
Computer Physics Communications 307 (2025) 109395

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

LinApart: Optimizing the univariate partial fraction decomposition ✩

B. Chargeishvili a, L. Fekésházy a,b,c,∗, G. Somogyi b, S. Van Thurenhout b

a II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
b HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121, Budapest, Hungary
c Institute for Theoretical Physics, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary

A R T I C L E I N F O A B S T R A C T

Keywords:

Partial fraction decomposition
We present LinApart, a routine designed for efficiently performing the univariate partial fraction decomposition
of large symbolic expressions. Our method is based on an explicit closed formula for the decomposition of rational
functions with fully factorized denominators. We provide an implementation in the Wolfram Mathematica

language, which can lead to very significant performance gains over the built-in Apart command. Furthermore,
a C language library implementing the core functionality and suitable for interfacing with other software is also
provided. Both codes are made available at https://github .com /fekeshazy /LinApart.

Program summary

Program title: LinApart

CPC Library link to program files: https://doi .org /10 .17632 /v8vg2mjjnb .1

Developer’s repository link: https://github .com /fekeshazy /LinApart

Licensing provisions: MIT license

Programming language: Wolfram Mathematica and C

Nature of problem: Analytic computations in quantum field theory often produce large expressions involving complicated rational functions. In
many cases, such as symbolic integration, performing partial fraction decomposition of the latter is vital. Even though univariate partial fraction
decomposition is conceptually well-understood, the complexity of state-of-the-art calculations is such that use of readily available tools, such as
the Apart command in Mathematica, becomes highly impractical due to time and memory constraints. Here we present LinApart, a routine
developed for performing univariate partial fraction decomposition in a highly efficient manner. Improvements in timing and memory usage of up
to five orders of magnitude are achieved for rational expressions with as few as ten denominator factors. As such, the routine allows to perform
decomposition problems that were previously intractable.

Solution method: The LinApart routine implements a simple closed form expression for univariate partial fraction decomposition of rational functions
with fully factored denominators based on the residue theorem. The Mathematica implementation makes use of the highly efficient built-in
differentiation routine to evaluate this formula. The C language implementation employs a version of the formula that does not require symbolic
differentiation but is rather based on the computation of multinomial coefficients.

Additional comments including restrictions and unusual features: The routine is based on a formula which assumes that the denominator of the rational
function to be decomposed is in a fully factorized form, i.e., it is a product whose factors are linear in the decomposition variable. For maximum
efficiency, the Mathematica implementation by default does not perform any factorization and non-linear denominators, if present, are simply
disregarded during the decomposition. Thus, in such cases the output will not be in a fully decomposed form. This issue does not arise in the C

implementation, which only accepts linear denominator factors of the form (𝑥 − 𝑎)𝑚 as input.

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author at: II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.

E-mail addresses: bakar.chargeishvili@desy.de (B. Chargeishvili), levente.fekeshazy@desy.de (L. Fekésházy), somogyi.gabor@wigner.hun-ren.hu (G. Somogyi),
Available online 15 October 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

sam.van.thurenhout@wigner.hun-ren.hu (S. Van Thurenhout).

https://doi.org/10.1016/j.cpc.2024.109395

Received 19 June 2024; Received in revised form 30 August 2024; Accepted 9 October 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://github.com/fekeshazy/LinApart
https://doi.org/10.17632/v8vg2mjjnb.1
https://github.com/fekeshazy/LinApart
mailto:bakar.chargeishvili@desy.de
mailto:levente.fekeshazy@desy.de
mailto:somogyi.gabor@wigner.hun-ren.hu
mailto:sam.van.thurenhout@wigner.hun-ren.hu
https://doi.org/10.1016/j.cpc.2024.109395
https://doi.org/10.1016/j.cpc.2024.109395
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109395&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

1. Introduction

Partial fraction decomposition is a standard tool commonly employed in many aspects of perturbative quantum field theory (QFT) calculations.
Its uses include simplifying complicated expressions as well as bringing them to a unique form for further manipulation. In particular, it is an
important step during the analytic computation of loop and phase-space integrals. One possible approach to such calculations relies on deriving
multidimensional real Euler-type integral representations for the integrals of interest and sequentially performing the integration over each variable
in terms of functions defined as iterated integrals, such as multiple polylogarithms [1–5]. Here partial fraction decomposition of the expression in
the integration variable is necessary in order to cast the integral into a form that can be recognized as a multiple polylogarithm. Partial fraction
decomposition as well as its multivariate generalizations have also been applied in conjunction with the integration-by-parts method for obtaining
simplified forms of intermediate and final results [6–11].

Univariate partial fraction decomposition is a well-understood problem and various algorithms for performing such a decomposition are known,
with implementations in many computer algebra systems,1 see e.g. [13–17]. However these days, the complexity of perturbative QFT problems has
reached a point where in order to obtain results, the efficiency of each step of the calculation must be carefully considered. In particular, the direct
symbolic computation of phase-space integrals relevant for building subtraction schemes beyond next-to-leading order can lead to expressions where
the (lack of) efficiency of standard partial fraction decomposition routines becomes a bottleneck to performing the calculation [18–21].

Hence it is desirable to have a very efficient way of performing the partial fraction decomposition. In this paper we present LinApart, a univariate
partial fraction decomposition routine and provide an implementation in the Wolfram Mathematica language. The routine is based on a simple
closed formula following from the residue theorem and leads to massive performance gains over the built-in Apart command. This allows one to
obtain solutions for a whole range of decomposition problems that were previously intractable. Furthermore, a C language library implementing the
core functionality is also made available. This can be interfaced with other computer algebra systems, such as FORM [22,23], that currently lack
built-in partial fraction decomposition capabilities. Finally, in order to demonstrate the use of the library, a standalone C program is provided.

The paper is organized as follows. In section 2 we present our basic formula for univariate partial fraction decomposition. In section 3 we discuss
the implementation and usage of the LinApart routine in Wolfram Mathematica and C. Then, in section 4 we highlight the massive performance
improvements of the Mathematica implementation with respect to Apart on various classes of rational functions. Finally, in section 5 we present
our conclusions and outlook.

2. Closed formula for univariate partial fraction decomposition

Consider a rational function of the variable 𝑥,2

𝑅(𝑥) = 𝑃 (𝑥)
𝑄(𝑥)

, (1)

where 𝑃 (𝑥) and 𝑄(𝑥) are polynomials of degree deg𝑃 and deg𝑄. 𝑅(𝑥) can be represented as a linear combination of monomials of 𝑥 divided by
𝑄(𝑥),

𝑅(𝑥) =
deg𝑃∑
𝑙=0

𝑝𝑙
𝑥𝑙

𝑄(𝑥)
, (2)

hence we may restrict our attention to rational functions of the form 𝑓 (𝑥) = 𝑥𝑙

𝑄(𝑥) . If 𝑓 (𝑥) is a proper rational function, i.e., 𝑙 < deg𝑄, it is well-known
that 𝑓 (𝑥) can be written as

