.4. Direct product of complete (2,−1)-avoiding sets is a complete 3-AP free 
set. Moreover, a((2,−1), G) · a((2,−1), H) ≥ a(3 − AP,G × H). This highlights the 
importance of finding complete (2,−1)-avoiding sets A in G such that |A| ≤

√
|G|.

The previous propositions motivate the distinguishment below.

Definition 2.5. A complete 3-AP-avoiding or a complete (λ, 1 − λ)-avoiding set H ⊆ G

is called small if |H| ≤
√
|G|.

Proposition 2.6. Let H denote a W -avoiding, W ′-saturating set in Fm
q . 

(1) Then for each λ ∈ F∗
q it holds that λH is W -avoiding and W ′-saturating.

(2) If for each (λ1, λ2) ∈ W it holds that λ1 + λ2 = 1, then for each d ∈ Fm
q , H + d

is W -avoiding. If for each (λ1, λ2) ∈ W ′ it holds that λ1 + λ2 = 1, then for each 
d ∈ Fm

q , H + d is W ′-saturating.
(3) Assume W ′ = {(1, 1)}, 0 ∈ H and λ ∈ Fm

q \ {0, 1}. Then for each x ∈ Fm
q \ {0}

there exist a, b ∈ λH such that x = (1/λ)a+(1/λ)b. In particular, λH is (1/λ, 1/λ)
saturating.

Proof. Proof of (1). For some (λ1, λ2) ∈ W and a, b, c ∈ H, λ1λa+λ2λb = λc would imply 
λ1a+λ2b = c, a contradiction, which proves that λH is W -avoiding. Also, if x ∈ Fm

q \λH, 
then x = λc for some c / ∈ H and hence c = λ1a + λ2b for some (λ1, λ2) ∈ W ′. It follows 
that λH is W ′-saturating.

Proof of (2). If we had λ1(a + d) + λ2(b + d) = c + d for some a, b, c ∈ H and 
(λ1, λ2) ∈ W , then also λ!a + λ2b = c, a contradiction. If x / ∈ H + d then x = c + d for 
some c / ∈ H and hence there exists (λ1, λ2) ∈ W ′ such that λ1a + λ2b = c proving that 
H + d is W ′-saturating.

Proof of (3). Take some x �= 0. If x / ∈ H, then x = a + b for some a, b ∈ H and hence 
x = (1/λ)(λa) + (1/λ)(λb). If x ∈ H, then x = (1/λ)(λ0) + (1/λ)(λx). �
Proposition 2.7. Let q be odd. If H ⊆ Fm

q and H ′ ⊆ Fn
q are (1, 1)-saturating such that 

the corresponding zero vectors are contained in H and in H ′, resp., then 1
2 (2H × 2H ′)

is (1, 1)-saturating in Fm
q × Fn

q .
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Proof. By (3) of Proposition 2.6 it follows that 2H is (1/2, 1/2)-saturating in Fm
q and the 

same holds in Fn
q for 2H ′. Then by (3) of Proposition 2.3 it follows that (2H)× (2H ′) is 

(1/2, 1/2)-saturating in Fm
q ×Fn

q . Since this subset contains the zero vector of Fm
q ×Fn

q , 
the statement follows again by (3) of Proposition 2.6. �
Proposition 2.8. If H ⊆ Fm

q and H ′ ⊆ Fn
q are (1,−1)-saturating such that the corre

sponding zero vectors are contained in H and in H ′, then H ×H ′ is (1,−1)-saturating 
in Fm

q × Fn
q .

Proof. Take any (g, g′) ∈ (Fm
q × Fn

q ) \ (H × H ′). If g / ∈ H and g′ / ∈ H ′, then by the 
assumption, there exist h1, h2 ∈ H and h′

1, h
′
2 ∈ H ′ such that

{
g = h1 − h2,

g′ = h′
1 − h′

2,

g, h1, h2 and g′, h′
1, h

′
2 are sets of pairwise distinct elements. This in turn shows that

(g, g′) = (h1, h
′
1) − (h2, h

′
2),

where (g, g′), (h1, h
′
1), (h2, h

′
2) are pairwise distinct elements.

We cannot have g ∈ H and g′ ∈ H ′ at the same time, hence w.l.o.g. we may assume 
g ∈ H and g′ / ∈ H ′. Then by the assumption, there exist h′

1, h
′
2 ∈ H ′ such that

g′ = h′
1 − h′

2,

g′, h′
1, h

′
2 are pairwise distinct elements. This in turn shows that

(g, g′) = (g, h′
1) − (0, h′

2),

where (g, g′), (g, h′
1), (0, h′

2) are pairwise distinct elements. �
2.2. Relation to caps

Let q denote any (even or odd) prime power. We describe the relation of the results 
above to results concerning caps.

