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Poliominók és poliamondok. Poliominó minden véges számú egybevágó négyzet-
ből álló összefüggő síkbeli alakzat, amelyet alkotó négyzetek mindegyike teljes ol-
dalával csatlakozik legalább egyhez az alakzathoz tartozó további négyzetek közül.
Ha ebben a mondatban „négyzet” helyett mindenütt „szabályos háromszög” áll,
akkor a poliamond definícióját kapjuk. A poliominó szó és fogalom Solomon W.
Golombtól ered, aki írásban először 1954-ben használta ([5]), a poliamond első
előfordulása pedig Thomas H. O’Beirne 1961-ben megjelent [10] cikkében talál-
ható. A szavak eredete alkotóik ötletességéről tanúskodik. Természetes módon
nevezhetjük ugyanis a két négyzetből álló poliominót dominónak, másrészt görög
vagy latin eredetű szavakban a „d” kezdőbetű gyakran kettősségre utal (dupla, du-
ális, dichotóm, stb.). Bár ez a két jelenség nyelvészek szerint nincs kapcsolatban
egymással, könnyen megérthető és megjegyezhető, ha a 3, 4 és 5 négyzetből álló
alakzatot az ismert görög számnevek kezdő betűi alapján trominónak, tetromi-
nónak és pentominónak nevezzük, ha pedig a négyzetek számát nem adjuk meg,
akkor poliominóról beszélünk (ahhoz hasonlóan, ahogyan az akárhány poligonnal
határolt véges testet poliédernek mondjuk). Ugyanígy keletkezett a poliamond szó
az angol „diamond”-ból, ami nem csak gyémántot jelent, hanem a francia kártya
káró színét is így nevezik angolul; a káró jele pedig nagyon hasonlít két egymás-
hoz teljes oldalával csatlakozó szabályos háromszög alakjához. Megfelelő módon
beszélünk triamondról, tetriamondról, pentiamondról és hexiamondról, amikor az
egymáshoz csatlakozó szabályos háromszögek száma 3, 4, 5 és 6. Definícióinkból
szándékosan hagytuk ki az egyetlen négyzetből vagy szabályos háromszögből álló
alakzatot; ezeket nevezhetjük ugyan monominónak és moniamondnak, de a „poli-”
előtagot használni rájuk furcsán hangzana. (Vö. monogámia és poligámia :-) )

A poliominókra és poliamondokra vonatkozó alapvető ismereteket és feladato-
kat Golomb [6] és George E. Martin [8] könyveiben találhatjuk meg. Jelentős ré-
szük magyar nyelven is hozzáférhető Gál Péter könyvében ([4], 31-80. o.), amelyből
többek között kiderül, hogy a legérdekesebbek – mert eléggé változatosak, de még
áttekinthetők – a pentominók és a hexiamondok, mindegyikből éppen 12 különböző
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van, és a hexiamond-feladványok bizonyos jól meghatározott értelemben nehezeb-
bek, mint a pentominó feladványok. Egy tipikus pentominó-feladvány: valamely
rácsnégyzetekből álló tartomány kitöltése (más szóval kirakása), azaz egyszeres és
hézagmentes lefedése különböző pentominókkal, amelyeket tetszőleges módon el-
forgatva és tükrözve is felhasználhatunk. Az ilyen feladványokat átalakíthatjuk
hexiamond-problémákká négyzetek helyett háromszögeket, pentominók helyett he-
xiamondokat írva. Golombtól ered a kétszemélyes pentominó-játék ([6]): a já-
tékosok váltakozva pentominókat tesznek le sakktábla üres mezőire; így a játék
legfeljebb hat lépéspárból áll, és az nyer aki az utolsó pentominót teszi le. Lényegé-
ben ugyanilyen játékot játszhatunk szabályos háromszögrács alkalmas tartományán
pentominók helyett hexiamondokkal.