𝑓 (𝑥) =
𝑛∑
𝑖=1

(
𝑐𝑖1

𝑥− 𝑎𝑖
+

𝑐𝑖2

(𝑥− 𝑎𝑖)2
+⋯+

𝑐𝑖𝑚𝑖

(𝑥− 𝑎𝑖)𝑚𝑖

)
, (3)

where the index 𝑖 counts the 𝑛 distinct roots {𝑎𝑖}𝑛𝑖=1 of the polynomial 𝑄(𝑥) and 𝑚𝑖 denotes the multiplicity of the 𝑖-th root. We are considering
the partial fraction decomposition of 𝑓 (𝑥) over the complex numbers, such that the polynomial 𝑄(𝑥) can be written as a product of linear factors
(in 𝑥) with positive powers: 𝑄(𝑥) =

∏𝑛

𝑖=1(𝑥 − 𝑎𝑖)𝑚𝑖 .3 Then, the uniqueness of the Laurent series implies that 𝑐𝑖𝑗 is simply the coefficient of the term
(𝑥 − 𝑎𝑖)−1 in the Laurent expansion of the auxiliary function 𝑔𝑖𝑗 (𝑥) = (𝑥 − 𝑎𝑖)𝑗−1𝑓 (𝑥) around the point 𝑎𝑖. In other words, 𝑐𝑖𝑗 is just the residue of
𝑔𝑖𝑗 (𝑥) at 𝑎𝑖. This residue can be directly computed as

𝑐𝑖𝑗 = Res(𝑔𝑖𝑗 , 𝑎𝑖) =
1

(𝑚𝑖 − 𝑗)!
lim
𝑥→𝑎𝑖

𝑑𝑚𝑖−𝑗

𝑑𝑥𝑚𝑖−𝑗

(
(𝑥− 𝑎𝑖)𝑚𝑖𝑓 (𝑥)

)
. (4)

Since

(𝑥− 𝑎𝑖)𝑚𝑖𝑓 (𝑥) = 𝑥𝑙
𝑛∏

𝑘=1
𝑘≠𝑖

1
(𝑥− 𝑎𝑘)𝑚𝑘

(5)

is independent of 𝑎𝑖, there is no subtlety in taking the limit and one may simply replace 𝑥 → 𝑎𝑖 in eq. (4) to obtain an expression for 𝑐𝑖𝑗 directly in
terms of the roots,

1 Dating back to the 1960’s with Veltman’s Schoonschip [12].
2 Here and in the following we will denote the decomposition variable by 𝑥.
3 We note that the complete factorization of the denominator to linear factors is necessary in applications related to symbolic integration in terms of multiple
2

polylogarithms, since multiple polylogarithms have linear integration kernels.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

𝑐𝑖𝑗 =
1

(𝑚𝑖 − 𝑗)!
𝑑𝑚𝑖−𝑗

𝑑𝑎
𝑚𝑖−𝑗
𝑖

𝑎𝑙
𝑖

𝑛∏
𝑘=1
𝑘≠𝑖

1
(𝑎𝑖 − 𝑎𝑘)𝑚𝑘

. (6)

Hence, 𝑓 (𝑥) can be expressed as

𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑚𝑖∑
𝑗=1

𝑐𝑖𝑗

(𝑥− 𝑎𝑖)𝑗
=

𝑛∑
𝑖=1

𝑚𝑖∑
𝑗=1

1
(𝑥− 𝑎𝑖)𝑗

1
(𝑚𝑖 − 𝑗)!

𝑑𝑚𝑖−𝑗

𝑑𝑎
𝑚𝑖−𝑗
𝑖

𝑎𝑙
𝑖

𝑛∏
𝑘=1
𝑘≠𝑖

1
(𝑎𝑖 − 𝑎𝑘)𝑚𝑘

. (7)

This formula can be written in a more compact form by noting that the factor (𝑥 −𝑎𝑖)−𝑗 is related to the (𝑗 −1)-st derivative of (𝑥 −𝑎𝑖)−1 with respect
to 𝑎𝑖,

1
(𝑥− 𝑎𝑖)𝑗

= 1
(𝑗 − 1)!

𝑑𝑗−1

𝑑𝑎
𝑗−1
𝑖

1
𝑥− 𝑎𝑖

. (8)

Substituting eq. (8) into eq. (7), one sees that the summation over 𝑗 corresponds to the general Leibniz rule for the (𝑚𝑖 −1)-st derivative of a product
of two functions,

𝑓 (𝑥) =
𝑛∑
𝑖=1

1
(𝑚𝑖 − 1)!

𝑑𝑚𝑖−1

𝑑𝑎
𝑚𝑖−1
𝑖

⎛⎜⎜⎜⎝
𝑎𝑙
𝑖

𝑥− 𝑎𝑖

𝑛∏
𝑘=1
𝑘≠𝑖

1
(𝑎𝑖 − 𝑎𝑘)𝑚𝑘

⎞⎟⎟⎟⎠
. (9)

Eq. (9) is in a form which can be used directly in any high-level programming language in which symbolic differentiation is implemented, such
as Wolfram Mathematica. However, it is also straightforward to perform the differentiation in eq. (9) symbolically, leading to an expression
that involves only elementary arithmetic operations and is hence more suitable for implementation in low-level programming languages, such as C.
Indeed, using the multinomial generalization of the Leibniz rule,

𝑑𝑚

𝑑𝑥𝑚

𝑛∏
𝑗=1

𝑓𝑗 (𝑥) =
∑

𝑗1+⋯+𝑗𝑛=𝑚

(
𝑚

𝑗1… 𝑗𝑛

) 𝑛∏
𝑙=1

𝑑𝑗𝑙 𝑓𝑙(𝑥)
𝑑𝑥𝑗𝑙

, (10)

where
(𝑚

𝑗1…𝑗𝑛

)
= 𝑚!

𝑗1!…𝑗𝑛!
is a multinomial coefficient and the sum runs over all values of 𝑗1 , … , 𝑗𝑛 that sum to 𝑚, we find

𝑓 (𝑥) =
𝑛∑
𝑖=1

∑
𝑗−1+𝑗0+𝑗1+⋯+𝑗𝑖+⋯+𝑗𝑛=𝑚𝑖−1

(
𝑙

𝑗−1

)
𝑎
𝑙−𝑗−1
𝑖

(𝑥− 𝑎𝑖)𝑗0+1

𝑛∏
𝑘=1
𝑘≠𝑖

(
𝑚𝑘 + 𝑗𝑘 − 1

𝑗𝑘

)
(−1)𝑗𝑘

(𝑎𝑖 − 𝑎𝑘)𝑚𝑘+𝑗𝑘
. (11)

Here the hat on the index 𝑗𝑖 denotes that 𝑗𝑖 is removed from the set of indices.

