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Abstract. Code smells are symptoms of poor design or incomplete imple-
mentation that can degrade software quality and maintainability. Detecting
them is crucial for improving software reliability and guiding refactoring ef-
forts.

Traditional detection methods rely on predefined rules or thresholds,
which are inflexible and prone to errors, while modern machine learning ap-
proaches require significant expertise and large, balanced datasets.

To address these challenges, we propose an automated code smell detec-
tion method using AutoGluon, an AutoML framework that streamlines model
selection, hyperparameter tuning, and handling of imbalanced datasets.

To evaluate the effectiveness of the proposed method, experiments were
conducted using two code smell datasets: God Class and Data Class. The
performance of the method was evaluated using six different metrics: accu-
racy, precision, recall, F-measure, Matthew’s correlation coefficient (MCC),
and the area under the receiver operating characteristic curve (AUC).

Additionally, we have also compared our proposed method with state-
of-the-art code smell detection methods. Experimental results show that
AutoGluon achieves high predictive performance—up to 0.98 accuracy for
God Class and 1.00 for Data Class, which often matches or outperforms state-
of-the-art methods, demonstrating the potential of AutoGluon for efficient
and scalable code smell detection.
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1. Introduction

Code smells are signs of poor design that go against basic design rules [10, 12].
Finding these issues is important because it helps fix and improve the code, making
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the software better and less likely to fail. These problems usually happen when
developers are in a rush, use weak designs, or write quick but flawed code [10].

Software metrics play a crucial role in detecting code smells by providing mea-
surable data about the quality and structure of code. These metrics act as objec-
tive indicators that help developers assess the health of a software system, allowing
them to pinpoint areas that may require refactoring [3, 12, 13]. By analyzing dif-
ferent aspects such as complexity, coupling, cohesion, and size, software metrics
help identify potential design flaws that may lead to maintainability issues, poor
performance, or increased technical debt. When left unaddressed, these issues can
make the codebase harder to understand, modify, and scale, ultimately increasing
development costs and the risk of software failures [7, 16].

To enhance the accuracy and efficiency of code smell detection, machine learning
techniques can be applied to analyze software metrics and automatically classify
code as clean or smelly [4, 5]. Supervised learning algorithms, such as decision trees,
random forests, and deep learning models, can be trained on historical datasets
containing labeled code samples with identified code smells. These models learn
patterns from the software metrics and can predict the presence of code smells in
new, unseen code [1, 11].

Traditional methods for detecting code smells rely on rigid rules and static
thresholds, which lack adaptability to different projects, require high maintenance,
and often ignore the broader context of the code, leading to inaccuracies. These
methods also struggle to scale for large or complex software systems. Modern
machine learning approaches, while more adaptable, face challenges such as de-
pendency on large labeled datasets, difficulty handling imbalanced data, the need
for expert knowledge to tune models, high computational costs, and the risk of
overfitting [12, 13, 16].

One powerful tool for automating the detection of code smells using machine
learning is AutoGluon. AutoGluon is an open-source AutoML framework that
simplifies the process of training and tuning machine learning models. AutoML
frameworks provide a helpful solution for both beginners and experts in machine
learning. For beginners, they make it easier to build high-performing ML models
by handling complex tasks automatically. For experts, AutoML allows them to
set up best practices—like choosing models, combining multiple models, tuning
settings, preparing data, and splitting datasets—just once. After that, they can
apply these steps repeatedly without needing to do everything manually. This
helps experts use their knowledge more efficiently across different projects without
constant hands-on work.

So, AutoGluon can address the challenges of traditional and modern techniques
in detecting code smells by automating model selection, hyperparameter tuning,
and handling imbalanced data with built-in techniques like class weighting and
resampling, making code smell detection more efficient, scalable, and accessible
without requiring extensive expertise or manual adjustments. By using AutoGluon,
developers can easily apply machine learning to detect code smells without requir-
ing deep expertise in model selection and hyperparameter tuning.

116 Proceedings of the FMF-AI 2025




FMF-Al 2025 Detection of God Class and Data Class code smells based . ..

By leveraging software metrics with machine learning techniques, particularly
with AutoGluon, developers can build intelligent, automated systems for detecting
code smells[6, 17].

