Proceedings of the International Conference on

Formal Methods and Foundations of Artificial Intelligence
Eszterhazy Karoly Catholic University

Eger, Hungary, June 5-7, 2025

pp. 233-242 DOI: 10.17048/fmfai.2025.233

Under the hood
An inside look at PULI models®

Zijian Gyd6z6 Yang®, Lili Anna Stajer®, Gergely Lukacs”

“ELTE Research Centre for Linguistics
yang.zijian.gyozo@nytud.elte.hu

PPézmany Péter Catholic University
Faculty of Information Technology and Bionics
lukacs@itk.ppke.hu

Abstract. Understanding the internal structure and behavior of large lan-
guage models remains a key challenge in natural language processing. In this
work, we present a comprehensive analysis of the PULI family of Hungar-
ian generative large language models. Our study combines static analysis of
model parameters with dynamic visualization of model behavior during infer-
ence. The static analysis reveals patterns in parameter distributions and di-
mensionality across layers, offering insight into how different layers specialize.
The dynamic analysis integrates an adapted version of BertViz into a web-
based interface that enables interactive exploration of attention mechanisms
for arbitrary prompts and generated responses. This dual approach advances
interpretability and facilitates further research on the internal mechanics of
transformer models tailored for low-resource languages like Hungarian.
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1. Motivation

The transformer architecture and large language models (LLMs) led to a new era
in natural language processing (NLP) and, more broadly, in computer science.

*The study was funded by the National Research, the Development and Innovation Office in
Hungary (RRF-2.3.1-21-2022-00004).
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Although their high-level designs are well documented and such models can be
trained — given sufficient data, computational resources, and expertise — the internal
workings of these models remain poorly understood. Specifically, the structure and
geometry of billions to trillions of parameters, organized in large matrices, present
a significant challenge to interpretation.

A deeper understanding of these internal mechanisms could lead to improved
overall performance, enhanced capabilities in specialized tasks (e.g., disambigua-
tion, humor detection, or handling harmful speech), and potential simplifications
of model architecture. Each of these areas represents current limitations or open
challenges in existing models.

For Hungarian, the PULI family [15, 16] represents the state-of-the-art in gen-
erative large language models, including both GPT-NeoX [3] and LLaMA-based [5,
12] architectures.

In our research, we performed both static and dynamic analyses of the inter-
nal parameters of the model. The static analysis focused on examining various
properties and features of the trained models. In the dynamic analysis, we en-
abled visualization of the model’s internal representations for arbitrary input text
by adopting and integrating the BertViz application [13] into our demonstration
platform®.

2. Related work

A growing body of research has focused on analyzing the internal parameter values
of deep neural networks and transformer-based models. It has long been recognized
that deep neural networks are capable of acquiring and encoding aspects of human
semantic knowledge [11]. Investigations of the BERT model have shown that dis-
tinct subspaces within the parameter space correspond to syntactic and semantic
information [10]. Additionally, different senses of a word can be distinguished and
separated in this space. Further studies have uncovered links between vector ge-
ometries and syntactic structures such as parse trees [6]. Recent research has also
demonstrated that attributes like textual toxicity can be identified by analyzing
internal parameters [8]. Regarding training dynamics, it has been found that low-
dimensional structures within the parameter space are critical for enabling efficient
optimization and successful model training [9]. Such findings lay the foundation
for developing improved, faster, and more resource-efficient learning strategies [2].

Multilingual BERT models, when analyzed through morphosyntactic probing,
have yielded further insights — for instance, indicating that preceding context often
contains more semantically relevant information than the following context [1].
Model compression, particularly through quantization, is another active research
area with significant practical implications [4].

In parallel with analytical approaches, there have been efforts to improve the
interpretability of semantic and contextual representations in LLMs during infer-

Ihttps://juniper.nytud.hu/demo/visualizer
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ence. Tools such as ExBERT, a visualization framework for exploring learned
representations in transformer models [7], and BertViz, a multiscale visualization
tool applicable to any transformer architecture, have proven useful in this regard.
BertViz has been employed, for example, to detect bias and trace specific behaviors
back to particular model components [13, 14].

3. Static analysis

3.1. PULI LlumiX 32K model and its parameters

The static analysis in this study was conducted on the PULI LlumiX 32K model [15],
which is based on LLaMA-2-7B-32K? variant of the open-source LLaMA (Large
Language Model Meta AI) 2 family [12] introduced by Meta® in 2023. LLaMA
models are decoder-only architectures, meaning they consist solely of transformer
decoder layers. The core architecture comprises multiple identical layers, each
containing a feed-forward neural network (FFN), layer normalization, and self-
attention blocks. Input data is processed through an embedding layer and posi-
tional encoding before being passed through the stacked layers.

The self-attention mechanism maps a query and a set of key—value pairs to an
output, enabling the model to capture dependencies between tokens regardless of
their position in the sequence. The main components and parameters involved are
as follows:

e Query (Q): Represents the current token being processed and is used to com-
pute attention scores by comparing it to all other tokens’ key vectors.

o Key (K): Associated with each token in the sequence and used to determine
the relevance of other tokens to the current one.

o Value (V): Also associated with each token, and contains the information
that contributes to the final weighted output.

The result of the self-attention mechanism is a weighted sum of the value vec-
tors, where weights are derived from the similarity between queries and keys. Mod-
ern transformer models use multi-head attention, which involves multiple parallel
self-attention mechanisms, each with its own set of learned parameters. Dedicated
weight matrices are used to compute the Q, K, and V vectors from the input
representations.

The LLaMA-2-7B-32K model consists of 32 transformer layers and approxi-
mately 7 billion parameters. A detailed breakdown of the model’s architecture,
including the dimensionality of parameter matrices and the total parameter count,
is provided in Table 1.