Finally, we must also deal with improper rational functions of the form 𝑓 (𝑥) = 𝑥𝑙

𝑄(𝑥) , where 𝑙 ≥ deg𝑄. A straightforward way to proceed would
be to write 𝑓 (𝑥) as the sum of a polynomial and a proper rational function using polynomial division, after which the proper rational function part
can be decomposed using eq. (9). However, it turns out to be more efficient to perform the polynomial division symbolically in the following way.
First, write

𝑓 (𝑥) = 𝑥𝑙−(𝑚−1)
𝑥𝑚−1

𝑄(𝑥)
, 𝑙 ≥𝑚, (12)

where 𝑚 = deg𝑄(𝑥) =
∑𝑛

𝑖=1𝑚𝑖 is simply the degree of the denominator. Then, the second factor is a proper rational function by construction and we
can apply the formula in eq. (9) to decompose it into partial fractions. After this decomposition, only rational functions of the form 𝑔(𝑥) = 𝑥𝑝

(𝑥−𝑎)𝑞
remain. One can then perform the polynomial division symbolically as follows,

𝑔(𝑥) = 𝑥𝑝

(𝑥− 𝑎)𝑞
=

𝑝−𝑞∑
𝑖=0

(
𝑝

𝑖

)
𝑎𝑖(𝑥− 𝑎)𝑝−𝑞−𝑖 +

𝑝∑
𝑖=𝑝−𝑞+1

(
𝑝

𝑖

)
𝑎𝑖(𝑥− 𝑎)𝑝−𝑞−𝑖 . (13)

The first term is nonzero only if 𝑝 − 𝑞 ≥ 0 (otherwise this sum is empty) and represents the quotient polynomial, while the second term gives the
proper rational function remainder and is in a decomposed form already. Note that it is possible to write the quotient polynomial explicitly, since
one can show that

𝑝−𝑞∑
𝑖=0

(
𝑝

𝑖

)
𝑎𝑖(𝑥− 𝑎)𝑝−𝑞−𝑖 =

𝑝−𝑞∑
𝑖=0

(
𝑝− 1 − 𝑖

𝑞 − 1

)
𝑎𝑝−𝑞−𝑖𝑥𝑖 . (14)

In our actual implementation, we prefer to use this second form, i.e.,

𝑔(𝑥) =
𝑝−𝑞∑
𝑖=0

(
𝑝− 1 − 𝑖

𝑞 − 1

)
𝑎𝑝−𝑞−𝑖𝑥𝑖 +

𝑝∑
𝑖=𝑝−𝑞+1

(
𝑝

𝑖

)
𝑎𝑖(𝑥− 𝑎)𝑝−𝑞−𝑖 . (15)

Eqs. (11) and (15) thus give explicit formulae representing the partial fraction decomposition of univariate rational functions. As noted above,
3

for the purposes of actual implementation, eq. (9) is also useful in high-level languages where symbolic differentiation is available.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

3. Implementation and usage

In this section, we present our implementations of the LinApart routine in the Wolfram Mathematica and C languages, which can be
obtained at https://github .com /fekeshazy /LinApart.

3.1. The Wolfram Mathematica routine

The Mathematica implementation is contained in a single file LinApart.m. The routine can handle both proper and improper fractions. For
proper fractions, the decomposition is directly computed according to eq. (9). Extensive testing has revealed that this symbolic approach, leveraging
the efficiency of the built-in differentiation routine, outperforms alternative methods. For improper fractions eq. (12) is first employed to decompose
each term into a product of a monomial and a proper rational function, followed by the application of eq. (15). By default, the resulting decomposition
is returned without any further simplification or gathering of terms. However, if present, coefficients which are independent of the decomposition
variable are distributed over the decomposed form using the built-in Distribute command.

The derivations of the basic formulae assume that the denominator is in a fully factorized form, i.e., each denominator factor is linear in 𝑥, and that
each multiplicity 𝑚𝑖 is a positive integer. Nevertheless, the implementation accepts any valid Mathematica expression as input, including sums of
several functions, non-linear factors in the denominator, non-integer exponents and functions of 𝑥 that are not rational. Sums in the input are treated
by applying partial fraction decomposition term-by-term. Next, each term is split into a true rational function part with linear denominators and a
left-over piece, which contains all non-linear denominators, factors with non-integer exponents and non-rational functions of 𝑥. For the purposes of
this splitting, linear denominators with rational number exponents 𝑟 ∈ℚ are treated as follows. First we write

(𝑥− 𝑎)𝑟 = (𝑥− 𝑎)⌊𝑟⌋ ⋅ (𝑥− 𝑎)𝑟−⌊𝑟⌋ , (16)

where ⌊𝑟⌋ denotes the floor function, i.e., the greatest integer less than or equal to 𝑟. The exponent of the first factor is an integer by construction,
and so this factor is included in the rational function part. The exponent of the second factor is a rational number, strictly smaller than one and this
factor enters the left-over piece. This prescription is adopted in order to reproduce the behaviour of the Apart command on such expressions. The
rational function part is then decomposed as explained above, while the irrational part is left unchanged.

In some practical applications, the partial fraction decomposition must be performed on large expressions with many terms. In such cases,
significant performance gains can be obtained by processing the input prior to the decomposition. Examples of such operations include

• Factorization: prior to decomposition, individual terms of the input can be factored over either the integers or Gaussian integers, depending on
the desired domain. Thus, non-linear denominators that factorize over these domains will also be considered during the decomposition process.

• Collection of terms before decomposition: terms with identical 𝑥-dependence can be grouped together, reducing the number of individual
decompositions required.

These pre-processing operations are made available in our implementation as options, to be introduced below. By incorporating these features,
the routine provides a robust and versatile framework for partial fraction decomposition, allowing the user to optimize performance and tailor the
process to their specific needs.

The Mathematica routine can be loaded with

In[1]:= Needs["LinApart‘"]

from any directory, provided the LinApart.m file is placed in the standard Mathematica packages directory. Alternatively, one may specify the
complete path to the file when loading,

In[2]:= Import["/Complete_Path_To_File/LinApart.m"]

The main function provided is LinApart. The command LinApart[expr, var] returns the partial fraction decomposition of expr with respect
to the variable var, for example,

In[3]:= LinApart[1/((1 + x)(2 + x)(3 + x)), x]

Out[3]=
1

2(1+x)
-

1

2+x
+

1

2(3+x)

Since the algorithm uses the built-in differentiation function, the variable must have the head Symbol; if this condition is not fulfilled, an error
message is generated and the input is returned unevaluated.

As explained above, LinApart assumes that all denominator factors are linear in 𝑥. Thus, non-linear denominators, denominators with purely
symbolic exponents, as well as non-rational functions of 𝑥 are by default ignored during decomposition.4 This implies that for expressions involving
non-linear denominators, the output will not be in a completely decomposed form, e.g.,

In[4]:= LinApart[x^p Log[x]/((1 + x) (2 + x) (3 + x) (1 + x^2)), x]

Out[4]=
xp Log[x]

2(1+x)(1+x2)
-

xp Log[x]

(2+x)(1+x2)
+

xp Log[x]

2(3+x)(1+x2)

4 To be more precise, the factors selected for decomposition are required to be linear polynomials in the given variable, i.e., expressions of the form 𝑎𝑥 + 𝑏 with 𝑎
4

and 𝑏 independent of 𝑥. Thus denominators like 1
𝑥+ln𝑥

are also ignored.

https://github.com/fekeshazy/LinApart

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

In such cases, one can obtain a complete decomposition by writing the non-linear denominators in a fully factorized form. In order to facilitate
such manipulations, the option Factor is provided. When set to True, the input expression is factorized term-by-term before the partial fraction
decomposition

In[5]:= LinApart[1/((1 - a^2) (1 - x^2)), x, "Factor" -> True]

Out[5]= -
1

2(1-a2)(-1+x)
+

1

2(1-a2)(1+x)