Definition 2.9. A cap of AG(n, q) is a point set meeting each line of AG(n, q) in at most 
two points.

A cap is called complete if it cannot be extended to a larger cap.
A saturating set S of AG(n, q) is a point set with the property that for each P ∈

AG(n, q) \ S there exist two distinct points Q,R ∈ S, such that P is incident with the 
line joining Q and R.
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It is clear from the definitions above that a cap is complete if and only if it is also a 
saturating set.

The lattice of a˙ine subspaces of Fn
q is isomorphic to the subspace lattice of AG(n, q). 

For results on the (maximum) size of complete caps in AG(n, q), we refer to [14,16,18,43] 
and the references therein. A related problem is the smallest size of complete caps in 
finite a˙ine and projective spaces. For the size of small complete caps, the theoretical 
lower bound is essentially sharp for q even [4,11,23,39] and in some cases also for q odd 
[5]. See also [2,3,12,24] and the references therein for small complete caps for q odd.

Proposition 2.10. Put W = {(λ1, λ2) ∈ F∗
q × F∗

q : λ1 + λ2 = 1}. Then we obtain the 
following. 

(1) Caps of AG(n, q) and W -avoiding sets of Fn
q are equivalent objects. In particular, 

by Theorem 2.3 Part (2) the direct sum of caps is a cap.
(2) Saturating sets of AG(n, q) and W -saturating sets of Fn

q are equivalent objects.
(3) Complete caps of AG(n, q) and complete W -avoiding sets of Fn

q are equivalent ob
jects.

If q = 3, then W = {(2, 2)}, if q = 4, then W = {(i, 1 + i)}. Hence, by Part (3) of 
Theorem 2.3, direct sum of saturating sets is a saturating set and direct sum of complete 
caps is a complete cap for q ∈ {3, 4}. �
2.3. Related results on solving linear equations in algebraic structures

We summarize some results which are connected to the theme of this paper in the 
sense that the subject is a subset of a set, in which an equation of special form has no 
non-trivial solutions. Then we also mention some results of saturation type with respect 
to an equation.

Most probably the leading examples for the first theme are the Sidon sets. A set of 
elements in an abelian group is called a Sidon set if all pairwise sums of its not necessarily 
distinct elements are distinct. Equivalently, the equation a+b = c+d has only the trivial 
solution {a, b} = {c, d} in the set. Observe that Sidon sets are 3-AP free. Concerning 
Sidon sets, Erdős and Turán observed [19] (see also Cilleruelo [7]) that the point set of 
the parabola in Fq × Fq provides a Sidon set. Cilleruelo showed several further abelian 
groups admitting Sidon sets of size equal roughly to the square root of the order of the 
group. Building on his observations, Huang, Tait and Won showed [29] that the largest 
Sidon sets in Fn

3 are of size 3n/2, provided that n is even. Small complete Sidon sets 
of abelian 2-groups are investigated in the recent paper of G. Nagy [35] who showed 
constructions gained from ellipses and hyperbolas in the finite a˙ine plane Fq × Fq, and 
in the papers [10] and [36].

There is a strong connection between the case of vector space or cyclic group setting 
and the case of integer setting, when a non-trivial solution of a particular equation is 
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forbidden within the interval [1, n] ⊂ Z. For Sidon sets, the papers of Ruzsa [37,38] discuss 
the case of small complete structures, while the work of Kiss, Sándor and Yang [30] deals 
with small saturating sets with respect to 3-APs. They used the term 3-AP covering 
sequence for another related concept. Let A0 = {a1 < . . . < at} be a set of nonnegative 
integers such that {a1 < . . . < at} does not contain a 3-term arithmetic progression. 
A sequence A = {a1, a2, . . .} is called the Stanley sequence of order 3 generated by A0, 
where the elements outside A0 are defined by a greedy algorithm as follows. For any 
l ≥ t, al+1 is the smallest integer a > al such that {a1, . . . , al} ∪ {a} does not contain a 
3-term arithmetic progression. Moreover, a sequence A of non-negative integers is called 
a 3-AP-covering sequence if there exists an integer n0 such that, if n > n0, then there 
exist a1, a2 ∈ A such that a1, a2, n form a 3-term arithmetic progression. Fang [20] made 
the following improvement.

Theorem 2.11 (Fang [20]). There is a 3-AP covering sequence S of integers such that

| S ∩ [1, n] |√
n

≤ 8 √
5
≈ 3.578

holds for all n.

This constant cannot be improved to 1.77 [30]. Note that this result is strongly related 
to our main problem since it in turn shows that sat((2,−1),Zn) ≤ (3.578 + o(1))

√
n.

3. Constructions in Fq × Fq and in other direct products

In this section q always denotes a prime power, and p denotes a prime.

Construction 3.1. Let P be the point set of the parabola

{(x, x2) : x ∈ Fq}.

