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ABSTRACT

Relativistic, quantum electrodynamics, and non-adiabatic corrections and couplings are computed for the b 3Πg and c 3Σ+g electronic states
of the helium dimer. The underlying Born–Oppenheimer potential energy curves are converged to 1 ppm (1 : 106

) relative precision using
a variational explicitly correlated Gaussian approach. The quantum nuclear motion is computed over the b 3Πg–c 3Σ+g (and B 1Πg–C 1Σ+g )
9-(12-)dimensional electronic-spin subspace coupled by non-adiabatic and relativistic (magnetic) interactions. The electron’s anomalous
magnetic moment is also included; its effect is expected to be visible in high-resolution experiments. The computed rovibronic energy intervals
are in excellent agreement with the available high-resolution spectroscopy data, including the rovibronic b 3Πg-state fine structure. Fine-
structure splittings are also predicted for the c 3Σ+g levels, which have not been fully resolved experimentally, yet.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0288277

This work focuses on the electronically excited states of
the triplet helium dimer, which, in contrast to the very weakly
bound singlet helium dimer ground state,1 possesses a rich rovi-
bronic level structure with intriguing magnetic properties. Triplet
helium dimer states have recently attracted experimental atten-
tion for generating cold molecules and using them in precision
tests of quantum electrodynamics.2–5 So far, the a 3Σ+u state of He2
has been used to generate He+2 rovibrational states for precision
spectroscopy measurements.6–8 He+2 is a small calculable molecu-
lar system9–12 and, thus, an ideal target for precision physics. In
comparison with the H2 molecule, another precision spectroscopy
prototype,13–16 the magnetic properties of the helium dimer (and
its cation) can potentially offer a combination of versatile experi-
mental tools and techniques for cooling, quantum state preparation,
and measurement. Furthermore, the electronically excited helium
dimer states have recently been linked to plasma kinetics.17 In
addition to ongoing experimental work,2–5 old experimental data

on the electronic–vibrational–rotational level structure and even
fine-structure splittings of some transitions are available, e.g., Refs.
18–28, which have remained largely unexplained by ab initio molec-
ular quantum theory to date. It may be orienting to mention that
the a 3Σ+u state of the He2 Rydberg molecule is the 2s state, and
b 3Πg and c 3Σ+g are the closest-lying gerade states, corresponding
to p character.

Early theoretical and computational work includes studies by
valence bond theory computations.29–31 Then, the multiconfigura-
tional self-consistent field (MCSCF) approach, with special, aug-
mented basis sets, was used,32–36 although the results lag behind
even the old experimental data. More recent computational work
employed the Multireference Configuration Interaction (MRCI)
method,37 the equation-of-motion coupled cluster method,38 MRCI
combined with neural networks,17 and the R-matrix method.39 Fur-
thermore, there is a single variational explicitly correlated Gaussian
(ECG) computation,40 which has been the most accurate so far.
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Despite all these efforts, a considerable gap still exists between the-
ory and experiment for this simple Rydberg molecule, which is the
smallest excimer.

This work, part of a series of variational explicitly correlated
Gaussian computations carried out by our group,12,41,42 aims to
provide computational results sufficiently accurate to guide, help
interpret, and perhaps even challenge modern experiments on this
molecular physics prototype.

For direct comparison with experimental spectroscopy tran-
sitions and energy intervals, we start out from the non-relativistic
molecular Schrödinger equation

ĤΨ(r, ρ) = EΨ(r, ρ), (1)

with the translationally invariant Hamiltonian

Ĥ = −
1

2μ
Δρ + Ĥe −

1
8μ

P̂2
e , (2)

where μ =Mnuc/2 is the reduced mass, ρ = R1 − R2 is the inter-
nuclear position vector, and P̂ e

= −i∑ne
i=1∇ri is the total (linear)

momentum of the ne electrons. Ĥ e is the electronic Hamiltonian,
for which we (numerically) solve the Schrödinger equation

Ĥ eφn = Unφn (3)

(with ⟨φn′ ∣φn⟩ = δn′n) to obtain the φn electronic states relevant for
the experiments. We perform the electronic structure computations
in the body-fixed (BF) frame in which the ρ internuclear vector
defines the z axis. The electronic state is characterized by its total
spin, Ŝ 2φn = S(S + 1)φn, and the z BF axis is the quantization axis for

the orbital and spin angular momenta of the electrons, L̂zφn = Λφn
and Ŝzφn = Σφn.

