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MŰHELYSAROK

Amikor érdemes általánośıtani

Kunos Ádám

Az általánośıtás gondolata általában akkor merül fel a matematikában, amikor

egy problémát megoldottunk. Ha találunk általánośıtási lehetőséget, az általában

nehezebbnek bizonyul, ami nem meglepő, hiszen az általánosabb álĺıtás részeset-

ként tartalmazza az eredeti problémát. Gyakran megtörténik, hogy az általánośıtás

ugyanazon módszerrel kezelhető, mint a speciális eset (erre számos példa talál-

ható pl. [3] cikkben). Néha azonban még ennél is különösebbet tapasztalunk. Pólya

György [7] könyvében található a matematikatörténet két óriásának következő gon-

dolata:

,,Gyakran megtörténtik, hogy az általános probléma könnyebbnek bizonyul,

mint a speciális eset közvetlen megoldása”

(P. G. Lejeune-Dirichlet, R. Dedekind)

Bizonyos esetekben tehát már problémamegoldás közben is érdemes általánośı-

tásokat keresnünk, hiszen egy megfelelő általánośıtás megtalálásával akár könnýıt-

hetünk is feladatunkon. Jelen dolgozatban erre a jelenségre mutatunk néhány elemi

példát.

Első példánk egy kombinatorika gyakorlatról való, hogy a jelen dolgozatba job-

ban illeszkedjen, kicsit változtattunk az eredeti feladaton. A szerző megoldási ḱı-

sérlete kudarcba fulladt, de a gyakorlat vezetője, Nagy Gábor, ráviláǵıtott, hogy

a feladatot általánośıtva a speciális esetben kudarcot valló módszer tökéletesen

működőképes.

1.1. feladat. Definiáljunk egy rekurźıv sorozatot. Legyen F0 = a, F1 = b, ahol a, b

adott valós számok és legyen Fk+2 = Fk+1 + Fk (k = 0, 1, . . .). Igazoljuk, hogy

minden n pozit́ıv egészre
n∑

k=0

(
n

k

)

Fk = F2n.
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Megoldási ḱısérlet. A rekurźıv sorozatokkal kapcsolatos feladatok megoldásában a

teljes indukció gyakori ötlet. A binomiális együtthatókra is jól ismert egy rekurziós

összefüggés, nevezetesen
(
n+1
k

)
=
(
n
k

)
+
(

n
k−1

)
, ı́gy itt a teljes indukció különösen

kecsegtető. Kis n-ekre könnyen ellenőrizhető az álĺıtás, tegyük fel, hogy 1, 2, . . . , n

esetekben igaz az álĺıtás és próbáljuk ebből megkapni az n+ 1 esetet:

n+1∑

k=0

(
n+ 1

k

)

Fk =

(
n+ 1

0

)

F0 +

n+1∑

k=1

(
n+ 1

k

)

Fk

=

(
n+ 1

0

)

F0 +
n+1∑

k=1

[(
n

k

)

+

(
n

k − 1

)]

Fk

=

(
n

0

)

F0 +
n∑

k=1

(
n

k

)

Fk +
n+1∑

k=1

(
n

k − 1

)

Fk

=

n∑

k=0

(
n

k

)

Fk

︸ ︷︷ ︸

F2n

+

n+1∑

k=1

(
n

k − 1

)

Fk = S.

Megjelent az összegben F2n, ami örömteli, hiszen F2n+2-t szeretnénk kapni, ı́gy, ha

a másik tagról látnánk, hogy F2n+1-gyel egyenlő, készen lennénk. Sajnos azonban ez

nem látható az indukciós feltevésünk alapján. A gondot az okozza, hogy a binomális

együtthatókban k − 1 szerepel, mı́g a sorozat elemeinek indexe k. Bontsuk hát

tovább az összeget a rekurźıv összefüggéseink alapján:

S = F2n +

(
n

0

)

F1 +

n+1∑

k=2

(
n

k − 1

)

(Fk−1 + Fk−2)

= F2n +

(
n

0

)

F1 +

n∑

k=1

(
n

k

)

(Fk + Fk−1)

= F2n +

(
n

0

)

F0 +

n∑

k=1

(
n

k

)

Fk +

n∑

k=1

(
n

k

)

Fk−1

= F2n +

n∑

k=0

(
n

k

)

Fk

︸ ︷︷ ︸

F2n

+

n∑

k=1

(
n

k

)

Fk−1.

Ha sikerülne megmutatnunk, hogy az összeg szummás tagja F2n−1, ez a várt F2n+

F2n + F2n−1 = F2n + F2n+1 = F2n+2 összefüggést adná. A probléma most már

egyértelműen látszik. Ismét egy hasonló szummás tagot kaptunk, mint az előbb,
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és érezzük, hogy ennek a tovább bontásával is ismét kapnánk egy ilyet, csak az

indexek csökkennének, és ı́gy tovább. Ebből már nem lesz szép teljes indukciós

bizonýıtás (,,kevésbé szép” még lehet, lásd a következő, általánośıtott feladat utáni

megjegyzéseket). Kudarcunktól letörve legyünk bátrak és általánośıtsunk!

1.2. általánośıtott feladat. Definiáljunk egy rekurźıv sorozatot. Legyen F0 = a,

F1 = b, ahol a, b adott valós számok és legyen Fk+2 = Fk+1 + Fk (k = 0, 1, . . .).

Igazoljuk, hogy minden n pozit́ıv egészre és c nemnegat́ıv egészre

n∑

k=0

(
n

k

)

Fk+c = F2n+c.

