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Amikor érdemes altalanositani
Kunos ApAMm

Az dltaldnositas gondolata altaldban akkor meriil fel a matematikdaban, amikor
egy problémat megoldottunk. Ha talalunk &ltaldnositasi lehetOséget, az altalaban
nehezebbnek bizonyul, ami nem meglepd, hiszen az dltalanosabb allitds részeset-
ként tartalmazza az eredeti problémat. Gyakran megtorténik, hogy az altalanositas
ugyanazon mddszerrel kezelhetd, mint a specidlis eset (erre szdmos példa taldl-
haté pl. [3] cikkben). Néha azonban még ennél is kiiléndsebbet tapasztalunk. Pélya
Gyorgy [7] konyvében taldlhaté a matematikatorténet két dridsdnak kovetkezé gon-
dolata:

,, Gyakran megtorténtik, hogy az dltaldnos probléma kénnyebbnek bizonyul,
mint a specidlis eset kézvetlen megolddsa”
(P. G. Lejeune-Dirichlet, R. Dedekind)

Bizonyos esetekben tehat mar problémamegoldés kozben is érdemes dltaldanosi-
tasokat keresniink, hiszen egy megfelel¢ altalanositdas megtalalasaval akar konnyit-
hetiink is feladatunkon. Jelen dolgozatban erre a jelenségre mutatunk néhany elemi
példat.

Els6 példank egy kombinatorika gyakorlatrdl vald, hogy a jelen dolgozatba job-
ban illeszkedjen, kicsit valtoztattunk az eredeti feladaton. A szerz6 megoldasi ki-
sérlete kudarcba fulladt, de a gyakorlat vezetéje, Nagy Géabor, ravilagitott, hogy
a feladatot &dltalanositva a specidlis esetben kudarcot vallé mddszer tokéletesen
miik6doképes.

1.1. feladat. Definidljunk eqy rekurziv sorozatot. Legyen Fy = a, Fy = b, ahol a,b
adott valds szdmok és legyen Fyio = Fry1 + Fr, (K = 0,1,...). Igazoljuk, hogy

minden n pozitiv egészre
n

3 <Z> Fj, = .

k=0
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Megoldasi kisérlet. A rekurziv sorozatokkal kapcsolatos feladatok megolddsédban a
teljes indukcid gyakori 6tlet. A binomialis egytitthatékra is jél ismert egy rekurzios
osszefliggés, nevezetesen (";gl) = (1) + (")), fgy itt a teljes indukcié kiilondsen
kecsegtetd. Kis n-ekre konnyen ellenorizhetd az allitas, tegytk fel, hogy 1,2,...,n

esetekben igaz az allitas és prébaljuk ebbdl megkapni az n + 1 esetet:

n+1 n+1
n+1 n+1 n+1
()= (o) (M)

k=0 k=1

_ (”31>F0+n§[< )+<kﬁ1>]F’“
_ (g)FmL;(Z)F’“Lg(kﬁl)F

n n+1
n n
= E (k)Fk—’_E (k—l)Fk_S.
k=0 k=1
—_———
Faop

Megjelent az 6sszegben Fy,,, ami 6rémteli, hiszen Fo,1o-t szeretnénk kapni, igy, ha
a masik tagrol latnank, hogy Fa,1-gyel egyenlo, készen lennénk. Sajnos azonban ez
nem lathaté az indukcids feltevésiink alapjdn. A gondot az okozza, hogy a binomalis
egyutthatokban k — 1 szerepel, mig a sorozat elemeinek indexe k. Bontsuk hat
tovabb az Osszeget a rekurziv Osszefiiggéseink alapjan:

n+1

S=F2n+( >F1+Z

_1> Fr—1+ F—2)
k=2

Ha sikeriilne megmutatnunk, hogy az 6sszeg szummads tagja Fo,_1, ez a vart Fb, +
Fop + Fop—1 = Fop + Fopy1 = Fonqo Osszefiiggést adna. A probléma most mar
egyértelmiien latszik. Ismét egy hasonlé szummas tagot kaptunk, mint az el6bb,
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és érezziik, hogy ennek a tovdbb bontdsaval is ismét kapnank egy ilyet, csak az
indexek csokkennének, és igy tovabb. Ebbdl mar nem lesz szép teljes indukcids

bizonyitas (,,kevésbé szép” még lehet, ldsd a kovetkezd, dltaldnositott feladat utdni
megjegyzéseket). Kudarcunktdl letorve legyiink batrak és dltaldnositsunk!

1.2. altalanositott feladat. Definidljunk eqy rekurziv sorozatot. Legyen Fy = a,
Fy, = b, ahol a,b adott valds szamok és legyen Fyyo = Fri1 + F, (K =0,1,...).
Igazoljuk, hogy minden n pozitiv egészre és ¢ nemnegativ egészre

Z (Z) FkJrc = F2n+c~

k=0

Ez a feladat nyilvanvaléan altalanosabb, mint az el6z6, hiszen az el6z6 ¢ = 0

specialis eseteként adédik.

Megoldas. Prébalkozzunk ugyantgy, mint az elébb, n szerinti teljes indukciéval.