Notice that in order to avoid any unnecessary computation, the factorization only affects the variable-dependent part. The factorization is performed
using the built-in Factor command, i.e., by default the expression is factored over the integers. Hence, factorization will not influence irreducible
(over the integers) higher-order denominators, which will continue to be ignored. However, by setting the additional option GaussianIntegers
to True in conjunction with Factor, factorization can be extended to allow for constants that are Gaussian integers,

In[6]:= LinApart[1/((1 + x) (1 + x^2)), x, "Factor" -> True,

"GaussianIntegers" -> True]

Out[6]= -

1

4
+ I

4

-I+x
-

1

4
- I

4

I+x
+

1

2(1+x)

Further application of the built-in ComplexExpand command allows the output to be written in a manifestly real form

In[7]:= LinApart[1/((1 + x) (1 + x^2)), x, "Factor" -> True,

"GaussianIntegers" -> True] // ComplexExpand

Out[7]=
1

2(1+x)
+

1

2(1+x2)
-

x

2(1+x2)

Turning to expressions involving factors with rational exponents, consider the following example

In[8]:= LinApart[1/((1 + x)(2 + x)^(1/2)(3 + x)^(1/3+p)), x]

Out[8]=
1

2

√
2+x(3+x)-

1

3
-p -

(3+x)
2

3
-p√

2+x
+

√
2+x(3+x)

2

3
-p

2(1+x)

Notice that the exponents were manipulated as in eq. (16) prior to performing the partial fraction decomposition. In particular, the factors of 1

(2+𝑥)
1
2

and 1

(3+𝑥)
1
3 +𝑝

were internally rewritten as

1

(2 + 𝑥)
1
2

= 1
2 + 𝑥

⋅
√
2 + 𝑥 and

1

(3 + 𝑥)
1
3 +𝑝

= 1
3 + 𝑥

⋅ (3 + 𝑥)
2
3 −𝑝 ,

with the first factors on the right hand sides entering the partial fraction decomposition. As the example demonstrates, this rewriting is not influenced
by the presence of the symbolic constant 𝑝 in the exponent. In this particular example, the output is in the same form as would be produced by

Apart.5

Finally, we discuss some further options that are designed to optimize the handling of large expressions with many terms. One particular situation
which may arise is that the same rational function appears many times in the input with different coefficients. In such cases, rather than applying
the partial fraction decomposition routine on individual terms, it can be more advantageous to first gather every unique 𝑥-dependent structure.
Then, partial fraction decomposition only needs to be performed once per structure. In order to facilitate these operations, the option PreCollect
is included. When set to True, unique 𝑥-dependent structures are first gathered in the input, before any partial fraction decomposition takes place.
As stated above, when generating the output, the routine distributes the 𝑥-independent coefficients over the decomposed expressions, so the final
output will not necessarily change when the PreCollect option is active. However, the number of internal operations, hence the timing and
memory usage, can be significantly different. To demonstrate this, consider, e.g.,

In[9]:= expr = 2/((1 + x)(2 + x)) + 1/((1 - a)(1 + x)(2 + x))

+ a/((1 + x)(2 + x)) - a/((1 - a)(1 + x)(2 + x))

- b/((1 + a)(1 + x)(2 + x)) - (a b)/((1 + a)(1 + x)(2 + x));

In[10]:= LinApart[expr, x]

AbsoluteTiming[LinApart[expr, x]][[1]]

MaxMemoryUsed[LinApart[expr, x]]

5 However, exceptions can occur in cases where the exponent is a more elaborate function of rational numbers and symbolic parameters. In this case, what one
considers the rational part of the exponent depends on the exact form in which it is written, e.g., consider (𝑥 + 𝑎)1∕2+(1−𝑝)2 and (𝑥 + 𝑎)3∕2−2𝑝+𝑝2 which differ only in
that the exponent is expanded in the second form. We choose to extract the rational part without any manipulation of the exponents (e.g., 1∕2 and 3∕2 in the first
5

and second form), which closely matches, but is not exactly identical to the prescription used by Apart.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Out[10]=
2

1+x
+

1

(1-a)(1+x)
+

a

1+x
-

a

(1-a)(1+x)
-

b

(1+a)(1+x)

-
a b

(1+a)(1+x)
-

2

2+x
-

1

(1-a)(2+x)
-

a

2+x
+

a

(1-a)(2+x)

+
b

(1+a)(2+x)
+

a b

(1+a)(2+x)

Out[11]= 0.003757

Out[12]= 18016

In[13]:= LinApart[expr, x, "PreCollect" -> True]

AbsoluteTiming[LinApart[expr, x, "PreCollect" -> True]][[1]]

MaxMemoryUsed[LinApart[expr, x, "PreCollect" -> True]]

Out[13]=
2

1+x
+

1

(1-a)(1+x)
+

a

1+x
-

a

(1-a)(1+x)
-

b

(1+a)(1+x)

-
a b

(1+a)(1+x)
-

2

2+x
-

1

(1-a)(2+x)
-

a

2+x
+

a

(1-a)(2+x)

+
b

(1+a)(2+x)
+

a b

(1+a)(2+x)

Out[14]= 0.002276

Out[15]= 15896

Indeed, in this simple example, the output with "PreCollect" -> True is identical to what is obtained without the PreCollect option, however,
the timing and memory usage are already somewhat improved. For more elaborate expressions, the improvements can be much more pronounced.

When the PreCollect option is set to True, one may further specify the option ApplyAfterPreCollect, which takes a pure function and
applies it to the 𝑥-independent coefficients of the unique 𝑥-dependent structures which were identified by PreCollect. A typical application would
be to factor such coefficients, which can be achieved by setting "ApplyAfterPreCollect" -> Factor

In[16]:= expr = 2/((1 + x)(2 + x)) + 1/((1 - a)(1 + x)(2 + x))

+ a/((1 + x)(2 + x)) - a/((1 - a)(1 + x)(2 + x))

- b/((1 + a)(1 + x)(2 + x)) - (a b)/((1 + a)(1 + x)(2 + x));

LinApart[expr, x, "PreCollect" -> True,

"ApplyAfterPreCollect" -> Factor]

Out[16]=
3

1+x
+

a

1+x
-

b

1+x
-

3

2+x
-

a

2+x
+

b

2+x

As the above example shows, this can lead to significant simplifications. However, one must be aware that if the coefficients which arise after
gathering unique structures are large, performing the factorization can become quite expensive in terms of runtime. In order to mitigate this to
a certain extent, the pure function GatherByDenominator is defined. This function gathers its input by denominators and can already lead to
substantial simplifications without a complete factoring of the coefficients generated by PreCollect,

In[17]:= expr = 2/((1 + x)(2 + x)) + 1/((1 - a)(1 + x)(2 + x))

+ a/((1 + x)(2 + x)) - a/((1 - a)(1 + x)(2 + x))

- b/((1 + a)(1 + x)(2 + x)) - (a b)/((1 + a)(1 + x)(2 + x));

LinApart[expr, x, "PreCollect" -> True,

"ApplyAfterPreCollect" -> GatherByDenominator]

Out[17]=
3

1+x
+

a

1+x
+

-b-a b

(1+a)(1+x)
-

3

2+x
-

a

2+x
-

-b-a b

(1+a)(2+x)

In this case, the simplification is not complete, but nevertheless, the output is already in a much simpler form than without the use of the Ap-
plyAfterPreCollect option. It is important to note though, that the choice of the appropriate ApplyAfterPreCollect setting is highly
context-dependent and may require careful consideration of the specific characteristics of the algebraic expressions involved. The list of options is
summarized in Table 1.