In order to numerically solve the Schrödinger equation of the
molecular Hamiltonian, Eqs. (1) and (2), we write the molecular
wave function as a linear combination of products of electronic,
rotational, and vibrational functions,

Ψ(r, ρ) = ∑
n ∈NP

J

∑
Ω=−J
∑

k
cΩ

n,kφn(r, ρ)D̃J
MJ Ω(θ, ϕ, χ)

1
ρ

gk(ρ), (4)

where n = (l, S, Λ, Σ) collects the relevant electronic state labels
and quantum numbers and it is summed over all electronic states
included in the P “active” subspace (for which the indices are col-
lected in the set NP). gk(ρ) are the vibrational basis functions. The
(normalized) D̃J

MJ Ω(θ, ϕ, χ) Wigner D matrices describe the rota-
tion of the body-fixed frame (x, y, z) (rotating diatom with BF spin
and orbital angular momenta) with respect to the laboratory-fixed
system (X, Y , Z), where the Ω = Λ + Σ and MJ quantum numbers
denote the projection of the total rotational plus electronic angular
momentum onto the z and Z axes, respectively, ĴzD̃J

MJ Ω = ΩD̃J
MJ Ω,

ĴZD̃J
MJ Ω =MJD̃J

MJ Ω, and Ĵ 2D̃J
MJ Ω = J(J + 1)D̃J

MJ Ω. The Ĵ total angular
momentum operator acts on the (θ, ϕ, χ) Euler angles of the Wigner
D matrices, while the Ŝ and L̂ operators act on the electronic spin
and spatial degrees of freedom. The helium-4 nuclei have zero spin,
so the nuclear spin angular momentum is considered only for the
spin statistics (of bosonic nuclei).

We insert the ansatz of Eq. (4) into Eq. (1), multiply both sides
from the left by the product of an electronic and a Wigner D element,
and integrate for the electronic coordinates and the Euler angles to
arrive at the following coupled radial (vibrational) equation:

E∑
k

cΩ′
n′ ,k

1
ρ

gk = ∑
n ∈NP

J

∑
Ω=−J
∑

k
cΩ

n,k⟨φn′ D̃
J
MJ Ω′ ∣ −

1
2μ

Δρ + Ĥe −
1

8μ
P̂2

e ∣φnD̃J
MJ Ω⟩

1
ρ

gk. (5)

For practical computations, we rewrite the nuclear Laplacian
using the R̂ rotational angular momentum operator as

Δρ =
1
ρ2

∂

∂ρ
(ρ2 ∂

∂ρ
) −

1
ρ2 R̂ 2

=
1
ρ2

∂

∂ρ
(ρ2 ∂

∂ρ
) −

1
ρ2 [(Ĵ

2
− Ĵ2

z) + (L̂
2
x + L̂2

y) + (Ŝ
2
− Ŝ2

z)

− (Ĵ +Ŝ− + Ĵ −Ŝ+) − (Ĵ +L̂− + Ĵ −L̂+) + (Ŝ+L̂− + Ŝ−L̂+) ]. (6)

The Ô± = Ôx ± iÔy body-fixed ladder operator matrix ele-
ments are calculated according to established relations43

⟨DJ
MJ Ω′ ∣Ĵ

±DJ
MJ Ω⟩ = δΩ′ ,Ω∓1C∓JΩ, ⟨φn′ ∣Ŝ

±φn⟩ = δΣ′ ,Σ±1C±SΣ with

C±AB = [A(A + 1) − B(B ± 1)]1/2. The orbital angular momentum
integrals for the electronic states of molecules are computed
numerically, ⟨φn′ ∣L̂

±φn⟩ = δΛ′ ,Λ±1⟨φn′ ∣[L̂x ± iL̂y]φn⟩. For com-
putational feasibility, we explicitly include only the qualitatively
important electronic states in the P subspace. However, for rovi-
bronic computations of spectroscopic accuracy, it is necessary to

account for the remaining (small) effect of the (1 − P) electronic
Hilbert space. By perturbation theory (contact transformation),
this leads to the following correction44,45 to the right-hand side of
Eq. (5):

1
2μ2∑

n
∑

Ω
⟨D̃J

MJ Ω′ ∣∇ρ̄ ⋅ ⟨∇ρ̄φn′ ∣R̂∣∇ρφn⟩∇ρ ⋅ ∣D̃
J
MJ Ω⟩, (7)

where ρ̄ = ρ = R1 − R2 was introduced only to help label the cor-
responding factors of the two scalar products unambiguously.
The correction contains the reduced resolvent of the electronic
Hamiltonian,

2R̂ = R̂n′ + R̂n = [(Ĥ e − En′)
−1
+ (Ĥ e − En)