Az n = 1 esetben az allitds bal oldala (J)Fote + (1) Fise = F. + F.11 alakot &lt,
mely a rekurziv definiciébdl valéban Fs.qy. = F.io-vel egyenld. Tegyiik most fel,
hogy az 1,...,n esetekben igaz az allitas, probaljuk igazolni az n + 1 esetet:

n+1 n+1
n+1 n+1
S (" e (1)

k=0

n n
n n
= Z (k) Fk+c+z (l{)) Fk+(c+1) = F2n+c+2 = FQ(nJrl)Jrc-

Fopge Fony(et1)

Mint latjuk, az altalanosabb allitds egyszertien adddott teljes indukciéval, mig
a specialis eset problémas volt. Ez gy magyarazhato, hogy amikor altalanosabb,
er6sebb allitast akarunk teljes indukciéval beldtni, akkor az indukcids 1épésben is

er0sebb dllitdsokat hasznalhatunk fel, ez sokszor megkonnyiti a bizonyitast.

Megjegyzések. Az dltalanositas nem volt természetellenes, hiszen mar az els6 pré-
balkozas szummdi kozott megjelent a c=1 eset. FEzt a fent latottakhoz hasonlé

modon tovabb bontogatva megsejtheto az altaldnositas.
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A kudarcot az elsé megoldasnal természetesen az egyszeri teljes indukci6 szem-
pontjabdl értettik. Joggal érezheti gy az Olvasd, hogy a megoldasi kisérlet nem is
fulladt kudarcba, hiszen folytathatjuk a bontogatast, és egyszer elfogynak a szum-
mak tagjai, ki kell jonnie a megoldasnak. Valéban, az elkezdett megoldéds végig-
gondolhato, de lényegesen hosszabb és bonyolultabb gondolatmenetet sziil, mint az
altaldnositott feladat megoldasa. Ennek végiggondolasat az Olvaséra bizzuk.

A figyelmes Olvaso bizonyara észrevette, hogy a feladatunkban szerepelt reku-
zi6s Osszefiiggés megegyezik a Fibonacci-sorozat rekurziv osszefliggésével. Eredeti-
leg a feladat a Fibonacci-sorozattal szerepelt. Azért véltoztattuk meg a kezd6eleme-
ket, hogy elkertiljiik a feladat a Fibonacci-sorozat — sokak szamara ismert — explicit
formuldjanak rutinszer( alkalmazdsaval valé megolddsanak o6tletét, mint alterna-
tiv megoldési lehetOséget, mely igencsak csokkentené az dltalunk koézolt megoldas
értékét.

Kovetkezd feladatunk meglehetésen ismert, megtalalhaté példdul [10]-ben. E16-
szor kozlliink két szokdsos megoldést, majd — a dolgozatunk szellemében — egy olyan
altaldnositast keresiink, ami megvildgitja a feladat 1ényegét, igy egy jéval termé-
szetesebb megoldashoz vezet.

2.1. feladat. Egy szigeten 13 sziirke, 15 barna, 17 26ld kaméleon él. Ha két killon-
b6z6 szind kaméleon taldlkozik, akkor annyira megijednek eqymdstol, hogy mindket-
ten a harmadik szinre vdltoztatjak a boriket. Lehetséges, hogy eqy idd milva minden
kaméleon ugyanolyan szint legyen?

1. megoldas. Taldlkozzanak a sziirke és fekete kaméleonok x-szer, sziirkék és zol-
dek y-szor, végiil a barna és z6ld kaméleonok z-szer. Ezen jelolés alapjan konnyen
kovethetd, hogyan valtoznak az egyes szinekhez tartozé kaméleonok szdmai. Ha
példaul csak sziirke kaméleon maradt:

13—z —y+2z=45,
15—z —-242y =0,
17—y —2+4+2x=0.
Ezt az egyenletrendszert (és azt a masik két valtozatot, amikor a jobboldalon rendre

0, 45, 0 vagy 0, 0, 45 4ll) megvizsgalva, azt kapjuk, hogy egyik egyenletrendszernek
sincs egészekbdll allé megoldasa. -

2. megoldas. Legyen a,b,c rendre a sziirke, barna, zdld kaméleonok szdma.
Konnyen ellen6rizhetd, hogy az S = b — a kifejezés 3-as maradéka a folyamat soran
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nem valtozik. Ez eredetileg 2, és ha minden kaméleon egyszinii, akkor 0 volna, tehat
a folyamat soran ez az allapot nem érheto el. -

Az els6 megoldas eléggé szamoldsnak, a masodik pedig meglehetdsen ,kalapbdl
el6htizottnak” tiinik. Egy ezeknél sokkal természetesebb megoldédsi médra vezet a
feladat kovetkezo dltalanositdsa. (A feladat meséjét kicsit 4t kellett frnunk, mert az
altalanositas az eredeti mesébe illesztve nem hangzik jol. Konnyen lathato azonban,
hogy az el6z6 feladat altaldanositdsardl van szo.)