Ez a feladat nyilvánvalóan általánosabb, mint az előző, hiszen az előző c = 0

speciális eseteként adódik.

Megoldás. Próbálkozzunk ugyanúgy, mint az előbb, n szerinti teljes indukcióval.

Az n = 1 esetben az álĺıtás bal oldala
(
1
0

)
F0+c +

(
1
1

)
F1+c = Fc + Fc+1 alakot ölt,

mely a rekurźıv defińıcióból valóban F2·1+c = Fc+2-vel egyenlő. Tegyük most fel,

hogy az 1, . . . , n esetekben igaz az álĺıtás, próbáljuk igazolni az n+ 1 esetet:

n+1∑

k=0

(
n+ 1

k

)

Fk+c =

(
n+ 1

0

)

Fc +

n+1∑

k=1

(
n+ 1

k

)

Fk+c

= Fc +

n+1∑

k=1

[(
n

k

)

+

(
n

k − 1

)]

Fk+c

=

((
n

0

)

Fc +

n∑

k=1

(
n

k

)

Fk+c

)

+

n+1∑

k=1

(
n

k − 1

)

Fk+c

=

n∑

k=0

(
n

k

)

Fk+c

︸ ︷︷ ︸

F2n+c

+

n∑

k=0

(
n

k

)

Fk+(c+1)

︸ ︷︷ ︸

F2n+(c+1)

= F2n+c+2 = F2(n+1)+c.

Mint látjuk, az általánosabb álĺıtás egyszerűen adódott teljes indukcióval, mı́g

a speciális eset problémás volt. Ez úgy magyarázható, hogy amikor általánosabb,

erősebb álĺıtást akarunk teljes indukcióval belátni, akkor az indukciós lépésben is

erősebb álĺıtásokat használhatunk fel, ez sokszor megkönnýıti a bizonýıtást.

Megjegyzések. Az általánośıtás nem volt természetellenes, hiszen már az első pró-

bálkozás szummái között megjelent a c=1 eset. Ezt a fent látottakhoz hasonló

módon tovább bontogatva megsejthető az általánośıtás.
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A kudarcot az első megoldásnál természetesen az egyszerű teljes indukció szem-

pontjából értettük. Joggal érezheti úgy az Olvasó, hogy a megoldási ḱısérlet nem is

fulladt kudarcba, hiszen folytathatjuk a bontogatást, és egyszer elfogynak a szum-

mák tagjai, ki kell jönnie a megoldásnak. Valóban, az elkezdett megoldás végig-

gondolható, de lényegesen hosszabb és bonyolultabb gondolatmenetet szül, mint az

általánośıtott feladat megoldása. Ennek végiggondolását az Olvasóra b́ızzuk.

A figyelmes Olvasó bizonyára észrevette, hogy a feladatunkban szerepelt reku-

ziós összefüggés megegyezik a Fibonacci-sorozat rekurźıv összefüggésével. Eredeti-

leg a feladat a Fibonacci-sorozattal szerepelt. Azért változtattuk meg a kezdőeleme-

ket, hogy elkerüljük a feladat a Fibonacci-sorozat – sokak számára ismert – explicit

formulájának rutinszerű alkalmazásával való megoldásának ötletét, mint alterna-

t́ıv megoldási lehetőséget, mely igencsak csökkentené az általunk közölt megoldás

értékét.

Következő feladatunk meglehetősen ismert, megtalálható például [10]-ben. Elő-

ször közlünk két szokásos megoldást, majd – a dolgozatunk szellemében – egy olyan

általánośıtást keresünk, ami megviláǵıtja a feladat lényegét, ı́gy egy jóval termé-

szetesebb megoldáshoz vezet.

2.1. feladat. Egy szigeten 13 szürke, 15 barna, 17 zöld kaméleon él. Ha két külön-

böző sźınű kaméleon találkozik, akkor annyira megijednek egymástól, hogy mindket-

ten a harmadik sźınre változtatják a bőrüket. Lehetséges, hogy egy idő múlva minden

kaméleon ugyanolyan sźınű legyen?

1. megoldás. Találkozzanak a szürke és fekete kaméleonok x-szer, szürkék és zöl-

dek y-szor, végül a barna és zöld kaméleonok z-szer. Ezen jelölés alapján könnyen

követhető, hogyan változnak az egyes sźınekhez tartozó kaméleonok számai. Ha

például csak szürke kaméleon maradt:

13− x− y + 2z = 45,

15− x− z + 2y = 0,

17− y − z + 2x = 0.

Ezt az egyenletrendszert (és azt a másik két változatot, amikor a jobboldalon rendre

0, 45, 0 vagy 0, 0, 45 áll) megvizsgálva, azt kapjuk, hogy egyik egyenletrendszernek

sincs egészekbőll álló megoldása.

2. megoldás. Legyen a, b, c rendre a szürke, barna, zöld kaméleonok száma.

Könnyen ellenőrizhető, hogy az S = b− a kifejezés 3-as maradéka a folyamat során
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nem változik. Ez eredetileg 2, és ha minden kaméleon egysźınű, akkor 0 volna, tehát

a folyamat során ez az állapot nem érhető el.

Az első megoldás eléggé számolósnak, a második pedig meglehetősen ,,kalapból

előhúzottnak” tűnik. Egy ezeknél sokkal természetesebb megoldási módra vezet a

feladat következő általánośıtása. (A feladat meséjét kicsit át kellett ı́rnunk, mert az

általánośıtás az eredeti mesébe illesztve nem hangzik jól. Könnyen látható azonban,

hogy az előző feladat általánośıtásáról van szó.)