−1
]P�, (8)

where P� = 1 −∑n∈P ∣φn⟩⟨φn∣ projects out the electronic states
explicitly coupled in Eq. (4). For the c 3Σ+g electronic state with
Λ = 0, Eq. (7) leads to the following contributions to the reduced
rotational (x = r) and vibrational (x = v) masses:
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1
μx

n(ρ)
=

1
μ
[1 −

δmx
n(ρ)
μ
] ≈

1
μ + δmx

n(ρ)
(9)

with

δmx
n(ρ) = ⟨

∂φn

∂ρax

∣(Ĥ e − En)
−1P�∣

∂φn

∂ρax

⟩, (10)

where ax = z for x = v and ax = x/y for x = r. We note that the vibra-
tional non-adiabatic mass (perturbatively) accounts for all homoge-
neous (ΔΛ = 0) non-adiabatic couplings of the state with all other
states of the same spatial symmetry (not explicitly, variationally cou-
pled in the rovibronic treatment). The rotational mass accounts for
the heterogeneous coupling (ΔΛ = ±1) for all states not explicitly
coupled within the variational treatment. It is important to note
that only the effect of distant (non-crossing, separated by a finite
gap44) states can be accounted for in this manner; crossing or close-
lying electronic states must be coupled variationally (as the c and b
states in the present system). Numerical illustrations for electron-
ically excited hydrogenic states and vibronic states over coupled
subspaces have been reported in Refs. 46 and 45. The b-state vibra-
tional mass correction was also computed using Eq. (10). At the
same time, the b-state rotational mass and further contributions

from the b–c coupling through the kinetic energy correction term,
Eq. (7), are neglected here and left for future work (for technical
reasons).

In the rovibronic Schrödinger equation, Eq. (5), we cor-
rect the electronic energy (PEC) with spin-independent (sn)
and spin-dependent (sd) relativistic and QED corrections and
couplings by adding the terms (α labeling here the fine-structure
constant),

α2
⟨φn′ ∣Ĥ

(2)
sn + Ĥ(2)sd ∣φn⟩ + α3

[E(3)sn,φn′ ,φn + ⟨φn′ ∣Ĥ
(3)
sd ∣φn⟩]. (11)

The spin-independent corrections are, in short, the centroid rel-
ativistic (QED) energy corrections, whereas the spin-dependent
corrections can be understood as the terms responsible for mag-
netic (dipolar and contact) interactions. The relativistic and QED
corrections are computed in the non-relativistic quantum electro-
dynamics (nrQED) framework; the detailed expressions are reiter-
ated in the supplementary material. For further details regarding
the electron-spin (Σ) dependent terms, please see also Refs. 41
and 42; the centroid relativistic corrections are evaluated according
to Ref. 47.

All in all, we arrive at the final form of the coupled radial
equation,

E∑
k

cΩ′
n′ ,kgk = ∑

n ∈NP

J

∑
Ω=−J
∑

k
cΩ

n,k{δΛ′ΛδΣ′Σ[−
d

dρ
1

2μv
n

d
dρ
+

J(J + 1) −Ω2

2μr
nρ2 +

S(S + 1) − Σ2

2μr
nρ2 +Wn]

−
1

2μr
nρ2 [δΛ′ΛδΣ′Σ±1C±JΩC±SΣ + δΛ′Λ±1δΣ′ΣC±JΩ⟨φn′ ∣L̂

±φn⟩]

+
1

2μr
nρ2 δΛ′Λ±1δΣ′Σ±1C±SΣ⟨φn′ ∣L̂

±φn⟩ + α2
⟨φn′ ∣Ĥ

(2)
∣φn⟩ + α3

[E(3)sn,φn′ ,φn + E(3)sd,φn′ ,φn
]}gk, (12)

where the BO potential energy curve with the diagonal
Born–Oppenheimer (DBOC) or adiabatic correction is

Wn = Un −
1

8μ
⟨φn∣P̂2

eφn⟩ −
1

2μ
⟨φn∣

∂2

∂ρ2 φn⟩ +
1

2μρ2 ⟨φn∣L̂2
x + L̂2

y ∣φn⟩.

(13)

We neglected the effect of the non-adiabatic contact transfor-
mation on the relativistic and QED terms, and vice versa, the
Foldy–Wouthuysen transformation on the nuclear motion opera-
tors. The corresponding terms would account for the combined rel-
ativistic, QED, and non-adiabatic coupling, and their consideration
is left for future work.

Furthermore, we note that for the smallness of the mag-
netic splittings, we also performed computations without con-
sidering couplings due to the electron spin. In this case, it is
convenient to use the total “spatial” angular momentum, N̂ = R̂ + L̂,
and then, we use the Wigner D̃N

MN Λ matrices to describe the spa-
tial rotation of the diatom with orbital angular momentum in the
BF frame, N̂zD̃N

MN Λ = ΛD̃N
MN Λ, N̂ZD̃N

MN Λ =MN D̃N
MN Λ, and N̂ 2D̃N

MN Λ
= N(N + 1)D̃N

MN Λ. Then, the coupled radial equation simplifies to

E∑
k

cΛ′
n′ ,kgk = ∑

n ∈NP

N

∑
Λ=−N

∑
k

cΛ
n,k

× {δΛ′Λ[−
∂

∂ρ
1

2μv
n

∂

∂ρ
+

N(N + 1) −Λ2

2μr
nρ2 +Wn]

−
1

2μr
nρ2 δΛ′Λ±1C±NΛ⟨φn′ ∣L̂

±φn⟩

+ α2
⟨φn′ ∣Ĥ

(2)
∣φn⟩ + α3E(3)sn,φn′ ,φn}gk. (14)

For rovibrational computations on a single electronic state, we solve
the radial equation of Refs. 12 and 41 without and with considering
fine-structure (zero-field splitting) effects, respectively.