2.2. altalanositott feladat. Egy szigeten n > 2 féle szinid kaméleon él. Az eqyszi-
niek egyiitt, elkilonitett kozosségekben élnek, de fontosnak tartjik, hogy idénként
taldlkozhassanak kiilonbozd szind tarsaikkal, igy évente gyilést tartanak a sziget
tandcstermében. Minden évben minden kézdsség kisorsol egy kivdlasztottat, aki el-
latogathat a gytilésre. Sajnos azonban a tandcsterem csak n— 1 kaméleon befogadd-
sdra alkalmas, igy minden évben egy (sorsoldssal kivdlasztott) kézosség nem killdheti
el kivdlasztottjdat tandcskozni. Fzen okbol minden tandcskozds végén az dsszes ta-
ndcskozo kaméleon — a tandcskozdson nem képviseltetett kozosség irdnti részvét
kifejezéseképpen — olyan szintire vdltoztatja magat, amilyen szini kaméleon nem
szerepelt a tandcskozdson. (Tehdt minden tandcskozd a tandcskozdsbdl kimaradd
kézosséghez csatlakozik.) Ha a szigeten kezdetben minden kézésségben kilonbozd
szdma kaméleon volt modulo n, lehetséges-e, hogy egyszer a sziget csupdn eqy ka-
méleon kidzdsségbdl fog dallni?

Megoldas. Els6 ranézésre még a feladat helyességét illetéen is kétségiink tamadhat.
A feladat szovege nem sz6l arrdl, hogy mi torténik, ha példaul eltiinik két kozosség.
Ekkor milyen szabdlyok szerint tandcskoznak? Kinek a szinére valtanak a végén?
Ez alapjan a feladat nem tinik egyértelmiinek. Gondoljunk viszont bele, hogy
mi torténik modulo n a kozosségek szamdaval. Minden tandcskozas végén n — 1
kozosség 1étszama —1-gyel valtozik (mod n), egy kozosségé pedig n — 1 = —1-
gyel (mod n). Tehdt minden kozosség 1étszdma eggyel csokken modulo n. Ennek
értelmében vildgos, hogy egyszerre csak egy kozosség tlinhet el. Ekkor ez a k6z0sség
nem vesz részt kévetkezo tandcskozdson, igy a szabdlyok értelmében a résztvevo
n — 1 tandcskozo erre a szinre valtoztatja magat, igy a kozosség ,feltamad” n — 1
taggal. Az is vildgos, hogy ebben a pillanatban egyetlen kozosségnek a létszama
sem lesz —1 (mod n), tehdt megmarad az a tulajdonsig, miszerint minden k6zosség
létszama kiilonboz6 modulo n. Latjuk tehat, hogy még tobbet is dllithatunk annal,
hogy nem marad a szigeten soha csupan 1 kozosség. Azt kaptuk ugyanis, hogy a
szigeten mindig legaldbb n — 1 k6z0sség lesz jelen. -

Most egy egyszerii, szokasos teriiletatalakitassal megoldhaté feladatot muta-
tunk be, melyrdl ki fog deriilni, hogy a Pitagorasz-tétel dltalanositdsa.
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3.1. feladat. Adott ABC hdromszdg. Rajzoljunk BC és C' A oldalaira kifelé BDEC
és ACFG paralelogrammdkat (1. dbra). Messék egymdst a GF és DE egyenesek
a H pontban. Rajzoljuk meg az AB oldalra kifelé az ALK B paralelogrammdt gy,
hogy HC || AL || BK, HC = AL = BK. Igazoljuk, hogy ekkor fenndll a

tacre ttBpEC = tALKB

teriletegyenldség.

1. dbra 2. 4dbra

Megoldas. A feladat egy tipikusnak mondhatd, teriiletatalakitdsra vonatkozo fel-
adat. Az egész megoldds arra a jol ismert tényre épiil, hogy a paralelogramma
teriilete nem vialtozik, ha egyik oldalat sajat egyenesében eltoljuk. Ez kiovetkezik
abbdl, hogy a paralelogramma teriilete megkaphaté két szemkozti (egyméssal par-
huzamos) oldaldnak tdvolsdga és ezen oldalak hosszénak szorzataként.

Huzzunk CH-val parhuzamos egyeneseket A-n és B-n keresztiil, messék ezek
GH és DH egyeneseket rendre az I, J pontokban (2. dbra).

Az eddigiek alapjan vilagos, hogy tacra = tacur és tppec = tpsuc- Tudjuk
azt is, hogy az [A, HC,JB, BK szakaszok parhuzamosak és egyenléek. FEzekbol,
az X és 'Y pontok egyenesét exy-nal, az e; és ea egyenesek tévolsdgat d(eq, e2)-vel
jelolve, kapjuk, hogy

tacrc +tBpEC =tACHI T iBIHC
=CH -d(ear,ecu) + CH - d(ecH,eBJ)
= CH - (d(ear,ecu) + d(ecu,epr))
=CH -d(ear,eps) = KB -d(ear,epr) =taLkB-
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Nézziik most meg az el6z6 feladat azon specidlis esetetét, amikor ABC harom-
szogben C-nél derékszog van, és BC, C' A oldalaira négyzeteket irunk (3. dbra). A
szokasos jeloléssel legyen BC' = a, CA = b, AB = c. Rajzoljuk meg a c oldalhoz
tartozdé C'M magassagot.

H
F
G E
C
D
A M |B
L K
3. dbra

Mivel CF = b, FH = a, és CFH, = 7/2, igy CFHA =~ ACBA, azaz CH =
AB =c¢, és

MCH, = MCA + g + FCH. = (g _ CAMq) n g + CAM. = .