2.2. általánośıtott feladat. Egy szigeten n > 2 féle sźınű kaméleon él. Az egysźı-

nűek együtt, elkülöńıtett közösségekben élnek, de fontosnak tartják, hogy időnként

találkozhassanak különböző sźınű társaikkal, ı́gy évente gyűlést tartanak a sziget

tanácstermében. Minden évben minden közösség kisorsol egy kiválasztottat, aki el-

látogathat a gyűlésre. Sajnos azonban a tanácsterem csak n− 1 kaméleon befogadá-

sára alkalmas, ı́gy minden évben egy (sorsolással kiválasztott) közösség nem küldheti

el kiválasztottját tanácskozni. Ezen okból minden tanácskozás végén az összes ta-

nácskozó kaméleon – a tanácskozáson nem képviseltetett közösség iránti részvét

kifejezéseképpen – olyan sźınűre változtatja magát, amilyen sźınű kaméleon nem

szerepelt a tanácskozáson. (Tehát minden tanácskozó a tanácskozásból kimaradó

közösséghez csatlakozik.) Ha a szigeten kezdetben minden közösségben különböző

számú kaméleon volt modulo n, lehetséges-e, hogy egyszer a sziget csupán egy ka-

méleon közösségből fog állni?

Megoldás. Első ránézésremég a feladat helyességét illetően is kétségünk támadhat.

A feladat szövege nem szól arról, hogy mi történik, ha például eltűnik két közösség.

Ekkor milyen szabályok szerint tanácskoznak? Kinek a sźınére váltanak a végén?

Ez alapján a feladat nem tűnik egyértelműnek. Gondoljunk viszont bele, hogy

mi történik modulo n a közösségek számával. Minden tanácskozás végén n − 1

közösség létszáma −1-gyel változik (mod n), egy közösségé pedig n − 1 ≡ −1-

gyel (mod n). Tehát minden közösség létszáma eggyel csökken modulo n. Ennek

értelmében világos, hogy egyszerre csak egy közösség tűnhet el. Ekkor ez a közösség

nem vesz részt következő tanácskozáson, ı́gy a szabályok értelmében a résztvevő

n− 1 tanácskozó erre a sźınre változtatja magát, ı́gy a közösség ,,feltámad” n− 1

taggal. Az is világos, hogy ebben a pillanatban egyetlen közösségnek a létszáma

sem lesz −1 (mod n), tehát megmarad az a tulajdonság, miszerint minden közösség

létszáma különböző modulo n. Látjuk tehát, hogy még többet is álĺıthatunk annál,

hogy nem marad a szigeten soha csupán 1 közösség. Azt kaptuk ugyanis, hogy a

szigeten mindig legalább n− 1 közösség lesz jelen.

Most egy egyszerű, szokásos területátalaḱıtással megoldható feladatot muta-

tunk be, melyről ki fog derülni, hogy a Pitagorasz-tétel általánośıtása.
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3.1. feladat. Adott ABC háromszög. Rajzoljunk BC és CA oldalaira kifelé BDEC

és ACFG paralelogrammákat (1. ábra). Messék egymást a GF és DE egyenesek

a H pontban. Rajzoljuk meg az AB oldalra kifelé az ALKB paralelogrammát úgy,

hogy HC ‖ AL ‖ BK, HC = AL = BK. Igazoljuk, hogy ekkor fennáll a

tACFG + tBDEC = tALKB

területegyenlőség.

1. ábra 2. ábra

Megoldás. A feladat egy tipikusnak mondható, területátalaḱıtásra vonatkozó fel-

adat. Az egész megoldás arra a jól ismert tényre épül, hogy a paralelogramma

területe nem változik, ha egyik oldalát saját egyenesében eltoljuk. Ez következik

abból, hogy a paralelogramma területe megkapható két szemközti (egymással pár-

huzamos) oldalának távolsága és ezen oldalak hosszának szorzataként.

Húzzunk CH-val párhuzamos egyeneseket A-n és B-n keresztül, messék ezek

GH és DH egyeneseket rendre az I, J pontokban (2. ábra).

Az eddigiek alapján világos, hogy tACFG = tACHI és tBDEC = tBJHC . Tudjuk

azt is, hogy az IA,HC, JB,BK szakaszok párhuzamosak és egyenlőek. Ezekből,

az X és Y pontok egyenesét eXY -nal, az e1 és e2 egyenesek távolságát d(e1, e2)-vel

jelölve, kapjuk, hogy

tACFG + tBDEC = tACHI + tBJHC

= CH · d(eAI , eCH) + CH · d(eCH , eBJ)

= CH · (d(eAI , eCH) + d(eCH , eBJ))

= CH · d(eAI , eBJ) = KB · d(eAL, eBK) = tALKB.
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Nézzük most meg az előző feladat azon speciális esetetét, amikor ABC három-

szögben C-nél derékszög van, és BC,CA oldalaira négyzeteket ı́runk (3. ábra). A

szokásos jelöléssel legyen BC = a, CA = b, AB = c. Rajzoljuk meg a c oldalhoz

tartozó CM magasságot.

3. ábra

Mivel CF = b, FH = a, és CFH∢ = π/2, ı́gy CFH△ ∼= ACB△, azaz CH =

AB = c, és

MCH∢ =MCA∢ +
π

2
+ FCH∢ =

(π

2
− CAM∢

)

+
π

2
+ CAM∢ = π.