The contributions of this research can be summarized as follows: (i) Develop-
ment of an automated code smell detection methodology using AutoGluon (Au-
toML): This study introduces a novel approach that automates model selection,
tuning, and evaluation for code smell detection, reducing manual intervention and
improving efficiency in software quality assessment. (ii) Comprehensive empiri-
cal evaluation on real-world datasets: Various AutoGluon models were evaluated
on real software datasets using multiple performance metrics, addressing challenges
such as class imbalance and identifying the most impactful software metrics through
feature importance analysis. (iii) Facilitation of scalable and reproducible code
quality assessments: The research contributes a practical and data-driven method-
ology that can be integrated into software development workflows, providing consis-
tent, automated, and interpretable code smell detection, thus supporting empirical
software engineering research and industrial applications.

2. Related work

Many traditional and modern methods for detecting code smells have been pro-
posed in previous research works [1, 3-5, 11-13, 16].

Arcelli et al. [3] presented an approach for identifying code smells that involves
the use of various ML techniques. The results indicate that all techniques performed
satisfactorily; however, the imbalanced data adversely affected the performance of
certain models.

Mhawish and Gupta [16] presented an approach for predicting code smells using
ML techniques and software metrics. The authors utilized datasets obtained from
Fontana et al., and their experimental results showed that the accurate prediction
of code smells can be significantly facilitated by employing ML techniques.

Cruz et al. [4] conducted an assessment of seven ML algorithms to identify four
distinct types of code smells, while also analyzing the influence of software metrics
on the detection of code smells. The experimental results found that ML algorithms
can perform well in detecting bad code smells, and metrics play a fundamental role
in detecting bad code smells.

Dewangan et al. [5] proposed an approach based on six ML algorithms to predict
code smells based on four datasets obtained from 74 open-source systems. The
proposed approach’s effectiveness was assessed using various performance metrics,
and two feature selection methods were implemented to improve the accuracy of
the predictions. The experimental results showed that their approach achieved
high prediction accuracy.

Khleel and Nehéz [1, 11-13] presented various classical machine and advanced
learning algorithms with different data balancing methods to detect code smells
based on a set of Java projects. The authors examined four datasets related to
code smells (God class, data class, feature envy, and long method) and compared
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the results using various performance metrics. The experiments demonstrated that
the models proposed, along with data balancing methods, exhibited improved per-
formance in detecting code smells. In addition, the results were compared with
those of state-of-the-art code smell detection methods. A comparison of the exper-
imental results indicates that their method outperforms state-of-the-art code smell
detection methods.

After reviewing previous studies in code smells detection, based on our knowl-
edge, there are no studies that applied AutoML tools for this issue. Therefore, our
study focuses on applying a new method for code smell detection, which is based
on the AutoGluon Tool.

3. Proposed methodology

In this study, we present a systematic approach for automated code smell detec-
tion using AutoGluon. The choice of methodology in this study was guided by the
need for scalability, automation, and robustness in code smell detection. So, Auto-
Gluon was selected as the AutoML framework due to its ability to automate feature
selection, model tuning, and ensemble construction while effectively handling im-
balanced datasets [6], compared with traditional workflows such as Decision Trees,
Random Forests, Support Vector Machines, k-Nearest Neighbors, and XGBoost, as
well as deep learning models including CNN, LSTM, and GRU that rely on manual
thresholding or tuning [3, 12, 13, 16].

Experimental results demonstrate that AutoGluon-based models achieve high
accuracy—up to 0.98 for God Class and 1.00 for Data Class, which often outper-
form or match the state-of-the-art, highlighting the potential of AutoML to deliver
accurate, efficient, and reproducible code smell detection suitable for integration
into continuous quality assurance processes.

The methodology follows a structured pipeline that includes key stages such
as software metrics, data modeling and collection, data preprocessing, feature se-
lection, models building and performance evaluation. Each of these steps plays a
crucial role in ensuring the accuracy and effectiveness of the detection model. Fig-
ure 1 provides an overview of the proposed methodology, with detailed explanations
of each stage outlined in the following sections.