Tehdt HM A4 = 7/2, amib6l BAL4 = 7/2. Ezekbdl mar kovetkezik, hogy ALK B
négyzet, tehat valoban, az el6z6 feladatunk az oldalakra emelt paralelogrammak
(itt most négyzetek) teriiletére éppen a? + b? = c2-et 4llitja.

Megjegyzés. A Pitagorasz-tétel legismertebb altaldnositasa a koszinusz-tétel, mely
a Pitagorasz-tétel allitdsat mint az oldalak hosszai kozott fennallé algebrai Gssze-
fliggést dltalanositja. Ha azonban igy tekintiink a tételre, mint az oldalakra emelt
négyzetek teriiletei kozotti Osszefliggésre, akkor az imént kozolt feladat a tétel leg-
természetesebb altalanositasa, és ez egy — tertiletatalakitasra vonatkozé — kozép-
iskolai rutinfeladat (a szokédsos kozépiskolai [2] példatar teriiletszamitds, teriile-
tatalakitas és alkalmazdsai fejezete is sok hasonld feladatot tartalmaz). Erdemes
Osszevetni a megoldasunkat a Pitagorasz-tétel jol ismert bizonyitasaival Gtletigény
szempontjabol.
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Az emlitett két altaldnositasi irany kozott 1étesithetd valamiféle kapcsolat, ezzel
kapcsolatban 14sd [1] cikket.

Gyakran a tul specidlis problémafelvetés eltereli a figyelmet az allitdsok mo-
gott allé mélyebb okokrdl, olyan irdnyba terelve gondolatainkat, amely 1ényegesen
bonyolultabb megoldasokat sziil. Erre a jelenségre mutatunk most harom nagyon
egyszer(, de anndl tanulsdgosabb példat.

3.2. feladat. Legyenek A és B rendre 3, illetve 5 sugari, egymdst merdlegesen
metszd kirlemezek a stkon. Szamitsuk ki a K =t 5\ g —tp\ a teriletkilonbséget. (itt
A\ B és B\ A a kérlemezek halmazelméleti kilonbségét jeloli.)

A legtobben, akik ezt a feladatot latjak, elkezdik kiszamolni a két korlemez
metszetének t 4np teriiletét, hiszen ezzel megkaphatd t 4\ p(=tA —tanB) éstp\a(=
tp —tanp). A metszet teriiletének kiszdmitdsa azonban meglehet8sen koriilményes
és hosszadalmas feladat, ahhoz képest, amilyen megoldast a kovetkezd apro otlet
kinal:

K =tap—tpa=(tas+tans) — (tp\a +tanB) =ta —tB.

Mindenféle formalis, triikkos szamolds nélkiil is teljesen trividlis, hogyha két
mennyiséget ugyanannyival csokkentiink, akkor kiilonbségitk nem véltozik, és itt
is errdl van sz6. (A két kor teriiletét a metszetiik teriiletével csokkentjik, majd
képezziik ezen teriiletek kiillonbségét.)

Miért kezdi el szinte minden megoldé mégis a metszet teriiletét szamolni, ha
ilyen egyszerii és utdlag természetesnek latszé megoldas is kinalkozik? A vélasz az
lehet, hogy amikor meglatunk egy utat, amit ranézésre végig tudunk jarni, mego-
riilliink neki, és azonnal hozzalatunk. Nem foglalkozunk mar méas megoldési lehe-
t6ségekkel, csak az els6 Otlet kidolgozasara koncentralunk. Esetiinkben pedig els
ranézésre adodik a gondolat: a metszet teriiletének megaddasaval készen lennénk.
Azért ez juthat az esziinkbe, mert méar valdszinileg sok hasonlé problémat lat-
tunk, illetve a feltételek igy tlinnek a legegyszertibben kihasznalhaténak. Vegyiik
azonban észre, hogy nem kell kihaszndlnunk a feladat feltételeit. Az egyszertibbik
megoldasban nem hasznaltuk ki a mer6leges metszést, s6t még azt sem, hogy az
alakzataink korok.

Ha ugyanezt a feladatot joval altalanosabb halmazokra, semmit nem &llitva a
metszés mikéntjérol adjuk fel, valészintileg konnyebben jut eszébe a megoldénak a
masodik megoldas.
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4.1. feladat. Egy tdblds csokit, mely a szokdsos médon a x b kis kockabol dll, igy
szeretnénk széttordelni 1+ 1-es kockdkra, hogy csak a mélyedések mentén torhetink,
egyszerre csak eqy darabot. Legkevesebb hany torés szikséges?

Némi kisérletezgetés utan azt tapasztalhatjuk, hogy mindig ab — 1 torés sziik-
séges. A rutinos problémamegolddk ezen a ponton &dltaldban a + b szerinti teljes
indukcidhoz nytulnak, mellyel valéban koénnyen igazolhaté a sejtés. Van azonban
egy nagyon egyszeri mod, ahogyan azonnal indokolhat6 ez az eredmény, matema-
tikdt nem ismer6 kozonség szamara is. Gondoljunk ugyanis bele, hogy minden egyes
torésnél egy darabbdl kettd lesz, tehat minden egyes toréssel eggyel né a darabok
szama, ami az elején 1, a folyamat végén pedig ab.

Ha nem ilyen specidlis példan adjuk fel ugyanezt a feladatot, hanem valami
tetszOleges alakzat darabokra tordelésérél beszéliink, akkor itt is természetesebb a
lényeget megvilagité masodik megoldas.