Theorem 3.2. Let q be an odd prime power. If −2 is not a square in Fq then Construc
tion 3.1 is a complete 3-AP free subset of Fq × Fq, hence a(3 − AP,F2

q ) ≤ q.

Remark 3.3. Note that Construction 3.1 provides an infinite family of small complete 
3-AP free subsets of Fq×Fq. As observed by Erdős and Turán, the parabola construction 
provides also a (dense) Sidon set, see [15,19].

Proof of Theorem 3.2. For each (a, b) ∈ F2
q , b �= a2, we prove that one of the following 

systems of equations have a solution (x, y) ∈ Fq × Fq.

{
x + y = 2a
x2 + y2 = 2b

{
2y − x = a

2y2 − x2 = b
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This implies that no point (a, b) outside P can be added to the construction without 
violating the 3-AP free property.

Solution for the first system exists if and only if b − a2 is a square in Fq. Indeed, 
in order to have a common solution, we should get a square value for the discriminant 
16a2 − 8 · (4a2 − 2b) = 16(b− a2) of x2 + (x2 − 4ax + 4a2) − 2b = 0.

Solution for the second system exists if and only if 2(a2 − b) is a square in Fq. Indeed, 
in order to have a common solution, we should get a square value for the discriminant 
16a2 − 8 · (a2 + b) = 8(a2 − b) of 2y2 − (4y2 − 4ay + a2) − b = 0.

If −2 is not a square, then either the first, or the second discriminant will be a square, 
providing a solution to one of the systems. �

Theorem 3.2 in turn implies the upper bound of Theorem 1.11 (1) on complete 3-AP 
free sets in vector spaces once one notes that −2 is not a square element in Fp if and 
only if it is not a square in F2k+1

p .
Now we show some saturating set constructions.

Construction 3.4. Let 〈−2〉 denote the multiplicative (cyclic) subgroup of F×
q , generated 

by −2, where char(q) �= 2, 3. Take a set of maximum size in each coset of 〈−2〉 for which 
the equations −2g = g′, 4g = g′ have no solutions within the set. Let R denote the union 
of these sets.

Let L denote the set of point L = {(0, r) : r ∈ F∗
q \R}∪{(r, 0) : r ∈ F∗

q \R} ⊂ Fq ×Fq

The following result is a reformulation of the upper bound of Theorem 1.13 (1).

Proposition 3.5. Construction 3.4 contains

2(q − 1)oq(−2) − �oq(−2)/3�
oq(−2) 

elements and it saturates the 3-APs of Fq × Fq.

Corollary 3.6. If 3 | oq(−2) then |L| = 4
3 (q − 1).

Proof (of Proposition 3.5). First, observe that the choice of R ensures that for all g ∈
Fq \ {0}, at least two of g,−2g, 4g are admissible coordinates in L. This implies that at 
most

(q − 1)�oq(−2)/3�
oq(−2) 

elements are contained in R. On the other hand, choosing each element of form (−2)3t−1

such that 0 < 3t ≤ oq(−2) in 〈−2〉 and applying similar rule in each coset yield equality 
in the bound above. Then the cardinality of points in L follows.
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Then take any point (a, b) ∈ Fq × Fq, where a �= 0 �= b and suppose that the addition 
of (a, b) to the construction does not create a 3-AP. Now take

(0, 2b), (a, b), (2a, 0);

(−a, 0), (0, b/2), (a, b);

and

(0,−b), (a/2, 0), (a, b)

which form three disjoint 3-APs consisting of two points of the axes and (a, b). Here 
we use the fact that oq(−2) > 2. Since at most one element of {a/2,−a, 2a} and of 
{b/2,−b, 2b} is contained in R, L will contain at least 4 of the points listed above thus 
together with (a, b), a 3-AP would be formed, a contradiction.

Finally, suppose that a = 0 or b = 0. Then the addition of (a, b) would again provide 
at least one 3-AP, since (a, b) would induce q−1

2 pairs P, P ′ on the axis incident to (a, b)
for which (a, b) is the midpoint of P and P ′, but the number of points on the axis in L
is larger than q/2 thus by the pigeon-hole principle, there would be a pair P, P ′ ∈ L for 
which (a, b) is a midpoint, hence the addition of (a, b) is not allowed. �
Remark 3.7. If q is a power of the prime p then the multiplicative order of −2 in F×

q is 
the same as the multiplicative order of −2 in F×

p .

Proposition 3.5 implies directly the upper bound of Theorem 1.13 (1) in view of the 
previous remark if we apply q = pk.

To get the upper bound when the dimension of the vector space is odd (Theorem 1.13
(4)), we modify the construction in a way that it (2,−1)-saturates the whole space. It 
enables us to apply the direct sum construction once we have a suitable general upper 
bound on sat((2,−1),Fp).