3.1. Software metrics, data modeling and collection

Software metrics are crucial for creating prediction models that help improve soft-
ware quality by identifying and predicting software defects, such as bugs and code
smells [12]. These metrics reveal patterns and signs that are linked to issues in
the software [13]. Many studies have shown that these metrics are effective in pre-
dicting vulnerabilities in the code [12]. These metrics reveal patterns and signs
that are linked to issues in the software [3, 11-13]. Additionally, researchers have
demonstrated that software metrics can also be used to evaluate how reusable a
piece of software is [14, 19].
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Figure 1. Overview of the Proposed Method for Code Smells
Detection.

There are two main types of software metrics: static code metrics and process
metrics. Static code metrics are directly extracted from the source code, while
process metrics come from the source code management system, based on histor-
ical changes in the code over time. Process metrics reflect how the code evolves,
including changes in the code itself, the number of changes made, and information
about the developers [1, 11].

In various studies, McCabe’s Cyclomatic Complexity and Halstead metrics were
commonly used as independent variables to analyze code smells. McCabe’s Cyclo-
matic Complexity measures the number of independent control paths in a program,
indicating its structural complexity [13]. So, McCabe’s Cyclomatic Complexity
metrics focus on software quality, including cyclomatic complexity, essential com-
plexity, design complexity, and lines of code [13].

Halstead metrics calculate program length, volume, difficulty, and effort based
on operators and operands, reflecting the cognitive complexity of the code. Hal-
stead divides software metrics into three categories: base measures, derived mea-
sures, and lines of code [3, 13, 15].

Choosing the right dataset is a key step in machine learning (ML) because clas-
sification models work better when the dataset closely matches the problem being
studied. In this study, the detecting code smells models use supervised learning,
which depends on a large set of software metrics as input data. Having well-
structured datasets is important for training ML models effectively and ensuring
that the results can be applied to different cases [10, 13].

For our analysis, we used the Qualitas Corpus, a collection of software systems
compiled by researchers E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M.
Lumpe, H. Melton, and J. Noble [20]. This dataset includes many Java-based
systems of different sizes and application types, as listed in Table 1, and Table 2
Lists the two specific code smells that we have investigated.
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Table 1. Summary of project characteristics [3].

Number of systems | Lines of code | Number of packages | Number of classes
74 6,785,568 3420 51,826

Table 2. Lists the two specific code smells that we have investi-
gated [3].

Code smells | Description Affected entity
God Class | A God Class is a type of code smell that occurs when Class

a single class takes on too many responsibilities, vi-
olating the Single Responsibility Principle.

Data Class | A Data Class is a type of code smell where a class Class
primarily exists to store data without meaningful be-
havior or logic.

3.2. Data pre-processing and feature selection

Pre-processing the collected data is one of the critical stages before constructing
the model. To generate a high-performing model, data quality must be taken into
account [12]. Not all data collected is immediately suitable for training and model
development. The quality of input features has a significant impact on model
performance and, ultimately, prediction outcomes.

Data pre-processing encompasses a series of techniques aimed at improving the
dataset by handling noise, removing irrelevant outliers, addressing missing values,
and converting feature types to compatible formats. In this study, a clean and
validated dataset was used to minimize the need for extensive preprocessing [12,
16).

Normalization was applied to scale numerical feature values to a uniform range
(0 to 1), which helps enhance model learning efficiency [11, 16]. Specifically,
Min—Max normalization was used. The normalization formula used is described
in Equation (3.1).

Feature Selection is another crucial component of the modeling pipeline, as
it aims to reduce dimensionality by retaining only the most informative and dis-
criminative features relevant to the target variable [13]. This process eliminates
irrelevant, redundant, or noisy variables, which may otherwise decrease model ac-
curacy and increase training time [1, 4].

In this study, we adopted an embedded feature selection method, which is
inherently integrated within the model training process. Unlike filter methods
that evaluate features independently of any learning model, or wrapper methods
that evaluate subsets of features through repetitive training cycles (which can be
computationally expensive), embedded methods assess feature importance during
model construction. This allows the algorithm to automatically prioritize features
that improve performance and ignore those that do not contribute meaningfully.

AutoGluon, the AutoML framework used in this study, performs this embedded
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selection as part of its training pipeline, making it both computationally efficient
and well-suited for handling high-dimensional software metric datasets. Addition-
ally, feature scaling was applied to ensure that all selected features were on a
comparable scale, further supporting consistent learning behavior across models.

x; = (x; — Xmin)/(Xmazx — Xmin) (3.1)

Where max(x) and min(x) represent the maximum and minimum value of the
attribute x, respectively.