Amikor egy olyan feladattal taldlkozik a problémamegoldd, ami egy specidlis
struktirardl szol, rogton abban kezd el gondolkozni, annak a tulajdonsagaival pré-
bélja megfogni a feladatot. Eléfordul azonban, hogy — mint a fenti két kis példaban
is 1atthattuk — a megoldas jéval altaldnosabb tulajdonsidgokban gyokeredzik. Gon-
dolnunk kell tehat arra is egy probléma megoldasakor, hogy nem til specialisak-e
a feltevéseink, érdemes megprébélni ,lazitani” a feltételeken, hdtha ezzel jobb be-
pillantast nyerhetiink az allitasunk igazdnak mélyebb okaira.

5.1. feladat. Tekintsiik a p(z) = ax?® + bx + ¢ polinomot, ahol a,b, ¢ rigzitett valds
szamok. Tudjuk, hogy a p(x) = x egyenletnek nincs valds gyoke. Bizonyitsuk be,
hogy ekkor a p(p(x)) = x egyenletnek sincs valds megolddsa.

Mivel a méasodfoku polinomokat jol ismeri, a feladatmegoldd sok esetben rog-
ton ,rdharap” a kovetkezd tutra. Azt, hogy a p(xr) = z egyenletnek nincs valds
gyOke konnyen megfoghatjuk algebrailag, hiszen ez pontosan akkor teljesiil, ha a
p(x) —x = az? 4+ (b — 1)z + ¢ masodfokd polinomnak nincs valés gyoke, azaz ha
diszkrimindnsa negativ, vagyis (b — 1)? — 4ac < 0. A probléma ott van, hogy ha
a # 0, akkor a

p(p(z)) — 2 = a®x* +2abx® + (2a%c + ab® + ab)x? + (2abc + b* — 1)z + ac® +be+ ¢

polinom negyedfok, igy vele mar nem olyan egyszerii banni, mint a masodfoktiak-
kal, igen nehéz kihasznalni a kapott feltételt. Latjuk, hogy ezen az iton meglehe-
t6sen nehéz lenne tovabbhaladni.

Nézziink most kicsit tdvolabbrdl a feladatra. Ha p(x)-re gy tekintiink mint
egy R — R fliggvényre, akkor megallapithatjuk, hogy azzal, hogy kikotottiik, hogy
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masodfokd polinom, nagyon lesziikitettiik az R — R fiiggvények halmazat. Le-
het, hogy ennél joval altalanosabb fliggvényosztalyra is igaz a feladat allitasa, és a
megszoritassal, a specidlis esettel csak arrdl a 1ényeges tulajdonsagrol tereltiik el a
figyelmet, ami éppen a feladat allitasanak fennalldsat biztositja? Valéban, tekintsiik
a kovetkez6 altalanositést.

5.2. altalanositott feladat. Legyen f:R — R folytonos fligguény. Bizonyitsuk be,
hogy ha f(x) = x semmilyen valds x-re nem dll fenn, akkor f(f(x)) = = szintén
nem dall fenn egyetlen valds x esetén sem.

Megoldas. Mivel f(z) folytonos, g(x) = f(z)—=z is az, igy g(z) > 0 [vagy g(x) < 0]
minden valds z-re, kiilonben a pozitiv és a negativ értéke kozott valahol a folyotnos-
sdgbdl adéddan 0-t is fel kellene vennie, ez pedig a feltételekbe titkozik. Azt kaptuk
tehdt, hogy x < f(x) [vagy = > f(x)] minden valds z-re, ahonnan egyszeriien

w < flx) < f(f(z)) [vagy = > f(z) > f(f(2))]

adédik minden valds z-re. -

Kiilonosen kozépiskolai versenyfeladatok esetén sokszor érezhetjilk gy magun-
kat, mintha megkaptuk volna egy puzzle egyetlen darabjat, és abbdl kellene meg-
mondanunk, mi van a képen. Ehhez természetesen meg kell sejteniink, hogy mi
van a tobbi darabon. Tehdt a feladat specialis volta ellenére, muszaj egy altaldno-
sabb ,elméletben” elhelyezniink azt, hogy jé ralatdsunk legyen a problémara, meg
tudjuk oldani. Kovetkezo két példank ebbdl a tipusbdl vald.

6.1. feladat. Legyen x pozitiv valds szam és H(x) = {[nz] :n =1,2,...}, (ahol [y]
az y egészrészét jeloli). Keressik meg az osszes olyan pozitiv valds a-t melyre
H1+V2)UH(a) =27, H1+V2)nH(a)=0.

A feladatban az 1+ v/2-nek, mint majd latjuk, (az irracionalitdsan kiviil) nincs
kiilonosebb szerepe, igy érdemes a problémat mindjart teljes altalanossdgban vizs-
gélni (az 1 + v/2 konkrét értéke ugyanis csak megneheziti egy igen szép feltétel
megtaldldsit). Fogalmazzuk meg az dltaldnositott feladatot.