2https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
Shttps://www.meta.ai
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Table 1. Number of Parameters in LLaMA-2-7B-32K.

Description Matrix size Count Parameter
count

embed_ token_ weight: maps (32000,4096) 1 131 072 000

each token onto the d_model

input_ layernorm: each layer (4096,1) 32 131 072

input normalized

self _attn_ k: multi-  (4096,4096) 32 536 870 912

attention head W__ K matrix

self attn_q: multi-  (4096,4096) 32 536 870 912

attention head W__(Q matrix

self attn_v: multi-  (4096,4096) 32 536 870 912

attention head W__V matrix

self_attn_o: multi-attention  (4096,4096) 32 536 870 912

head W__O matrix

post__attention_ layernorm: (4096, 1) 32 131 072

each multi-head attention
output normalized

mlp.down__proj: FNN  (4096,11008) 32 1 442 840 576
weights

mlp.gate_proj: FNN gate (11008,4096) 32 1 442 840 576
weights

mlp.up_ proj: FNN weights (11008,4096) 32 1 442 840 576
norm: normalizing function (4096,1) 1 4096

for last layer output

Im_ head: maps d_model (32000,4096) 1 131 072 000
back onto the vocabulary

space

TOTAL 6 738 415 616

3.2. Analysis and results

Distinct patterns were observed in the model’s parameters. In the feedforward net-
work (FNN), the standard deviation of the down, gate, and up projection weights
progressively increases in the upper layers (Figure 1). This trend is further sup-
ported by a decrease in the 25 percentile and an increase in the 75 percentile values
(Figure 2). Notably, the first and last layers exhibit substantially larger changes
compared to the intermediate layers.

In the self-attention blocks, the standard deviations of the key (k) and query (q)
weights decrease from the lower to the upper layers, while the value (v) and output
(o) weights show a similar downward trend. Again, notable exceptions to these
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Figure 1. Plot of min-max, mean and standard deviation value of
FNN components.
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Figure 2. Plot of 25, 50 and 75 percentile values of FNN components.

trends appear in the first and last layers. Principal component analysis on these
weights revealed that, in general, the cumulative explained variance indicates that
dimensionality cannot be significantly reduced without information loss. However,
in a few specific cases — particularly for the k and q weights, and to a lesser
extent the v and o weights — early layers (especially the first three) exhibit high
cumulative explained variance, approaching 1, with a substantially smaller number
of dimensions than in later layers (Figure 3, Figure 4).
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Figure 3. Cumulative explained variance of query (q) matrices for
self-attention layers.
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Figure 4. Cumulative explained variance of key (k) matrices for
self-attention layers.
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4. Dynamic analysis

For Dynamic analysis, we integrated the BertViz tool [13] into our demo site. In
our demo site?, we split the BertViz output into frontend and backend components
and integrated them into the corresponding sections of our site. While the original
BertVis frontend code remained unchanged, we applied several modifications to
the backend. First, we added a text generation module and then merged the newly
generated text with the original input prompt. This functionality allows us to
observe the relationships between the prompt and its response.

Figure 5 presents the architecture of our dynamic analysis demo site. This
architecture diagram illustrates a system designed to interface with a LLM through
a frontend-backend pipeline. On the frontend, users interact with the system via
a Demo interface, where they input prompts. These prompts are sent to the LLM
hosted in our backend, which generates corresponding model responses and returns
them to the frontend for display. Simultaneously, a weight extraction module
accesses internal data (such as attention weights) from the LLM, processes it, and
forwards the resulting weights to BertViz, a frontend visualization tool that allows
users to explore the model’s inner workings. This design separates user interaction,
model computation, and interpretability, enabling a clear and interactive workflow
to use and understand the behavior of the LLM.

Backend Frontend
< User Prom 1—7 .;
P N Demo
LLM —Model response >
Weight Ll - . |
extraction Attention Weights:

Figure 5. Architecture of the demo site.

In Figure 6, we show the integrated BertViz visualization along with the dy-
namic prompt-response analysis. In our demo site, an input prompt can be pro-
vided, and then the response will be generated (see Figure 6a). In this example,
the prompt is: The table is heavier than the chair. Which is the lighter one? The
answer:. The response: the chair. In Figure 6b, we visualize the relationships
between the prompt and its response. In this example, we observe the weights of
layer 9, where we can see that, in the case of ‘a’ (the), the attention is focused more
on the word ‘szék’ (chair) than on the word ‘asztal’ (table).

4nttps://juniper.nytud.hu/demo/visualizer
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(a) A screenshot of our demo site. (b) Ilustrating the relationship between

the input prompt and the generated re-
sponse.

Figure 6. The PULI visualizer demo.

5. Conclusion

In this paper, we investigated the internal mechanisms of the PULI large lan-
guage models using a two-pronged approach: static parameter analysis and dy-
namic behavior visualization. Our static examination highlighted systematic trends
in weight distributions and dimensionality across layers, suggesting layer-specific
roles in the model’s computation. The dynamic component extended the BertViz
framework, allowing users to explore the relationship between input prompts and
model responses in real time. These findings contribute to the broader goal of de-
mystifying LLMs and open avenues for improving model transparency, fine-tuning
strategies, and error diagnosis, particularly in the context of Hungarian language
technologies. Future work may focus on extending these methods to multilingual
settings or applying similar techniques to fine-tuning and alignment tasks.

In the future, we plan to extend our experiments to other PULI models and im-
plement a model selection module that allows users to interactively switch between
different PULI architectures, including encoder-only, decoder-only, and encoder-
decoder models. This would enable comparative analysis, generalization of results,
and adaptive usage based on specific task requirements. In addition, combining
advanced statistical methods with visualizations appears promising for dynamic
analysis.
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