Hexiamondok. Egyszerű, tíz év körüli gyerek számára is reményteljesen kitűzhető
feladat a 12 pentominó felrajzolása számtanfüzet lapján. Hasonlóképpen a hexia-
mondok is felrajzolhatók háromszögrácsos papíron, amely az interneten triangular
grid néven kereshető és letölthető. A tizenkét hexiamondot alkalmas méretben olló-
val vagy tapétavágó késsel kivághatjuk, és hexiamond-feladványokat oldhatunk meg
segítségükkel. A kézi munkákat kedvelők vastag kartonból készíthetnek hexiamond-
táblát, a kartonétól eltérő színű papírból kivágott háromszögeket ragasztva rá az
1. ábrán látható módon. A színeket egyszerűség kedvéért — épp úgy, mint a sakk-
táblán — világosnak és sötétnek fogjuk nevezni. Ábránkon a sötét háromszögek
csúccsal felfelé, a világosak csúccsal lefelé állnak (másképpen: élen, ill. csúcson
állnak); megállapodhatunk abban, hogy mindig ilyen állású táblát használunk. A
hexiamondokat a tábláéhoz hasonló vastagságú műanyag-lapokból vághatjuk ki.
Kívánatos, hogy ezek két oldala azonos, de a táblán láthatóktól eltérő színű legyen.
A legelegánsabb persze a fából készített hexiamond-készlet. Erre vonatkozóan ér-
demes elolvasni [4] 7. fejezetét.

1. ábra

Hexiamond-feladatokat képernyőn is kitűzhetünk és megoldhatunk a jelen cikk
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olvasói (és barátaik, tanítványaik) számára készült programmal, amely a

(1) http://www.math.u-szeged.hu/∼makay/Hexiamond/

webhelyen található, és feladatok összes megoldásainak megtalálására (tehát fel-
adatok megoldhatatlanságának igazolására is) alkalmazható. További lehetősé-
gek: Thimo Rosenkranz 2014-ben készült, a [14] webhelyről letölthető hexiamond-
programja a szabályos háromszögráccsal ellátott síkon bármely 72 háromszögből ál-
ló alakzat minden olyan lényegesen különböző kitöltését megadja, amelyben mind-
egyik hexiamond szerepel. Mindkét program mutatja a lehetséges lényegesen kü-
lönböző kitöltések számát is; így nevezünk két kitöltést, ha nem kaphatók meg
egymásból forgatással és tükrözéssel. Látni fogjuk, hogy ez a szám váratlanul nagy
is lehet. Gerd Müller 2015-ben közzétett, a [9] webcímen elérhető programjával he-
xiamondokból kedvünk szerinti alakzatokat rakhatunk ki. E programok létezése és
elérhetősége épp úgy nem teszi érdektelenné a hexiamond-feladványok saját fejjel
és kézzel történő megoldását, ahogyan a sakkprogramok sem a sakkfeladványokon
való, tábla melletti fejtörést.

Célszerű, és ha nem egymagunkban gondolkodunk róluk, elengedhetetlen is a
hexiamondoknak az alakjukat felidéző nevet adni. Ezt már O’Beirne megtette;
elnevezéseinek magyar fordítását az alábbi táblázat második sora1 mutatja. Gál
Péter több esetben azoktól eltérő nevet használ. Hasonlóképpen mi is; ezeket meg-
felelően a táblázat harmadik és negyedik2 sorában találjuk.

kígyó lepke könyök horog korona rangjelcsík jelzőtábla szfinx vitorlás rák pult hatszög
kígyó lepke golfütő cipő korona bumeráng pisztoly szfinx vitorlás rák bot hatszög
kígyó lepke mécses cipő süveg tompa pisztoly macska gálya hegyes pálca kerek

Hexiamond-feladványok. Az első ilyen feladványokat még a „hexiamond” név be-
vezetése előtt tette közzé Reeve és Tyrrell ([13]). Ezek:
• a 72 szabályos háromszög alkotta rombusz (röviden: a 72 méretű rombusz)

kitöltése a 12 különböző hexiamonddal, amelyre negyvennél több megoldást talál-
tak3,
• az 54 méretű szabályos hatszög kitöltése 9 különböző hexiamonddal.

Mindkét feladványra egy-egy megoldást mutattak be. Ők vezették be a paritás-
vizsgálatot, ami egyszerű módszer hexiamond-feladványok megoldhatatlanságának
bizonyítására.

