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ABSTRACT: This work collects the spin-dependent leading-order relativistic and
quantum−electrodynamical corrections for the electronic structure of atoms and
molecules within the nonrelativistic quantum electrodynamics framework. We report
the computation of perturbative corrections using an explicitly correlated Gaussian basis
set, which allows high-precision computations for few-electron systems. In addition to
numerical tests for triplet Be, triplet H2, and triplet H3+ states and comparison with no-
pair Dirac−Coulomb−Breit Hamiltonian energies, numerical results are reported for
electronically excited states of the helium dimer, He2, for which the present
implementation delivers high-precision magnetic coupling curves necessary for a
quantitative understanding of the fine structure of its high-resolution rovibronic
spectrum.

KEYWORDS: spin−orbit coupling, spin−spin coupling, Breit−Pauli Hamiltonian, explicitly correlated Gaussian, triplet He2, triplet H2,
triplet H3
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1. INTRODUCTION
Few-electron atoms and molecules are sometimes referred to
as “calculable” systems, which allow to extensively test and
extend the frontier of current methodologies and probe small
physical effects by comparison with high-resolution spectros-
copy experiments. At the extreme of precision physics
applications, the most accurate experimental and most possible
complete theoretical treatments for ionization, dissociation and
rovibrational energies progress head-to-head,1−3 and ultimately
deliver more precise values for fundamental physical constants
and set bounds on possible new types of forces.4,5

Furthermore, the reliable identification of quantum states is
crucial for the manipulation of atoms and molecules with laser
light, which contributes to advancements in the field of
ultracold molecules6 and quantum technologies.7,8 Theoretical
and computational progress in precision physics delivers
benchmark values for quantum chemistry methods targeting
larger systems.
For few-particle systems, an explicitly correlated basis set is

frequently used in combination with a variational procedure to
capture the essential electron−electron correlation effects,
leading to fast convergence in the energy and other physical
properties.9,10 To obtain analytic expressions for the matrix
elements, floating explicitly correlated Gaussians (fECGs) are
used as a spatial basis set,9−13 for which numerical efficiency in
the high-precision computation of few-electron systems has
already been demonstrated.14−27

Since the electronic energy of few-particle systems can be
converged to high precision in a variational fECG approach,
the relativistic and quantum electrodynamical (QED) con-
tributions become “visible” and important even for (com-
pounds of) light elements. High-resolution spectroscopic
measurements reveal small magnetic effects, seen as fine and
hyperfine splittings in the spectra. We will refer to the relevant
interactions as “spin-dependent” relativistic (and QED)
interactions, and we will also use the term “spin-independent”
relativistic and QED corrections, which contribute to the
centroid energy (defined as the average of the fine-structure
energy levels corresponding to the degenerate nonrelativistic
subspace). While the computation of the centroid corrections
is well elaborated, including the regularisation techniques,28−30

which enhance the convergence of singular terms in the
Gaussian basis representation (for the incorrect electron−
nucleus and electron−electron coalescence behavior).
In this paper, we focus on an fECG-based implementation of

the spin-dependent matrix elements of the Breit−Pauli
Hamiltonian. We also include corrections for the anomalous
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magnetic moment of the electron, which constitutes the
leading-order (α3Eh, with the α fine-structure constant) QED
corrections to the spin-dependent terms. We note that higher-
order QED (α4Eh) corrections have been derived by Douglas
and Kroll in 1974 for the helium atom triplet states31 and more
recently, the α5Eh-order corrections have been derived and
evaluated for triplet helium states.18,32 Inner shell transitions
are in excellent agreement with experiment, though there is a
significant deviation for the ionization energy between
theory33,34 and experiment.35−38

The present work focuses on the relativistic and leading-
order QED corrections, i.e., up to α3Eh order, but goes beyond
atomic applications; molecular systems with clamped nuclei
require the development of a floating ECG methodology,
reported in the present work.
Nonfloating, spherically symmetric, ECG basis sets have

already been successfully used in spin-dependent atomic
computations, considering beryllium, boron and carbon atomic
states.19,39−43 By relaxing the Born−Oppenheimer approx-
imation, small molecules (H2+,