3.2. The C routine

We have also implemented our routine based on eqs. (11) and (15) in the C programming language for rational functions of the form

𝑥𝑙
𝑛∏

𝑘=1

1
(𝑥− 𝑎𝑘)𝑚𝑘

, (17)

where 𝑙 is a non-negative integer and 𝑚𝑘, 𝑘 = 1, … , 𝑛 are strictly positive integers. Moreover, the 𝑎𝑘 are assumed to be distinct. It is packaged into a
standalone executable as well as a library suitable for linking with other software. In particular we provide the header file LinApart.h which can
6

be used as a developer library to create other tools and programs that require partial fraction decomposition functionality.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Table 1

The list of options for the LinApart command.

Option Description

Factor True/False: If set to True, the input expression is factorized term-by-term before partial fraction decomposition. The default value is False.

GaussianInteger True/False: If set to True in conjunction with Factor, factorization of the input expression is performed over the Gaussian integers. The default
value is False.

PreCollect True/False: If set to True, unique variable-dependent structures are gathered in the input before partial fraction decomposition. The default
value is False.

ApplyAfterPreCollect pure function (e.g., Factor): If the option PreCollect is set to True, the pure function specified by this option is applied to the coefficients of the
unique variable-dependent structures identified by PreCollect. Typical functions might be Factor or GatherByDenominator. By default, this
option is empty (no function is applied to the coefficients).

One of the key features of our implementation is its efficiency in terms of both time and space complexity. The GNU Multiple Precision Arith-

metic Library (GMP) [24] library is used for all multiple-precision integer operations, such as calculations of the factorials of large numbers, while
dynamic memory allocation is carefully managed. To limit memory usage, the program employs a buffering strategy where intermediate results
are accumulated in a fixed-size buffer. When the buffer reaches its capacity, the contents are flushed to disk. This approach allows the program to
handle very large inputs that would otherwise exceed available memory. Only the memory required by GMP to perform the arithmetic operations is
consumed such that the memory usage will not exceed a couple kilobytes in all but the most extreme applications.

The standalone program can be compiled on Unix-like systems simply by running make in the LinApart/C directory, as the only external
dependency (apart from the C compiler) is the GMP library which is widely available. The general usage of the program is as follows:

./LinApart <exponents> <roots> [-q] [-o OutputFileName]

where <exponents> should contain the comma separated list of the (𝑚 + 1) integers 𝑙, 𝑚1, … 𝑚𝑛 defined in eq. (17). I.e., the first entry represents
the exponent of the monomial in the numerator and the rest are the multiplicities of the factors in the denominator. <roots> should contain the
comma separated list of roots 𝑎1, … , 𝑎𝑛. The decomposition variable is automatically set to 𝑥. For instance, the command:

./LinApart "1,2,1" "a,b"

will perform the partial fraction decomposition of

𝑥

(𝑥− 𝑎)2(𝑥− 𝑏)
,

returning the following output string

((a)-(b))^(-2)*(-1)*1*1*(a)^1*(x-(a))^(-1)*1+((a)-(b))^(-1)

*(1)*1*1*(a)^1*(x-(a))^(-2)*1+((a)-(b))^(-1)*(1)*1*1

*(x-(a))^(-1)*1+((b)-(a))^(-2)*(1)*1*1*(b)^1*(x-(b))^(-1)*1+0

Note that the output may contain factors and exponents of 1 and terms that equal 0. These are not errors but result from the program’s internal
mechanisms designed to maintain high performance. These superfluous elements will typically be simplified away by symbolic manipulation pro-

grams that use this output as input. The program generates a formal output for all inputs, but it assumes that all roots are distinct. If repeated roots
are provided, the output will contain undefined expressions.

Finally, by default, the result will be written to the standard output and saved in a file named LA_result.out. To improve execution speed
while decomposing very large expressions, writing to the standard output can be suppressed by using the -q flag. Furthermore, users can specify
their preferred filename with the -o flag. These usage instructions can also be accessed with the command:

./LinApart -h

4. Performance

As stated in the Introduction, the motivation for developing LinApart was to obtain a highly efficient univariate partial fraction decomposition
algorithm. In this section, we examine the performance of our implementation with respect to the standard Apart command of Mathematica as
a function of the complexity of the input. First, let us consider what makes a rational fraction “complex”. Several factors come to mind:

1. The number of distinct denominator factors.

2. The complexity of each individual denominator. In fact, even considering only linear denominators of the form 𝑥 − 𝑎𝑖, the roots 𝑎𝑖 may be
functions of further variables and symbolic constants.

3. The multiplicity of the denominator factors.

4. The polynomial order of the numerator.

These various aspects of complexity can be captured by choosing suitable input functions for the partial fraction decomposition routines. For example,
consider the expression

𝑛∏ 1
with 𝑃

(𝑘)(𝑦) =
𝑘∑
𝑎 𝑦𝑗 . (18)
7

𝑖=1 𝑥− 𝑃
(𝑘)
𝑖

(𝑦) 𝑖
𝑗=1

𝑖,𝑗

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Fig. 1. Timings and memory usage of Apart and LinApart (denoted as A and LA in the legend) on rational functions of 𝑥 with 𝑛 distinct denominators of multiplicity
one of the form 𝑥 − 𝑃 (𝑘)(𝑦). The roots 𝑃 (𝑘)(𝑦) are chosen to be symbolic polynomials in the auxiliary variable 𝑦 of order 𝑘. Various curves correspond to different
polynomial orders 𝑘 = 0, 1, 2 in the roots. The numerator has been set to 1.

Choosing the 𝑎𝑖,𝑗 to be symbolic constants, we can vary the complexity by varying the total number of factors 𝑛, as well as the polynomial order 𝑘 of
the roots. In Fig. 1, we present the timings and memory usage6 of Apart and LinApart on expressions of the form given in eq. (18). During each
evaluation, we have constrained the runtime in Mathematica 12.0 to a maximum of 103 seconds. Hence, missing data points represent computations
that did not finish with this time constraint.7 The number of denominators was chosen between 2 and 50 and we varied the polynomial order of
the roots between 0 and 2. The figure clearly shows that for most of the considered cases, LinApart outperforms Apart both in terms of timing
and memory usage. Indeed, already for just six denominators, LinApart produces a speedup of a factor between ∼2 and ∼20 depending on the
polynomial order of the roots. For ten denominators, the speedup is between a factor of ∼5 and ∼100, while for tens of denominators and roots of
polynomial order two, we observe speedups of factors greater than 104. On these expressions, LinApart also typically outperforms Apart in terms
of memory used by factors of ∼10–100, depending on the number of denominators and the complexity of the roots.

Next, let us study the effect of higher multiplicities. To begin, we examine the case when only one out of the 𝑛 distinct denominators has
multiplicity 𝑚 > 1,

6 Timing and memory usage information were obtained with the AbsoluteTiming and MaxMemoryUsed commands.
8

7 We have performed these evaluations on a desktop PC with an Intel Core i5 processor and 16Gb of RAM.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Fig. 2. Timings and memory usage of Apart and LinApart (denoted as A and LA in the legend) on rational functions of 𝑥 with 𝑛 distinct denominators of multiplicity
one, except for the last denominator, whose multiplicity is 𝑚. The roots 𝑎𝑖 are chosen to be symbolic constants. Various curves correspond to different multiplicities
𝑚 = 2, 3, 4 of the last denominator. The numerator has been set to 1.