1A rangjelcsíkhoz: Katonai rendfokozatot jelző, tompaszögben megtört csík.
2A sakkfigurák nevéhez hasonlóan két szótagú neveket választottunk, és nem csupa főneveket.
3Az (1) és a [14] webhelyen található program 156 megoldást szolgáltat.
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Vegyük észre, hogy a macska és a gálya kivételével bármely hexiamondot is
helyezzük el a táblán, az három világos és három sötét rács-háromszöget (a továb-
biakban röviden: mezőt) fed le, míg a macska és a gálya esetén a lefedett világos
és sötét mezők számának különbsége 2 vagy -2. Nevezzük hexiamond-tábla tet-
szőleges tartománya paritás-számának a benne levő világos és sötét mezők száma
különbségének abszolút értékét. A macska és a gálya paritás-száma tehát 2, a többi
hexiamondé pedig 0. Ebből látható, hogy
• hexiamondokkal nem tölthető ki a táblának olyan tartománya, amelynek

paritás-száma páratlan,
• különböző hexiamondokkal nem tölthetők ki azok, amelyek paritás-száma nem

a 0, 2 és 4 számok valamelyike, és
• a 12 különböző hexiamonddal nem tölthetők ki azok sem, amelyek paritás-

száma 2.
Nem nehéz példákat találni arra, hogy a megfelelő paritás-szám a kitölthető-

ségnek csak szükséges feltétele.
Reeve és Tyrrel 22-re becsülte az olyan hexiamond-halmazok számát, amelyek-

kel a második feladvány megoldhatatlan. Mivel az 54 méretű szabályos hatszög
paritás-száma 0, csak azokra a 9 elemű hexiamond-halmazokra létezhet megol-
dás, amelyek vagy a gálya és a macska mindegyikét tartalmazzák, vagy egyi-
küket sem. Vizsgálatunk azt mutatja, hogy a fentiek alapján lehetséges összes(
10
7

)
+
(
10
9

)
= 120 + 10 = 130 darab 9 elemű hexiamond-halmazból 109 esetben

lehetséges a kitöltés. Vagyis Reeve és Tyrrel becslése elég pontos volt.
Dawson tétele – hexiamondokra. A pentominókkal kapcsolatos legismertebb fej-
törőt először Dudeney említi klasszikus feladat-gyűjteményében ([3]) egy kétes hite-
lességű anekdotába ágyazva, amely szerint Hódító Vilmos fia, Henrik, később maga
is Anglia királya, Lajos francia királyfinál vendégeskedve (akiből ugyancsak király
lett, a francia történelem Kövér Lajosként említi), vendéglátóját nagyon megverte
sakkban. Lajos mérgében Henrik arcába vágta a sakkfigurákat, mire Henrik a sakk-
táblát Lajos fején darabokra törte, majd lóra kapott és elmenekült a történteken
feldühödött franciák bosszúja elől. Érdekes módon a sakktábla 13 különböző alakú
darabra tört, amelyekből 12 öt-öt összefüggő mezőből állt, a maradék négy mező
pedig egyetlen kis négyzetet alkotott. Dudeney fejtörője: rakjuk össze a sakktáblát
a 13 darabból! Ezt így is fogalmazhatjuk: rakjuk le sakktáblára a 12 pentominót
úgy, hogy a kimaradó mezők egy négyzetet alkossanak.

Dudeney egy megoldást ismertetett. Ennél tovább ment Thomas R. Dawson4,
aki bebizonyította, hogy bárhol is jelölünk ki a sakktáblán egy négy mezőből álló
négyzetet, a többi 60 mező kitölthető a 12 különböző pentominóval ([2]; [11]; [1],

4A tündérsakk (azaz a szokásostól eltérő alakú tábla és menetmódú sakkfigurák) legnagyobb
szakértője, ld. pl. [1], 73-74. o.
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159. o.; [4], 45.o.; [6], pp. 7-8; [8], pp. 66-68.). Dawson bizonyítása rendkívül
elegáns: bár a sakktáblán a négy mezőből álló különböző négyzetek száma 49, a
bizonyításban a sakktáblának csupán három tartományáról kell megmutatni, hogy
kirakható pentominókkal.

Gondoljuk meg, átvihető-e Dawson tétele megfelelő hexiamond-táblára és he-
xiamondokra. Mind a sakktábla, mind a kihagyandó négyzet konvex, és 8 szim-
metriája van. Ezzel összhangban csak a konvex és szimmetrikus (azaz legalább
egy tükrözéssel vagy forgatással önmagába átvihető) hexiamond-táblákat és ki-
hagyandó poliamondokat fogjuk vizsgálni; az utóbbiakat röviden kimaradványnak
nevezzük. Megköveteljük, hogy a kihagyás után visszamaradó tartomány, a meg-
maradvány 72 méretű, tehát potenciálisan a 12 különböző hexiamonddal kirakható
és összefüggő legyen (az utóbbi Dawson tételében nyilvánvaló). A szabályos három-
szögrács háromszögeiből álló konvex sokszög minden belső szöge vagy 60 vagy 120
fokos. Innen egyszerűen belátható, hogy konvex rács-n-szögek csak az n = 3, 4, 5, 6