3.3. Models building and evaluation

In this study, model development and evaluation were conducted using AutoGluon,
an open-source AutoML framework that automates the machine learning pipeline
and supports both novice and advanced users. AutoGluon simplifies tasks such
as data preprocessing, feature engineering, model selection, and hyperparameter
tuning, enabling rapid development of high-performing models.

It supports a diverse range of algorithms, including Light GBM, RandomForest-
Entr, Light GBMXT, XGBoost, and deep neural networks, all of which are automat-
ically trained and combined through ensemble techniques such as WeightedEnsemb-
le-L2 [2, 8]. For this work, the dataset was split into 80% for training and validation
(handled internally through cross-validation) and 20% for independent testing. Au-
toGluon applied classification-appropriate defaults such as log loss for optimization
and automated selection of learning rates and batch sizes.

The evaluation of the trained models was based on standard metrics derived
from the confusion matrix, including accuracy, precision, recall, Fl-score, and
MCC, which is a statistical metric used to assess the performance of binary classi-
fication models. It takes into account true and false positives and negatives and is
regarded as a balanced measure, even if the classes are of very different sizes. Ad-
ditionally, AUC was employed to assess the discriminative ability of the classifiers,
illustrating the trade-off between True Positive (TP) and False Positive (FP) rates
across different thresholds [9, 18].

As shown in Figure 2, the confusion matrices for each dataset confirm the
models’ effectiveness in predicting smelly and non-smelly code. The mathematical
formulations of these metrics are defined in Equations (3.2) to (3.7).

Overall, AutoGluon’s automation and ensemble strategy proved effective for
detecting code smells such as God Class and Data Class, delivering robust perfor-
mance with minimal manual intervention.

Accuracy = (TP +TN))/((TP+ FP+ FN +TN)) (3.2)
Precision = (TP)/((TP + FP)) (3.3)
Recall = (TP)/((TP + FN)) (3.4)
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F — Measure = ((2 * Recall x Precision))/((Recall + Precision)) (3.5)

TP-TN —-FP-FN

MCC — (3.6)
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)
3 rank(ins;) — w
AUC — ins; €Positive ClassM — (37)

4. Experimental results and discussion

The experimental evaluation aimed to assess the performance of the proposed
AutoGluon-based methodology for detecting code smells using real-world datasets,
which are God Class and Data Class, sourced from the Qualitas Corpus. Mul-
tiple models were automatically trained and optimized by AutoGluon, including
Light GBM, RandomForestEntr, Light GBMXT, XGBoost, and the ensemble model
WeightedEnsemble-L2. Each model’s performance was evaluated using standard
classification metrics such as accuracy, precision, recall, F1-score, MCC, and AUC.
As shown in Tables 3 and 4, for the God Class dataset, all five top-performing
models (including LightGBM, XGBoost, and Light GBMXT) achieved high levels
of accuracy, ranging from 0.97 to 0.98, with corresponding precision and recall
values consistently reaching 0.96 or higher. The MCC and AUC values for these
models also remained close to or at 1.00, indicating excellent discriminatory power.
Similarly, for the Data Class dataset, the models demonstrated outstanding perfor-
mance, with Light GBM, RandomForestEntr, and WeightedEnsemble-L2 achieving
perfect scores (1.00) across all metrics, while XGBoost and Light GBMXT followed
closely with slightly lower, yet still impressive, values.

Table 3. Evaluation results for the top five models — God Class

dataset.

Models Performance Measures
Accuracy | Precision | Recall | F-measure | MCC | AUC
Light GBM 0.97 0.94 1.00 0.96 0.95 1.00
RandomForestEntr 0.98 0.96 1.00 0.98 0.97 1.00
Light GBMXT 0.98 0.96 1.00 0.98 0.97 | 0.99
XGBoost 0.98 0.96 1.00 0.98 0.97 | 0.98
WeightedEnsemble-1.2 0.98 0.96 1.00 0.98 0.97 | 0.99

In terms of training efficiency (Table 5), the AutoGluon-based models achieved
consistently strong performance on the God Class dataset. The best results were
achieved by Light GBMXT and WeightedEnsemble-1.2, both reaching a validation
accuracy of 0.985 and a test accuracy of 0.988. These models also had relatively low
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Table 4. Evaluation results for the top five models — Data Class

dataset.

