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Ez a cikk a kriptografiai rendszerek tin. generacitkba sorolasaval, valamint a transz-
formécidk altalanos jellemzgivel, tulajdonsagaival foglalkozik. Heurisztikus moédon meg-
fogalmazza e transzformaciok altalanos kdvetelményeit és ezek alapjan kisérletet tesz a
kriptografiai rendszerek formalnyelvi definiciojara. Tisztazza a kriptografidban alkalma-
zott un. blokk fogalmat és ennek segitségével a linearitasra is ad egy definiciét. Meg-
fogalmaz egy sejtést, amely sziikséges és elegendd feltétel a klasszikus helyettesitési és
permutacios transzformaciok felcserélhetGségére, valamint osszevonasara. Foglalkozik az
egyszerl leképezdfiiggvények inverz tulajdonsagaival. Claude E. Shannon javasolta el-
s6ként az un. produkt transzformaciokat, amelyek valéjaban vagy nem kommutativ
produktumok, vagy Osszetett fiiggvények. Minden esetre komoly szerepiik van a mo-
dern, un. negyedik generacids, szimmetrikus kriptorendszerekben. A cikk kitér az un.
Feistel transzformacidkra és alkalmazasaikra, a tobbkomponensi transzformaciok kom-
ponensei invertilhatésiganak a kérdésére s végiil az 4n. aszimmetrikus (nyiltkulcsa)
kriptorendszerekben alkalmazott transzformaciok alapelveire.

Titkositasi rendszerek (kriptorendszerek) generacioi

Jéllehet ma mar nem szokas a szamitastechnika (illetve a szamitogépek) és
alkalmazéasaik 1jabb s (jabb eredményeit egy-egy 4j ,generacidéként” emlegetni, ér-
demes arra emlékezni, hogy korabban a szamitogépek un. generacioit lényegében
az alkalmazott technika hatarozta meg. A kriptorendszerek generéici6inil egészen
biztosan nagy szerepe van az alkalmazott titkositasi/megfejtési modszereknek, tech-
nikanak, kdz6s néven az an. transzformdcids mddszereknek, (matematikai termino-
légiaval: leképezéseknek) de nagy szerepe van az lizenet tovabbitasi technikajanak
is, vagyis a kommunikdcids technoldgidnak és a protokolloknak is.

Eszerint a kriptogeneracidkat két technolégia egyiittesen hatarozza meg. Neve-
zetesen a transzforméacios és a kommunikaciés technologia. Valahogyan ugy, aho-
gyan ezt az 1. Abra szemlélteti.
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1. abra. Kriptorendszerek generacioinak osztalyozasi szempontjai

GENERACIO JELLEMZOJE TRANSZFORMACIOS KOMMUNIKACIOS
TECHNOLOGIA
1 Monoalfabetikus Helyettesités . .
: Nagyon ritkan: keverés Nem jellemz6
Polialfabetikus és Helyettesités Nem jellemz6
2. blokkos (kézi modszerrel)

KULCSSZO

Mint az el6z8, de nagyon

Betiinkénti helyettesités

Radi6 kommunikécioé

torténik.
Monoalfabetikus
rendszerek

3. sok abécével (elektro) mechanikus
(pl. rotoros) géppel
Produkt-transzformaciok Szamitogéppel végzett Kommunikacié a
sok rundban. iterativ transzformaciok, vilaghalon,
4. Igen nagy kulcstér. amelyeknek nem létezik a maganhalézatokon,
Polialfabetikus nyers er6 modszerénél vagy legalabb virtualis
rendszerek. gyorsabb, kulcs nélkiili, maganhéalézatokon
algoritmusos moédszere.
Aszimmetrikus Szamitogéppel, vagy Kommunikaci6 a
kriptorendszerek. célhardverrel vilaghalon,
A koédolas és a dekodolas megvalositott, magéanhalézatokon,
5. azonos leképzésekkel, de szamitasigényes vagy legalabb virtualis
inverz kulcsokkal leképezések igen nagy maganhal6zatokon

(1000 bitnél nagyobb)
kulcsokkal és ennek

megfelels kulcstérrel

A transzformaciék!

A titkositas nélkiili, an. nyilt széveget (P) valamilyen médon a be nem ava-

tottak szamara szandékoltan érthetetlen szimbolum-sorozatta, tin. kriptogramma

(C) alakitja at a titkositas.

1 Szigoribb matematikai értelemben leképezésekrsl van szo6.
2 A kriptogram aranylag 1j elnevezés. Korabban a francia eredeti siffre jelentette a titkositott
szoveget és a sifrirozas a titkositast.
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A nyilt szovegnek is és a kriptogramnak is kiilon-kiilon abécéje van, s6t a krip-
togramnak tobb abécéje is lehet, s a kriptogram abécé meg is egyezhet a nyilt szoveg
abécéjével. Aszerint beszéliink egy— vagy tobbabécés kriptorendszerrsl, hogy hany
abécét hasznal a kriptogram.

A nyilt szoveget egy transzformdcio képezi le a kriptogramba. Ezt teheti ugy is,
hogy a nyilt sz6veg minden egyes betiijét kiilon-kiilon transzformalja a kriptogram
egyes betivé, és teheti ugy is, hogy egy meghatarozott hosszisagu betiicsoporton
egyszerre hajt végre valamilyen transzformaciot. Az elébbit folyamatos titkositds-
nak (Stream Ciphering) az utébbit pedig blokk titkositdsnak (Block Ciphering)
nevezik.

Nyflt / . Kripto-
szoveg |

2. dbra. A titkosité transzformacio

Ha a nyilt szoveg betiiit egy-egy bajt helyettesiti, akkor nincs is lényeges kii-
16nbség a betiinkénti és a blokkos titkositas kozott, csak a blokkok meérete kiilon-
bo6z6.

Az abécékbdl kiindulva két, alapvets transzformécio tipust szokas megkiilon-
boztetni, nevezetesen a helyettesitést és a keverést. Az elébbi mind a betiinkénti,
mind blokkos titkositas esetében alkalmazhatd, az utobbi csak blokkokra. Szamos
érdekes példat ir le —tobbek kozott — David Kahn alapmiive [15].

A transzformaciok ezen archetipusai nem is olyan nagyon kiilonb6z6ek, mint
azt sokaig gondoltak. Mindenesetre a binaris rendszerekben ezek a kiilonbozgsé-
gek eléggé Osszemosodnak [24]. Feltétleniil meg kell emliteni, hogy a kezdetektsl
fogva diszkrét abécé vagy blokkok transzforméciojarol volt szo. Joval azel6tt, hogy
a digitalis, illetve diszkrét rendszerek olyan széles kérben elterjedtek volna, mint
manapsag tapasztalhatjuk azt.

Kézenfekvs matematikai modellek voltak a diszkrét algebra, illetve matematika
egyes fejezetei, ide értve a szamelméletet is. A titkositas végiil is ilyen diszkrét
elemek leképezését jelenti, s ez az, amit alabb részleteziink is.

Itt kell megemliteni azt is, hogy a titkosito rendszerek igen korai feltalaloi ko-
zOtt is van, aki mar a XVI. szazad vége felé tudatosan alkalmazott ilyen matematikai
modellt.

Blaise De Vigenere-rdl [1523-1596], a ,Léatnokrol” van sz6, aki lényegében a
Caesar-féle monoalfabetikus titkositéast fejlesztette tovabb és az altala alkalmazott
matematikai modell a modulo n Gsszeadas, illetve kivonas volt, ahol n az &dbécé
bettinek a szama volt: [15], [21] és [22].
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A leképezs fliggvények is diszkrét véges elemd, vagy legalabb is megszamlal-
hatbéan végtelen sok elemii halmazok felett értelmezettek, és soha nem merilt fel,
hogy a leképez6 fliggvények esetleg folytonos fliggvények is lehetnének.