esetekben léteznek.
Egy konvex rács-sokszög leírható 6 darab számmal a következő módon. Tekint-

sük a háromszögrács táblánkat, amelynek teteje legyen észak, a többi irány ebből
egyértelműen következik. Az (a, b, c, d, e, f) számhatos (a, b, c, d, e, f ≥ 0) jelentse
azt a rács-sokszöget, amely úgy keletkezik, hogy egy rács csúcspontból kiindulva
rácsvonalakon menve keletnek a, dél-délkeletnek b, dél-délnyugatnak c, nyugat-
nak d, észak-északnyugatnak e és végül észak-északkeletnek f lépést teszünk meg.
Amennyiben ez az óramutató járásával egyező irányú séta záródik a kiinduló csúcs-
pontban, akkor ez egy konvex rács-sokszöget határoz meg. Mik ennek a feltételei?
Első nyilvánvaló feltétel, hogy a számhatosban nem szerepelhet 2 db 0-s szám egy-
más után (a ciklikus permutációt is figyelembe véve). Az ugyanis azt jelentené,
hogy „visszafordulunk”, vagy nem az óramutató járásával egyező irányba megyünk
tovább. Második, hogy a sétának záródnia kell. Nézzük meg, mekkora utat teszünk
meg összesen keleti irányban:

a+ b/2− c/2− d− e/2 + f/2,

és ennek persze 0-t kell adnia, így kapjuk a

2a+ b− c− 2d− e+ f = 0

egyenlőséget. Nyugati irányban ugyanezen út ellentettjét tesszük meg, az nem
ad új feltételt. Hasonlóan felírhatjuk a dél-délkeleti és a dél-délnyugati irányban
megtett utakra vonatkozó feltételeket is:

(2)
2b+ c− d− 2e− f + a = 0

2c+ d− e− 2f − a+ b = 0
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A fenti három egyelőség nem független: a másodikból kivonva a harmadikat pon-
tosan az elsőt kapjuk. Ennek egyszerű geometriai magyarázata is van: ha a dél-
délkeleti és a dél-délnyugati irányokban a teljes séta során nem mozdulunk el, akkor
ezek a feltételek kijelölnek egy-egy (a dél-délkeleti és a dél-délnyugati irányokra me-
rőleges) egyenest, amin rajta kell legyünk a séta végén, és amin a kiinduló rácspont
is rajta van. A két egyenesnek egyetlen metszéspontja van, és az pont a kiinduló
rácspont, így a séta végén is ott kell lennünk, vagyis a séta záródott.

Nem nehéz belátni, hogy a (2) feltételek ugyanazt jelentik, mint az a − d =

−(b− e) = c− f egyenlőségek, amelyek teljesülését ránézéssel ellenőrizhetjük.
A továbbiakban ezt a számhatos jelölést használjuk a konvex rács-sokszögek

leírására. Vegyük észre, hogy a rács-sokszög elforgatása megfelel a számhatos cik-
likus permutációjának, a tükrözés pedig a számhatos fordított sorrendben való
felírásának és (a tükrözés tengelyétől függő) ciklikus permutációnak. A jelölésünk
mindig egy a háromszögrácson való eltolástól eltekintve egyértelmű rács-sokszöget
ad meg, ha a forgatási és tükrözési szimmetriáktól is el kívánunk tekinteni, akkor
az (a, b, c, d, e, f)+ jelölést fogjuk használni.

Dawson hexiamondokra átírt tételét vizsgáljuk a rács-sokszög oldalainak száma
szerint sorrendben, tehát legyen először a tábla és a kimaradvány háromszög alakú.
Ekkor a tábla jele (n, 0, n, 0, n, 0), mérete n2, paritás-száma n. Ezért a 81 méretű
háromszög, amelyből 9 méretű háromszöget hagyunk ki, alkalmasnak látszik, mert
a 12 hexiamond éppen elférne a megmaradványon. Annak a paritás-száma azonban
6 vagy 12, így nem tölthető ki különböző hexiamondokkal.