Tehát HMA∢ = π/2, amiből BAL∢ = π/2. Ezekből már következik, hogy ALKB

négyzet, tehát valóban, az előző feladatunk az oldalakra emelt paralelogrammák

(itt most négyzetek) területére éppen a2 + b2 = c2-et álĺıtja.

Megjegyzés. A Pitagorasz-tétel legismertebb általánośıtása a koszinusz-tétel, mely

a Pitagorasz-tétel álĺıtását mint az oldalak hosszai között fennálló algebrai össze-

függést általánośıtja. Ha azonban úgy tekintünk a tételre, mint az oldalakra emelt

négyzetek területei közötti összefüggésre, akkor az imént közölt feladat a tétel leg-

természetesebb általánośıtása, és ez egy – területátalaḱıtásra vonatkozó – közép-

iskolai rutinfeladat (a szokásos középiskolai [2] példatár területszámı́tás, terüle-

tátalaḱıtás és alkalmazásai fejezete is sok hasonló feladatot tartalmaz). Érdemes

összevetni a megoldásunkat a Pitagorasz-tétel jól ismert bizonýıtásaival ötletigény

szempontjából.
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Az emĺıtett két általánośıtási irány között léteśıthető valamiféle kapcsolat, ezzel

kapcsolatban lásd [1] cikket.

Gyakran a túl speciális problémafelvetés eltereli a figyelmet az álĺıtások mö-

gött álló mélyebb okokról, olyan irányba terelve gondolatainkat, amely lényegesen

bonyolultabb megoldásokat szül. Erre a jelenségre mutatunk most három nagyon

egyszerű, de annál tanulságosabb példát.

3.2. feladat. Legyenek A és B rendre 3, illetve 5 sugarú, egymást merőlegesen

metsző körlemezek a śıkon. Számı́tsuk ki a K = tA\B− tB\A területkülönbséget. (itt

A \B és B \A a körlemezek halmazelméleti különbségét jelöli.)

A legtöbben, akik ezt a feladatot látják, elkezdik kiszámolni a két körlemez

metszetének tA∩B területét, hiszen ezzel megkapható tA\B(= tA− tA∩B) és tB\A(=
tB − tA∩B). A metszet területének kiszámı́tása azonban meglehetősen körülményes

és hosszadalmas feladat, ahhoz képest, amilyen megoldást a következő apró ötlet

ḱınál:

K = tA\B − tB\A = (tA\B + tA∩B)− (tB\A + tA∩B) = tA − tB.

Mindenféle formális, trükkös számolás nélkül is teljesen triviális, hogyha két

mennyiséget ugyanannyival csökkentünk, akkor különbségük nem változik, és itt

is erről van szó. (A két kör területét a metszetük területével csökkentjük, majd

képezzük ezen területek különbségét.)

Miért kezdi el szinte minden megoldó mégis a metszet területét számolni, ha

ilyen egyszerű és utólag természetesnek látszó megoldás is ḱınálkozik? A válasz az

lehet, hogy amikor meglátunk egy utat, amit ránézésre végig tudunk járni, megö-

rülünk neki, és azonnal hozzálátunk. Nem foglalkozunk már más megoldási lehe-

tőségekkel, csak az első ötlet kidolgozására koncentrálunk. Esetünkben pedig első

ránézésre adódik a gondolat: a metszet területének megadásával készen lennénk.

Azért ez juthat az eszünkbe, mert már valósźınűleg sok hasonló problémát lát-

tunk, illetve a feltételek ı́gy tűnnek a legegyszerűbben kihasználhatónak. Vegyük

azonban észre, hogy nem kell kihasználnunk a feladat feltételeit. Az egyszerűbbik

megoldásban nem használtuk ki a merőleges metszést, sőt még azt sem, hogy az

alakzataink körök.

Ha ugyanezt a feladatot jóval általánosabb halmazokra, semmit nem álĺıtva a

metszés mikéntjéről adjuk fel, valósźınűleg könnyebben jut eszébe a megoldónak a

második megoldás.
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4.1. feladat. Egy táblás csokit, mely a szokásos módon a ∗ b kis kockából áll, úgy

szeretnénk széttördelni 1∗1-es kockákra, hogy csak a mélyedések mentén törhetünk,

egyszerre csak egy darabot. Legkevesebb hány törés szükséges?

Némi ḱısérletezgetés után azt tapasztalhatjuk, hogy mindig ab− 1 törés szük-

séges. A rutinos problémamegoldók ezen a ponton általában a + b szerinti teljes

indukcióhoz nyúlnak, mellyel valóban könnyen igazolható a sejtés. Van azonban

egy nagyon egyszerű mód, ahogyan azonnal indokolható ez az eredmény, matema-

tikát nem ismerő közönség számára is. Gondoljunk ugyanis bele, hogy minden egyes

törésnél egy darabból kettő lesz, tehát minden egyes töréssel eggyel nő a darabok

száma, ami az elején 1, a folyamat végén pedig ab.

Ha nem ilyen speciális példán adjuk fel ugyanezt a feladatot, hanem valami

tetszőleges alakzat darabokra tördeléséről beszélünk, akkor itt is természetesebb a

lényeget megviláǵıtó második megoldás.