The outlined theoretical framework (with further details in
the supplementary material) benefited from reading several pio-
neering spectroscopy and ab initio studies. Most importantly, we
mention the DUO program documentation48 about a modern
formalism using ab initio computations for astrophysical appli-
cations of diatomic molecules including non-adiabatic and spin-
dependent couplings. We have also studied the series of work on
the non-adiabatic couplings in the electronically excited states of the
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hydrogen molecule by Dressler, Wolniewicz, and co-workers49,50

and even the early work of Kołos and Wolniewicz.51 The book by
Lefebvre-Brion and Field43 and the book by Brown and Carrington52

served as rich sources of ideas and information.
The J and N radial equations, Eqs. (12) and (14), are used with

the PECs and correction and coupling curves evaluated numerically
at a series of nuclear geometries (and then interpolated through
the points). These quantities are shown in Fig. 1; they were com-
puted numerically with the in-house developed computer program,
QUANTEN, and are briefly explained in the following paragraphs.
First, we solved the electronic Schrödinger equation, Eq. (3), in a
non-linear variational procedure. The electronic wave function is
written as a linear combination of anti-symmetrized products of
f(r; Ai, si) floating explicitly correlated Gaussian (fECG) functions
and χ spin functions,

φn(r) =
Nb

∑
i=1

di P̂G ÂS{ f (r; Ai, si)χ(S,Σ)(θi)}, (15)

f (r; Ai, si) = exp [(r − si)
TA_ i(r − si)], (16)

where the A_ i = Ai ⊗ I3 matrix is a real, symmetric, positive definite
matrix with the I3 ∈ R3×3 unit matrix and the Ai ∈ Rne×ne matrix;
si ∈ R3ne is a shift vector corresponding to the center of the fECG
function. χ(S,Σ)(θi) is an electronic spin function constructed accord-
ing to Refs. 41 and 42. The Ai, si, and θi parameters were gener-
ated according to the stochastic variational method53,54 and refined
with the Powell approach.55 The ÂS electronic anti-symmetrization
operator ensures fulfillment of the Pauli principle for the electronic
part, while P̂G projects onto the selected irreducible representation
(irrep) of the D∞h point group.

In this work, we computed the c 3Σ+g and the b 3Πg (x com-
ponent in the Cartesian representation) electronic states of the
helium dimer. First, fECG basis functions were generated and opti-
mized (Table S1) at ρ = 2 bohrs. Convergence tests and comparisons
with standard electronic structure computations are collected in the
supplementary material. Based on these tests, the basis sets used for
the b and c electronic energies were converged to 3–5 cm−1 (as an
upper bound to the exact value) at ρ = 2 bohrs.

The BO PECs for the b and c electronic states were gener-
ated by small consecutive displacements of ρ followed by rescaling

FIG. 1. He2 b, c, B, and C electronic states: BO PEC, non-adiabatic coupling, DBOC correction, vibrational and rotational non-adiabatic mass correction, and leading-order
relativistic and QED correction curves computed in this work. The a-state results are reproduced from Ref. 41, and the bottom of the X+ 2Σ+u BO PEC of He+2

12 is plotted for
comparison. The spin-dependent relativistic corrections and couplings (Ĥsd) for the b, c, B, and C electronic states are also shown, computed in Ref. 42. All non-vanishing,
non-adiabatic, and relativistic QED couplings, computed as part of Ref. 42, are plotted (see also Tables S6 and S7). The electric dipole (μa) transition moments connecting
the b and c states with the a state, computed in this work, are also shown.
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the si vectors and full reoptimization (in repeated Powell cycles) of
all non-linear basis parameters.11,46,56,57 This PEC generation pro-
cedure was started from ρ = 2 bohrs with a ±0.1 bohr step size
over the [1,10] bohr interval. This consecutive rescaling–refining
procedure allowed us to approximately conserve the absolute error
along a series of neighboring nuclear configurations, and thus,
the relative properties (here, rovibrational excitation energies) are
expected to be (1–2 orders of magnitude) more precise than the
absolute electronic energies. Along the PECs, the electronic wave
functions obtained from the variational fECG procedure were used
to compute corrections and couplings.