Construction 3.8. Let 〈−2〉 denote the multiplicative (cyclic) subgroup of F×
q , generated 

by −2, where char(q) �= 2, 3. Take a set of maximum size in each coset of 〈−2〉 for which 
the equations −2g = g′, have no solutions within the set. Let R∗ denote the union of 
these sets.

Let L∗ denote the set of points L∗ = {(0, r) : r ∈ F∗
q \R∗} ∪ {(r, 0) : r ∈ F∗

q }.

Proposition 3.9. Construction 3.8 contains

2(q − 1) − (q − 1)�oq(−2)/2�
oq(−2) 

elements and it is a (2,−1)-saturating set (and hence 3−AP saturating set) of Fq × Fq.
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Proof. One should observe that each point (a, b), a �= 0 �= b is (2,−1)-saturated by 
the pairs (−a, 0), (0, b/2) and (0,−b), (a/2, 0), and at least one of these pairs will be 
contained in the construction. The cardinality of L∗ follows similarly to that of L in the 
proof of Proposition 3.5. �

The result above in turn implies the upper bound of Theorem 1.13 (3). Then, The
orem 1.13 (4) follows from the direct sum construction, Proposition 2.3, applying it to 
Construction 3.8 with q = pk and the (2,−1)-saturating set construction for Fp, given 
in the next section (see also Theorem 1.12 (1)).

Along the same lines, one can prove the existence of 3-AP saturating sets in direct 
products of abelian groups.

Let A and B denote two abelian groups (written additively) of orders a and b, respec
tively, such that gcd(ab, 6) = 1.

For any element g which is not the neutral element of the group, put Dg =
{g,−2g, 4g,−8g, . . . ,−g/2}. Since gcd(6, ab) = 1, the elements g,−2g, 4g,−8g are pair
wise distinct, so |Dg| ≥ 4.

For any element g which is not the neutral element of the group, we denote by Rg a 
subset of Dg of maximum size such that the equations x = −2y and x = 4y cannot be 
solved within Dg. Note that

1
3 |Dg| ≥ |Rg| = �1

3 |Dg|� ≥
1
5 |Dg|.

Using these notations, we have

Theorem 3.10. Let A and B denote two abelian groups (written additively) of orders a
and b, respectively, such that gcd(ab, 6) = 1. Then

L = {(r, 0B) : r �= 0A, r / ∈ Rg for each g ∈ A}∪{(0A, r) : r �= 0B , r / ∈ Rg for each g ∈ B}

is 3-AP saturating in A×B. On the size of L we have

4
3(

√
|A×B| − 1) ≤ 2

3(a + b− 2) ≤ |L| ≤ 4
5(a + b− 2). �

Note that if |Dg| is the same for each g ∈ A and g ∈ B where g is different from the 
neutral element, then the size of L can be expressed via a, b and |Dg| for a single g.

This leads to the statement of Theorem 1.13 (2) by choosing A = Fk+1
p and B = Fk

p .
For any element g of a group A which is not the neutral element of the group, we 

define Dg as before and we denote by R∗
g a subset of Dg of maximum size such that the 

equations x = −2y cannot be solved within Dg. As before, the size of Dg is at least 4
and hence

1
2 |Dg| ≥ |R∗

g| ≥ �1
2 |Dg|� ≥

2
5 |Dg|.
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Using these notations we have

Theorem 3.11. Let A and B denote two abelian groups (written additively) of orders a
and b, respectively, such that a is odd and gcd(b, 6) = 1. Then

L∗ = {(r, 0B) : r �= 0A, r ∈ A} ∪ {(0A, r) : r �= 0B , r / ∈ R∗
g for each g ∈ B}

is a (2,−1)-saturating (and hence 3 − AP saturating) set of A × B. On the size of L∗

we have

a + 1
2b−

3
2 ≤ |L∗| ≤ a + 3

5b−
8
5 . �

4. Complete 3-AP free sets and saturation in abelian groups

4.1. Probabilistic upper bound on saturating sets

We start with a general bound using probabilistic arguments and prove Theorem 1.15. 
While it is off by a logarithmic factor from the lower bound, it is still the best we know 
in several cases (although not in vector spaces). It also highlights the algebraic nature 
of constructions meeting or being close to the lower bound.

Theorem 4.1. Suppose that the set H saturates the 3-APs in the abelian group G of order 
n, n > 5 odd, and H is of minimum size. Then we have

|H| ≤
√

(n− 1) ln (n− 1) +
√

(n− 1) + 1.

Proof. The proof follows the probabilistic argument of [34] of the second author, on the 
size of saturating sets of projective planes.

Let H0 be a random subset of G consisting of elements g ∈ G where each element 
is chosen independently, uniformly at random with probability p. The parameter p will 
be determined later on. Let H1 be the set of elements g ∈ G which can be obtained as 
2g = h+h′ or g = 2h−h′ for h, h′ ∈ H0. Let X denote the random variable which takes 
the cardinality of H0 and Y denote the random variable which takes the cardinality of 
H1.