6.2. altalanositott feladat. Legyen x pozitiv valds szdm és H(x) = {[nz] : n =
1,2,...}, (ahol [y] azy egészrészét jeloli). Milyen feltételeknek kell teljesiinie az c,
B pozitiv valds szdmokra, hogy

(1) H(e)UH(B)=2Z%, H(a)NH(B)=0.
fenndlljon?
Megjegyzés. Ennek a problémanak a megolddsa szamos konyvben megtalalhatd

(pl. [6], [9]). Most egy olyan megolddst kozliink, amely megmutatja, hogyan lehet
a feltételt (ha az nincs megadva) magunktdl kitaldlni.



Mihelysarok 43

Megoldas. Vezessiink be egy jelolést. Minden n pozitiv egészre jelolje h a H(«)
halmaz n-nél kisebb elemeinek a szamat, azaz legyen

[{k : k € H(a),k <n}| =hp.

A megoldds egy egyszerli dtletre épiil. Kénnyen lathatd, hogy (1) fenndlldsdnak
sziikséges és elegend? feltétele a most bevezetett jeloléstinkkel

(hp ™™+ Rt — (b + ) =1

(minden n = 1,2,... esetén). Ez pedig nyilvdn akkor és csak akkor all fenn, ha
hy +hjy =n—1 (minden n = 1,2, ... esetén). Hatdrozzuk tehat meg hy, + hj3-t, és
prébaljunk ebbél feltételt nyerni o, S-ra. Az vildgos, hogy

-2 - [3)

Tehdt hy +hj = [%] + [%], mely konnyen becsiilheté az x — 1 < [z] < z egyenl6t-
lenség segitségével:

L R Y L e
"aTB)" T a8 ol Bl =aT T a T B)
Azt kaptuk tehat, hogy

11 o 11

Vezessiik be az 1 + % = v jelblést. (2)-bSl mar latszik, hogy v = 1 fenn kell, hogy
alljon, kilénben
yn —2 <n—1(=h} +hj) <yn

nem teljesiil ,,nagy” n-ek esetén, ugyanis, ha v > 1, akkor n > ﬁ esetén n — 1 <
yn — 2, ha pedig v < 1, akkor n > ﬁ esetén n — 1 > yn. Azt mar tudjuk tehat,
hogy a v = 1 feltétel sziikséges, de vajon elegendé-e?

Vegyiik észre, hogy ha (2)-nél szigort egyenldtlenség dllna, akkor (é—i—% =~v=1
miatt) n — 2 < hy + hjj < n teljesiilne, amibdl hq + hjy = n — 1 kovetkezne.

Erdemes tehat megvizsgalni, hogy az [%} < {%} < % egyenl6tlenségekben
milyen «, 3 értékekkel tudnank biztositani, hogy semmilyen n esetén ne alljon fenn
egyenléség, hiszen ezzel egy elegendd feltételt kaphatnank feladatunkra. Konnyen
ldthato, hogy ha « irracionélis, akkor minden n-re 7 is irraciondlis, igy [%] <z Az

is lathato tovabba, hogy é—i—% = 1-b6l adéddan « és B egyszerre raciondlisak illetve
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irracionalisak, tehdt megkaptunk egy elegend6 feltételt: ha «, [ irracionalisak, és
é + % = 1, akkor (1) teljesiil. Vajon a kapott feltétel sziikséges-e?

Talédn érezhet6, hogy a vélasz igen. Azt fogjuk megmutatni, hogy nincs olyan
pozitiv, raciondlis a, 8 pér, melyre H(a) N H(B) = () teljesiilne. Legyen ugyanis
a= %, 8= Z—j, ekkor p1pa € H (o), H(B). Megkaptuk tehét a sziikséges és elegend§
feltételt: akkor és csak akkor all fenn (1), ha a, 8 pozitiv irracionalisak, és 1 + % =

1. -

7.1. feladat. Legyen n poziltiv egész szam. Jeldlje S(n) az n szdmjegyeinek dsszegét
tizes szdamrendszerben. Bizonyitsuk be, hogy

a) S(n) <5-5(2n),
b) S(n) <5-5(5°n),
c) S(n) <8-5(8n).

Most is érezhetd, hogy a harom egyenl6tlenség k6zos t6bol ered, elsé ranézésre
azonban nem nyilvdnvald, hogy mi lehet ez. Alakitsuk kicsit 4t az a) feladatrész
allitasat:

S(10n) = S(n) <5-5(2n) = S(5) - S(2n),
az a) rész tehdt azt allitja, hogy S(10n) < S(5) - S(2n). Ez S(ab) < S(a) - S(b)
alaku. Lehet, hogy ez az altalanos Osszefliggés all mindharom feladatrész mogott?
Vizsgaljuk meg:

S(10°n) = S(n) < 5-S(5°n) = S(2°) - S(5°n),
S(10°n) = S(n) < 8- S(8n) = S(5°) - S(2%n).

Létjuk tehét, hogy feladatunk mindhdrom része speciélis esete az dltaldnos S(ab) <
S(a) - S(b) egyenlbtlenségnek, egyelére viszont nem tudjuk, hogy ez igaz-e. Néhdny
irdsbeli szorzast elvégezve, és kozben ilyen szempontbdl figyelve az eseményeket,
igen er6s megggy6z6désiinkké valhat, hogy igaz a sejtés. Ez tipikusan olyan allitas,
melyet meggy6z6 érveléssel nem nehéz elhitetni valakivel, most azonban célul egy
preciz, formalis bizonyitds megalkotasat tlizziik ki. Tetszbleges szamrendszerre pro-
baljuk bizonyitani a sejtést, ezzel biztositva, hogy elkeriiljik a tizes szamrenderre
vonatkozé tapasztalainkra tamaszkodd szemléletes, pontatlan érveléseket. Fogal-
mazzuk meg altalanositott feladatunkat.