44,45 HD+,46 BH+ and BH47)
have also been computed (with varying precision). However,
these approaches cannot be applied directly to clamped nuclei
and molecular computations exploiting the Born−Oppen-
heimer approximation, which would otherwise be advanta-
geous, since the computational complexity grows rapidly with
the number of particles.
In this paper, we report a general N-electron implementation

without restrictions on the number and spatial arrangement of
the clamped atomic nuclei. The implementation is based on a
spinor basis representation, in which the spatial and spin
components are evaluated independently and subsequently
combined via calculating simple tensor products. The approach
is, in principle, “general” and not restricted by the number of
electrons or point-group symmetry. For testing the developed
methodology and computer implementation, we perform
computations for triplet Be for comparison with literature
values. As to molecular systems (the main target of this work),
two-electron triplet H2 and also two-electron triplet H3+ (both a
linear and a triangular configuration) are also included in the
test set. For molecular systems, high-accuracy benchmark
values are not available in the literature; so, we tested these
results with our in-house developed no-pair Dirac−Coulomb−
Breit methodology (currently available for two-spin-1/2-
fermion systems),48 in which the spin-dependent Breit−Pauli
relativistic effects appear at lowest order of the fine-structure
constant. Then, as a first large-scale application of the
implementation, motivated by recent and ongoing experi-
ments,49−51 we compute magnetic coupling curves for several
electronically excited states of the (triplet and singlet) He2
molecule, which significantly improve upon previously
available quantum chemistry computations.52−58 The newly
computed coupling curves are used in rovibronic-fine-structure
computations reported in separate papers.26,27

2. THEORETICAL FRAMEWORK
For atoms and molecules with low nuclear charge, the
nonrelativistic description often provides a good starting
point. The nonrelativistic electronic energy is incremented
with relativistic and QED corrections arranged according to
powers of the α fine-structure constant. In this paper, we
include all terms up to α3 (in Hartree atomic units)

E E E E(0) 2 (2) 3 (3)= + + (1)

We start by solving the Schrödinger equation

H E(0) (0) (0) (0)| = | (2)

for the nonrelativistic electronic Hamiltonian

H
Z
r r
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with the nuclei clamped at the RA (A = 1,..., Nnuc) positions.
We use the short notation, riX = |riX|, where X is either a
nucleus or an electron index, i.e., resulting in riA = ri − RA or rij
= ri − rj.
The leading-order relativistic corrections, α2E(2), can be

computed as the expectation value of the Breit−Pauli (BP)
Hamiltonian with the nonrelativistic wave function, φ(0). The
focus of this work is the computation of the spin-dependent
contributions, so we write the Hamiltonian as the sum of spin-
independent (sn) and spin-dependent (sd) terms59,60

H H H

H H H H H H
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(2)
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= + + + + +
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where the manifestly spin-independent terms are reiterated
only for completeness, i.e., the mass-velocity (MV), the one-
electron Darwin (D1), the two-electron Darwin (D2), and the
orbit−orbit terms (OO) are
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respectively. The corrections carrying spin operators in their
expressions are the spin−orbit interaction, with l r piX iX i= ×
and s I i I n(1) . . . ( ) . . . ( )i

1
2 el= with the σ =

(σx, σy, σz) Pauli matrices
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the spin−own−orbit interaction
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the spin−other−orbit interaction
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and the spin−spin interaction
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which is written as the sum of the magnetic spin dipole−dipole
interaction
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and the Fermi contact term for each pair of electrons
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where in the last step we used the form of the Fermi contact
term over the antisymmetrized Hilbert subspace.
The spin-independent terms, giving rise to the relativistic

correction of the “centroid” are collected as

H H H H H H2
sn
(2) 2

MV D1 OO D2 SS,c= [ + + + + ] (13)

The precise computation of expectation values (with
Gaussian basis sets) for this part has been discussed in detail
elsewhere.28−30

The focus of the present work is the implementation of the
spin-dependent terms

H H H H H2
sd
(2) 2

SO SOO SOO SS,dp= [ + + + ] (14)

In addition, we consider the effect of the anomalous
magnetic moment of the electron61−63 on the spin-dependent
terms, which gives rise to the leading-order QED correction for
the spin-dependent part (a brief summary with references is in
the SM of ref 26)
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So, up to α3Eh order, the spin-dependent terms are
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3. METHODS AND IMPLEMENTATION
For the numerical implementation, the nonrelativistic wave function is
expanded in an explicitly correlated basis set

CSM
N

SM( , )

1

( , )S S| = |
= (17)

where the coefficients Cμ are obtained by diagonalizing the
nonrelativistic Hamiltonian matrix. We define the basis function as

r A s r A sf( ; , , ) ( ; , ) ( )SM SM SM( , ) ( , ) ( ) ( )S S S= = { }
(18)