Then H0 ∪ (G \ H1) will provide a set H that saturates the 3-APs in G. We will 
determine the value of p which minimise the expected value of X + n − Y . Clearly, 
E(X) = pn.

We call a pair g1, g2 induced by g if g1 + g2 = 2g. Hence each element of G \ {g} is 
contained in exactly one pair induced by a fixed element g. If g �∈ H1 then H0 contains 
at most one element from each pair induced by g. Thus

P (g �∈ H1) < (1 − p2) 1
2 (n−1).
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By the linearity of expectation, we get

E(X + n− Y ) < n
(
p + (1 − p2) 1

2 (n−1)
)
.

If p =
√

ln (n−1)
n−1 , this provides the existence of a set which saturates 3-APs and have 

cardinality at most

n

(√
ln (n− 1)
n− 1 

+
(

1 − ln (n− 1)
n− 1 

)n−1
2 

)
<

√
(n− 1) ln (n− 1) + 1 +

√
n− 1,

taking into account that√
ln (n−1)

n−1 + 1 √
n−1 < 1 and applying the Bernoulli bound (1 − x 

m )m < ex for x =
− ln (n− 1) and m = n− 1. �

Actually this argument shows that sat((1/2, 1/2), G) ≤
√

(n− 1) ln (n− 1) +√
(n− 1) + 1. The same bound can be easily obtained for w = (2,−1)-saturation 

as well.

Remark 4.2. Using the Lovász local lemma, one can prove that the probability of 
P (g �∈ H1) can be bounded from below by (1 − p2)c(n−1) for some positive constant 
c, which implies that the order of magnitude of a random construction obtained as 
above will be Θ(

√
n lnn).

4.2. Complete (2,−1)-avoiding sets of minimum size in cyclic groups via difference sets

The Singer difference sets of the cyclic group of order q2 + q + 1, q a prime power, 
provide maximal Sidon sets. These constructions inspire the construction below. We use 
without explicit reference the most well known facts concerning difference sets according 
to the Handbook of Combinatorial Designs [8].

Theorem 4.3. Put M = 22n+2n+1 and denote by D′ a Singer (M, 2n+ 1, 1)-difference set 
of the cyclic group (ZM ,+). Then D′ is a complete 3-AP free subset of ZM . Moreover, 
D′ is complete (2,−1)-avoiding of size 


√
M�, so its size reaches the lower bound in 

Proposition 2.1 part (2).

Remark 4.4. Note that M = 22n+2n+1 is a prime for n ∈ {1, 3, 9} and in these cases we 
obtain complete 3-AP free subsets in the corresponding finite fields of size 22n + 2n + 1. 
In general, n needs to be a power of 3 for this to hold. Indeed, M can be written as 
M = 23n−1

2n−1 , and if there exists a proper divisor d | 3n which is not a divisor of n, then 
gcd(d, n) < d. Now, by applying gcd(2d − 1, 2n − 1) = 2gcd(d,n) − 1, we get the identity

(2gcd(d,n) − 1) · r · 23n − 1
2d − 1 

= (2n − 1) ·M, (2)
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where 2d−1 = r·(2gcd(d,n)−1). Hence r | M . But on the one hand, r ≤ 2d−1 < 22n < M , 
on the other hand, r > 1 as gcd(d, n) < d.

Proof of Theorem 4.3. According to the First Multiplier Theorem, for a translate D of 
D′ it holds that 2D = D. We will show that D is complete 3-AP free. Note that this 
implies that the translates of D are complete 3-AP free as well.

First we show that 2a = b+ c cannot hold with a, b, c ∈ D pairwise distinct elements. 
Indeed, it would imply a− b = c− a, contradicting the fact that D is a difference set. It 
follows that D is 3-AP free.

Since for each a ∈ D we have also 2a ∈ D, in D ∪ {0} we have the 3-AP: {0, a, 2a}. 
This shows 0 / ∈ D and that D saturates {0}.

Now take any g ∈ ZM \D, g �= 0. Then there exist a, b ∈ D such that a− b = g and 
since 2D = D, we have also a = 2c for some c ∈ D, that is, 2c = b + g. We cannot have 
c = b since in that case c = g ∈ D, a contradiction.

The size of D reaches the lower bound in Proposition 2.1 (2) since 2n <
√
M <

2n + 1 = |D|. �
Corollary 4.5. For p ∈ {7, 73, 262657}, the minimum size of a complete (2,−1)-avoiding 
subset of Fp is 
√p�.

In general one can prove the following, along the same lines.

Proposition 4.6. If D is a (v, k, λ)-difference set in the group G with numerical multiplier 
2 then D saturates the 3-APs. Moreover, if λ = 1 also holds, then D is a complete 3-AP
free set.