Models Performance Measures
Accuracy | Precision | Recall | F-measure | MCC | AUC
LightGBM 1.00 1.00 1.00 1.00 1.00 | 1.00
RandomForestEntr 1.00 1.00 1.00 1.00 1.00 1.00
Light GBMXT 0.98 1.00 0.97 0.98 0.97 | 0.99
XGBoost 0.97 1.00 0.94 0.97 0.95 | 1.00
WeightedEnsemble-1.2 1.00 1.00 1.00 1.00 1.00 | 1.00

training times (0.36s and 0.45s, respectively), showing a strong balance between
accuracy and efficiency. Notably, XGBoost performed similarly in test accuracy
(0.988) but trained faster (0.175s), making it the most efficient model in terms
of runtime. For the Data Class dataset, performance was even more impressive.
Light GBM and WeightedEnsemble-L2 achieved perfect scores on both validation
and test sets (1.000). While Light GBMXT required significantly longer training
time (2.48s), it still maintained high accuracy (0.985 validation, 0.988 test).

Table 5. Training Time (seconds) and Models Performance.

Models God Class Dataset
fit-time | score-val | score-test
Light GBM 0.405785 | 0.970588 | 0.976190
RandomForestEntr 0.657616 | 0.970588 | 0.988095
Light GBMXT 0.361412 | 0.985294 | 0.988095
XGBoost 0.175200 | 0.970588 | 0.988095
WeightedEnsemble-L2 | 0.450221 | 0.985294 | 0.988095

Models Data Class Dataset
fit-time | score-val | score-test
Light GBM 0.273476 | 1.000000 | 1.000000
RandomForestEntr 0.646896 | 0.985294 | 1.000000
Light GBMXT 2.481219 | 0.985294 | 0.988095
XGBoost 0.180894 | 0.985294 | 0.976190
WeightedEnsemble-L2 | 0.360617 | 1.000000 | 1.000000

The confusion matrices (Figure 2) and AUC (Figure 3) visually confirmed the
models’ ability to accurately distinguish between smelly and non-smelly classes.
The confusion matrices underline the efficacy of AutoGluon models in accurately
detecting code smells. The minimal or absent false classifications demonstrate the
robustness of these models. In addition to accuracy, precision, recall, F-measure,
and MCC, we also report AUC scores to assess the discriminative ability of the clas-
sifiers. As shown in Tables 3 and 4, AUC values for both God Class and Data Class
datasets are consistently high, ranging from 0.98 to 1.00 across all models. These
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results confirm that the classifiers are not only highly accurate but also robust in
distinguishing smelly from non-smelly classes. This finding is particularly impor-
tant when dealing with imbalanced datasets, where accuracy alone can sometimes
mask poor performance in minority classes. The consistently high AUC values
demonstrate that AutoGluon-based models achieve excellent sensitivity-specificity
trade-offs, reinforcing their suitability for automated software quality assurance
tasks.

Confusion Matrix (God-Class Dataset) Confusion Matrix (Data-Class Dataset)
50
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False 40 False
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2 o 2
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Figure 2. Confusion Matrix for the models over all datasets.
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Figure 3. AUC for the models over all datasets.

AutoGluon provides feature importance scores based on permutation shuffling,
which quantifies how much the model’s performance decreases when each feature
is randomly shuffled. Higher importance scores indicate that the model relies more
on that feature for making predictions. Therefore, feature importance analysis
(Figures 4 and 5) revealed that a subset of software metrics significantly influenced
the prediction outcomes, validating the effectiveness of embedded feature selection
techniques used in the pipeline.

In comparison with previous state-of-the-art approaches (Table 6). We com-
pared our results with the results obtained in previous studies based on the accu-
racy. The values marked with “-” indicate that the approaches that did not use
data balancing techniques or did not provide results for the performance measure
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Top 10 Feature Importance Scores (God-Class Dataset)
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Figure 4. Feature importance scores for the models — God Class
Dataset.