( )SM( )S is a spin function, f(Γ)(r;Aμ,sμ) is a spatial function. In this
work, symmetrized floating explicitly correlated Gaussian functions
(fECG)9−13 are used as spatial functions

r A s r s A I r sf f ( ; , ) exp ( ) ( )( )( ) ( ) T
3= = [ ]

(19)

where is the projector onto the Γ irreducible representation (irrep)
of the point-group defined by the fixed nuclear skeleton (technical
details are reported in some detail in the Supporting Information of
ref 48), I3 is the three-dimensional identity matrix, Aμ and sμ are
nonlinear parameters, which are generated and optimized by
minimization of the nonrelativistic energy.9,10,26,64,65

is the antisymmetrization operator for the electrons
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where the sum is over all permutations (Nperm = nel!), pr is the parity
(odd or even) of the permutation r, and Pr and Q r are the
permutation operators acting on the spatial (r) and the spin (σ)
degrees of freedom, respectively. We note the quasi-idempotency of
the antisymmetrizer, N( )

2
perm

1
2= .

Regarding the spin function ( )SM SM( ) ( )S S= , S is the total
electron spin quantum number andMS is the quantum number for the
spin projection. S, MS for nel electrons define a spin subspace, for
which the spin functions can be expressed as a linear combination of
the elementary spin functions; we call this representation the θ-
parametrization9,64 (see also Supporting Information). In the
nonrelativistic energy minimization, we also include the θμ parameter
vector.
Next, let us consider a general, permutationally invariant operator

written as a linear combination (in terms of electronic and Cartesian
indexes) of products of Gia spatial and Tia spin-dependent factors
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3el
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We compute matrix elements of this operator with nonrelativistic
electronic functions, SM( , )S= and S M( , )S= as

C C
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The irreducible representation of spatial symmetry can differ for fμ
and fν′, hence, the spatial-symmetry operations are retained in the bra
and the ket functions. For the computation of the spin−orbit (SO),
the spin−own−orbit (SOO), and the spin−other−orbit (SOO′)
terms, eqs 7−9, the Gia factors are
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and the Tia factor is simply the spin matrix

T sia ia= (26)

The spin−spin dipolar term, eq 11, is a two-electron term, and by
analogous calculation to eq 22, we obtain
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The spatial integrals are calculated analytically by exploiting the
mathematical properties of fECGs, similarly to our previous work, e.g.,
refs 17, 20, and 66−68.
Since the present work is about the evaluation of the spin-

dependent Breit−Pauli matrix elements, some notes regarding the
spinor structure and matrix elements are appropriate. To evaluate the
spin matrix elements, the spin-adapted θ-parametrization (see also
refs 25 and 26) is transformed into the spinor (vector) representation
(see also Supporting Information)
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Then, the si spin operator is represented as the tensor product of
(two-by-two) identity matrices and the Pauli matrix

s I I I I Ii i i n
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(30)
The matrix representation of the s sia jb operator is obtained as siasjb

(the spin space is complete), and
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(31)
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Then, the matrix elements of the spin functions are written as
(where the tensor structure can be further exploited)

d s ds sia
SM
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S M SM
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S M( ) ( ) ( ) ( )S S S S| | = | | = †

(33)

d s s ds s s sia jb
SM
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In a nutshell, the following algorithm has been implemented in our
in-house developed fECG-based computer program, named QUANT-
EN, to compute matrix elements of spin-dependent relativistic
operators connecting various electronic-spin states of small molecules
(and also atoms, of course):

1. The nonrelativistic energies and wave functions are determined
by the nonlinear optimization of the Aμ, sμ, and θμ parameters
and diagonalization of the Hamiltonian for a specific spin state,
e.g., MS = 0.

2. The spin function SM( )S with parameters θμ are transformed
to the spinor (vector) representation, eq 29, to obtain the
dt t t

SM
. . . ,

( )
n1 2 el

S coefficients.
3. The spin operators (matrices) si are constructed according to
eq 30, and the ladder operators (matrices) are generated as

s s s S si ,i i x i y
i

n

i, ,
1

el

= ± =± ±

=

±

(35)

Then, the target MS states are obtained by matrix-vector
multiplication

d S dS M SM( , 1) ( )S S=± ±
(36)

4. The spatial matrix elements, f G P f ria r
( ) x ( )| | (x = SO, SOO,

SOO′) and f G P f rij ab r
( )

,
SS ( )| | (SS,dp), are computed using

the analytic fECG integral expressions.
5. The spatial and spin contributions are combined according to
eqs 22 and 27, to obtain the relativistic (and QED) coupling
matrix elements of the electron-spin states.