Proposition 4.7. If D is a (k2 + k + 1, k + 1, 1)-difference set in G, 0 ∈ D, then D is 
complete (1,−1)-avoiding of size k + 1 and hence its size reaches the lower bound in 
Proposition 2.1. It follows that a((1,−1),Zk2+k+1) = (k + 1) if k is a prime power.

Proof. By definition if x ∈ G \ {0} then there exist y, z ∈ D such that x = y − z.
Assume to the contrary x = y − z for some pairwise distinct x, y, z ∈ D. Then 

x− 0 = y − z, contradicting the fact that D is a (k2 + k + 1, k + 1, 1)-difference set.
The last part follows from the existence of Singer-difference sets. �
Note that 0 ∈ D can always be obtained since translates of D are difference sets as 

well.

4.3. (1/2, 1/2)-saturating sets in cyclic groups via additive bases

We continue with upper bounds on sat(W,Fp) for W = {(1/2, 1/2)}.
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Here we refer to a construction which provides a good upper bound for the solution 
of the postage stamp problem which is very closely related to finite additive basis, see 
[25,26,28]. Recall that the problem was described in the Introduction.

Let [a, (t), b] denote {a + t · h : h ∈ Z} ∩ [a, b].

Construction 4.8 (Mrose, [33]). For an arbitrary positive integer t take a set S of 7t+ 2
elements as S =

⋃5
j=1 A

(j), where 
A(1) := [0, (1), t], 
A(2) := [2t, (t), 3t2 + t], 
A(3) := [3t2 + 2t, (t + 1), 4t2 + 2t− 1], 
A(4) := [6t2 + 4t, (1), 6t2 + 5t], 
A(5) := [10t2 + 7t, (1), 10t2 + 8t].

Proposition 4.9 (Mrose, [33]). (S+S) ⊃ [0, 14t2+10t−1] holds for the Mrose construction 
S with parameter t.

We apply this classical construction to prove the following upper bound for sat(3 −
AP,Fp) via W -saturation for W = {(1/2, 1/2)}.

Proposition 4.10. Suppose that m is odd. Then

sat(3 − AP,Zm) ≤ sat((1/2, 1/2),Zm) ≤ (
√

3.5 + o(1))
√
m ≈ 1.87

√
m.

Proof. Choose the least integer t such that 14t2 + 10t− 1 ≥ m holds, i.e.,

14t2 + 10t− 1 ≥ m ≥ 14(t− 1)2 + 10(t− 1) − 1.

Consider the set S (mod m) obtained in Construction 4.8. Since S + S = Zm, we also 
have

{
s 
2 + s′

2 
: s, s′ ∈ S ⊂ Zm

}
= Zm,

since gcd(2,m) = 1. Note that for x / ∈ S and x = s/2 + s′/2, s, s′ ∈ S, we cannot have 
s = s′ and hence x is saturated by two distinct elements of S. Hence S is a (1/2, 1/2)
saturating set in Zm of size |S| = 7t + 2 while m ≥ 14t2 − 18t + 3 > 2

7 |S|2 − 4|S|. From 
this, we get that sat((1/2, 1/2),Zm) < 7 +

√
49 + 3.5m. �

4.4. Complete (2,−1)-avoiding and (2,−1)-saturating sets in cyclic groups

We will say that S (2,−1)-saturates [x, y] if for each z ∈ [x, y] there exist a, b ∈ S

such that z = 2a− b.
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Remark 4.11. Every integer 1 ≤ k ≤ 4
3 (4n − 1) can be written in a unique way as

k = kl4l + · · · + k040,

where ki ∈ {1, 2, 3, 4} and 0 ≤ l ≤ n−1. This representation of positive integers is known 
as the bijective base-4 numeral system, see e.g., [42].

Construction 4.12. Let

Hl = {vl−14l−1 + · · · + v040 : vi ∈ {2, 3} for i = 0, 1, . . . , l − 1},

and

Kl = {vl−14l−1 + · · · + v040 : vi ∈ {1, 2, 3, 4} for i = 0, 1, . . . , l − 1},

so Kl is the set of integers with exactly l digits in the bijective base-4 numeral system.

Note that Kl = [ 13 (4l − 1), 4
3 (4l − 1)], so |Kl| = 4l.

The smallest integer of Hl is 2
3 (4l − 1), the largest one is 4l − 1, and |Hl| = 2l.

Theorem 4.13. 

(1) The set Hi ∪Hi+1 ∪ . . . ∪Hj (2,−1)-saturates any subset of Ki ∪Ki+1 ∪ . . . ∪Kj

for every pair of positive integers i ≤ j.

Given a positive integer n, let m denote an integer such that 4n−1 < m ≤ 4n.