Figyeljük meg, hogy az (a, b, c, d, e, f) konvex rács-soksokszög mindig befoglal-
ható egy (f + a+ b, 0, b+ c+ d, 0, d+ e+ f, 0) háromszögbe, és abból a megfelelő
csúcsoknál az (f, 0, f, 0, f, 0), (b, 0, b, 0, b, 0) és (d, 0, d, 0, d, 0) háromszögek levágá-
sával keletkezik. Ezért (a, b, c, d, e, f) paritásszáma |f + a+ b− f − b− d| = |a− d|.

2. ábra

Egyszerűen belátható, hogy minden rács-négyszög konvex, és két tompaszöge
van. Ha ezek egymással szemben vannak, a négyszög paralelogramma, az ellen-
kező esetben pedig (egyenlő szárú) trapéz. A paralelogrammák (szimmetriától
eltekintve) megadhatók (a, 0, b, a, 0, b) alakban, ahol a ≥ b; méretük ekkor 2ab,
paritás-számuk 0. Bármely paralelogramma három különböző állásban helyezhető
el a háromszög-rácson, annak megfelelően, hogy párhuzamos élpárjaik a lehetsé-
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ges három irány közül melyikbe mutatnak (a két másik állású paralelogramma a
jelölésünk szerint a (b, a, 0, b, a, 0) és a (0, b, a, 0, b, a)). Legyen a tekintett tábla
az (a, 0, b, a, 0, b)+, a kimaradvány a (c, 0, d, c, 0, d)+ paralelogramma, ahol c ≥ d,
a > c és b > d. Ha a tábla és a kimaradvány különböző állásúak, az utóbbi mindig
elhelyezhető úgy, hogy a megmaradó tartomány ne legyen összefüggő. Ezért csak
olyan a, b, c, d számokat keresünk, hogy az (a, 0, b, a, 0, b) táblából a (c, 0, d, c, 0, d)

négyszöget kihagyva a megmaradó tartomány a 12 különböző hexiamonddal kirak-
ható legyen (itt legyen a ≥ b, de c ≥ d nem feltételenül igaz). A méretekre vonatko-
zó szabály szerint ennek szükséges feltétele 2(ab−cd) = 72. A (8, 0, 5, 8, 0, 5) tábla,
és a (2, 0, 2, 2, 0, 2) kimaradvány ezt teljesíti. Az (1) programmal vagy Rosenkranz
programjával ([14]) ellenőrizhetjük, hogy rájuk „Dawson-típusú tétel” érvényes.

A trapézok (a− b, b, 0, a, 0, b) alakban írhatók fel, ahol a > b; méretük 2ab− b2,
paritás-számuk b. A trapézoknak hat különböző állása van; most is feltesszük, hogy
a keresett kimaradvány is trapéz, és a táblával megegyező állású: (c−d, d, 0, c, 0, d),
a > c, b > d. A megmaradvány paritás-száma b− d, és ha 12 hexiamonddal kitölt-
hető, akkor b = d+ 4. Másrészt most — a paralelogrammák esetéhez hasonlóan —
2(ab−cd)−4(b+d) = 72. Ennek az (5, 5, 0, 10, 0, 5) tábla és az (1, 1, 0, 2, 0, 1) kima-
radvány eleget tesz. Ellenőrizhetjük, hogy ezt a kimaradványt bárhol elhelyezve a
táblán, a megmaradvány kirakható. Ez régi észrevétel: Philpott [12] cikkében jelzi,
hogy ismeri a bizonyítását. Külön érdekesség, hogy hasonlóan Dawson tételéhez, a
kimaradvány itt hasonló a táblához.

A konvex rács-ötszögnek egyetlen szöge hegyesszög; ha szimmetrikus, akkor
ezt a szöget a szimmetria változatlanul hagyja. Ennek a szárain van az ötszög leg-
hosszabb oldala; legyen ennek hosszúsága a, a szöggel szemben levő oldalé b. Ekkor
ötszögünk (a, a−b, b, a−b, a, 0), mérete 2a2−b2, paritás-száma b. A kimaradványt
is keressük (a táblával megegyező állású) (c, c − d, d, c − d, c, 0) alakban. A meg-
maradvány paritás-száma most is b− d, és szükségképpen b = d+ 4. A méretekre
vonatkozó egyenlet eszközeinkkel kezelhető egyetlen megoldása (8, 3, 5, 3, 8, 0), mint
tábla, és (4, 3, 1, 3, 4, 0), mint kimaradvány. A megmaradvány azonban az utóbbi-
nak nem minden helyzetében rakható ki.