Amikor egy olyan feladattal találkozik a problémamegoldó, ami egy speciális

struktúráról szól, rögtön abban kezd el gondolkozni, annak a tulajdonságaival pró-

bálja megfogni a feladatot. Előfordul azonban, hogy – mint a fenti két kis példában

is látthattuk – a megoldás jóval általánosabb tulajdonságokban gyökeredzik. Gon-

dolnunk kell tehát arra is egy probléma megoldásakor, hogy nem túl speciálisak-e

a feltevéseink, érdemes megpróbálni ,,laźıtani” a feltételeken, hátha ezzel jobb be-

pillantást nyerhetünk az álĺıtásunk igazának mélyebb okaira.

5.1. feladat. Tekintsük a p(x) = ax2 + bx+ c polinomot, ahol a, b, c rögźıtett valós

számok. Tudjuk, hogy a p(x) = x egyenletnek nincs valós gyöke. Bizonýıtsuk be,

hogy ekkor a p(p(x)) = x egyenletnek sincs valós megoldása.

Mivel a másodfokú polinomokat jól ismeri, a feladatmegoldó sok esetben rög-

tön ,,ráharap” a következő útra. Azt, hogy a p(x) = x egyenletnek nincs valós

gyöke könnyen megfoghatjuk algebrailag, hiszen ez pontosan akkor teljesül, ha a

p(x) − x = ax2 + (b − 1)x + c másodfokú polinomnak nincs valós gyöke, azaz ha

diszkriminánsa negat́ıv, vagyis (b − 1)2 − 4ac < 0. A probléma ott van, hogy ha

a 6= 0, akkor a

p(p(x))− x = a3x4 +2a2bx3 +(2a2c+ ab2 + ab)x2 +(2abc+ b2 − 1)x+ ac2 + bc+ c

polinom negyedfokú, ı́gy vele már nem olyan egyszerű bánni, mint a másodfokúak-

kal, igen nehéz kihasználni a kapott feltételt. Látjuk, hogy ezen az úton meglehe-

tősen nehéz lenne továbbhaladni.

Nézzünk most kicsit távolabbról a feladatra. Ha p(x)-re úgy tekintünk mint

egy R → R függvényre, akkor megállaṕıthatjuk, hogy azzal, hogy kikötöttük, hogy
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másodfokú polinom, nagyon leszűḱıtettük az R → R függvények halmazát. Le-

het, hogy ennél jóval általánosabb függvényosztályra is igaz a feladat álĺıtása, és a

megszoŕıtással, a speciális esettel csak arról a lényeges tulajdonságról tereltük el a

figyelmet, ami éppen a feladat álĺıtásának fennállását biztośıtja? Valóban, tekintsük

a következő általánośıtást.

5.2. általánośıtott feladat. Legyen f :R → R folytonos függvény. Bizonýıtsuk be,

hogy ha f(x) = x semmilyen valós x-re nem áll fenn, akkor f(f(x)) = x szintén

nem áll fenn egyetlen valós x esetén sem.

Megoldás. Mivel f(x) folytonos, g(x) = f(x)−x is az, ı́gy g(x) > 0 [vagy g(x) < 0]

minden valós x-re, különben a pozit́ıv és a negat́ıv értéke között valahol a folyotnos-

ságból adódóan 0-t is fel kellene vennie, ez pedig a feltételekbe ütközik. Azt kaptuk

tehát, hogy x < f(x) [vagy x > f(x)] minden valós x-re, ahonnan egyszerűen

x < f(x) < f(f(x)) [vagy x > f(x) > f(f(x))]

adódik minden valós x-re.

Különösen középiskolai versenyfeladatok esetén sokszor érezhetjük úgy magun-

kat, mintha megkaptuk volna egy puzzle egyetlen darabját, és abból kellene meg-

mondanunk, mi van a képen. Ehhez természetesen meg kell sejtenünk, hogy mi

van a többi darabon. Tehát a feladat speciális volta ellenére, muszáj egy általáno-

sabb ,,elméletben” elhelyeznünk azt, hogy jó rálátásunk legyen a problémára, meg

tudjuk oldani. Következő két példánk ebből a t́ıpusból való.

6.1. feladat. Legyen x pozit́ıv valós szám és H(x) = {[nx] : n = 1, 2, . . .}, (ahol [y]
az y egészrészét jelöli). Keressük meg az összes olyan pozit́ıv valós α-t melyre

H(1 +
√
2) ∪H(α) = Z+, H(1 +

√
2) ∩H(α) = ∅.

A feladatban az 1+
√
2-nek, mint majd látjuk, (az irracionalitásán ḱıvül) nincs

különösebb szerepe, ı́gy érdemes a problémát mindjárt teljes általánosságban vizs-

gálni (az 1 +
√
2 konkrét értéke ugyanis csak megneheźıti egy igen szép feltétel

megtalálását). Fogalmazzuk meg az általánośıtott feladatot.

6.2. általánośıtott feladat. Legyen x pozit́ıv valós szám és H(x) = {[nx] : n =

1, 2, . . .}, (ahol [y] az y egészrészét jelöli). Milyen feltételeknek kell teljesülnie az α,

β pozit́ıv valós számokra, hogy

(1) H(α) ∪H(β) = Z+, H(α) ∩H(β) = ∅.
fennálljon?

Megjegyzés. Ennek a problémának a megoldása számos könyvben megtalálható

(pl. [6], [9]). Most egy olyan megoldást közlünk, amely megmutatja, hogyan lehet

a feltételt (ha az nincs megadva) magunktól kitalálni.
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Megoldás. Vezessünk be egy jelölést. Minden n pozit́ıv egészre jelölje hnα a H(α)

halmaz n-nél kisebb elemeinek a számát, azaz legyen

∣
∣{k : k ∈ H(α), k < n}

∣
∣ = hnα.