4. NUMERICAL TESTS OF THE IMPLEMENTATION
This section presents numerical examples used to test the
computer implementation of the spin-dependent Breit−Pauli
Hamiltonian (BP) matrix elements. For the (atomic) test
systems, relatively small basis sets are used, which can be
readily extended for better-converged results (if required). The
value α−1 = 137.035999177, recommended by CODATA
2022,69 is used in all computations.
4.1. Atomic Test System
For the spherically symmetric (atomic) case, there are high-
accuracy ECG implementations already available in the
literature, including the analytic angular prefactor correspond-
ing to higher angular momentum states.39−41 As a first test case
of our implementation, intended for the more general
molecular problem, we computed the spin-dependent BP
matrix elements of the 2 3Po state of the Be atom. We
computed the expectation value of the spin-dependent BP
operator terms, eq 14, labeled as ⟨ĤX⟩J(X = SO,SOO&SOO′,
SS,dp) with the MJ = 0 wave function (Table 1). The relative
error due to the finite basis size is approximately the same for
all three terms; the deviations from the reference values are
attributed to the incompleteness of our basis set. We also note

Table 1. Be 2 3Po State: Testing the Implementation of the
Spin-Dependent Breit−Pauli Matrix Elementsa

N E(0) H2
SO 0 H H2

SOO SOO 0+ H2
SS,dp 0

5 −14.44 −24 17.8 1.337
10 −14.54 −28 20.6 1.363
20 −14.553 −30.4 21.76 1.439
30 −14.5612 −31.60 22.141 1.378
50 −14.56514 −32.06 22.288 1.372
100 −14.56669 −32.18 22.278 1.367
ref 41 −14.567244230 −32.2416 22.2450 1.365

aThe non-relativistic energy, E(0) in Eh, and the expectation value of
spin-dependent operators for the MJ = 0 state in μEh, are given as a
function of the number of ECG functions, N.
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that the expectation value for other MJ = ±1, ±2 values of the
2 3P spin subspace of this atomic system can be calculated
from the HY 0 matrix elements through known relations, e.g.,
in ref 40.
4.2. Molecular Applications
Regarding molecular systems within the Born−Oppenheimer
approximation, we are not aware of any literature data for the
high-precision computation of the spin-dependent BP matrix
elements. Still, to be able to test the spin-dependent BP
implementation reported in this work, we used our in-house
implementation of the high-precision no-pair Dirac−Cou-
lomb−Breit (DCB) approach.20,21,48,66,67,70 In particular, ref
48 is most relevant to this work. For the positive-energy
projection, we employed the “cutting” projector67 and utilized
quadruple precision arithmetic operations. The no-pair DCB
approach is currently available only for two-electron systems;
however, for two-electron triplet di- and triatomic systems,
there is a nonvanishing contribution, which is used as a test
case. The no-pair DCB energy includes not only the leading-
order but also high-order (Zα)n contributions; but, for small Z
nuclear charges, these higher-order contributions are small (so,
we did not perform any “α” scaling of the variational
result20,67,71).

4.2.1. Triplet H2. The two lowest-energy triplet electronic
states of the H2 molecule are labeled as a g

3 + and b u
3 +. For

these states, only the spin−spin matrix elements are nonzero
due to spatial symmetry (Table 2). The spin−spin interaction
lifts the 3-fold degeneracy of each state, resulting the ΔE(2) =
E0(2) − E±1

(2) zero-field splitting, where the subscript of the
energy labels the electron spin angular momentum projection
on the body-fixed z axis, fixed to the two nuclei. There are
spin-dependent BP computations in the literature for these
states, in which the full configuration interaction (FCI)
approach was used and reached 1 mEh convergence of the
nonrelativistic energy.72 In the present work, we converged the
nonrelativistic energy with fECGs to 1 μEh. The computed
ΔE(2) energy splitting agrees with the literature value (precise
to 1−2 digits), but our value is more precise (to 3−4 digits).
Furthermore, our perturbative BP energy splitting is in
excellent agreement with the no-pair DCB splitting. The no-
pair DCB energy was computed using the same fECG
(nonlinear) parametrization as the perturbative computations,
and not surprisingly, the two energy splittings converge at a
similar pace. Differences appear only at the sub-nEh (<10−9 Eh)
level, which is well below the finite basis size error (and the
range of the leading-order, α2Eh relativistic effects).