A konvex rács-hatszögnek minden szöge tompaszög. Bármely a, b, c pozitív
egészekhez van olyan szimmetrikus konvex hatszög, amelyben három egymást kö-
vető oldal hossza a, b és c. Ilyen az (a, b, c, a, b, c) hatszög, amelynek mérete
2(ab+ ac+ bc), paritás-száma 0. Ha táblának a (3, 3, 5, 3, 3, 5), kimaradványnak az
(1, 1, 1, 1, 1, 1) hatszöget tekintjük, akkor a megmaradvány mérete 72, és a kima-
radvány bármely helyzete esetén kirakható (ellenőrizzük!). Másik lehetőség: legyen
a tábla (3, 4, 4, 3, 4, 4), a kimaradvány a (2, 0, 2, 2, 0, 2)+ paralelogramma. A meg-
maradvány mérete ekkor is 72, és a kimaradvány b á rm e l y állása és helyzete
esetén (ld. a plusz jelet a paralelogramma számhatosa végén) kirakható.
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Dawson tétele és hexiamondokra kimondott változatai bizonyításának „szép-
ségét” egy-egy számmal is jellemezhetjük: a kimaradvány lehetséges helyzetei h
számának és a bizonyításhoz szükséges kirakások k számának hányadosával: minél
nagyobb ez a szám, annál elegánsabbnak tekinthetjük a bizonyítást. A poliomi-
nókra vonatkozó eredeti tételnél ez az arány a már említett 49/3 = 16, 33, a most
bemutatott négy tábla-kimaradvány párra pedig a következő táblázatból látható:

tábla kimaradvány h k h/k

(8, 0, 5, 8, 0, 5) (2, 0, 2, 2, 0, 2) 32 16 2
(5, 5, 0, 10, 0, 5) (1, 1, 0, 2, 0, 1) 35 19 1,84
(3, 3, 5, 3, 3, 5) (1, 1, 1, 1, 1, 1) 29 10 2,9
(3, 4, 4, 3, 4, 4) (2, 0, 2, 2, 0, 2)+ 68 19 3,57

Hogy h mindig sokkal nagyobb, mint k, a táblák szimmetriáinak köszönhető.
Ha Dawson csak a sakktábla szimmetriáit vette volna figyelembe bizonyításánál,
akkor a h/k hányados a lényegesen szerényebb 4,9 értéket vette volna fel (miért?).
Ő azonban felhasználta azt is, hogy a négy mezőből álló négyzet négyféleképpen he-
lyezhető el egy kilenc mezőből álló négyzetben úgy, hogy a kimaradó mezők mindig
ugyanazt a pentominót alkossák, és van a sakktáblán három olyan, egyenként kilenc
mezőt tartalmazó négyzet, amelyekben a lényegesen különböző helyzetű négy me-
zőből álló négyzetek mindegyike megtalálható. Hasonló gondolattal megjavítható
a táblázatunkban szereplő 3,57-es érték is. Vegyük észre, hogy a 3. ábrán látható
rács-nyolcszögben a (2, 0, 2, 2, 0, 2)+ paralelogramma három különböző helyen is
elfér úgy, hogy a kimaradó 12 mező ugyanazzal a két hexiamonddal (a hegyessel és
a tompával) tölthető ki.

3. ábra 4. ábra 5. ábra
Ezért, ha rács-nyolcszögünket úgy helyezzük el a (3, 4, 4, 3, 4, 4) táblán, hogy

a rajta kívül maradó 60 mező a hegyestől és a tompától (és egymástól is) kü-
lönböző hexiamondokkal kirakható legyen, akkor — alkalmas elhelyezés esetén —
három kirakás helyett egy is elegendő lesz. Két ilyen elhelyezést mutat a 6. áb-
ra. Ugyanez a gondolat további javításokat tesz lehetővé a 4. és 5. ábrán látható
rács-nyolcszögek segítségével; ezeket az elszánt olvasó az (1) program segítségével
megtalálhatja. Ilyen úton k értéke a (3, 4, 4, 3, 4, 4) - (2, 0, 2, 2, 0, 2)+ páron 11-re
csökkenthető, ami h/k-ra 6,18-at ad. Ez még mindig lényegesen kisebb, mint Daw-
son bizonyításának elegancia-hányadosa, ami alátámasztja Gál Péter értékelését:
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hexiamondokkal játszani sokkal nehezebb, mint pentominókkal ([4], 79. o.).