A megoldás egy egyszerű ötletre épül. Könnyen látható, hogy (1) fennállásának

szükséges és elegendő feltétele a most bevezetett jelölésünkkel

(hn+1
α + hn+1

β )− (hnα + hnβ) = 1

(minden n = 1, 2, . . . esetén). Ez pedig nyilván akkor és csak akkor áll fenn, ha

hnα + hnβ = n− 1 (minden n = 1, 2, . . . esetén). Határozzuk tehát meg hnα + hnβ -t, és

próbáljunk ebből feltételt nyerni α, β-ra. Az világos, hogy

hnα =
[n

α

]

, hnβ =
[n

β

]

.

Tehát hnα + hnβ =
[
n
α

]
+
[
n
β

]
, mely könnyen becsülhető az x− 1 < [x] ≤ x egyenlőt-

lenség seǵıtségével:

n

(
1

α
+

1

β

)

− 2 =
n

α
+
n

β
− 2 <

[n

α

]

+
[n

β

]

≤ n

α
+
n

β
= n

(
1

α
+

1

β

)

.

Azt kaptuk tehát, hogy

(2) n

(
1

α
+

1

β

)

− 2 < hnα + hnβ ≤ n

(
1

α
+

1

β

)

.

Vezessük be az 1
α + 1

β = γ jelölést. (2)-ből már látszik, hogy γ = 1 fenn kell, hogy

álljon, különben

γn− 2 < n− 1(= hnα + hnβ) ≤ γn

nem teljesül ,,nagy” n-ek esetén, ugyanis, ha γ > 1, akkor n > 1
γ−1 esetén n− 1 <

γn− 2, ha pedig γ < 1, akkor n > 1
1−γ esetén n− 1 > γn. Azt már tudjuk tehát,

hogy a γ = 1 feltétel szükséges, de vajon elegendő-e?

Vegyük észre, hogy ha (2)-nél szigorú egyenlőtlenség állna, akkor ( 1
α+

1
β = γ = 1

miatt) n − 2 < hnα + hnβ < n teljesülne, amiből hnα + hnβ = n − 1 következne.

Érdemes tehát megvizsgálni, hogy az
[
n
α

]
≤ n

α ,
[
n
β

]

≤ n
β egyenlőtlenségekben

milyen α, β értékekkel tudnánk biztośıtani, hogy semmilyen n esetén ne álljon fenn

egyenlőség, hiszen ezzel egy elegendő feltételt kaphatnánk feladatunkra. Könnyen

látható, hogy ha α irracionális, akkor minden n-re n
α is irracionális, ı́gy

[
n
α

]
< n

α . Az

is látható továbbá, hogy 1
α+

1
β = 1-ből adódóan α és β egyszerre racionálisak illetve
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irracionálisak, tehát megkaptunk egy elegendő feltételt: ha α, β irracionálisak, és
1
α + 1

β = 1, akkor (1) teljesül. Vajon a kapott feltétel szükséges-e?

Talán érezhető, hogy a válasz igen. Azt fogjuk megmutatni, hogy nincs olyan

pozit́ıv, racionális α, β pár, melyre H(α) ∩ H(β) = ∅ teljesülne. Legyen ugyanis

α = p1

q1
, β = p2

q2
, ekkor p1p2 ∈ H(α), H(β). Megkaptuk tehát a szükséges és elegendő

feltételt: akkor és csak akkor áll fenn (1), ha α, β pozit́ıv irracionálisak, és 1
α + 1

β =

1.

7.1. feladat. Legyen n pozit́ıv egész szám. Jelölje S(n) az n számjegyeinek összegét

t́ızes számrendszerben. Bizonýıtsuk be, hogy

a) S(n) ≤ 5 · S(2n),
b) S(n) ≤ 5 · S(55n),
c) S(n) ≤ 8 · S(8n).

Most is érezhető, hogy a három egyenlőtlenség közös tőböl ered, első ránézésre

azonban nem nyilvánvaló, hogy mi lehet ez. Alaḱıtsuk kicsit át az a) feladatrész

álĺıtását:

S(10n) = S(n) ≤ 5 · S(2n) = S(5) · S(2n),
az a) rész tehát azt álĺıtja, hogy S(10n) ≤ S(5) · S(2n). Ez S(ab) ≤ S(a) · S(b)
alakú. Lehet, hogy ez az általános összefüggés áll mindhárom feladatrész mögött?

Vizsgáljuk meg:

S(105n) = S(n) ≤ 5 · S(55n) = S(25) · S(55n),
S(103n) = S(n) ≤ 8 · S(8n) = S(53) · S(23n).

Látjuk tehát, hogy feladatunk mindhárom része speciális esete az általános S(ab) ≤
S(a) ·S(b) egyenlőtlenségnek, egyelőre viszont nem tudjuk, hogy ez igaz-e. Néhány

ı́rásbeli szorzást elvégezve, és közben ilyen szempontból figyelve az eseményeket,

igen erős megggyőződésünkké válhat, hogy igaz a sejtés. Ez tipikusan olyan álĺıtás,

melyet meggyőző érveléssel nem nehéz elhitetni valakivel, most azonban célul egy

prećız, formális bizonýıtás megalkotását tűzzük ki. Tetszőleges számrendszerre pró-

báljuk bizonýıtani a sejtést, ezzel biztośıtva, hogy elkerüljük a t́ızes számrenderre

vonatkozó tapasztalainkra támaszkodó szemléletes, pontatlan érveléseket. Fogal-

mazzuk meg általánośıtott feladatunkat.