4.2.2. Triplet H3
+. For the lowest-energy triplet state of H3+,

two nuclear geometries are considered (Table 3). Previous FCI
computations73,74 converged the nonrelativistic energy to 10−
100 μEh, but we are not aware of any spin-dependent BP

Table 2. H2 a g
3 + and b u

3 + States (R = 1.4 bohr): The Non-relativistic Energy, E(0) in Eh, and the Zero-Field Splitting, ΔE in
μEh

a

H2 a g
3 + H2 b u

3 +

N E(0) ΔEBP ΔEDCB E(0) ΔEBP ΔEDCB

10 −0.713250 −0.0061 −0.0061 −0.7815 3.16 3.16
20 −0.713553 0.0139 0.0139 −0.7833 3.13 3.13
30 −0.713602 0.0199 0.0199 −0.784121 3.0403 3.0402
50 −0.713635 0.02145 0.02145 −0.784227 3.0329 3.0329
100 −0.71364021 0.02231 0.02231 −0.7842435 3.03109 3.03105
150 −0.71364046 0.022345 0.022345 −0.78424414 3.03089 3.03084
ref 72 −0.7130 0.02 −0.7840 3.056

aFor the perturbative correction E E E E H HBP 2 (2) 2
0
(2)

1
(2) 2

SS,dp 0 SS,dp 1= = [ ] = [ ]± ± as a function of the number of fECGs, N. The
DCB superscript labels the no-pair DCB results.

Table 3. Triplet H3
+ Ground State: The Non-relativistic Energy, E(0) in Eh, and the Zero-Field Splitting, ΔE in μEh, as a

Function of the Number of fECGs, Na

linear (equilibrium) structure triangular structure

N E(0) ΔEBP ΔEDCB E(0) E21
BP E21

DCB E32
BP E32

DCB

10 −1.1127 1.781 1.781 −1.097 0.0051 0.0051 0.4602 0.4601
20 −1.11555 1.794 1.794 −1.1026 0.0063 0.0063 0.45956 0.45954
30 −1.11596 1.7580 1.7580 −1.1039 0.0069 0.0069 0.45955 0.45953
50 −1.116086 1.75719 1.75723 −1.10429 0.0074 0.0074 0.45935 0.45933
70 −1.1161027 1.75736 1.75729 −1.10436 0.00763 0.00763 0.45925 0.45923
100 −1.1161076 1.75693 1.75686 −1.104391 0.00779 0.00779 0.459152 0.459132
150 −1.1161088 1.75680 1.75712 −1.1044023 0.007871 0.007871 0.459108 0.459086
200 −1.11610912 1.75672 1.75665 −1.1044055 0.007878 0.007878 0.459097 0.459075
ref −1.116106373 −1.1040874

aFor the linear (equilibrium) structure, the centres of the fECGs were restricted to the nuclear axis and Rpp,1 = Rpp,2 = 2.454 bohr. For the general
triangular structure, the centres of the fECGs were restricted in the plane of the triangle (without any further point-group symmetry projections),
Rpp,1 = 1.939 bohr, Rpp,2 = 5.961 bohr, and ∠ppp = 64.4°. For the linear (equilibrium) geometry, E E E H H0 1

2
SS,dp 0 SS,dp 1= = [ ]± ± . For

the triangular structure, ΔEij = Ei − Ej, where i and j labels the energy levels (please see also text). The DCB superscript labels the no-pair Dirac-
Coulomb-Breit results.
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computations and zero-field splitting values published in the
literature.
We report computations using the spin-dependent BP

implementation (presented in this work) and verify the results
against our existing no-pair DCB approach at two distinct
geometries. First, we consider the equilibrium structure, which
is linear and has two proton−proton distances equal to Rpp,1 =
Rpp,2 = 2.454 bohr.

73 Due to the triatomic, linear geometry, the
3-fold degeneracy of the energy is lifted into a nondegenerate
and a doubly degenerate pair of states with MS = 0 and MS =
±1 (where we chose the axis defined by the three nuclei for the
quantization axis of the electron spin). Next, we repeated the
computation for another, nonlinear geometry (which is near a
saddle point74 on the potential energy surface) with two
proton−proton distances, Rpp,1 = 1.939 bohr, Rpp,2 = 5.961
bohr, and one proton−proton−proton angle ∠ppp = 64.4°. In
this case, the 3-fold degeneracy of the energy is completely
lifted; so, we report two energy splittings for the three energy
levels in Table 3. The spin-dependent BP implementation is in
excellent agreement with the results of the no-pair DCB
approach. The latter is currently applicable only for two-
electron systems, so we proceed with the BP implementation
for further, poly electronic molecular applications (with two or
more clamped nuclei).