7.2. altalanositott feladat. Jeldlje S,(n) az n pozitiv egész p alapd szdmrendszer-
ben felirt alakjdban o szdamjegyek Osszegét. Legyenek a,b pozitiv egészek. Ekkor

Sp(ab) < Sp(a) ) Sp(b)-

Az altalanositott feladat bizonyitasat egy lemmara alapozzuk.
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7.3. lemma. Jeloljon (anan_1...a0)p a p alapi szdmrendszerben egy n jegytd szd-
mot (ahol természetesen 0 < a; < p). Nevezziik a k pozitiv egészhez tartozd

k= Em: bip'
=0

osszegeket k felbontdsainak, ahol a felbontds b; egyitthatdi nemnegativ egészek. Azt
dllitjuk, hogy ha k = (anan—1...ao)p, akkor

m n
PILED IR
i=0 =0

és egqyenldség akkor és csak akkor teljesil, ha a; = b; (minden i értékre, itt ter-
mészelesen i > n esetén a;-t, 1 > m esetén b;-t nulldnak tekintjik), azaz egy k
pozitiv egész felbontdsainak egyiitthatdinak dsszege akkor és csak akkor minimadlis,
ha annak egyiitthatoi éppen az adott szdmrendszerbeli alakjinak szamjegyei.

A lemma bizonyitasa. Rogzitsiink egy pozitiv egész k-t és legyen
n
k= (antn_1...0a0)p = Z a;pt.
i=0

A sokszor szémrendszerek alaptételeként is emlegetett tétel ([11], 1.31-es tétel) azt
allitja a mi terminolégidnkkal, hogy egy tetszéleges pozitiv egész egy felbontasanak
b; egylutthatoéira akkor és csak akkor teljesiil 0 < b; < p, ha a b; egyiitthatok rendre
megegyeznek a szam adott szdmrendszerbeli alakjanak szamjegyeivel. Vegytink egy
E?:o a;p*-t61 killonbozo ZZZO bip® felbontast. A mar emlitett szdmrendszerek alap-
tételébol kovetkezik, hogy ez a felbontés tartalmaz legalabb egy b; > p egyiitthatot.
Tekintsiik a k kovetkez6 mddositott felbontasat:

k= (Zbipi = )bopO +bipt 4 (b =)t (b D) A bp™.
=0

Vegyiik észre, hogy a mddositott felbontdsban az egyiitthaték Osszege pontosan
p — 1(> 0)-val kevesebb, mint a > b;p’ felbontdsban. Azt kaptuk tehdt, hogy k
tetsz6leges > a;p'-tél kiilonbozd felbontdsahoz taldlhatéd olyan felbontés, melyben
kisebb az egylitthaték osszege. Vigyéazat, az eddigiekbdl még nem kovetkezik, hogy
a Y a;p’ felbontdsban minimalis az egyiitthatk osszege. (Ehhez hasonld nevezetes
logikai hibdt vétett Jacob Steiner (1796-1863) az izoperimetrikus tétel bizony{td-
sdban 14sd [10], 1937. feladat megolddsa, 360-361. old.) Arra kovetkeztethetiink
csupén, hogy ha van minimélis egyiitthatéosszeg, akkor az csak a > a;p’ egyiitt-
hatéosszege lehet. Konnyt latni azonban, hogy 1étezik minimalis egytlitthat6osszeg,
hiszen azok csak nemnegativ egészek lehetnek, és nyilvanvald, hogy a nemnega-
tiv egészek halmazanak tetszéleges nemires részhalmazanak van minimalis eleme.
Készen vagyunk a lemma bizonyitasaval.
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Az altalanositott feladat bizonyitasa. A most bizonyitott lemmaéat fogjuk hasz-
nélni. Legyen a = (an@n-1...a0)p = > o @ip's b = (bibm—1...b0)p = > vy bid’
és ab = (crcr_1...¢0)p = Di_ocip'. Az vildgos, hogy Sp(ab) = Y_i_, ¢;. Képezziik
most ab egy masik felbontdsdt (a lemmdban definidlt értelemben):

n m n+m
ab = <Zaipi> (ijpj> = Z aibjp”j = Z ( Z aibj)pk.
i=0 j=0

0<i<n k=0  it+j=k
0<j<m 0<i<n
0<j<m

A lemmank tehat ebben az esetben éppen azt allitja a felbontasban szereplo egytitt-
haték

Osszegére, hogy

- ntm n m
S(ab) :;q >3 Y abj= > aiby= ( Oai> <ij) = S(a)S(b).

k=0 i+j=k 0<i<n i= §j=0
0<i<n 0<j<m
0<j<m

Készen vagyunk tehat a segédtétel bizonyitdsaval is.
Azt mar lattuk, hogy a segédtételbdl kovetkeznek a feladat allitdsai, igy a fel-
adat megoldédsaval is készen vagyunk. -

Sokszor haszndlt, kozismert tétel a szdmtani-mértani kdzepek kozotti egyen-
16tlenség. Sokféleképpen bizonyithaté (szdmos bizonyitds megtaldlhaté a [6], [4]
konyvekben), de egyik bizonyitdsa sem mondhaté trividlisnak. Most ismertetiink
és bizonyitunk egy tételt, az Gn. Jensen-egyenlotlenséget, mely lényegében a kon-
kavitas egy ekvivalens definiciéja, és beldle egyszerii kovetkezményként kaphatd a
szamtani-mértani kozepek kozotti egyenl6tlenség.