6. ábra

Kitölthető konvex rács-sokszögek. Ezek közül a paralelogrammák és a 12 külön-
böző hexiamonddal kitölthetők felsorolását megtaláljuk [4] 61. oldalán. Itt megad-
juk az összest. Nyilvánvalóan szorítkozhatunk azokra az n-szögekre, amelyek mére-
te osztható 6-tal, és legfeljebb 72. Használni fogjuk az előző fejezetben bevezetett
jelölést, a konvex rács-sokszögek méretére és paritás-számára tett megállapításokat,
valamint a kitölthetőség eldöntéséhez szükség esetén az (1) programot.

Kitölthető rácsháromszög nincs. Csak a 36 méretű jöhetne számításba, annak
azonban 6 a paritás-száma.

Mivel az (a, 0, b, a, 0, b) paralelogramma (a ≤ b) mérete 2ab, ezért a és b leg-
alább egyike osztható hárommal. Az ilyen (a, b) párok között 32 azoknak a száma,
amelyekre 2ab ≤ 72, és ezek közül 14 kirakható: (3, 1), (6, 2), (4, 3), (5, 3), . . .,
(11, 3), (6, 4), (9, 4), (6, 5), (6, 6). Ezek közül szükségünk lesz a továbbiakban a 6, 2

oldalú paralelogramma kitöltéseire, ezért ezeket itt megmutatjuk:

Ami lényeges lesz számunkra a továbbiakban, hogy minden kitöltésben szerepel a
tompa és a hegyes is.

Ha az (a − b, b, 0, a, 0, b) trapéz kitölthető, akkor paritás-száma (b) 2 vagy 4,
mérete pedig megfelelően 4(a− 1) vagy 8(a− 2), és így — ugyancsak megfelelően
— a 3k+1 vagy 3k−1 alakú. Ha a paritás-szám 2, a (2, 2, 0, 4, 0, 2) trapézt könnyen
kirakjuk (ld. a fenti paralelogramma kitöltéseinek megfelelő részeit). Ha a ≥ 7, a
trapéz kirakásához használnunk kell a macska és a gálya egyikét. A paritás-szabály
miatt a macska „feje” csak északra állhat, ezért a fej oldalán kimaradó mezők pa-
ralelogrammát alkotnak, amely a fentiek alapján csak az elfajult (0 háromszöget
tartalmazó) vagy a 6, 2 oldalú paralelogramma lehet. A macska másik oldalára
csak pálcát vagy tompát rakhatnánk; ezek közül a pálca mellé már nem tehetünk
tőle különböző hexiamondot, a tompa berakása után fennmaradó rész pedig ismét
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egy parallelogramma lenne, ami megintcsak az elfajult, vagy a 6, 2 oldalú lehetne.
Mivel a fej vagy a farok felőli oldalon ki fog alakulni legalább egy 6, 2 oldalú parale-
logramma, és annak kirakásához szükségünk lenne tompára is, így macskával nem
lehet kirakni a trapézt. Ha pedig gályát használunk, annak a „vitorlái” északnyugat
vagy északkelet felé állnak, és a kirakás csak hegyessel folytatható. Ekkor a további
mezők ismét egy (vagy több) 6, 2 oldalú parallelogrammát alkotnak, s a kitöltés-
hez szükségünk lenne a hegyesre is, de azt már elhasználtuk. Így (2, 2, 0, 4, 0, 2)

az egyetlen 2 paritás-számú kitölthető trapéz. A 4 paritás-számúak közül a méret-
korlát miatt csak (1, 4, 0, 5, 0, 4), (4, 4, 0, 8, 0, 4), (7, 4, 0, 11, 0, 4) vehető figyelembe.
Ezek mind kitölthetők.