Top 10 Feature Importance Scores (Data-Class Dataset)
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Figure 5. Feature importance scores for the models — Data Class
Dataset.

in a particular data set. Additionally, our proposed models are highlighted in bold
text. According to the Table, some of the results in the previous studies are better
than ours, but in most cases, our method outperforms the other state-of-the-art
approaches and provides better predictive performance. These findings collectively
demonstrate the practicality, robustness, and accuracy of the AutoGluon frame-
work in automating code smell detection, reducing reliance on human expertise,
and offering scalable solutions for software quality assurance. Future studies could
focus on testing these models on larger datasets or in real-world scenarios to further
validate their effectiveness and generalizability.

Temporal and Long-Term Development Context of God and Data Classes: Code
smells such as God Classes and Data Classes rarely emerge instantaneously; in-
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Table 6. Comparison of the proposed models with other existing
approaches based on accuracy.

Approaches Data Balancing God Class | Data Class
Techniques
Decision Tree [12] Random oversampling 0.98 1.00
K-Nearest Neighbors [12] Random oversampling 0.97 0.96
Support Vector Machine [12] | Random oversampling 0.96 0.97
XGBoost [12] Random oversampling 0.96 1.00
Multi-Layer Perceptron [12] Random oversampling 0.97 0.98
Bi-LSTM [13] Random oversampling 0.96 0.99
GRU [13] Random oversampling 0.96 0.98
Bi-LSTM [13] Tomek links 0.96 0.95
GRU [13] Tomek links 0.96 0.99
Random Forest [3] - 0.96 0.98
Naive Bayes [3] - 0.97 0.97
Random Forest [16] - - 0.99
CNN [6] SMOTE 0.96 0.98
XGBoost [2] SMOTE 0.99 -
SVM [2] SMOTE 0.97 -
KNN [2] SMOTE 0.97 -
Random Forest [8] - 0.69 0.70
Naive Bayes [§] - 0.82 0.75
SVM [8] - 0.74 0.83
KNN [g8] - 0.80 0.82
Our proposed LightGBM | - 0.97 1.00
Our proposed Random- | — 0.98 1.00
ForestEntr
Our proposed LightGB- | - 0.98 0.98
MXT
Our proposed XGBoost - 0.98 0.97
Our proposed | — 0.98 1.00

WeightedEnsemble-L2

stead, they evolve gradually as projects grow in size and complexity, often per-
sisting across multiple releases. Their longevity reflects not only design flaws but
also the developmental pressures and shortcuts taken during software evolution. In
this study, the analysis was based on static snapshots of systems from the Quali-
tas Corpus, so project timelines and release histories were not explicitly captured.
Nevertheless, prior research indicates that both God Classes and Data Classes of-
ten become long-lived entities, contributing to technical debt across the lifecycle
of software projects. Integrating AutoML-based detection into CI/CD pipelines
offers a way to address this challenge by enabling continuous monitoring of these
smells, allowing teams to identify their emergence early, track their growth, and
guide timely refactoring. In this way, automated detection not only classifies exist-
ing design problems but also supports sustainable software evolution by mitigating
the accumulation of long-lived technical debt.
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5. Conclusion

Code smell detection involves identifying patterns in the source code that indicate
potential problems with design or implementation, even if the code is working
correctly.

This study presented an automated approach to detecting code smells using
AutoGluon, an AutoML framework that simplifies the machine learning workflow
by automating tasks such as model selection, hyperparameter tuning, feature se-
lection, and data balancing.

By leveraging software metrics and structured data from the Qualitas Corpus,
the proposed methodology was evaluated on two prominent code smell types: God
Class and Data Class. The experimental results confirmed the effectiveness of
the approach, with all models achieving high accuracy, precision, recall, F1-score,
MCC, and AUC.

The use of AutoGluon allowed for efficient training and performance optimiza-
tion without manual tuning, making the methodology accessible to both novice and
expert users. The models also showed resilience to imbalanced data and highlighted
the impact of key software metrics through feature importance analysis.

Moreover, comparisons with existing state-of-the-art approaches demonstrated
that the proposed method either outperformed or matched traditional and deep
learning-based techniques, further validating its competitiveness and reliability.

Overall, the integration of AutoML techniques into code smell detection offers
a promising pathway toward automated, interpretable, and scalable software qual-
ity assessment. Future work may include expanding the methodology to detect
additional types of code smells, applying the approach to larger and more diverse
software projects, and exploring hybrid AutoML strategies for further performance
gains.
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