7.2. általánośıtott feladat. Jelölje Sp(n) az n pozit́ıv egész p alapú számrendszer-

ben feĺırt alakjában a számjegyek összegét. Legyenek a, b pozit́ıv egészek. Ekkor

Sp(ab) ≤ Sp(a) · Sp(b).

Az általánośıtott feladat bizonýıtását egy lemmára alapozzuk.
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7.3. lemma. Jelöljön (anan−1 . . . a0)p a p alapú számrendszerben egy n jegyű szá-

mot (ahol természetesen 0 ≤ ai < p). Nevezzük a k pozit́ıv egészhez tartozó

k =

m∑

i=0

bip
i

összegeket k felbontásainak, ahol a felbontás bi együtthatói nemnegat́ıv egészek. Azt

álĺıtjuk, hogy ha k = (anan−1 . . . a0)p, akkor
m∑

i=0

bi ≥
n∑

i=0

ai,

és egyenlőség akkor és csak akkor teljesül, ha ai = bi (minden i értékre, itt ter-

mészetesen i > n esetén ai-t, i > m esetén bi-t nullának tekintjük), azaz egy k

pozit́ıv egész felbontásainak együtthatóinak összege akkor és csak akkor minimális,

ha annak együtthatói éppen az adott számrendszerbeli alakjának számjegyei.

A lemma bizonýıtása. Rögźıtsünk egy pozit́ıv egész k-t és legyen

k = (anan−1 . . . a0)p =

n∑

i=0

aip
i.

A sokszor számrendszerek alaptételeként is emlegetett tétel ([11], 1.31-es tétel) azt

álĺıtja a mi terminológiánkkal, hogy egy tetszőleges pozit́ıv egész egy felbontásának

bi együtthatóira akkor és csak akkor teljesül 0 ≤ bi < p, ha a bi együtthatók rendre

megegyeznek a szám adott számrendszerbeli alakjának számjegyeivel. Vegyünk egy
∑n

i=0 aip
i-tól különböző

∑m
i=0 bip

i felbontást. A már emĺıtett számrendszerek alap-

tételéből következik, hogy ez a felbontás tartalmaz legalább egy bi ≥ p együtthatót.

Tekintsük a k következő módośıtott felbontását:

k =
( m∑

i=0

bip
i =

)

b0p
0 + b1p

1 + . . .+ (bi − p)pi + (bi+1 + 1)pi+1 + . . .+ bmp
m.

Vegyük észre, hogy a módośıtott felbontásban az együtthatók összege pontosan

p − 1(> 0)-val kevesebb, mint a
∑
bip

i felbontásban. Azt kaptuk tehát, hogy k

tetszőleges
∑
aip

i-tól különböző felbontásához található olyan felbontás, melyben

kisebb az együtthatók összege. Vigyázat, az eddigiekből még nem következik, hogy

a
∑
aip

i felbontásban minimális az együtthatók összege. (Ehhez hasonló nevezetes

logikai hibát vétett Jacob Steiner (1796-1863) az izoperimetrikus tétel bizonýıtá-

sában lásd [10], 1937. feladat megoldása, 360-361. old.) Arra következtethetünk

csupán, hogy ha van minimális együtthatóösszeg, akkor az csak a
∑
aip

i együtt-

hatóösszege lehet. Könnyű látni azonban, hogy létezik minimális együtthatóösszeg,

hiszen azok csak nemnegat́ıv egészek lehetnek, és nyilvánvaló, hogy a nemnega-

t́ıv egészek halmazának tetszőleges nemüres részhalmazának van minimális eleme.

Készen vagyunk a lemma bizonýıtásával.
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Az általánośıtott feladat bizonýıtása. A most bizonýıtott lemmát fogjuk hasz-

nálni. Legyen a = (anan−1 . . . a0)p =
∑n

i=0 aip
i, b = (bmbm−1 . . . b0)p =

∑m
i=0 bip

i

és ab = (crcr−1 . . . c0)p =
∑r

i=0 cip
i. Az világos, hogy Sp(ab) =

∑r
i=0 ci. Képezzük

most ab egy másik felbontását (a lemmában definiált értelemben):

ab =

( n∑

i=0

aip
i

)( m∑

j=0

bjp
j

)

=
∑

0≤i≤n
0≤j≤m

aibjp
i+j =

n+m∑

k=0

(
∑

i+j=k
0≤i≤n

0≤j≤m

aibj

)

pk.

A lemmánk tehát ebben az esetben éppen azt álĺıtja a felbontásban szereplő együtt-

hatók
n+m∑

k=0

∑

i+j=k
0≤i≤n

0≤j≤m

aibj

összegére, hogy

S(ab) =

r∑

i=0

ci ≥
n+m∑

k=0

∑

i+j=k
0≤i≤n

0≤j≤m

aibj =
∑

0≤i≤n
0≤j≤m

aibj =

( n∑

i=0

ai

)( m∑

j=0

bj

)

= S(a)S(b).

Készen vagyunk tehát a segédtétel bizonýıtásával is.

Azt már láttuk, hogy a segédtételből következnek a feladat álĺıtásai, ı́gy a fel-

adat megoldásával is készen vagyunk.