Regarding the DBOC and non-adiabatic mass corrections, the
⟨
∂φn′

∂ρ ∣
∂φn′

∂ρ ⟩ and ⟨φn′ ∣
∂φn
∂ρ ⟩ integrals were computed by finite dif-

ferences, in which the optimized si fECG centers were rescaled
in proportion to the (tiny) ρ ± δρ variation. The electronic orbital
angular momentum operators ⟨φn′ ∣L̂aφn⟩ and ⟨φn′ ∣L̂

2
aφn⟩ (a = x, y)

were computed using the analytic integrals in QUANTEN. Auxil-
iary basis sets for the non-adiabatic vibrational and rotational mass
corrections, Eq. (10), were optimized by minimization of the target
quantities using the procedure of Ref. 45.

Regarding the relativistic (spin-independent, centroid) cor-
rections, we employed the numerical Drachmanization approach
described in Ref. 47 (Table S3 presents convergence tests). The
QED (centroid) corrections were calculated using the regularized
Dirac delta expectation values already computed for the relativis-
tic corrections, and the Araki–Sucher (AS) term was computed
with the integral transformation technique58,59 for the c state (and
this AS curve was used also for the b, B, and C states; see the
supplementary material). For the Bethe logarithm, we use the ion-
core approximation and the values of the ground electronic state of
He3+

2 .11

The computation of spin-dependent relativistic couplings with
fECG functions has recently been implemented in QUANTEN. The
methodology is reported in a separate paper,42 including extensive
convergence tests for the b- and c-state couplings. The leading-order
QED corrections to the spin-dependent couplings are due to the
electron’s anomalous magnetic moment, which is also accounted
for; the technical and computational details are in Refs. 41 and 42.
We had to pay attention to the phase of the electronic wave function;
it was fixed for the computation of all (non-adiabatic, relativistic,
and QED) couplings, and the phase of the (real-valued) electronic
wave functions at neighboring PEC points was chosen so that their
overlap is closer to +1, than to −1. For future computations (and to
aid the experimental work), the electric dipole transition moments
to the a 3Σ+u state were also computed as a function of the ρ inter-
nuclear distance and are shown in Fig. 1. The total computing time
used to prepare this paper (including electronic structure optimiza-
tion and all corrections and couplings, partly reported in Ref. 42) is
estimated to be 150 kCPU hours.

QUANTEN uses the Cartesian representation of the basis and
wave functions labeled as φa,Σ

n (a = x, y, 0(z)), in short,

B(xyz) : (bx,−1, bx,0, bx,1, by,−1, by,0, by,1, c0,−1, c0,0, c0,1, Bx,0, By,0, C0,0
).

(17)

For the rovibrational computations, we transform all quantities from
the Cartesian to the spherical representation, in which the electronic
wave functions are labeled as φΛ,Σ

n , in short,

B(−1,0,1) : (b−1,−1, b−1,0, b−1,1, b+1,−1, b1,0, b1,1, c0,−1,

c0,0, c0,1, B+,0, B−,0, C0,0
) (18)

with the spherical representation for the Π states (b and B) con-
structed as Π±,MS = 1√

2
[Πx,MS + iΠy,MS]. Further calculations are

collected in the supplementary material. The non-vanishing rela-
tivistic (QED) spin-dependent matrix elements (all ΔΩ = 0) and
non-adiabatic (ΔΛ = ±1; ΔΛ = 0 not relevant for the present system)
coupling matrix elements used in the coupled equations are collected
in Tables S7 and S8.

The coupled radial equations, Eqs. (12) or (14), are solved using
the discrete variable representation (DVR) constructed with L(α)n
Laguerre polynomials (α = 2), similarly to Refs. 10 and 11 (see also
Ref. 60). At the end of the rovibrational and rovibronic computa-
tions, we retain the states, for comparison with experiment, that
are totally symmetric under the exchange of the two 4He2+ nuclei
(spin-0 bosons).52

First of all, we aim to assess the accuracy of the “absolute” posi-
tion of the b and c PECs, referenced to the more accurate a-state
results.41 Reference 22 informs us about measured c–a rovibronic
intervals, and comparison shows that the cv′N′ − avN = c00 − a00
electronic–vibrational energy interval differs from the experimental
(effective Hamiltonian) data by −2.0 cm−1. The a-PEC41 is con-
verged to ∼0.7 cm−1 (upper bound, and with further variational
optimization, this error was already reduced to 0.3 cm−1 in Ref. 41)
at ρ = 2 bohrs. Hence, the c–a electronic excitation energy error is
dominated by the variational convergence error of the c-state elec-
tronic energy near equilibrium; the c electronic energy was estimated
to be too high by ∼10 μEh ∼ 2 cm−1, according to the estimated
convergence of the c electronic energy (Table S1, supplementary
material). Regarding the b state, comparison with the experimental
(fine-structure resolved) b–a transitions23 shows that the computa-
tional result is too large by ≈5 cm−1 (Table I), which is dominated
by the convergence error of the b-state electronic energy. Indeed,
the b 3Πg electronic energy was estimated to be 20–25 μEh too high
at ρ = 2 bohrs (variational upper bound), which is ≈5 cm−1 and
in agreement with experiment–theory deviation in the electronic
excitation energy. [According to Table S1, the b-state electronic
energy obtained with the Nb = 1000 basis set, which was used for
the PEC generation, has already been improved (lowered) by 9.5 μEh
≈ 2.1 cm−1 using Nb = 1500 basis functions. This value can be used
to correct the computed rovibronic b–a excitation energies in Table I
according to the footnote a of the table.] Both the b and c BO
electronic energies can be better converged (with more computing
time), if necessary. We expect the rovibrational and fine-structure
intervals to be more accurate than the electronic excitation energies,
since the approximately homogeneous local error of the PEC largely
cancels in the rovibrational (and fine-structure) intervals.