Nem meriilt fel az sem, hogy a transzformaciékra formalnyelvi, illetve abszt-
rakt algebrai modelleket allitsanak fel, bar elvileg ezek is célravezetSk lehetnének
(diszkrét esetekben is).

A formalis nyelvek és az absztrakt automatak modelljeinek alkalmazhatésaga
méas kérdés. Ezek ugyanis olyan hosszisigtarté (vagy pl. a GSM és a Turing-
gép esetében nem hosszusagtartd) leképezéseket hajtanak végre, amelyek nagyon
is alkalmazhaték lennének a kriptografiai leképezések modellezésére. Egy indirekt
kivételtdl eltekintve azonban nem talalkoztam ilyen jellegii publikaciokkal.

A kivétel Arto Salomaa, akinek a f6 kutatasi teriilete éppen a formalis nyel-
vekkel és automatakkal foglalkozik [26], de az utébbi években a matematikai bo-
nyolultsag elmélettel (és a kiszamithatosaggal) is kapesolatba hozta ezt a kutatasi
teriiletet [27], s6t kifejezetten az aszimmetrikus kriptorendszerekkel kapcsolatban
is publikalt [28].

Alabb még visszatérek erre a kérdésre.

A pontosabb formalis leirasnak azonban tobb akadalya is van. Itt talan ele-
gendd csak annyit megemliteni, hogy ahéanyféle titkosité leképzés van, annyiféle
leképzési szabaly, ezért altalanos képzési szabalyokat nagyon nehéz adni. Vannak
azonban emellett mas problémaék is.

A kriptografiai leképezések alapkovetelményei

A kriptografiai transzforméaciok alkalmas matematikai modelljeil tehit a leké-
pezések.
Heurisztikus médon kikovetkeztethets, hogy a kriptografiai transzformaciok-
nak milyen feltételeket kell kielégiteniiik. Ezek a kovetkezbk:
a. Mivel mind a nyiltszéveg abécé, mind a kriptogram abécé véges halmazok?,
ezért a leképezd fliggvény véges halmazt képez le véges halmazra.
b. A leképezs fiiggvény egyértéki és
c. ha egyértelmtien visszafejthetdnek kell lennie (marpedig annak kell lennie),
akkor léteznie kell a leképezés inverzének is, tovabba
d. az inverz leképezésnek is egyértékiinek kell lennie,
e.a c. és a d. feltételekbdl pedig az kovetkezik, hogy a titkositasi leképezés kol-
csonosen egyértelmii (bijektiv) kell, hogy legyen.*
A felsorolt kovetelmények nagyon logikusnak tiinnek, de ezek alél a szabalyok
aldl is van kivétel. A modern kriptografisban ugyanis talalhatok an. valoszintségi

3 ... &s az ezekbdl az elemekbdl alkotott véges hossziisagii blokkok (string) szama is véges

4 Létezik olyan kriptografiai transzformacié is, amely a nyflt 4bécé elemeit a képtartomany egy-
egy valédi részhalmazara képezi le, de ezek a részhalmazok diszjunktak és a leképzs fiiggvényre
ilyen kiterjesztéssel is érvényesek a mondott feltételek.
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kriptorendszerek is, amelyeknél a leképezésekhez valoszintiségek tartoznak, s véges
(bar nagyon kicsi) valosziniséggel el6fordulhat az is, hogy egy titkositott iizenet
nem fejthets vissza. Némely alkalmazasnal (pl. titkositott beszéd-atvitel), amely
redundans informéciét tovabbit, ez az informéaciévesztés nem okoz gondot.

A felsorolt 6t feltétel tehat sziikséges, de még nem elégséges feltétel. Ezért a
leképezések tulajdonsagaira alabb még visszatériink.

Nyilt
szdveg

Nyflt
sziveg

Titkosftds [
(Decryption) [
D

3. dbra. A titkositas teljes folyamata

A modszer és a kulcs

Vannak még a gyakorlati alkalmazhatésagbol kovetkezs feltételek is. A leké-
pezés bonyolultsagét, a hozza sziikséges szamitasi kapacitast (és/vagy id6-igényt),
valamint az algoritmus gyorsasidgat mar emlitettiik.

Régi tapasztalati tény, hogy ha sokszor hasznaljak ugyanazt a titkosito lekeé-
pezést, akkor azt majdnem biztosan feltorik.® Ezért aztan idérél-idére valtoztatni
kell azt. Nagyon nehéz azonban magat a modszert valtoztatni, mert nem csak arrél
van sz6, hogy egyre Gjabb s tjabb modszert kell kitalalni, hanem arrél is, hogy ha a
mobds zer alkalmazasahoz mar gépet is szerkesztettek, akkor minden egyes modszer-
valtaskor a titkosit6/megfejts gép helyett is wjat kell késziteni. Ezért mar a XVII.

5 Tulajdonképpen ilyen feltoréseknek tekinthetk a rég elfeledett okori irasok megfejtése, pedig
tobb ilyen esetben maga az iras nyelve sem volt ismert. Minden ilyen sikeres megfejtés alapvets
feltétele volt azonban, hogy sok irott széveg allt az elemz6k rendelkezésére.
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szadzadban felmerilt és a XIX. szdzadban expressis verbis meg is fogalmaztak, hogy
egy titkositasi transzformacié erdsségeS végsé soron az abban alkalmazhaté kul-
csok szamatol fiigg: minél tobb a lehetséges kulcsok szdma, azaz minél nagyobb a
kulcstér, annal nehezebb vagy reménytelenebb a kulcs ismerete nélkiil hozzajutni a
titkositott informaciohoz.”

A titkosito transzformaciok kozds és altalanos tulajdonsaga, hogy a leképzo
fiiggvénynek van legalabb egy paramétere, amely ismerete nélkiil a leképzés nem
valésithaté meg. Ugyanez igaz a transzforméci6 inverzére, azaz a titkositott in-
formaci6 visszafejtésére is. Ez a paraméter a titkositas kulcsa. Ha a kulcstér gya-
korlatilag igen nagy, akkor maga a leképezés akar kozzé is tehets, mert a kulcs
onmagaban garantilja a titkositas biztonsagat. Ez, nevezetesen az extrém nagy
kulestér, valamennyi mai kriptorendszer alapvets és kozos elve.

A szimmetrikus és az aszimmetrikus kriptorendszerek Ssszevetése

Valamennyi tradicionélis kriptorendszer ugyanazt a kulcsot alkalmazta mind a
titkositashoz, mind a visszafejtéshez, pedig mint ma mar tudjuk, ennek nem kell
feltétleniil igy lennie.

Vizsgaljuk meg ehhez a teljes titkositas—visszafejtés folyamatot!

Az Eg,, és a Dk, leképezs fliiggvényeknek a paramétereikkel egyiitt kell egymas
inverzeinek lenniiik.

Rellh ientioe Titkositds Titkosftott Megfejtés
PRy (kédolas) szoveg (dekédolés)

Nyflt szoveg

4. dbra. Szimmetrikus (tradicionalis) kriptorendszer blokkvézlata

6 Pontosabb elemzéssel alabb megmutatjuk, hogy a kriptogram abécé (vagy abécék), mint
halmazok rangja alapvetGen meghatarozo a kriptorendszer feltorése szempontjabol és a lehetséges
kulcsok szamat is az abécé(k) szamossaga korlatozza.