5. NUMERICAL APPLICATIONS: HELIUM DIMER
We compute the spin-dependent Breit−Pauli matrix elements
connecting electronically excited states of the triplet He2
molecule (Figure 1). The convergence of the nonrelativistic

energy at ρ = 2 bohr (internuclear distance) is reiterated in
Table 4; the a u

3 + state basis sets were taken from ref 26 and
the b 3Πg and c g

3 + states from ref 27. The B 1Πg and C g
1 +

states are computed in this work in order to account for the
most important relativistic couplings of the a, b, c subspace.
The electronic energy was converged by variational (non-
linear) optimization of the fECG basis functions using the
stochastic variational method in combination with the Powell
nonlinear optimizer.9,10,26,64

In what follows, the atomic nuclei are along the (body-fixed)
z axis. The z projection of the total, orbital plus electron spin,
angular momentum, L Sz z+ is conserved for clamped nuclei,

and its quantum number is labeled with Ω according to the
spectroscopic practice.75 Application of these results in
rovibrational and rovibronic computations is reported in ref
26 and also in ref 27.
In the rest of this section, we report the computation of the

relativistic (QED) coupling terms and extensively test their
convergence with the basis set size. Comparison with earlier
computations by Yarkony54 is also shown, although the earlier
literature results are not well-converged.
5.1. Fine Structure of the a 3Σu

+ State

The lowest-energy triplet state of the He2 molecule is the a u
3 +

state. The relativistic magnetic spin dipole−dipole interaction,
eq 11, lifts the 3-fold degeneracy of this state by splitting it into
components with Ω = 0 and Ω = ±1 (Figure 2). This splitting
can be characterized by a single parameter, κ, which is the
energy deviation of the Ω = 0 state from the centroid. The
corresponding shift of the Ω = ±1 states is

2
, so the weighted

average of the energies equals the centroid energy. The
parameter κ has relativistic and QED contributions

2 (2) 3 (3)= + (37)

Since κ(2) originates solely from the relativistic magnetic spin
dipolar term (SS,dp), eq 11, its QED correction is obtained by
simple multiplication, eq 15

1(3) (2)=
(38)

For the a u
3 + state, we think that the nonrelativistic energy

is converged to 1−10 μEh for the largest basis sets at ρ = 2
bohr internuclear distance (Table 4). The convergence of κ(2)
with respect to the number of basis functions is shown in Table
6. For the largest basis sets (Na = 1000−2000), its value is
converged to at least three significant digits. These results
agree to one(-two) digit(s) of the multireference configuration
interaction (MRCI) computations reported in the literature.55

The somewhat lower accuracy of the MRCI results is most
probably related to the finite basis set error, which we can
significantly improve by using an explicitly correlated basis set.
The A g

1 + state is closest to the a-state near the equilibrium
structure (Figure 1), but there is no direct (first-order)
coupling between a and A states through the relativistic (and
QED) operators, eq 16. Well, they can couple through second-
order effects (some details are collected in the Supporting
Information), exploratory computations show that these α4Eh
order contributions are tiny (on the few pico-Hartree, pEh
level), so the A state is not considered further in this work.
5.2. Fine Structure of the b 3Πg and c 3Σg

+ States
The nonvanishing spin-dependent BP matrix elements
connecting the b and c states are collected in Table 5. The
parameter ε labels the separation (zero-field splitting) of the
MS = 0 and MS = ±1 states in the c subspace. For the b
subspace, the nonzero electron orbital angular momentum
introduces a more complicated splitting pattern. It takes three
independent parameters, labeled as β, γ1, and γ2, which
describe the shift and splitting of the originally 6-fold
degenerate subspace into three 2-fold degenerate states with
Ω = ±2, Ω = ±1, and Ω = 0 (Figure 2).
Additionally, the b and c electronic-spin states couple

through the matrix elements labeled as δ1 and δ2 in Table 6,
hence, only the b states for Ω = ±2 remain degenerate.

Figure 1. Low-lying excited triplet and singlet states of He2 studied in
this work.
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Non-negligible couplings also exist with the singlet states,
most importantly, with the B 1Πg and the C g

1 + states (Figure
1); the nonvanishing BP matrix elements are labeled with λ, ζ,
and ξ in Table 5. Similarly to κ, the relativistic and QED
couplings for the parameters β, γ1, and ε differ only by a simple
multiplicative factor, since only the magnetic spin dipolar term
contributes to the relativistic coupling

1
,

1
,

1(3) (2)
1
(3)

1
(2) (3) (2)= = =

(39)