Regarding the rovibronic structure of the c state, we use the
rovibrational energy intervals from the experimental work reported
in Ref. 24 for comparison. Reference 24 also reports the lifetime
of v = 4 and 5 vibrationally excited states. In this work, we com-
pute bound rovibrational states, and the positions of long-lived
resonances (relevant for v = 4) were first estimated using the sta-
bilization method.61 Converging resonance positions and widths,
necessary for v = 5 states (and v = 4, N > 10), were incorporated
into our rovibronic approach using complex absorbing potentials
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TABLE I. Example b–a transition energies, ν̃Jb ,b
vbNb
− ν̃Ja ,a

vaNa
, and rotational–fine-structure intervals, f̃ , computed in this work

and compared with experimental values.23 The δν̃ and δf̃ experiment–theory deviations are also shown. All values are
in cm−1. The levels with v and N are labeled as avaNa and bvbNb. The computed a-state energy levels are taken
from Ref. 41.

Expt.23 This work

Jb Ja ν̃Jb ,b
vbNb
− ν̃J,a

vaNa
f̃ ν̃Jb ,b

vbNb
− ν̃Ja ,a

vaNa

a f̃ δν̃ a δf̃

Electronic–fine-structure transitions (va = vb = 0)
Na = Nb = 1: b01← a01 (Q branch):

1 0 4767.4957 0.4049 4772.4570 0.4108 −4.9613 −0.0059
1 1 4767.9006 4772.8678 −4.9672
2 2 4767.5639 0.3367 4772.4684 0.3994 −4.9045 −0.0627b

Na = Nb = 3: b03← a03 (Q branch):

2 2 4765.0302 0.2992 4770.0135 0.2982 −4.9833 0.0010
3 3 4765.3294 4770.3117 −4.9823
4 4 4764.9907 0.3387 4769.9728 0.3389 −4.9821 −0.0002

Na = Nb = 5: b05← a05 (Q branch):

4 4 4760.4957 0.2996 4765.5038 0.3001 −5.0081 −0.0005
5 5 4760.7953 4765.8039 −5.0086
6 6 4760.4690 0.3263 4765.4776 0.3264 −5.0086 −0.0001

Na = Nb = 21: b0 21← a0 21 (Q branch):

20 20 4658.1491 0.3035 4663.7665 0.3017 −5.6174 0.0018
21 21 4658.4526 4664.0682 −5.6156
22 22 4658.1491 0.3035 4663.7597 0.3085 −5.6106 −0.0050

Electronic–rotational–fine-structure transitions (va = vb = 0):
Nb = 2← Na = 1: b02← a01 (R branch):

1 0 4797.0112 −0.2578 4801.9858 −0.2607 −4.9746 0.0029
2 1 4796.7534 4801.7251 −4.9717
3 2 4796.7700 −0.0166 4801.7432 −0.0181 −4.9732 0.0015

Electronic–rotational–vibrational–fine-structure transitions:
vb = 1← va = 0, Na = Nb = 3: b13← a03 (Q branch):

2 2 4731.9190 0.2915 4737.1109 0.2947 −5.1919 −0.0032
3 3 4732.2105 4737.4055 −5.1950
4 4 4731.8784 0.3321 4737.0704 0.3351 −5.1920 −0.0030

aBy further extension (Nb = 1500) and optimization of the b-state fECG basis set (ρ = 2 bohrs; Table S1), the electronic energy
is already lowered (variationally) by 2.1 cm−1 (Table S1), which can be used as a correction, ν̃J,b

vN − ν̃J,a
vN − 2.1 cm−1 and δν̃ +

2.1 cm−1
(≈−2.9 cm−1

).
bPerhaps a misprint in Ref. 23 (4767.5639 vs. 4767.5039)?

(CAP)62 (alternatively, the complex coordinate rotation technique
could also be used).63 Both options require repeated computations,
and CAP computations were performed with the finalized and
validated rovibronic description of the bc bound-state level structure
[Fig. 2(c)].