Egy kriptorendszer erdsségét a feltorésének a nehézsége hatarozza meg. Ma méar nem tekintik

erGsnek az olyan titkositdsokat, amelyek algoritmusos médon feltorhet6k. Az ergs kriptorendsze-
rek csakis ugy torhetdk fel, hogy valamennyi lehetséges kulcsot végig kell probélgatni. Ezt a nyers
eré modszerének nevezik.
7 Alabb majd megmutatjuk, hogy elsédlegesen a krlptogram abécék elemszama a meghatéarozo.
A kulcstér ,mindossze” illeszkedik ehhez.
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A tradicionalis kriptorendszereknél magatol értet6dének tekintették, hogy a
Kg és a Kp kulcsok azonosak, és az imigyen azonos paraméterekkel rendelkezé F
és D leképezd fiiggvények egymés inverzei.

Az ilyen rendszereket ma szimmetrikus kriptorendszereknek nevezziik és kiza-
rolagos alkalmazasuk az Gsid6kts] kezdve az 1970-es évek kozepéig tartott, de a
mai legmodernebb kriptografiaban is megvan a jelentéségiik (marmint a modern
valtozataiknak).

Titkosftés Titkositott Megfejtés
(k6dolés) szoveg (deksdolés)

5. dbra. Az aszimmetrikus kriptorendszer blokkvéazlata

Nyilt szoveg Nyilt széveg

A transzforméciok (azaz leképezések) egymas inverzei, a kulcsok pedig azono-
sak.

Tulajdonképpen kézenfekvs megoldas az is, hogy nem a leképzé fliiggvények
egymaés inverzei, hanem a titkosit6 és a visszafejté kulcsok vannak valamilyen mu-
veletre nézve inverz viszonyban egyméssal. Erre az tletre azonban Whitfield Diffie
el6tt (1976) senki sem jott ra.

Ezekkel a rendszerekkel majd alabb, az aszimmetrikus kriptorendszerek kap-
csan foglalkozunk. Egy szimmetrikus kriptorendszerben tehat egyetlen kulcsot al-
kalmaznak, amelyet természetesen titokban kell tartani. Mondhatjuk agy is, hogy
ettdl fligg a rendszer biztonséaga.

A titkosité (E) és a visszafejté (D) algoritmusok, illetve fiiggvények egymas
inverzei, de altalanos esetben nem azonosak. Kérdés, hogy lehet-e olyan, elegendGen
biztonsagos, titkosito rendszert szerkeszteni, amelyben nem csak a kulcsok, hanem
ez a két fliggvény is azonos.

Nos, lehet, bar a modern, un. erés kriptorendszerek esetében csak valami ha-
sonl6, de nem egészen azonos dolgot.

Mivel az inverz algebrai fogalma mindig csakis egy adott miveletre vonatkozik,
az aszimmetrikus rendszerekben az E leképzé fliggvény az, amelyre nézve az e és
a d kulcsok egymaés inverzei.

Ezt a két abrat éppen azért tiintettiik fel igy, egymas alatt, hogy felhivjuk a
figyelmet a szimmetrikus és az aszimmetrikus kriptorendszerek — jobb sz6 hijan —
szimmetridjara.
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A tradicionalis kriptorendszerek kérében azonban megvalésithato, hogy egy
titkosito-megfejté fliiggvénypar két tagja azonos legyen, vagyis egy olyan leképzs
fiiggvényt taldljunk, amely sajat maga inverze. Elvileg az aszimmetrikus kripto-
rendszerek esetében is szerkeszthets olyan, amelyben a ,két” kulcs azonos és sajat
maga inverze, de ez hatareset, amikor csakis a leképezdfiiggvény jellegébdl alla-
pithaté meg, hogy a kriptorendszer szimmetrikus vagy aszimmetrikus-e. Az ilyen
rendszernek azért nincs is gyakorlati jelentGsége, mert az aszimmetrikus rendsze-
rek transzformaéacioinak a szamitasi kapacitas-igénye nagysagrenddel nagyobb, mint
az azonos kriptografiai erdsségi szimmetrikus rendszereké, és értelmetleniil gazda-
sagtalan lenne sokkal nagyobb koltséggel megvaldsitani egy szimmetrikus funkei6ja
rendszert, mint azt a szimmetrikus algoritmusokkal lehet.

A transzformaciok tulajdonsagai

Leképezések vagy fiiggvények?

Az eddigiekben utaltunk ugyan arra, hogy a transzformdcio szigorian vett ma-
tematikai értelemben nem azonos a kriptografisban alkalmazott leképezésekkel, de
ezt az 4llitast nem vizsgaltuk. Nos ennek itt a helye.

A kriptografiai fiiggvények (nyilt) 4bécébdl (titkos) abécébe képezd transzfor-
maciék. Matematikai értelemben azonban transzforméaciénak olyan leképezést ne-
veziink, amely egy halmazt sajat magéaba képez le. Altalanos esetben a kriptografiai
leképezésektsl nem koveteljiik meg, hogy értelmezési tartoméanyuk és értékkészletiik
megegyezzen; de még azt sem, hogy akar csak tartalmazzak egymast.

Masrészt nem art tisztazni, hogy tulajdonképpen mi is ezeknek a kriptografiai
leképezéseknek az értelmezési tartoménya és az értékkészlete.

(Az itt kovetkezd diszkusszi6 soran megkisérlem a kriptogréafiai leképezések egy
- nagyon egyszerd — formalnyelvi megkozelitését.)

A kriptografiai leképezések egy véges szimbolumhalmazbdl (nyilt abécé) alko-
tott véges sorozatok halmazabdl képeznek egy vagy tobb véges szimbolumhalmaz
(titkos abécék) uniojabol képzett sorozatok halmazara.

Formalisan: egy ¢ leképzés kriptografiai transzformacionak tekinthetd, ha ¢ :
P* — C* alaku,
ahol P — input szimbdélumok halmaza, nyilt abécé,

P* - P elemeibél alkotott fiizérek halmaza

n
C = |J C;, output szimbdlumok halmazainak (kriptogram abécék) egyesitése,
=1
ahol C* — C elemeibdl alkotott sorozatok halmaza.
n
A C = | C,, definiciéban szerepld n érték a kriptogram abécék szamat je-
i=1
lenti. A n=1 esetben monoalfabetikus titkosirasokrél beszélink Ismert n >1 esetén
és elsé faji polialfabetikus titkosirasoknak nevezhetjlik Sket, mig abban az eset-
ben, ha az abécék szama — kiviilallok szaméra — nem ismert, akkor nevezhetjiik
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6. dbra. Kriptografiai leképzések
Polialfabetikus (kriptogram) abécék

azokat mdsodfaji polialfabetikus titkosirasoknak.® Az els6- és a masodfaju polial-
fabetikus rendszerek kozti lényegi megkiilonboztetést indokolja, hogy az elsé faju
tobbabécés rejtjelezések megfejthetok® betiigyakorisagi analizis segitségével, mig a
mésodfaju polialfabetikus titkosirdsok nem. A de Vigenere kod esetében Babbage
zsenialitiasa éppen abban nyilvanult meg, hogy modszert talalt arra, hogy hogyan
alakitson at egy masodfaju polialfabetikus rendszert elsé faju rendszerré, azaz ho-
gyan hatarozza meg az abécék szamat vagy — ezzel lényegében azonos jelentéssel —
az alkalmazott blokk hosszat.