Sokszor használt, közismert tétel a számtani-mértani közepek közötti egyen-

lőtlenség. Sokféleképpen bizonýıtható (számos bizonýıtás megtalálható a [6], [4]

könyvekben), de egyik bizonýıtása sem mondható triviálisnak. Most ismertetünk

és bizonýıtunk egy tételt, az ún. Jensen-egyenlőtlenséget, mely lényegében a kon-

kávitás egy ekvivalens defińıciója, és belőle egyszerű következményként kapható a

számtani-mértani közepek közötti egyenlőtlenség.

8.1. tétel. (Jensen-egyenőtlenség) Az f : I → R függvény akkor és csak akkor kon-

káv az I intervallumon, ha minden a1, . . . , an ∈ I és t1, . . . , tn > 0, t1+ · · ·+ tn = 1

esetén

f(t1a1 + · · ·+ tnan) ≥ t1f(a1) + · · ·+ tnf(an).

Bizonýıtás. Először is figyeljük meg, hogy n = 2 esetben éppen a konkávitás felté-

telét (lásd pl. [5], 7.15. Lemma) adja a tétel, ı́gy az elegendőség, illetőleg a szükséges-

ség n = 2 esete világos. A szükségesség fennmaradó n > 2 eseteit teljes indukcióval
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bizonýıtjuk be. Tegyük fel, hogy a 2, . . . , n értékekre igaz az álĺıtás. Természetes

ötlet, hogy az n + 1 esetben úgy használjuk fel az indukciós feltevést, hogy az f

argumentumában lévő n+ 1 tagot két részre csoportośıtjuk, majd az n = 2 esetet

használva szétbontjuk az f -et, lehetővé téve az n eset - mint indukciós feltevés -

használhatóságát.

f(t1a1 + · · ·+ tn+1an+1) = f
(
(1− tn+1)

t1a1 + · · ·+ tnan
1− tn+1

+ tn+1an+1

)
≥

≥ (1− tn+1) · f
(
t1a1 + · · ·+ tnan

1− tn+1

)

+ tn+1f(an+1) =

= (1− tn+1) · f
( t1
1− tn+1

a1 + · · ·+ tn
1− tn+1

an
)
+ tn+1f(an+1).

Most észrevéve, hogy t1
1−tn+1

+ · · ·+ tn
1−tn+1

= 1, használhatjuk az indukciós feltételt

az n esetben. Ezzel tovább folytatva a becslést

≥ (1 − tn+1)

(
t1

1− tn+1
f(a1) + · · ·+ tn

1− tn+1
f(an)

)

+ tn+1f(an+1) =

= t1f(a1) + · · ·+ tnf(an) + tn+1f(an+1)

adódik, mely éppen a bizonýıtandó álĺıtás.

8.2. tétel. (Számtani-mértani közepek közötti egyenlőtlenség) a1, a2, . . . , an pozit́ıv

számok esetén
a1 + · · ·+ an

n
≥ n

√
a1 · · · an.

Bizonýıtás. A jól ismert log x függvény, mint az köztudott konkáv. Alkalmazhat-

juk rá tehát a Jensen-egyenlőtlenséget az a1, . . . , an pozit́ıv számokkal és az 1/n

súlyokkal:

log
(a1 + · · ·+ an

n

)

≥ log(a1) + · · ·+ log(an)

n
= log

(
n
√
a1 · · · an

)
,

ahonnan (a log x szigorú monoton növekedését kihasználva):

a1 + · · ·+ an
n

≥ n
√
a1 · · ·an

adódik, mely éppen a bizonýıtandó álĺıtás.

Teljesen hasonló helyetteśıtéssel adódik az általános hatványközepek kö-

zötti egyenlőtlenség (sőt, ennek súlyozott változata) is, ami mutatja a Jensen-

egyenlőtlenség általánosságát és erejét. Ennek ellenére felh́ıvjuk az Olvasó figyelmét
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arra, hogy a Jensen egyenlőtlenség fent bemutatott bizonýıtása egyáltalán nem

hosszabb, vagy bonyolultabb a számtani-mértani közepek közötti egyenlőtlenség

szokásos bizonýıtásainál. Egy átlagosnak mondható teljes indukcióról van szó.

Meg kell azonban jegyeznünk, hogy habár a Jensen-egyenlőtlenség fenti bizo-

nýıtása teljesen elemi, a logaritmus függvény konkávitásának prećız bizonýıtása

(annak ellenére, hogy az álĺıtás szemléletesen nyilvánvaló), az anaĺızis eszközeire

támaszkodik.

Végezetül szeretnék köszönetet mondani Németh Zoltán és Kosztolányi József

tanár uraknak, amiért ezen dolgozat meǵırására b́ıztattak. Németh Zoltán tanár

urat külön köszönet illeti, amiért a dolgozat meǵırása alatt végig seǵıtségemre volt,

hasznos tanácsaival, ötleteivel ellátott, még a legbutább kérdéseimre is türelemmel

válaszolt. Köszönettel tartozom továbbá Nagy Gábornak, kombinatorika gyakor-

latvezetőmnek, akitől az 1.1 feladat és annak 1.2 általánośıtása származik.

Zárszóként álljon itt egy idézet [8]-ból.

,,Az igényesebb tervnek több esélye van a sikerre, feltéve, hogy – túl azon az

elhatározáson, hogy nagyobb fába vágjuk a fejszénket – mélyebb bepillantást enged

a dolgok lényegébe, mint az eredeti terv.”

(Pólya György)
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[8] Pólya György, A gondolkodás iskolája, Gondolat, 1977.
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