1
(𝑥− 𝑎𝑛)𝑚

𝑛−1∏
𝑖=1

1
𝑥− 𝑎𝑖

, 2 ≤𝑚. (19)

The results for timings and memory usage of Apart and LinApart on inputs of the form of eq. (19) are presented in Fig. 2. As before, a time
constraint of 103 seconds was imposed on every evaluation. The number of denominators was varied between 2 and 25, and the multiplicity of
the last denominator between 2 and 4. Again, we observe a dramatic improvement in performance using LinApart, both in terms of necessary
time and memory. In fact, already for expressions with only three denominators, we obtain a speedup of a factor of ∼ 10. On expressions with ten
denominators, the speedup is already greater than a factor of 103 . Increasing the number of denominators further, we quickly exhaust the cases
where the evaluation with Apart finishes in the chosen time constraint. Indeed, for 𝑚 = 2 this happens already at 𝑛 = 14 (i.e., just 13 denominators
of multiplicity one and a single denominator with multiplicity two). In this case, we observe a speedup of a factor greater than 105 . Examining the
memory usage, we also see significant gains of up to factors of 104 in favour of LinApart.

It is also interesting to consider the case of multiple denominators whose multiplicity is greater than one. Thus, in Fig. 3, we examine the timings
and memory usage of Apart and LinApart on expressions of the form

𝑛−𝑙∏ 1
𝑛∏ 1

, 1 ≤ 𝑙 ≤ 𝑛 , (20)
9

𝑖=1 𝑥− 𝑎𝑖 𝑗=𝑛−𝑙+1 (𝑥− 𝑎𝑗)2

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Fig. 3. Timings and memory usage of Apart and LinApart (denoted as A and LA in the legend) on rational functions of 𝑥 with 𝑛 distinct denominators. The
multiplicities of the first 𝑛 − 𝑙 denominators are one, while the last 𝑙 denominators have multiplicity two. The roots 𝑎𝑖 are chosen to be symbolic constants. Various
curves correspond to the different number 𝑙 = 2, 3, 4 of quadratic denominators. The numerator has been set to 1.

i.e., 𝑙 out of the 𝑛 distinct denominators have multiplicity two, while the rest of the (𝑛 − 𝑙) denominators have multiplicity one. In terms of both
evaluation times and memory used, we observe the same dramatic performance gains using LinApart as in the previous case of a single denominator
of higher multiplicity. Again, speedups of factors of ∼104–105 are obtained for expressions with a total number of only around ten denominators.
At the same time, the required memory also decreases by up to four orders of magnitude.

Next, we consider the effects of including non-trivial numerators,

𝑃 (𝑘)(𝑥)
𝑛∏
𝑖=1

1
𝑥− 𝑎𝑖

with 𝑃 (𝑘)(𝑥) =
𝑘∑

𝑗=1
𝑏𝑗𝑥

𝑗 . (21)

The timings and memory usage obtained with Apart and LinApart on improper rational function inputs of the form of eq. (21) are presented
in Fig. 4 for numerators with polynomial orders 𝑘 = 𝑛, ⌊3𝑛∕2⌋ and 2𝑛. Once again, huge improvements in performance of LinApart over Apart

are apparent in both timing and memory used. Concerning memory usage in particular, we note that during these evaluations, we had to enforce a
memory constraint of 12Gb in order to avoid the automatic closing of the Mathematica kernel while Apart was running.

For proper rational functions, we present the timings and memory usage of Apart and LinApart in Fig. 5. Here the total number of denominators
was varied between 2 and 50 and we have chosen numerators with polynomial orders 𝑘 = 1, 2 and 3. As in all previous cases LinApart outperforms

Apart except for the simplest cases, especially in terms of timing. Interestingly, in this case only, we do not observe very large (i.e., orders of
10

magnitude) gains in terms of memory usage in favour of LinApart.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Fig. 4. Timings and memory usage of Apart and LinApart (denoted as A and LA in the legend) on improper rational functions of 𝑥 with 𝑛 distinct denominators
of multiplicity one. The roots 𝑎𝑖 are chosen to be symbolic constants, while the numerator is a symbolic polynomial 𝑃 (𝑘) of 𝑥. Various curves correspond to different
polynomial orders 𝑘 = 𝑛, ⌊3𝑛∕2⌋, 2𝑛.

To present a concrete application, we show an example which emerges during the analytic computation of phase-space integrals relevant for
setting up a local subtraction scheme beyond next-to-leading order. After choosing a particular phase-space parametrization we encounter expressions
of the form

𝑓 (𝑥𝑎, 𝑥𝑏;𝑦) =
[
(−4 + 𝑦)(1 − 𝑦+ 𝑥𝑏𝑦)(2 − 𝑦+ 𝑥𝑏𝑦)(4 − 𝑦+ 𝑥𝑏𝑦)(1 − 𝑥𝑎 − 𝑦+ 𝑥𝑏𝑦)3

× (−1 + 𝑥𝑎 − 𝑦+ 𝑥𝑏𝑦)(−4 − 4𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)(−4𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)

× (−4𝑥𝑎 − 4𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)(4𝑥𝑎 − 4𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)(2 + 2𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)3

× (6 + 2𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)(2 − 4𝑥𝑎 + 2𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)(2 + 4𝑥𝑎 + 2𝑥𝑏 − 𝑦+ 𝑥𝑏𝑦)

× (−1 + 𝑥𝑎 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)(1 + 𝑥𝑎 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)(−2 + 2𝑥𝑎 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)

× (2 + 2𝑥𝑎 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)(−𝑥𝑏 + 𝑥𝑎𝑥𝑏 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)3

× (−4 + 2𝑥𝑎 + 2𝑥𝑎𝑥𝑏 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)(4 + 2𝑥𝑎 + 2𝑥𝑎𝑥𝑏 − 𝑥𝑎𝑦+ 𝑥𝑎𝑥𝑏𝑦)

× (1 − 2𝑥𝑎 + 𝑥2
𝑎
− 𝑦− 𝑥𝑎𝑦+ 𝑥𝑏𝑦+ 𝑥𝑎𝑥𝑏𝑦)()3]−1

(22)
11

× 2𝑥𝑏 − 2𝑥𝑎𝑥𝑏 + 𝑥𝑎𝑦− 𝑥𝑏𝑦− 𝑥𝑎𝑥𝑏𝑦+ 𝑥2
𝑏
𝑦 ,

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Fig. 5. Timings and memory usage of Apart and LinApart (denoted as A and LA in the legend) on proper rational functions of 𝑥 with 𝑛 distinct denominators of
multiplicity one. The roots 𝑎𝑖 are chosen to be symbolic constants, while the numerator is a symbolic polynomial 𝑃 (𝑘) of 𝑥. Various curves correspond to different
polynomial orders 𝑘 = 1, 2, 3.

which must be integrated symbolically over 𝑦. To do so, one must first perform the partial fraction decomposition with respect to 𝑦. The rational
function in eq. (22) has 23 linear (in 𝑦) denominators, 4 of which have multiplicity 3. A quick glance at Fig. 3 shows that Apart already requires
close to 103 seconds to decompose a rational function with just 10 denominators, 4 of which have multiplicity 2. A naive extrapolation to 23
denominators then puts the time required for the decomposition of 𝑓 (𝑥𝑎, 𝑥𝑏; 𝑦) at the order of 109 seconds.8 On the other hand, LinApart performs
the partial fraction decomposition in a mere ∼ 10−2 seconds (without using any of the provided options). As expressions actually encountered in real
computations typically have hundreds or even thousands of rational functions of the type in eq. (22), this is a vital improvement.