Figure 2 shows the deviation of experiment and our compu-
tations using three different c rovibrational (rovibronic) models.
Figure 2(a) shows the result of a single c-state model: it includes all

PEC corrections and the vibrational mass correction in the vibra-
tional kinetic energy, but using the nuclear mass for rotations [i.e.,
without any rotational mass correction, which would be singular
(and undefined) due to the crossing with the b state]. In this single
c-state model, highly rotationally excited states exhibit large devia-
tions from experiment, up from 10 to 15 cm−1. Figure 2(b) show-
cases the bc coupled model, which includes the bc non-adiabatic
coupling, all PEC corrections, and the vibrational mass corrections
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FIG. 2. [(a)–(c)] Rovibrational intervals
for c 3Σ+g He2, cvN-c00 measured from
the c00 level (with N = 0 and v = 0).
Deviation of experiment (“Expt.”; Ref. 24)
and computation (“Comp.”; this work),
δν̃ = ν̃Exp. − ν̃Comp., with three different
theoretical models. c(δmc

vib): single c-
state description with the vibrational
mass correction; cb(δmb,c

vib): coupled bc
description with the vibrational mass cor-
rections; c(δmb,c

vib , δmc
rot): same as (b)

with the rotational mass correction for the
c state (please see also the text). In each
case, all PEC corrections were included.

for both the b and c states. The high-N rotational angular momen-
tum states deviate from experiment by up to −3 cm−1, which is (in
absolute value) by a factor of 5 smaller than the single c-state result.
Figure 2(c) shows pilot results from the same bc coupled model, but
appended with the c-state rotational mass corrections, which can be
rigorously defined for the coupled bc subspace, but the evaluation of
the reduced resolvent requires projecting out the active b electronic
state contributions.44 The computation of the c rotational mass cor-
rections assumes an auxiliary basis set of 3Πg symmetry (the same as
for b) to represent the reduced (i.e., without bc contributions) resol-
vent, Eq. (10). Including this c-state rotational mass correction in the
bc coupled computation reduces the experiment–theory deviations
for high-N states by an additional factor of 3, to less than 1 cm−1,
which is clearly an improvement (by an order of magnitude) over
the 10–15 cm−1 deviation of Fig. 2(a). At the same time, by compari-
son with the spectacularly accurate (∼0.001 cm−1

) a-state rotational
intervals,41 we may wonder what is missing here. First, the auxiliary
basis set used in the c rotational mass correction should be optimized
more tightly (currently limited by technical difficulties for projecting
out the b state). Furthermore, the b state also has a rotational mass
correction, and the non-adiabatic mass (kinetic) energy correction
has (b–c) off-diagonal terms,44 which must also be considered. All
the missing technical, computational, and formal relations will be
elaborated in future work.

Regarding the fine structure of the c-state rovibronic levels,
Table II reports fine-structure splittings for selected vibrational
states. Since no well-resolved experimental data are currently avail-
able, we compare four theoretical models to gain a better under-
standing of the role of the different contributions. All cases include
all PEC corrections and non-adiabatic couplings (in multi-state
cases). The currently most complete treatment, labeled as bcBC(rQ),
includes all 12 electronic-spin states of the b, c, B, and C electronic
states (Tables S6 and S7) coupled by relativistic QED (rQ) interac-
tions. The second most comprehensive model, bc(rQ), includes all
nine electron-spin states of the b and c electronic states, and they
are coupled by rQ couplings. The bcBC(rQ)–bc(rQ) deviation is
(less than) 100 kHz, which is a surprisingly small effect, if we note
that the b–B, b–C, and c–B relativistic (QED) couplings (Fig. 1) are
comparable to those of the b–b and b–c states. The important dif-
ference is that the b–c states are coupled non-adiabatically, whereas
the triplet–singlet (bc–BC) states are not (for their different electron

spins). The non-adiabatic coupling seems to “enhance” the effect
of the relativistic couplings. It is interesting to compare the bc(rQ)
and the bc(r) results, the latter including only the relativistic cou-
plings but neglecting the QED corrections of the couplings (from the
anomalous magnetic moment of the electron), which has a “large”
2–3 MHz effect (similar to the a-state fine structure41). Interest-
ingly, the QED effect on the bc magnetic couplings is larger than any
magnetic couplings with the BC states. Finally, a single c-state com-
putation (by neglecting any non-adiabatic or relativistic coupling
with the b states), but still including the relativistic QED zero-field

TABLE II. Computed c fine structure splittings, ν̃N±1 − ν̃N in cm−1 with the fully
coupled b–c–B–C (bcBC) rovibronic model including non-adiabatic, relativistic (r),
and QED couplings (Q). Deviation of the (±1) fine structure components, δν±1

in MHz, from this bcBC(rQ) model obtained with bc(rQ): coupled b–c model with
non-adiabatic, relativistic, and QED couplings; bc(r): the coupled b–c model with non-
adiabatic and relativistic couplings; and c(rQ): the single c-state model with relativistic
and QED zero-field splitting.