(2) If m = 4n, then consider the elements of Hn and Kn as representatives for the 
elements of Z4n . The 2n elements corresponding to Hn form a complete (2,−1)
avoiding set in Zm.

(3) If 1
3 (4n − 1) + 1 ≤ m < 4n then consider any interval [x, y], Hn ⊆ [x, y] ⊆ Kn, of 

size m as a representative for Zm. Then the elements corresponding to Hn form a 
(2,−1)-saturating set of size less than 

√
3m in Zm.

If 2
3 (4n − 1) < m then Hn corresponds to a complete (2,−1)-avoiding set.

(4) If 4n−1 < m ≤ 1
3 (4n − 1), then let 1 ≤ k ≤ n− 1 be maximal such that

4n−1 < m ≤ (4n − 4k−1)/3.

Then S := Hk−1 ∪ Hk ∪ . . . ∪ Hn−1 (2,−1)-saturates I := [ 13(4k−1 − 1), 1
3 (4k−1 −

1) + m − 1] and has size less than 
√

3m. Considering I as representatives for Zm

the same holds for the elements corresponding to S.

Proof. We start with proving (1). It is enough to prove that Ht saturates Kt. If k has t
digits, then consider the t-digit numbers a and b according to Table 4.1.
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Table 4.1
The value of ai and 
bi, i ≤ t− 1, determined 
by the value of ki.
ki 1 2 3 4
ai 2 2 3 3
bi 3 2 3 2

Note that ki = 2ai − bi and hence

k = (2at−1 − bt−1)4t−1 + · · · + (2a0 − b0)40 =

2
t−1 ∑
i=0 

ai4i −
t−1 ∑
i=0 

bi4i = 2a− b,

with a, b ∈ Ht. It follows that b, a, and k = 2a− b form a 3-AP with difference a− b.
To prove (2) and (3) first we show that S := ∪∞

i=1Hi is 3-AP free in Z. Suppose to 
the contrary that a < b < c are three elements of S forming an arithmetic progression. 
Assume that r is maximal such that the coefficients ar, br, cr of 4r are not all equal in 
the expressions of a, b, c as above. Then clearly ar ≤ br ≤ cr. If ar = br = 2, then cr = 3
and b− a is at most 4r−1 + . . . + 1, while c− b is at least 4r − 4r−1 − . . .− 1. It follows 
that b− a �= c− b. Similar arguments work when ar = 2, br = cr = 3 and when ar = 0.

If we consider the set Kn with modulo 4n addition, then the (2,−1)-saturation prop
erty clearly holds. We show that the (2,−1)-avoiding property holds as well. Suppose to 
the contrary that a < b < c are three elements of Hn forming an arithmetic progression 
when considered modulo 4n. Then for some difference 0 < d < 4n we have a ≡ c + d 
(mod 4n) and either c − b = d, or b − a = d. From a ≡ c + d (mod 4n) it follows that 
d ≥ 4n + 2

3 (4n − 1) − (4n − 1) = 2
3 (4n − 1) + 1 and hence d = c − b and d = b − a are 

impossible because of (4n − 1)− 2
3(4n − 1) = 1

3 (4n − 1) ≥ max{c− b, b− a}. This proves 
(2).

The first part of (3) follows from the fact that

√
3m ≥

√
4n + 2 > 2n = |Hn|.

To prove the second part suppose to the contrary that a < b < c are three elements 
of Hn forming an arithmetic progression when considered modulo 4n. Then for some 
difference 0 < d < m we have a ≡ c+d (mod m) and either c−b = d, or b−a = d. From 
a ≡ c+d (mod m) it follows that d ≥ m+ 2

3 (4n−1)−(4n−1) = m− 1
3 (4n−1) > 1

3 (4n−1)
and hence d = c − b and d = b − a are impossible because of (4n − 1) − 2

3 (4n − 1) =
1
3 (4n − 1) ≥ max{c− b, b− a}.

To prove (4) assume that 1 ≤ k ≤ n − 1 is maximal such that 3m ≤ 4n − 4k−1. It 
follows that

3m > 4n − 4k.
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First note that S := Hk−1∪. . .∪Hn−1 has size 2k−1+. . .+2n−1 = 2k−1(1+. . .+2n−k) =
2k−1(2n−k+1 − 1) = 2n − 2k−1. Since S (2,−1)-saturates Z := Kk−1 ∪ . . . ∪Kn−1 and 
I := [ 13 (4k−1 − 1), 1

3 (4k−1 − 1) + m − 1] ⊆ Z, it follows that S (2,−1)-saturates I. We 
want to show |S| <

√
3m, that is,

2n − 2k−1 <
√

3m.