We finish this section by offering some comments on why we believe our method to be so efficient, especially on large symbolic expressions. To
our knowledge, the current best complexity bound for the univariate partial fraction decomposition of proper fractions is (𝑛 log2 𝑛), where 𝑛 is the
degree of the denominator [13]. The timings for LinApart presented in the plots above are indeed consistent with this theoretical scaling. Hence,
naively we would expect only a constant factor improvement over other methods for large 𝑛. Nonetheless, our analysis clearly demonstrates that
the implementation of Apart in Mathematica does not follow this scaling at all. In fact, in certain situations, the behaviour looks exponential, see

8 As we are dealing now with denominators of multiplicity 1 and 3 instead of 1 and 2 as in Fig. 3, we expect this number to be a rough lower limit. The situation
is made even worse by the fact that eq. (22) contains roots which are non-trivial polynomials of 𝑥𝑎 and 𝑥𝑏. This also has a significant influence on the efficiency of
12

Apart. Hence we expect the actual time required to be several orders of magnitude larger than this naive estimate.

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

Figs. 2–4 in particular. However, the scaling is drastically improved if the roots are numeric rather than symbolic, which offers a possible explanation
for our observations.

One common way of performing univariate partial fraction decomposition is to employ the Extended Euclidean Algorithm to solve 𝐴𝑖(𝑥)𝑄𝑖(𝑥) +
𝐴𝑗 (𝑥)𝑄𝑗 (𝑥) = 1 for 𝐴𝑖(𝑥) and 𝐴𝑗 (𝑥), given the coprime denominators 𝑄𝑖(𝑥) and 𝑄𝑗 (𝑥) [13]. This algorithm is well-defined for univariate polynomials
with coefficients in some field. However, when using symbolic roots, all operations on the field elements must now be performed on these symbolic
expressions. In particular if the roots are symbolic polynomials in some variables other than 𝑥, these operations will include expensive computa-

tions on multivariate rational expressions, such as finding greatest common divisors. On the other hand, by performing this polynomial arithmetic
“analytically”, LinApart avoids most of this complexity.

5. Conclusions and outlook

In this paper, we have introduced the LinApart routine, which provides a fast and efficient implementation of univariate partial fraction
decomposition for rational functions with fully factorized denominators. Our implementation is based on a simple closed formula for the decomposed
function and we provide realizations in the Wolfram Mathematica and C languages. The Mathematica routine leverages the highly-efficient
built-in differentiation routine, while our C code can be interfaced with computer algebra systems such as FORM, where symbolic differentiation is
not available.

Concentrating on the Mathematica implementation, we have found that LinApart outperforms the built-in Apart function on virtually any
input expression both in terms of timing and memory used. The increase of efficiency is dramatic already for reasonably small expressions, especially
if the multiplicities of some of the denominator factors are greater than one. Indeed, for rational functions involving only around ten independent
denominators, with only a few (say two to four) denominator factors of multiplicity two, speedups of up to five orders of magnitude are observed.
At the same time, the required memory decreases by up to four orders of magnitude. Thus, LinApart is able to efficiently handle decomposition
problems that are intractable for the built-in routines.

A limitation of the current implementation concerns the treatment of non-linear (in the decomposition variable) denominator factors. While any
polynomial can be factored into linear factors over the complex numbers, the partial fraction decomposition problem over the reals is understood
to allow the appearance of quadratic denominators as well. Including such factors in our algorithm is in principle possible, but finding the most
efficient way to do so is non-trivial and is left for future work.

CRediT authorship contribution statement

B. Chargeishvili: Writing – original draft, Validation, Software, Investigation, Conceptualization. L. Fekésházy: Writing – original draft, Vali-

dation, Software, Investigation, Formal analysis, Conceptualization. G. Somogyi: Writing – review & editing, Writing – original draft, Visualization,
Supervision, Conceptualization. S. Van Thurenhout: Writing – review & editing, Writing – original draft, Validation, Software, Investigation, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

The authors would like to thank Sven-Olaf Moch for useful discussions and Vitaly Magerya for his comments on the manuscript. This work has
been supported by grant K143451 of the National Research, Development and Innovation Fund in Hungary. Furthermore, the work of G.S. was
supported by the Bolyai Fellowship program of the Hungarian Academy of Sciences. The work of L.F. was supported by the German Academic
Exchange Service (DAAD) through its Bi-Nationally Supervised Scholarship program.

Data availability

No data was used for the research described in the article.

References

[1] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497–516, https://doi .org /10 .4310 /MRL .1998 .v5 .n4 .a7, arXiv :1105 .2076.

[2] E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725–754, https://doi .org /10 .1142 /S0217751X00000367, arXiv :hep -ph /9905237.

[3] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv :math /0103059, 2001.

[4] C. Anastasiou, C. Duhr, F. Dulat, B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, J. High Energy Phys. 07 (2013) 003, https://doi .org /10 .1007 /JHEP07(2013)
003, arXiv :1302 .4379.

[5] C. Duhr, Mathematical aspects of scattering amplitudes, in: Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes
for Colliders, 2015, pp. 419–476, arXiv :1411 .7538.

[6] F. Feng, $𝙰𝚙𝚊𝚛𝚝: a generalized mathematica apart function, Comput. Phys. Commun. 183 (2012) 2158–2164, https://doi .org /10 .1016 /j .cpc .2012 .03 .025, arXiv :1204 .2314.

[7] D. Bendle, J. Böhm, W. Decker, A. Georgoudis, F.-J. Pfreundt, M. Rahn, P. Wasser, Y. Zhang, Integration-by-parts reductions of Feynman integrals using singular and GPI-space, J.
High Energy Phys. 02 (2020) 079, https://doi .org /10 .1007 /JHEP02(2020)079, arXiv :1908 .04301.

[8] J. Boehm, M. Wittmann, Z. Wu, Y. Xu, Y. Zhang, IBP reduction coefficients made simple, J. High Energy Phys. 12 (2020) 054, https://doi .org /10 .1007 /JHEP12(2020)054,
arXiv :2008 .13194.

[9] S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H.B. Hartanto, J. Henn, M. Marcoli, R. Moodie, T. Peraro, S. Zoia, Virtual QCD corrections to gluon-initiated diphoton
plus jet production at hadron colliders, J. High Energy Phys. 11 (2021) 083, https://doi .org /10 .1007 /JHEP11(2021)083, arXiv :2106 .08664.