N

bcBC(rQ) bc(rQ) bc(r) c(rQ)

ν̃N−1 − ν̃N ν̃N+1 − ν̃N δν−1 δν+1 δν−1 δν+1 δν−1 δν+1

c, v = 0:

0 0.020 234 −0.1 1.3 0
2 0.039 422 0.026 643 −0.1 −0.1 2.7 1.7 −34 18
4 0.033 102 0.028 839 −0.1 −0.1 2.3 1.8 −50 37
6 0.030 957 0.030 212 −0.1 −0.1 2.2 1.9 −68 55
8 0.029 659 0.031 288 −0.1 −0.1 2.1 1.9 −85 74
10 0.028 681 0.032 227 −0.1 −0.1 2.1 2.0 −103 93

c, v = 1, 2, and 3: see the supplementary material
c, v = 4:

0 0.022 045 −0.1 1.5 0
2 0.042 891 0.029 123 −0.2 −0.1 2.9 1.9 −39 23
4 0.035 942 0.031 597 −0.2 −0.1 2.4 2.0 −59 45
6 0.033 546 0.033 185 −0.2 −0.1 2.3 2.1 −80 68
8 0.032 072 0.034 461 −0.2 0.0 2.2 2.2 −102 91
10 0.030 948 0.035 600 −0.2 0.0 2.2 2.2 −123 115
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splitting (within the c 3Σ+g electron spin subspace) has a significant,
30–120 MHz, effect compared to our currently most comprehensive
bcBC(rQ) [or almost equally good bc(rQ)] model.

Finally, we report b–a electronic–rotational–vibrational–fine-
structure transition energies (Table I) obtained from bc(rQ) cou-
pled computations. For a direct, line-by-line comparison with the
experimental b–a transitions, we take the (highly accurate) a-state
rovibrational–fine-structure energy levels from Ref. 41. The cou-
plings with the B–C PECs were not included in these results, because
they have a negligibly small effect (see also the c-state fine struc-
ture analysis, Table II). By inspecting Table I, we can assess the
accuracy of the b representation at different scales: electronic, vibra-
tional, rotational, and electron spin (fine structure). As pointed out
earlier in this work, the b PEC is by ∼5 cm−1 too high in energy
(out of which 2.1 cm−1 is already confirmed in a larger-basis, cur-
rently single ρ = 2 bohrs point computation, Table S1). The first
vibrational fundamental is accurate to 0.2 cm−1. High-N (up to
N = 21 is available from experiment) rotationally excited states are
less accurately described, transitions to N = 21 b rotational states
are by ∼0.6 cm−1 less accurate than to N = 1 (again, we empha-
size that the a-state rovibrational levels are much more accurate,41

so their theoretical–computational uncertainty is negligible in the
present analysis). For a more accurate computation of the b-state
rotational excitations, in a bc coupled model, it will be necessary
to compute the rotational mass correction of the b state (and of
the bc off-diagonal terms); nevertheless, the explicit coupling with
the c-state ensures that the deviation is not larger. For the b-state
rotational mass correction, auxiliary basis sets of 3Σ+g and 3Δg sym-
metries must be optimized,45 but the c-state contribution must be
projected out, since it is already explicitly coupled with the b state.
So, the largest rotational contribution is already accounted for by
the explicit bc non-adiabatic coupling. The f̃ fine-structure splittings
are in excellent agreement with the experimental data; their devia-
tion from the experimental value is δf̃ ≈ 0.001 − 0.003 cm−1, which
matches the experimental resolution of Ref. 23.

In summary, we have developed a high-precision
rovibronic–relativistic–QED model of the b–c electronic states
of the triplet helium dimer. The computed results significantly
improve upon earlier work: they account for the electronic, vibra-
tional, rotational, and fine-structure components of the rovibronic
spectrum in quantitative agreement with the available experimental
data. As a result, we believe that this rovibronic–electron-spin
ab initio model can aid ongoing and future experimental work
on this simple diatomic system, which exhibits rich magnetic
properties. During the introduction of the formalism and the
analysis of the computed results, several directions for future
improvements were identified, including better convergence of the
PECs, non-adiabatic relativistic couplings, b-state rotational mass
corrections, spin-rotation coupling computation, and consideration
of further electronic states. Priority will be given to the most experi-
mentally useful directions. In the meantime, we are also working on
a control program that organizes the several separate or consecutive
QUANTEN computing jobs for converging the electronic energy,
computing the PEC and all corrections and couplings at the PEC
points. Therefore, within the theoretical framework presented in
this paper, (even) more accurate and larger-scale computations can
be conducted in the future.

The supplementary material includes (a) further theoretical,
computational, and convergence details; (b) data points for the PECs
and correction and coupling curves are deposited, whose applica-
tions are demonstrated in Wolfram Mathematica notebook files;
and (c) rovibrational and fine structure energy lists for the b and
c electronic states.
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