For the other matrix elements, the QED terms were
calculated according to eq 15, and their convergence is
shown in Table 7. For matrix elements with the singlet B and
C states, due to the smaller basis sets used in this work, the
nonrelativistic energies are by 1−2 orders of magnitude less
accurate than the a nonrelativistic energy (Table 4). Despite
this lower accuracy, the precision of the relativistic and QED
couplings appears to be comparable to that of κ, the
uncertainties are in the second digit after the decimal point
(Tables 6 and 7). To test the convergence, we increased the B
and C basis sizes to NB = 500 and NC = 750, respectively, while
using the largest b and c basis sets. The resulting changes in the
coupling values are in the second to the fourth decimal digits.
These results are expected to be sufficiently accurate for the
rovibronic computations, primarily focusing on b−c states, as
presented in ref 27.

Table 4. He2 (ρ = 2 bohr): The Non-relativistic Energy, Ex
(0) in Eh, with Respect to the Number of Optimized fECGs, Nx, for

the x = a, b, c, B, and C Electronic States (Figure 1)a

a u
3 + b 3Πg

c g
3 +

B 1Πg
C g

1 +

Na Ea(0) Nb Eb(0) Nc Ec(0) NB EB(0) NC EC(0)

50 −5.1467 50 −5.1242 50 −5.0920 300 −5.12427 300 −5.08938
100 −5.14996 100 −5.12787 100 −5.0976 500 −5.12438 500 −5.089739
200 −5.15079 200 −5.128822 300 −5.10000 750 −5.089804
500 −5.151071 300 −5.128823 500 −5.100315
1000 −5.151114 500 −5.129246 750 −5.100426
1500 −5.1511225 750 −5.129307 1000 −5.100465
2000 −5.1511238 1000 −5.129330 1500 −5.100482

aThe “a” state basis set is from ref 26, the “b” and “c” states are from ref 27.

Figure 2. Triplet and singlet He2: splitting of the nonrelativistic
energies degenerate in MS by spin-dependent relativistic (and QED)
terms. For the definition of λ, δ1, δ2, ζ, and ξ please see Table 5 (and
ref 27). Color-coding is employed to indicate states that are coupled
via relativistic interactions between distinct nondegenerate subspaces
(orange: λ, red: δ2, blue: δ1, ζ, ξ).

Table 5. Non-vanishing Spin-Dependent Relativistic (and QED) Matrix Elements within the b, c, B, C Electronic-Spin
Subspace of He2

a

bx,−1 bx,0 bx,1 by,−1 by,0 by,1 c0,−1 c0,0 c0,1 Bx,0 By,0 C0,0

bx,−1 −β . −γ1 −iγ2 . −iγ1 . δ2 . . . λ
bx,0 . 2β . . . . −δ1 . δ1 . iζ .
bx,1 −γ1 . −β iγ1 . iγ2 . −δ2 . . . λ
by,−1 iγ2 . −iγ1 −β . γ1 . iδ2 . . . iλ
by,0 . . . . 2β . iδ1 . iδ1 −iζ . .
by,1 iγ1 . −iγ2 γ1 . −β . iδ2 . . . −iλ
c0,−1 . −δ1 . . −iδ1 . −ε . . ξ iξ .
c0,0 δ2 . −δ2 −iδ2 . −iδ2 . 2ε . . . .
c0,1 . δ1 . . −iδ1 . . . −ε ξ −iξ .
Bx,0 . . . . iζ . ξ . ξ . . .
By,0 . −iζ . . . . −iξ . iξ . . .
C0,0 λ . λ −iλ . iλ . . . . . .

aThe superscript of each state labels the Cartesian component of the spatial part (as computed in QUANTEN) and theMS quantum number of the
total electron-spin projection on the internuclear axis. The “.” labels zero (0) (Further details can be found in the Supplementary Material of ref
27).
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6. SUMMARY, CONCLUSION, AND OUTLOOK
In this paper, we reported methodological details and
benchmark numerical results for the spin-dependent relativistic
and leading-order QED couplings of electronic states of small
molecules. The relativistic and QED couplings of the high-
precision nonrelativistic electronic states are computed as
matrix elements of the spin-dependent operators of the Breit−
Pauli Hamiltonian, including the spin−orbit, spin−own−orbit,
spin−other−orbit, and spin−spin terms. The corrections due
to the electron’s anomalous magnetic moment are also
accounted for. To accurately describe small polyelectronic
molecules, we use a variational floating explicitly correlated
Gaussian (fECG) basis procedure.
For small molecular species, accurate and complete fine-