[10] S. Badger, H.B. Hartanto, S. Zoia, Two-loop QCD corrections to Wbb− production at hadron colliders, Phys. Rev. Lett. 127 (1) (2021) 012001, https://doi .org /10 .1103 /PhysRevLett .
13

127 .012001, arXiv :2102 .02516.

https://doi.org/10.4310/MRL.1998.v5.n4.a7
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibDDCDEAA93FA80950566139A878E609C2s1
https://doi.org/10.1142/S0217751X00000367
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib0406E1922B9955A5A73BB409582C4898s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibE263242DE10971F6B9F3FBB90C1B9521s1
https://doi.org/10.1007/JHEP07(2013)003
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib4C2EAF10261B02858583E5475BB9A8C1s1
https://doi.org/10.1007/JHEP07(2013)003
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib4C2EAF10261B02858583E5475BB9A8C1s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib7792323AF46D9CA1CBBD9B7BA0B5D37Es1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib7792323AF46D9CA1CBBD9B7BA0B5D37Es1
https://doi.org/10.1016/j.cpc.2012.03.025
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib3C28426A2F2DD3A8B3B39817EB539531s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib323E828427B6F019B6EBD13BAE28A70Ds1
https://doi.org/10.1007/JHEP02(2020)079
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib323E828427B6F019B6EBD13BAE28A70Ds1
https://doi.org/10.1007/JHEP12(2020)054
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib491596467C001E3264F0CA935A10B3F1s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib491596467C001E3264F0CA935A10B3F1s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibE1B0806A87CC4D9E2EF6EBBB8E564E56s1
https://doi.org/10.1007/JHEP11(2021)083
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibE1B0806A87CC4D9E2EF6EBBB8E564E56s1
https://doi.org/10.1103/PhysRevLett.127.012001
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib28DCEFADB74D3F1833B92DFC1AFD82C1s1
https://doi.org/10.1103/PhysRevLett.127.012001
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib28DCEFADB74D3F1833B92DFC1AFD82C1s1

Computer Physics Communications 307 (2025) 109395B. Chargeishvili, L. Fekésházy, G. Somogyi et al.

[11] M. Heller, A. von Manteuffel, MultivariateApart: generalized partial fractions, Comput. Phys. Commun. 271 (2022) 108174, https://doi .org /10 .1016 /j .cpc .2021 .108174, arXiv :
2101 .08283.

[12] H. Strubbe, Manual for schoonschip: a CDC 6000 / 7000 program for symbolic evaluation of algebraic expressions, Comput. Phys. Commun. 8 (1974) 1–30, https://doi .org /10 .
1016 /0010 -4655(74)90081 -2.

[13] H.T. Kung, D.M. Tong, Fast algorithms for partial fraction decomposition, SIAM J. Comput. 6 (3) (1977) 582–593, https://doi .org /10 .1137 /0206042.

[14] P. Wang, A p-Adic Algorithm for Univariate Partial Fractions, 1981, pp. 212–217.

[15] J. Mahoney, B. Sivazlian, Partial fractions expansion: a review of computational methodology and efficiency, J. Comput. Appl. Math. 9 (3) (1983) 247–269, https://doi .org /10 .
1016 /0377 -0427(83)90018 -3.

[16] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 3rd edition, Cambridge University Press, 2013.

[17] Y. Kim, B. Lee, Partial fraction decomposition by repeated synthetic division, Am. J. Comput. Math. 06 (2016) 153–158, https://doi .org /10 .4236 /ajcm .2016 .62016.

[18] G. Somogyi, Z. Trocsanyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I, J. High Energy Phys. 08 (2008) 042, https://

doi .org /10 .1088 /1126 -6708 /2008 /08 /042, arXiv :0807 .0509.

[19] P. Bolzoni, G. Somogyi, Z. Trocsanyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, J. High
Energy Phys. 01 (2011) 059, https://doi .org /10 .1007 /JHEP01(2011)059, arXiv :1011 .1909.

[20] G. Somogyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms, J. High Energy Phys. 04 (2013) 010, https://

doi .org /10 .1007 /JHEP04(2013)010, arXiv :1301 .3919.

[21] V. Del Duca, G. Somogyi, Z. Trocsanyi, Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections, J. High Energy Phys. 06 (2013) 079, https://

doi .org /10 .1007 /JHEP06(2013)079, arXiv :1301 .3504.

[22] J.A.M. Vermaseren, New features of FORM, arXiv :math -ph /0010025, 2000.

[23] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453–1467, https://doi .org /10 .1016 /j .cpc .2012 .12 .028, arXiv :
1203 .6543.
14

[24] GMP: The GNU Multiple Precision Arithmetic Library, https://gmplib .org/. (Accessed 1 May 2024).

https://doi.org/10.1016/j.cpc.2021.108174
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibBBAF985E2457479E8D28BF928FBE4DCAs1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibBBAF985E2457479E8D28BF928FBE4DCAs1
https://doi.org/10.1016/0010-4655(74)90081-2
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib12662F0D5B96A28B82E46BDD05E662D2s1
https://doi.org/10.1016/0010-4655(74)90081-2
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib12662F0D5B96A28B82E46BDD05E662D2s1
https://doi.org/10.1137/0206042
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib36CD4F3073C7E54858990EB201C7CCD6s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib7C90EB9DDCD3E046405C2CDF191B3D5Ds1
https://doi.org/10.1016/0377-0427(83)90018-3
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibC9BCAC202485C9630287F7D20EA4D206s1
https://doi.org/10.1016/0377-0427(83)90018-3
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibC9BCAC202485C9630287F7D20EA4D206s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib2B1F94EF23B79BF90EB891CAE1DF7A90s1
https://doi.org/10.4236/ajcm.2016.62016
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibCA67DF31144F0825BFDD8949D980CF69s1
https://doi.org/10.1088/1126-6708/2008/08/042
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib89F53CE8BDDF51211964C5ED2B0B7CB9s1
https://doi.org/10.1088/1126-6708/2008/08/042
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib89F53CE8BDDF51211964C5ED2B0B7CB9s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib638E19E14025D66CC220ECEFCCF583E1s1
https://doi.org/10.1007/JHEP01(2011)059
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib638E19E14025D66CC220ECEFCCF583E1s1
https://doi.org/10.1007/JHEP04(2013)010
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibD77B87516C879BF4D1B84F374D257D4Bs1
https://doi.org/10.1007/JHEP04(2013)010
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibD77B87516C879BF4D1B84F374D257D4Bs1
https://doi.org/10.1007/JHEP06(2013)079
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib7E271D11A7254F17A69696128AB50460s1
https://doi.org/10.1007/JHEP06(2013)079
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib7E271D11A7254F17A69696128AB50460s1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib3B68F55E0CCC8A66D3AE8E32FD871CAEs1
https://doi.org/10.1016/j.cpc.2012.12.028
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib44C79F2C80A62FB6310449651AA0329Fs1
http://refhub.elsevier.com/S0010-4655(24)00318-7/bib44C79F2C80A62FB6310449651AA0329Fs1
https://gmplib.org/
http://refhub.elsevier.com/S0010-4655(24)00318-7/bibFA57B71F67E2BB2E55303B33F8358751s1

	LinApart: Optimizing the univariate partial fraction decomposition
	1 Introduction
	2 Closed formula for univariate partial fraction decomposition
	3 Implementation and usage
	3.1 The Wolfram Mathematica routine
	3.2 The C routine

	4 Performance
	5 Conclusions and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