Clearly, it is enough to prove 4n+4k−1−2n+k < 3m, which follows from 4n+4k−1−2n+k <

4n − 4k < 3m. �
4.5. Constructions in abelian groups of composite order

Theorem 4.14. Let G denote a commutative group, H a subgroup of G. Put S =
{a1, a2, . . . , as} ⊆ H of size s and T = {b1 + H, b2 + H, . . . , bt + H} ⊆ G/H of size 
t. Let w1, w2 ∈ Z such that w1 + w2 = 1 holds. Define

X = {ai + bj : i ∈ {1, . . . , s}, j ∈ {1, . . . , t}} ⊆ G.

(1) If S and T are (w1, w2)-saturating in the groups H and G/H, respectively, then X
is (w1, w2)-saturating in G.

(2) Assume that S and T are (w1, w2)-avoiding in the groups H and G/H, respectively, 
and the order of x−y is not a divisor of w1 in the group H (G/H) for each x, y ∈ S

(for each x, y ∈ T ). Then X is (w1, w2)-avoiding in G.
(3) Assume that S and T are complete (w1, w2)-avoiding in the groups H and G/H, 

respectively, and the order of x− y is not a divisor of w1 in the group H (G/H) for 
each x, y ∈ S (for each x, y ∈ T ). Then X is complete (w1, w2)-avoiding in G.

Proof. First suppose that S and T are (w1, w2)-saturating sets. Take some c ∈ G. Then 
c = a + b where a ∈ H and b + H is an element of G/H.

By the saturation property, there exist distinct bi + H, bj + H ∈ T such that w1(bi +
H) + w2(bj + H) = b + H. If w1bi + w2bj = a′ + b, for some a′ ∈ H, then take some 
distinct af , ag ∈ S such that w1af + w2ag = a− a′. Then

w1(af + bi) + w2(ag + bj) = c.

If af + bi = ag + bj , then af − ag = bj − bi ∈ H, a contradiction since i �= j. It follows 
that X saturates c ∈ G.

Now assume that the conditions of part (2) hold, and

w1(af + bi) + w2(ag + bj) = ah + bk

for some elements af + bi, ag + bj , ah + bk of X. Thus w1(bi +H)+w2(bj +H) = bk +H

and hence {bi + H, bj + H, bk + H} is a set of size at most 2. If it has size 2, then 
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we may assume bi �= bk. Then the order of (bi + H) − (bk + H) is divisible by w1, a 
contradiction. If bi + H = bj + H = bk + H, then w1af + w2ag = ah. It follows that 
the size of {af , ag, ah} is at most 2. If it has size 2, then we may assume af �= ah. Then 
the order of af − ah divides w1, a contradiction. Consequently, af = ag = ah holds and 
hence af + bi = ag + bj = ah + bk.

The third part is a direct consequence of the first two. �
In the next result Zr is considered as {0, 1, . . . , r−1} with operation the usual addition 

in Z modulo r.

Corollary 4.15. Put S = {a1, a2, . . . , as} ⊆ Zm and T = {b1, b2, . . . , bt} ⊆ Zn. Let 
w1, w2 ∈ Z such that w1 + w2 = 1 hold. Define

X = {ain + bj : i ∈ {1, . . . , s}, j ∈ {1, . . . , t}} ⊆ Znm.

(1) If S and T are (w1, w2)-saturating, then X is (w1, w2)-saturating in Znm.
(2) Assume that S and T are (w1, w2)-avoiding, the difference of distinct elements of S

is not divisible by m, the difference of distinct elements of T is not divisible by n. 
Then X is (w1, w2)-avoiding in Znm.

(3) Assume that S and T are complete (w1, w2)-avoiding, the difference of distinct el
ements of S is not divisible by m, the difference of distinct elements of T is not 
divisible by n. Then X is complete (w1, w2)-avoiding in Znm.

Example 4.16. {0, 1, 2} is complete (3,−2)-avoiding in Z9 and hence a((3,−2),Z9n)= 3n.

Example 4.17. {0, 1} is complete (2,−1)-avoiding in Z4 and hence a((2,−1),Z4n) = 2n, 
as we already saw in the previous section.

5. Concluding remarks and open problems

In this paper, we proved that in a large family of vector spaces, the minimum size 
of a complete 3-AP free set is equal to a small absolute constant multiple of the lower 
bound. However, it remained an open question to decide whether this is true for every 
vector space Fn

q , q > 2.

Problem 5.1 (Minimum size complete 3-AP free sets). Is it true that

a(3 − AP,Fn
q ) < C ·

√
qn

for an absolute constant C, that is, the natural lower bound is tight up to a constant 
factor?

Concerning cyclic groups, we pose the following
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Problem 5.2. Is it true that a(3 − AP,Zm) < a((2,−1),Zm) < √
cm ·m holds for cm ∈

[1, 1.5], a constant depending only on m, for all large enough values of m?

The first inequality follows from the definition (see Remark 1.10), while we proved 
the second inequality for a dense set of natural numbers m in Theorem 1.12. It would 
be also interesting to see an improvement on the constant cm.
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