Ez a modszer — nevezetesen a dupletek ismétlgdési tavolsaganak a megkeresése
és e tavolsagok legnagyobb kozos osztdjanak a meghatarozasa — azonban tavol all
a direkt megfejtésre valo betiigyakorisag analizist6l. J6 arra, hogy visszavezesse a
megoldasi problémat az elsé faju polialfabetikus rendszerekére, de maéskiilonben
nem része a megoldasnak. (Erre utaltunk a 6. labjegyzetben is.)

Babbage el6tt tobb mint 300 évig feltorhetetlennek tartottak de Vigenere titko-
sitasi modszerét, és az is volt a Babbage-féle visszavezetés ismerete hijan. A sors és
irénidja, valamint a brit katonai biirokréacia vaskalapossaga, hogy Babbage-nak nem
engedték meg a visszavezetési modszere publikilasat. (Ez aztan még kétszer meg-
ismétlsdott: Turing Enigma feltorése és a Colossus megépitése, valamint a GCHQ
nyiltkulcsa kriptorendszerének Diffie el6tti felfedezése esetében is.)

A formalis megkozelitésbdl latszik, hogy a leképezések értelmezési tartomanya
és értékkészlete is véges vagy megszamlalhatoan végtelen halmaz, hiszen véges hal-

8 Ezek itt bevezetett, a szakirodalomban nem ismert elnevezések.
9 Ti. az egyszert helyettesitéses rendszerekhez hasonléan, amelyek archetipusa pl. a Caesar-féle
titkositéas.
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mazok elemeibé! alkotott fiizérek (string) halmazail®. A leképzé fiiggvények tehat
legfeljebb megszamlalhatoan végtelen halmazok felett vannak értelmezve, ,folyto-
nos” halmazok feletti fiiggvények értelemszerien sz6ba sem johetnek.

A formalnyelvi leiras egyik alapproblémaja mar e ponton jelentkezik és azzal
kapcsolatos, hogy mit tekintliink abécének.

Itt — egyeldre — azoknak a szimbélumoknak a P halmazat, amelybdl a nyilt lize-
net szavait képezziik és értelemszerien kiterjesztjik ezt a C kriptogram abécé(k)re
is. Ezek nyilvanvaléan véges abécék.

Blokkrendszert titkositasok esetén az 4abécékbdl alkotott szavak hossza nem
csak korlatozott, hanem egy megadott véges érték (az AES-nél pl. 128 bit). Ezek-
bl ugyancsak végesszami van (az AES esetében éppen 2128 db), és e halmaz véges
volta miatt ezek is tekintheték egy véges 4bécé elemeinek.!' Mivel minden gya-
korlati esetben megegyezik a kriptogram és a nyilt szoveg blokkjainak a hosszu-
sdga, (s6t ugyanez szokott lenni a kulcshossz is) ezért a mondottak a kriptogram
abécé(k)re is érvényesek. A leképezések vizsgalatakor egyéltalan nem mindegy, hogy
az itt emlitett kétféle abécé-értelmezés kézil melyiket fogadjuk el. A 6. dbran szem-
léletesen bemutatott halmazok és jelolésrendszer remélhetSen vilagossa teszi az ér-
telmezést. Az abra a polialfabetikus rendszerek kedvéért mind az abécéket, mind
azok elemeibdl alkotott szavak halmazait feltiinteti.

A leképezések linearitasa

A kriptografiai leképezések altalanos vizsgalatakor a Px nyiltszdveg flizérek
kozotti miiveleteket és ezeknek a Cx képtartomanyban vald megjelenését vizsgal-
juk. Formalnyelvi megkozelitésben tehat ekkor éppen a korabban emlitett masodik
abécé-értelmezést alkalmazzuk, vagyis azt, amikor a leképezés értelmezési tarto-
manyanak (és értékkészletének is) az elemei a Px, illetve a Cx fiizérek. Emlékez-
tetlink arra, hogy e diszkusszi6é soran nem tekintjiik e fiizérek hosszat sem elGre
definialtnak, sem azonosnak, legfeljebb feliilrél korlatosnak, hogy megszamlalhato
halmazokkal tudjunk szamolni.

Hagyomanyosan egy leképzést akkor szokas linedrisnak nevezni, ha az értel-
mezési tartomany elemein értelmezett valamely miveletekre nézve miivelettarto,
azaz mindegy, hogy a miiveletet el6bb elvégezziik az értelmezési tartomany elemei
kozt, majd az eredményt képezzik le, vagy el6bb a leképzést az operandusokra

P

alkalmazzuk, és a képelemek kozt végezziik el a megfelel§'? miiveletet.

10 Vagy véges sok véges halmaz uni6jabél alkotott fiizérek halmaza

11 Jgaz, hogy ennél az 4bécénél igen nagy az elemek szima. Ha azonban nem igy lenne, ak-
kor — az alkalmazott transzformacié bonyolultsagatél fiiggetleniil — az elemek gyakorisaganak az
elemzésével tulajdonképpen nagyon kdnnyen feltorhetd lenne a kriptogram.

12 Hangsilyozni kell a ,megfelels” sz6 jelentdségét a megfogalmazasban. Altalanos esetben
ugyanis nem varhato el, hogy a leképzés értelmezési tartomanya és értékkészlete megegyezzen.
Igy a leképzés el6tti milvelet egy az értelmezési tartomanyon értelmezett mivelet, mig a képele-
meken végzett mivelet az értékkészlet felett értelmezett mivelet.

Alkalmazott Matematikai Lapok 28 (2006)



ALAPVETO MATEMATIKAI TRANSZFORMACIOK A KRIPTOGRAFIABAN 415

Formalisan: egy ¢ : A — B leképezés linearis valamely + és @ miveletek szem-
pontjabél, ha
Va,be A : pla+b) = p(a) ® p(b),

ahol + : Ax A — Aés @ : B x B — B megfelels A és B feletti miveletek!3.

Kriptografiai leképezések esetében a leképezés értelmezési tartoménya egy
adott szimbélumhalmaz elemeibél alkotott fiizérek!'* halmaza. Hasonloképpen az
értékkészlet is flizérek halmaza, csak a flizérek halmaza nem ugyanaz, mint az értel-
mezési tartomany esetében. SGt a fiizéreket alkoto abécék sem feltétleniil azonosak
a nyilt P abécé és a C kriptogram abécé esetében.

Ilyen halmazokon természetes médon definidlhatjuk a fiizérek Gsszef(izésének
miveletét (catenation, katenacié, konkatenacis,). Szokasos jelolése a || jel, de hasz-
nalatos még a "~ jelolés is. Ezek szerint a || b, illetve ab olyan szimbo6lum sorozatot
jelol, amelynek els§ tagjai az a fiizér elemeivel egyeznek meg, a tovabbiak pedig a
b sorozat megfelel§ elemeivel.

Kriptografiai leképzések linearitasarol tehat az Gsszefdzés miivelet tekinteté-
ben beszélhetiink. Ezek szerint linearisnak neveziink egy ¢ : A* — B* kriptografiai
transzformaciot, ha

Va,be A : plall b) = p(a) |l o (b).

A legtobb kriptografiai leképzés nyilvin nem linearis a fenti definici6 szerint. Ez
ugyanis azt jelentené, hogy a teljes titkos széveg a nyilt széveg kiilon-kiilon részei-
nek titkositasaval all els, amelyeket a nyilt sz6vegnek megfelel§ sorrendben fdziink
ossze. Ez viszont lehet8séget ny(jtana a timadonak arra, hogy ha sikeriil az {izenet
kiildGjét ravennie, hogy ugyanazt az iizenetet jol kériilhatarolhato helyen torténd
valtoztatassal kiildje el, akkor a titkos szévegben tortént valtozasbol kévetkeztetni
lehessen a kodolas mikéntjére, s6t magara a kulesra is (choosen plain text attack).