Már megfigyeltük, hogy konvex rács-ötszög egyetlen hegyesszögének egyik szá-
rán van az ötszög leghosszabb oldala; jelölje most ennek a hosszúságát a, a másik
szárán levő oldal hosszúságát b (nincs kizárva, hogy a = b), ld. a 7. ábrát. Legyen
a következő oldal hosszúsága c (szükségképpen a > c > a − b). Ekkor a tekintett
rács-ötszög: (c, a − c, b + c − a, a, 0, b). Ennek mérete t = 2ab − (a − c)2, paritás-
száma a − c. Ezért kitölthető rács-ötszögre a = c + 2 vagy a = c + 4 teljesül,
ahonnan következik, hogy a és b egyike 3k + 1, másika 3k + 2 alakú. Az ezeket a
feltételeket kielégítő (a, b, c) hármasok a méretkorlátot figyelembe véve a következő
ötszögeket szolgáltatják, amelyek mind kitölthetők: (3, 2, 2, 5, 0, 4), (3, 4, 1, 7, 0, 5),
(5, 2, 3, 7, 0, 5), (6, 2, 2, 8, 0, 4).

7. ábra 8. ábra
Mint az előző fejezetben láttuk, bármely a, b, c pozitív egészekhez létezik olyan
rácshatszög, amelyben három, egymást követő oldal hosszúsága a, b, és c. A
következő oldal hosszúsága csak olyan pozitív egész d szám lehet, amelyre tel-
jesül a + b > d > a − c. Ekkor a további következő oldalak: e = a + b − d,
f = d− (a−c). Ennek a hatszögnek a mérete 2(ab+cd+ef)+(a−d)2, másképpen
2(a+ b)(c+ d)− a2 − d2 (8. ábra), paritás-száma |a− d|. Az adott méretű konvex
rácshatszögek egyszerű program segítségével meghatározhatók (papíron ceruzával
ez hosszadalmas lenne). Kirakhatóságukat az (1) programmal megvizsgálva a kö-
vetkezőt kapjuk: 20 olyan konvex rácshatszög van, amelyek mérete osztható hattal
és legfeljebb 72, és ezek közül 17 kitölthető különböző hexiamondokkal.
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Csúcsok? Az (1) program és Rosenkranz programja a hexiamond-feladványok meg-
oldásainak számát és ezáltal a feladványok nehézségét is jelzik. Várható ugyanis,
hogy két olyan feladvány közül, amelyek egyenlő méretű rács-sokszögek kitöltésé-
re vonatkoznak, az oldható meg nehezebben, amelynek kevesebb megoldása van.
Érdekes kihívás éppen csak megoldható feladványokat találni, vagyis olyan rács-
sokszögeket, amelyek egyetlen módon rakhatók ki hexiamondokkal. Szimmetriával
rendelkező rács-sokszögek esetén a szimmetria által egymásba átvihető kirakásokat
nem tekintjük különbözőnek; ilyen értelemben pl. a (2, 2, 0, 4, 0, 2) rácstrapéz két
különböző módon rakható ki. Gondolhatnánk, hogy az éppen csak megoldható fel-
adványok bonyolult alakzatok kirakásából állnak (9. és 10. ábra), de van ellenpélda
is (11. ábra).

9. ábra 10. ábra 11. ábra
Még érdekesebbnek látszik a legtöbb módon kirakható rács-sokszögek keresése.

Ez könnyű lehet adott tulajdonságú sokszögek esetén; például konvex sokszögekre
az előző fejezetben tett megfigyelések és (1) alkalmazásával nyerjük a következő
dobogót:

A kitöltések száma már itt is meglepő, de ha a konvexségtől eltekintünk, még
nagyobb számokat kapunk. A nemkonvex sokszögek változatossága miatt az összes
sokszögekre végleges eredményünk nincs, bár a méretkorlát folytán létezik olyan
sokszög, amely a legtöbb különböző módon tölthető ki. A 12. ábrán látjuk a 12 kü-



24 Csákány Béla, Makay Géza

lönböző hexiamonddal kitölthető csúcstartót, a 13. ábrán pedig az abszolút bajno-
kot: az akárhány különböző hexiamonddal kitölthetők jelenlegi „legjobbikát”. Ezek
megfelelően 14600 ill. 25036 módon rakhatók ki. A húszezresek klubja most három
kilencszögből áll: mindhárman az 59 méretű (3, 3, 4, 2, 4, 3) hatszögből keletkeznek
úgy, hogy azt alkalmas helyen egy megfelelő állású mezővel bővítjük.

A 6k− 1 (7 ≤ k ≤ 12) méretű konvex rács-sokszöget egy további mezővel kibő-
vítve rendszerint olyan alakzatot kapunk, amelynek sok kitöltése van. Ilyenekkel
kísérletezve találtunk olyan hétszöget (14. ábra), amely 2017 különböző módon
rakható ki.

12. ábra 13. ábra 14. ábra
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