8.1. tétel. (Jensen-egyenétlenség) Az f: 1 — R fiigguény akkor és csak akkor kon-
kdv az I intervallumon, ha minden ay,...,a, € I ésty,...,t, >0,t1+---+t, =1
esetén

ftiar 4 -+ tphan) > tif(ar) + -+ tnf(an).

Bizonyitas. El6szor is figyeljiik meg, hogy n = 2 esetben éppen a konkavitas felté-
telét (14sd pl. [5], 7.15. Lemma) adja a tétel, {gy az elegend8ség, illetbleg a sziikséges-
ség n = 2 esete vilagos. A sziikségesség fennmarado6 n > 2 eseteit teljes indukcidval
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bizonyitjuk be. Tegyiik fel, hogy a 2,...,n értékekre igaz az éllitas. Természetes
otlet, hogy az n + 1 esetben tgy hasznéljuk fel az indukciés feltevést, hogy az f
argumentuméban 1évo n + 1 tagot két részre csoportositjuk, majd az n = 2 esetet
hasznélva szétbontjuk az f-et, lehet6vé téve az n eset - mint indukcids feltevés -
hasznalhatésagat.

tlal +--+ tnan
1 _tn—i-l

> +tni1f(ant1) =

t tn
= (1—t . [ - t .
(1 —tnt1) f(1 ot 1—tn+1“") + tps1 f(ant1)

fltrar + - +tnyransr) = f((1—tng1) + tnt10ng1) >

tiar + -+ than
1- tn-{-l

S

Most észrevéve, hogy 1_1;1 4+ 4 1_1:/“ = 1, haszndlhatjuk az indukcids feltételt

az n esetben. Ezzel tovabb folytatva a becslést

t tn
> (1= tpi1) <71_; +1f(a1)+...+
n

=t1f(a1) + -+ tuf(an) + tny1f(ani1)

f(an)> Tt f(anss) =

1- tn-{-l

adddik, mely éppen a bizonyitandé allitas. -

8.2. tétel. (Szadmtani-mértani kozepek kozotti egyenlStlenség) aq, aq, . . ., a, pozitiv

szamok esetén
al _|_ P + an

n

Z Yai - Q.
Bizonyitas. A jol ismert logx fiiggvény, mint az koztudott konkav. Alkalmazhat-
juk rd tehét a Jensen-egyenl6tlenséget az as, ..., a, pozitiv szdmokkal és az 1/n
sulyokkal:

e day, 1 -+ log(an
log (a1 + +a ) > Og(al) + + Og(a ) = log(" a1'~'an),
n n

ahonnan (a log x szigori monoton névekedését kihaszndlva):

a1+...+an
n

> Yai---ap

adédik, mely éppen a bizonyitandé allitas. -

Teljesen hasonlé helyettesitéssel adodik az &altaldnos hatvanykozepek ko-
z0tti egyenlStlenség (sét, ennek silyozott véltozata) is, ami mutatja a Jensen-
egyenl6tlenség dltalanossagat és erejét. Ennek ellenére felhivjuk az Olvasé figyelmét
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arra, hogy a Jensen egyenl6tlenség fent bemutatott bizonyitisa egyaltalan nem
hosszabb, vagy bonyolultabb a szamtani-mértani kézepek kozotti egyenlétlenség
szokdasos bizonyitasainal. Egy atlagosnak mondhaté teljes indukciérdl van szé.

Meg kell azonban jegyezniink, hogy habar a Jensen-egyenl6tlenség fenti bizo-
nyitasa teljesen elemi, a logaritmus fliggvény konkdvitdsdnak preciz bizonyitdsa
(annak ellenére, hogy az allitds szemléletesen nyilvanvald), az analizis eszkozeire
tamaszkodik.

Végezetiil szeretnék koszonetet mondani Németh Zoltan és Kosztolanyi Jozsef
tanar uraknak, amiért ezen dolgozat megirdsara biztattak. Németh Zoltan tanar
urat kiilon készonet illeti, amiért a dolgozat megirasa alatt végig segitségemre volt,
hasznos tandcsaival, 6tleteivel ellatott, még a legbutabb kérdéseimre is tiirelemmel
valaszolt. Koszonettel tartozom tovabba Nagy Gabornak, kombinatorika gyakor-
latvezetémnek, akitél az 1.1 feladat és annak 1.2 dltaldnositdasa szarmazik.

Zarszéként élljon itt egy idézet [8]-bdl.

LAz igényesebb tervnek tobb esélye van a sikerre, feltéve, hogy — tul azon az
elhatdrozdson, hogy nagyobb fiba vdgjuk a fejszénket — mélyebb bepillantdst enged
a dolgok lényegébe, mint az eredeti terv.”

(Pélya Gyorgy)
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