structure data are scarcely available, and this work fills this gap.
First of all, we tested the methodology for an atomic system,
for which (higher precision) fine-structure splitting data are
already available in the literature. Then, we computed spin-
dependent Breit−Pauli Hamiltonian matrix elements for the
two-electron triplet H2 and triplet H3+. High-precision literature
data are not available for these fine-structure splittings;
however, for these two-electron systems, we verified the
results against our in-house developed no-pair Dirac−
Coulomb−Breit (np-DCB) Hamiltonian approach, using the
same fECG spatial basis set in the two computations. The two
approaches give identical splittings to high precision (the most

stringent, direct comparison would be possible by α-scaling the
np-DCB results and comparing the α2Eh order term).
The spin-dependent Breit−Pauli Hamiltonian matrix ele-

ments can be evaluated for (in principle) general poly
electronic and poly atomic molecules, whereas our current
np-DCB ECG implementation is for two electrons (but
automatically includes higher-order (Zα)n effects).
As to new numerical results with the developed method-

ology, we converge the relativistic and QED couplings for
electronically excited triplet (a u

3 +, b3Πg, and c g
3 +) and

singlet (B 1Πg, C g
1 +) states of the four-electron He2 molecule

to at least 3−4 significant digits, which significantly improves
upon (the scarcely) available data in the literature. These
results are computed for a series of nuclear configurations and
will be used to compute high-resolution spectra, including
modeling the fine structure of the rovibronic transitions in a
separate paper.
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Table 6. Convergence of the Relativistic Spin-Dependent Contributions, in mEh, within the a, b, c, B, and C Electronic-Spin
Subspace of He2 (ρ = 2 bohr)a

Na Nb Nc α2κ(2) α2β(2) α2γ1(2) α2γ2(2) α2δ1(2) α2δ2(2) α2ε(2) α2λ(2) α2ζ(2) α2ξ(2)

50 50 50 1.7 −3.19 12.24 20.7 −1.57 −8.68 1.61 −5.735 28.831 10.070
100 100 100 1.9 −3.19 12.43 19.99 −1.24 −8.67 1.65 −5.756 29.606 10.495
200 300 300 2.01 −3.182 12.472 19.69 −1.01 −8.596 1.688 −5.768 29.815 10.764
500 500 500 2.07 −3.1694 12.4671 19.621 −0.931 −8.559 1.6947 −5.768 29.870 10.835
1000 750 750 2.078 −3.1689 12.4691 19.598 −0.914 −8.549 1.6951 −5.764 29.881 10.858
1500 1000 1000 2.081 −3.1687 12.4691 19.586 −0.901 −8.538 1.6946 −5.763 29.883 10.862
2000 1000 1500 2.082 −3.1687 12.4691 19.586 −0.898 −8.537 1.6952 −5.763 29.883 10.866

1000 1500b −5.767 29.929 10.874
Musher et al.52c 2.01
Minaev56d 2.14
Yarkony54 −1.20 −4.39 −4.359 24.330 10.375
Rosmus et al.55 2.107 −3.200 12.552 20.62

aκ corresponds to the zero-field splitting of the “a” state, and Table 5 defines all other non-vanishing matrix elements within the b, c, B, C subspace.
NB = 300 and NC = 500, unless stated otherwise.

bNB = 500 and NC = 750.
cR = 2.015 bohr bond distance for a u

3 +. dR = 2.08 bohr bond distance

for c g
3 +.

Table 7. Convergence of the Spin-Dependent, Leading-Order QED Contributions, in 0.1 mEh, within the b, c, B, and C
Electronic-Spin Subspace of He2 (See Also Tables 5 and 6)a

Nb Nc α3γ2(3) α3δ1(3) α3δ2(3) α3λ(3) α3ζ(3) α3ξ(3)

50 50 0.28 −1.22 −1.13 1.236 −7.66 2.06
100 100 0.02 −1.24 −0.84 1.250 −7.87 2.15
300 300 0.138 −1.511 −0.91 1.261 −7.94 2.221
500 500 0.160 −1.502 −0.925 1.264 −7.951 2.238
750 750 0.168 −1.500 −0.931 1.2630 −7.9551 2.243
1000 1000 0.171 −1.4974 −0.934 1.2626 −7.9560 2.244
1000 1500 0.171 −1.4966 −0.935 1.2626 −7.9560 2.246
1000 1500b 1.2638 −7.9676 2.2453

aNB = 300 and NC = 500, unless stated otherwise. β(3), γ1(3), ε(3), and κ(3) can be calculated from eqs 38 and39 and Table 6. bNB = 500 and NC =
750.
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