Blokkhosszuasag!®

A kovetkez6kben megmutatjuk, hogy a blokkhosszisag fogalma a linearités
segitségével sokkal pontosabban meghatarozhat6, mint az a mai, modern krip-
torendszerekben szokasos. Ezeknél ugyanis blokknak nevezziik azt a szimbélum-
fiizért, amelyen a kriptotranszformaciét végrehajtjuk. A vonatkoz6 szakirodalom
tobbnyire megemliti ugyan, hogy ezek a transzforméaciok nemlinearisak, de eleddig

13 Vektorterek (linearis terek) esetében nem csak az alaphalmazon beliil értelmezett mdvelet
miivelettartasat kovetelik meg, de az un. skalarral valé szorzas miveletre is elSirjak ugyanezt.
Kriptografiai leképzések esetén ilyen kiilsé miveletet nem definidlunk, igy ennek vizsgalatatol
eltekinthetiink.

14 Algebrai értelemben itt szimbélum-sorozatokrél van szé. Mégis, a gyakorlatban elterjedt
sz6hasznalat miatt ezeket inkabb fiizéreknek (string) nevezziik vagy — a forméalnyelvi megkozeli-
tésnél — az adott nyelv szavainak.

15 A blokkhosszusag e definiciéja wj, eleddig ezt a megkdzelitést — tudtommal — nem hasz-
nalta a szakirodalom. Azért vezettiik be, mert a leképezések linearitasa, illetve nemlinearitasa
szempontjabol hasznos.
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sehol sem bukkantam ra a linearitas, illetve a nemlinearitis pontosabb definicié-
jara. Mas széval arra, hogy az emlitett kriptotranszformaciok miért, illetve mitsl
nemlineérisak.

Technolégiai szempontbdl megoldhatatlan, hogy egy kriptografiai leképzés tet-
sz6legesen hoszszli szévegekre is nemlinedris médon viselkedjék. Minden gyakor-
latban hasznalt algoritmus esetében van egy a sorozatok hosszéara vonatkozo felsd
korlat, hogy ha az ilyen hosszisagi sorozatokat tekintjiik az abécé elemeinek, ak-
kor az ezekbdl alkotott sorozatok halmazéan az Gsszeflizés miiveletére vonatkozban
a leképzés mar linearis. Azt a legkisebb ilyen értéket, amelyre az adott leképzés li-
nedrisan viselkedik, a leképzés blokkhosszusaganak nevezzik.

Vegyiik észre, hogy itt nem a hagyoméanyos értelemben vett ,blokkonkénti” le-
képezés linearitasarol vagy nemlinearitasarol van szo, hanem épp forditva:

A kriptografiai leképzés linearitdsanak elébbi definicibja segitségével lehet a
blokk fogalmat és a blokkhosszisagot definialni.l®

Nagyon leegyszerisitve: Blokkok azok a legrévidebb fiizérek, amelyekre, mint
argumentumokra a kriptografiai transzformaciok linearitasa teljesiil.”

Formalisan: Legyen ¢ : A* — B* kriptografiai leképzés, n természetes szam, to-
vabba ¢’ : (A™)" — B* leképzés tigy, hogy Vs € (A™)" sorozat esetén ¢(s) = ¢'(s).

Ekkor azt a legkisebb n természetes szamot, amelyre ¢’ lineéaris, a o leképezés
blokkhosszdnak nevezziik.

Ehhez érdemes némi magyarazatot fizni: ¢ az A 4bécé elemeibdl alkotott tet-
sz6leges hosszisagi sorozatokon értelmezett fliggvény. A™ az A 4bécé elemeibdl
alkotott pontosan n-hossziisagu sorozatok (blokkok) halmaza, az ezekbdl mint ele-
mekbdl alkotott sorozatok alkotjak (A™)" elemeit. Az ezen a halmazon értelmezett
¢’ leképezés csak annyiban tér el a ¢ leképezéstdl, hogy nincs feltétleniil barmi-
lyen hossziisagi sorozaton értelmezve, csak azokon, amelyek hosszisaga a talalt n
szam egész szamu tobbszorose. Akkor mondjuk, hogy ez az n a leképzésre jellemz§
tn. blokkhossz, ha a leképzés a blokkokra megszoritva lineéris, és nincs olyan n-nél
kisebb korlat, amelyre a leképzés ugyanezt tudné.

A mai, gyakorlatban alkalmazott kriptorendszerek mind meghatéarozott hosszi-
saga blokkokra osztjak a nyilt széveget és e blokkokat kiilon-kiilon transzformaljak

16 Ez a fajta linearitds nem is ad valaszt arra, hogy mennyire nemlinearis egy ilyen blokk
leképezése.

Ez a kérdés pedig a gyakorlatban létezik. A DES esetében — a NIST javaslatara - éppen a
,nemlinearitas novelésére” bevezették a rund transzforméciok soraba az expanzid-kompreszszid
part. Kézvetve az un. lavinahatas novelése és ez altal a feltorés megnehezitése miatt. Ez a fajta
miivelet azonban a kés6bbi szimmetrikus rendszerekben nincs meg, tehat a mondott okbol nem is
volt ra szitkség. Ennek az okat viszont — tudtommal — nem publikaltak, hanem ,csak tudoméasul
vették”, hogy a Feistel fiiggvények szerinti iterativ transzformaciok az expanzoé-kompresszié par
nélkil is rendelkeznek a lavinahatéssal.

17 Ennek a definiciébnak az Stlete és a formalis megfogalmazasa Téth Gergelytdl, a Veszprémi
Egyetem székesfehérvari AIFSz Képzs Kozpontjanak a tanaratol szarmaazik.
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kriptogram blokkokka. Mind a nyilt széveg, mind a kriptogram blokkjai ugyanolyan
hosszusagiak s ezzel azonos a kulcs hossztisaga is.'8

Nyilvanval6, hogy

a. A blokk nem oszthatd, azaz nem alkalmazhaté a titkositasi leképezés rész-
blokkokra. Ha a teljes titkositand6 szdveg blokkokra bontéasa végén részblokk
adédna, akkor azt valamilyen elézetes megegyezés szerint fel kell tolteni (pad-
ding).

b. Az egymast kévets blokkok titkositasi leképezése egymas utdn és egymastol
fiiggetleniil torténik. Ilyen értelemben a blokkokbol alkotott sorozat részeire

(ti. az egyes blokkjaira) érvényes az elGbbiekben megfogalmazott linearitas-

definicié.

Azonban ez aldl is van kivétel, nevezetesen a szimmetrikus rendszerekben al-
kalmazott lancolas elve, amelyet ugyan a DES kapcsan vezettek be, de barmelyik
sblokkos” titkositasnal alkalmazhaté [5].

Az utobb emlitett ellenpélda szemlélteti, hogy lancolt titkositésnal a ,blokk”
fogalmat pontatlanul alkalmazzak az egymas utan végrehajtott transzforméaciokra,
amelyek ekkor egyaltalan nem fiiggetlenek egymastol. Ilyen esetekben tulajdonkép-
pen az egész transzformalando nyilt széveget kellene egyetlen oszthatatlan ,blokk-
nak” tekinteni.

A tiik6rszimmetrikus, 6ninvertalé transzformaciok

E leképzés-tipusoknak a szimmetrikus kriptorendszerek korében van jelentd-
sége. Gyakorlati szempontbdl nagyon is jelentds dolog, hogy ha ugyanazzal a géppel
(vagy algoritmussal) tudunk titkositani és visszafejteni, a gép mindennemi atalli-
tasa nélkiil. Igy miiksdott pl. a masodik vilaghaboriiban elhiresiilt német titkosito
gép, az Enigma is, amelyet a maga idején megfejthetetlen kédolénak tartottak.
Nos, végiil is nem volt megfejthetetlen, de a feltoréséhez zsenik kellettek és nagyon
id&igényes feladatnak bizonyult.

Az Enigma egy érdekes tanulsiga az, hogy a megfejtést az abécék extrém nagy
szama tette szinte lehetetlenné. Ez, ti. az dbécék szama még a legegyszeriibb, ke-
reskedelmi valtozatnal is 26”3 volt, de a katonai valtozatoknal ezt kb. ezerszeresére
novelték. Raadasul a kulcstér is nagyon nagy (de az abécék szamatol elvileg fiig-
getlen) volt.

A titkositd és a visszafejt6 algoritmus hasonlé ,tikorszimmetriaja” fellelhetd
a modern iteraciés kriptorendszerekben is — ha eltekintiink a kulcsilitemezés meg-
forditasatol. Az Enigma a mindaddig legelterjedtebb titkositasi transzformaciét
alkalmazta, ti. a helyettesitést. A 26 betiis 4bécébsl képzett nyilt széveg minden
egyes betiijét egy kriptogram bettibe képezte le. A bonyolultsagit azzal érték el,
hogy egy meglehet&sen hosszii betiisorozaton beliil ugyanazt a nyiltszéveg betit
mindig méas és mas kriptogram betiinek feleltette meg.

18 Egyetlen egy, részbeni kivétel a DES tn. rund transzformaciéjan beliil alkalmazott expanzio,
majd a szubkulcs-mivelet utani kompresszio.
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Itt most nem foglakozunk azzal, hogy ezt hogyan valésitotta meg az Enigma. Az
egyik lényeges kivetkezmény az, hogy az ilyen tiikorszimmetrikus és polialfabetikus
helyettesités messze nem hasznalja ki a lehetséges kriptogram abécék mindegyikeét.
Ezt azonban nagyon nagyszami abécé esetén ,megengedheti magénak” a kripto-
rendszer. Ezt a tikorszimmetriat megorokolték az Enigmatol a modern iteracios
kriptorendszerek is (DES, IDEA, AES...), de a visszafejtésnél alkalmazott fordi-
tott szubkulcs-sorozattal kikiiszobolték a tiikorszimmetrianak az Enigmanal még
meglévs hatranyat.

A tiikdrszimmetrikus kriptotranszformacickat leképezéseknek tekintve teljesiil-
nie kell annak a feltételnek is, hogy a leképezés értéktartomdnya és értékkészlete
azonos. Mas széval a nyilt abécé azonos a kriptogram abécével — vagy abécékkel,
polialfabetikus rendszerek esetén!®.

Ekkor, és csakis ekkor lehetséges, hogy a leképezés énmaga inverze. Mint emli-
tettiik, ennek gyakorlati szempontbdl van jelentésége, jollehet csokkenti az aktualis
kriptorendszer erdsségét. Az Enigma esetében pl. egyfajta fogodzot” jelentett a
kédfejtének az, hogy az Enigma sohasem képzett le egy betiit 6nmagaba. Ez a gép
leképzési tiikérszimmetriajanak a kévetkezménye volt.2°

A tiikorszimmetrikus leképezést még a legegyszertbb helyettesits titkositasok-
nal is meg lehet valdsitani. Egy sztenderd, n betds abécé és Caesar-féle titkositas
esetén azonban ilyenkor a kulcstér a felére csdkken. Az n betis kevert abécék esetén
pedig (n — 1)! helyett (n/2)!-ra csokken a kulestér.

Az alap-transzformaciok

Két alapvetd transzformécio-tipus létezik 6sidSk o6ta. Ezek a kévetkezék:
o helyettesités (substitution),
o transzpozicié (mas néven keverés vagy permutéacio).
A helyettesités alapértelmezésben betiit helyettesit betivel, a transzpozicié pedig
egy meghatarozott hosszusagi szovegblokkon belul athelyezi, Gsszekeveri a beti-
ket.2!

Erdemes megjegyezni, hogy e két alaptranszformaciénak nem csak torténeti
érdekessége van, hanem fellelhetdk a legmodernebb titkosité rendszerekben is. Igaz,
nem egymagukban, hanem Gsszetett, bedgyazott alkalmazasaikban.

Végiil is mindkét alaptranszformacié megfogalmazhaté figgvényként is, ame-
lyek bijektiv leképezést hajtanak végre.??

19 T6bb-abécés rendszerek és bonyolultabb — pl. iteraciés — transzformaciok esetében bonyo-
lultabb feltételek is megfogalmazhaték. Az iteracids, szimmetrikus kriptorendszereknél pl. csakis
ugy teljesil ez a ,tiikérszimmetria”, hogy az inverz leképezésnél forditott sorrendben kell alkal-
mazni az egyes menetek (rundok) szubkulcsait, mint a titkositdsnal. Ez mas sz6val az alkalmazott
abécék sorrendjének a megforditasat (is) jelenti.

20 Valamint annak, hogy a valamennyi kriptogram abécé paros szamu betiibél (26 betiibsl) allt.

21 A kettd kozotti hatar egyaltalan nem olyan éles, mint az korabban latszott.

A ,betinkénti helyettesités” pl. ASCII kéd esetén binaris blokkot helyettesit blokkal. Ez a fo-
lyamatos (stream) titkositas és a blokkos titkositas hatarait mossa dssze.

22 A véges elemd nyilt 4bécé az elemek szamanak dsszes permutacidja szerint keverhets ossze,
tehat ennyi féle keverési kulcs létezhet. Ha ezeket a permutaciékat megszamozzuk, akkor az i-edik
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Ha a nyilt szoveget és a kriptogramot egy-egy abécé felett értelmezziik, ak-
kor ezeknek a transzformacioknak az értelmezése trivialis. Az is nyilvanvalo, hogy
egymastol fliggetlenek, tehat akar fel is cserélheték. A transzformaciok felcserélhe-
tGsége masképp fogalmazva sorrend-fiiggetlenséget is jelent s a titkositasnal, illetve
a visszafejtésnél nagyon is jelentds lehet.

Nem nyilvanval6 a helyettesités és a transzpozicio felcserélhetGsége, ha a betiik
helyett binaris blokkokban gondolkodunk.

Példaul minden egyes betiit egy-egy 8 bites blokk (byte) helyettesit. Ebben az
esetben csak akkor sorrend-fiiggetlenek a transzformaciok, ha az egyik blokkhosszu-
saga egész szamu tobbszorose a masik transzformacié blokkhossziusaganak [1].

Ez szigorubb feltétel annal, amit korabban a linearitassal kapcsolatban meg-
adtunk, de nincs azzal ellentmondasban.

A transzformaéaciok egyesitése
Vizsgaljuk meg a kovetkezs abrat, amely a megfejtés megnehezitése céljabol
harom transzforméciot hajt végre egymas utan rendre a K, Ky és K3 kulcsokkal.

Kl K2 K3

C= EK3{DK2 [EKI(P)]}

7. dbra. T6bb egymés utani transzformécio

Vegyiik észre, hogy ha a K;, K5 és K3 kulcsok azonosak, akkor ez a harom
transzforméacio egyetlen egykulcsos transzforméacioval helyettesitheté. A komponens
transzforméciok szaméanak névelése bonyolitja ugyan a titkositéasi transzformaciot,
de a nyers eré modszerével szemben nem nytujt nagyobb védelmet, mint egyetlen
transzformacié. Masképpen fogalmazva: ha kitalaljak a kulcsot, akkor annak ismé-
telt alkalmazasa sem jelent komoly védelmet a feltoréssel szemben.

Az itt bemutatott Osszetett transzforméacié szé szoros értelmében nem kommu-
tativ produkt transzformacio, mert a komponensei nem felcserélhetGek. A leképe-
zések felcserélhetdsége viszont fontos kérdés, mint korabban mar megmutattam.

Itt célszerdi megjegyezni, hogy a ,dupla DES,, titkositast nem hasznaljak, mert
talaltak olyan feltorési modszert, amely a fent dbrazolt feltorési lancot mindkét
végérdl egyszerre tamadja a nyers erd modszerével és kimutathatd, hogy a krip-

permutéaci6 egy i sorszamu leképezésként is felfoghaté. Nincs tehat éles elvi hatar a helyettesitd
és a permutacios leképezések kozott sem.
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tografiai erésség szempontjabol lényeges, Un. ekvivalens kulcshossz nem tobb mint
egyetlen kulcs dupléja.

A tripla DES esetében viszont hiromszoros ekvivalens kulcshosszal lehet sza-
molni.

A Feistel transzformaciok

A 7. dbra kapcsan lattuk, hogy a transzformaéciok ismételt alkalmazasa csak ak-
kor jelent nagyobb védelmet, ha mindegyik komponens-transzformacionak mas-més
kulcsa van. A tobbkulcsos rendszer hasznalata viszont bonyolultabb. Kérdés, hogy
hogyan lehet egykulesos (szimmetrikus) titkosité rendszert ugy megszerkeszteni,
hogy gy mikodjon, mint egy tébbkulcsos, ismételt transzformécidkat alkalmazé
rendszer.

A megoldast Horst Feistel, az IBM munkatarsa talalta ki az 1970-es évek ele-
jén.23

A titkositasi rendszeréhez felhasznalta a 70-es években mar széles kdrben ren-
delkezésre allo szamitogépeket.

Nagyon leegyszeriisitve azt talalta ki, hogy a titkositas K kulcsabdl egy un.
kulcs iitemezé algoritmussal meghatarozott szamu ,alkulcsot” (szubkulcsot) allit
els, és ugyanazt az Osszetett transzformécié sorozatot — ,menet” (round, kér) —
tobbszor egymés utan végrehajtja, de minden egyes alkalommal més-méas szub-
kulccsal. Tehat minden egyes rundhoz méas-maés szubkulcsot alkalmaz.

Ezzel a megoldassal a titkositas Gn. erssége nem lett nagyobb, mint amit a
K kulcs hossza (kulcstere) meghatéarozott, de maga a médszer annyira bonyolultta
valt, hogy csakis a nyers er6 maodszerével lehetett probalkozni a feltrésénél. A DES
mellesleg 64 bites nyiltszéveg blokkokhoz 64 bites kulcsot hasznélt, de a 64 bites
(8 bajtos) kulcsban ,csak” 56 fuggetlen bit volt, mert minden kulcsbajt egyik bitje
paritasbit volt. Igy a DES kulcstere 2% kiilénbézé kulesbol allt.

Ennek a megoldasnak kiilonds jelent8séget ad az a tény, hogy egyrészt 25 évig
kivaloan miikodott, masrészt a mai szabvanyositott utédja?? is lényegében hasonlé

23 Feistel 1932-ben emigralt Németorszagbol az USA-ba. A haboru alatt titkos lizenetek meg-
fejtésével foglalkozott. Az IBM a 70-es évek elején a Lloyd biztositd tarsasig szamara fejlesztett
titkosité rendszert. Feistel a rendszerét ,Dataseal’nek akarta elnevezni de az IBM csak Demonst-
ration Cipher-nek nevezte, amely elnevezés roviditett valtozataként a ,Demon” elnevezést hasz-
nalta. Ebbgl lett késébb a ,Lucifer” kriptorendszer, amely alapjat képezte az 1975-ben Data
Encryption Standard (DES) néven szabvanyositott an. iteraciés kriptorendszernek [15].

24 Az an. Advanced Encryption Standard (AES), amit egy hosszu palyazati és dontési folyamat
utan a belga Vincent Rijmen és Joan Damon Rijndael nevd iteraciés kriptorendszere nyert el. Az
AES 128 bites valtozatat 2000 oktoberében szabvanyositotta a NIST.

Ha arra gondolunk, hogy de Vigenere polialfabetikus rendszere kb. 300 évig ellenallt a feltérés-
nek, akkor a 25 év nem t{inik soknak.

De Vigenere rendszerének a feltoréséhez azonban nem voltak meg sem azok a matematikai
eszkdzok, amelyek a II. vilaghdboruban mar rendelkezésre alltak, sem a feltér6-gépek megszer-
kesztéséhez sziikséges technolégia nem allt még rendelkezésre.

Babbage zsenialitasa kellett hozza, mint ahogyan Rejewskyé az Enigma felt6réséhez.
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elven épiil fel, csak egy-egy menetben méasféle transzformacidkat alkalmaz és a K
kules hossza is 128 bit lett.

A Feistel transzformécidohoz el6bb még harom segédfogalmat kell definialni.
Ezek a kovetkezdk:

a. Egy szorzat transzformacié (product cipher) két vagy tobb komponens transz-
forméciot kombinal olyan moédon és céllal, hogy az eredd transzforméacioé biz-
tonsagosabb legyen, mint a komponensek barmelyike.2> A tovabbiakban ezt
inkadbb dsszetett transzformdcionak nevezziik.

b. Egy helyettesitési-permutéaciés hélozat (SP) olyan osszetett transzforméciot
hajt végre, amely szamos, egymast kovetd fokozatbdl all, s e fokozatok mind-
egyike vagy helyettesitést, vagy permutaciot hajt végre (lasd 8. 4bra).

c. Egy iterdlt blokk transzformdcio egy belss, un. rund fliggvény meghatarozott
szamu sorozatos megismétlését jelenti. Fontos paramétere a menetek (rundok)
szdma.: r; a blokkban 1évé bitek szama: n és az tn. bemeneti kulcs bitszama: k.

Nyflt széveg (blokk)

Kriptogram (blokk)
8. dbra. Egy Osszetett transzformaciot végrehajtéo SP halozat

A Feistel transzformacié az iteralt blokk transzformaci6é egy tovabb bonyoli-
tott valtozata. Eredeti (vagy els6, a Luciferben alkalmazott) valtozataban a nyilt
szoveg blokkjainak hosszusdga n = 2t, a rundok szdma pedig legalabb 4. Jellem-
z6en paros szamu rundot alkalmaz. A bemeneti kulcs bitjeinek szama megegyezik

25 Figyeljiik meg, hogy az elnevezés ugyan transzforméciok szorzatara utal, de a definicié meg-
engedi a komponensek egymasba valé beépitését, az Osszetett fiiggvényeket. Ezért pontosabb is
Osszetett transzforméaciorél beszélni.
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a blokkmérettel, tehat szintén 2t bit. Tartozik hozza egy kulcs iitemezd folyamat,
amely minden rund szaméra mas-mas szubkulcsot 4llit el a bemeneti kulcsbol.

A péros szami rundnak j6 oka van. A Feistel transzformacié ugyanis a nyilt-
sz6veg blokkot megfelezi® és a (szub)kulcsfiiggd komponens transzformaciot csak
egy t hossztisagu félblokkon hajtja végre egy-egy menetben. A két félblokkot az-
tan Osszekeveri a menet végén, és a kévetkezd menetben megeseréli a félblokkokat.
Szigortan véve csakis azokat a szimmetrikus transzformaciokat nevezik Feistel fiigg-
vényeknek, amelyekre jellemzdk a fél-blokkok és ezek menetenkénti felcserélése.

Az egész eljaras jobban megérthetd a 9. 4bra alapjan.

Az eljarasban nem tiintettiik fel a szubkulcsokat {itemezé algoritmust és még
egy-két finom részletet sem. Egyébként igen figyelemre mélté az f Feistel figgvény,
amely itt a 32 bites félblokkokhoz 48 bites szubkulcsokat alkalmaz, mert — t6bbek
kozott — tartalmaz egy kiterjesztési és egy kompresszios transzformaciot is.

Emiatt el6fordulhat (és a DES-ben el§ is fordul), hogy maga az f Feistel fiigg-
vény nem is invertalhatd, de ettSl még a teljes rund, illetve azok sorozata mégis
csak invertalhat6.2” A megfejtéskor ugyanezt a 16 menetes eljarast alkalmazzak, de
a szubkulcsok sorrendje forditottja a titkositaskor alkalmazott sorrendének. A fél-
blokk kiterjesztése, majd a kulcsfiiggd miivelet végrehajtiasa utani kompresszidja
(amelyek beleértenddk az f Feistel transzformacioba) an. lavina hatdst eredményez,
ami azt jelenti, hogy a nyiltszoveg blokk egyetlen bitjének a megvaltoztatasa a hoz-
zatartoz6 kriptogram blokkban legalabb 32 bit valtozasat okozza. A lavinahatas a
rundok szamanak névelésével névekszik. Ez minden iteraciés kriptorendszerben igy
van. Az AES-ben is és tébb maés, ismert rendszerben is.

Egyébként a 128 bites AES nem bontja félblokkokra a bemeneti nyiltszéveg
blokkot és 12 menetes iteraciot alkalmaz.

A lavinahatas miatt nem véletlen, hogy az iteracios, szimmetrikus kriptorend-
szerek megfejtési kisérletei soran elGszor csak kevesebb szamiu runddal titkositott
valtozatok megfejtésére szoktak torekedni. Ez még a legijabb AES feltorési kisér-
leteinél is igy van.

A lavinahatasr6l még annyit, hogy az kdzvetlen rokonsigban van a matemati-
kai értelemben vett kaotikus folyamatokkal.

26 Van negyedel§ eljaras is, pl. az IDEA esetében.

27 Ez Menezes [24] allitasa, de nem bizonyitja. A DES részletesebb elemzése azonban alata-
masztja ezt az Allitast. Ténykérdés ugyanis, hogy az expanzi6é-kompresszié transzforméacié-par
alkalmazisa miatt legalabb is kétségek meriilnek fel az f fliggvény invertalhatosagaval kapcso-
latban. Az is tény azonban, hogy a DES 25 évig jol mikodott. Az invertalhatésigot viszont e
cikk elején a transzformaciok altalanos kévetelményei soran trivialis alapfeltételnek tekintettiink.
Marmint a teljes transzformacioét, s nem annak komponenseiét. Feistel egyik 6riasi innovaci6ja
az, hogy rajott, hogy osszetett transzforméacidk esetében nem feltétleniil kell minden komponens-
nek invertalhatonak lenni ahhoz, hogy az ered6 transzforméacié invertalhat6 legyen. Az igazsaghoz
hozzatartozik azonban, hogy a Luciferben még nem volt ilyen expanzié-kompresszié par, s azt az
NSA javaslatara épitette be a DES-be Feistel.

A nem invertalhat6 komponensek beépitésének az a f6 elénye és célja, hogy lehetetlenné tegye
a transzformacié algoritmikus feltorését.
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9. dbra. A Feistel transzforméciot alkalmaz6 16 menetes, 64 bites DES vazlata
(csavart létra)

Az aszimmetrikus kriptorendszerek

Emlitettiik, hogy kb. az 1970-es évek kozepén kovetkezett be az az &ttorés,
amely a nagyon bonyolult és nagy szamitas igény( szimmetrikus kriptorendszerek
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bevezetését jelentette, méghozza a civil alkalmazasokba.?® Innen szamitjuk az an.
negyedik és 6t6dik generaci6s kriptorendszerek korszakat.?® A szimmetrikus krip-
torendszerek elterjedésének azonban 6riasi gyakorlati akadalya volt, hogy a titkos
kulesot a titkositott kommunikaciot megelGzGen és igen nagy biztonsaggal el kellett
juttatni a kommunikéaciéban részt vevd masik partnernek. A kulcsok eljuttatasa-
nak, nyilvantartasanak és egyaltalaban a kulcsok menedzselésének (a szimmetri-
kus rendszerekben) megoldatlan problémaja siirgetéen megkévetelte valamilyen ]
megoldas kialakitasat. Allithatjuk, hogy tulajdonképpen ez az igény valtotta ki az
aszimmetrikus (nyiltkulcsa) kriptorendszerek feltalalasat.

Kb. ugyanebben az id6ben tamadt egy zseninek, nevezetesen Whitfield Diffie-
nek az az Gtlete, hogy valahogyan el kellene keriilni a kulcsok utaztatasat.

Ennél, persze, konkrétabb 6tlete is volt a megoldasra, amin aztan Martin Hell-
mannal és Ralph Merklevel egyiitt dolgoztak. 1976-ban jelentették be az Gtletiiket
egy konferencian [35], de 6k akkor még nem talaltak ra mikodsképes implementa-
ciot.

Diffie olyan, an. egyiranyu fiiggvényeket keresett, amelyeket az egyik iranyban
aranylag konnyen ki lehet szamolni, de a masik irAnyban csak olyan sok szamitasi
kapacitassal, ami nem éri meg a dolgot, vagy nincs annyi rafordithat6 ids.

Ma maér széles korben ismert Ron Rivest, Adi Shamir és Leon Adleman felta-
lalék neveinek kezdébetiiirsl elnevezett RSA titkositas, amely alapja a természetes
szamok prim faktorizaci6ja. (IFP = Integer Factorization Problem). Nagyon leegy-
szerlsitve ugyanis arrél van sz6, hogy két nagy primszamot aranylag nem nehéz
Osszeszorozni, de egy igen nagy szam esetében csak nagyon sok probalkozassal le-
het az adott szam térzstényezdit meghatarozni. Ez egy tipikus egyirany fiiggvény-
probléma.

No de hogyan lehet Gsszehozni egy szoveg titkositasat szamokkal? Nos, blokk
titkositas esetén egy nbites blokk mindig tekinthet$ olyan egészszamnak, amely
értéke 0 és 2™ — 1 kozé esik. Fontos, hogy egészszamokrol van sz6, s ennek a kévet-
kez8kben komoly jelentGsége lesz. Fontos az is, hogy egy korlatos tartomanyba es6
pozitiv egészekrdl, vagyis természetes szamokrol van szo.

Térjiink vissza azonban a 3. abra teljes titkositasi/visszafejtési folyamatahoz.

Lattuk, hogy trivialis megoldasnak tekintették korabban, hogy az E és a D
transzforméciok kulesai azonosak, maguk a transzformaciék pedig egymés inver-
zei. S6t: gyakorlati szempontok miatt esetleg sajat maguk inverzei. Ez valamennyi
szimmetrikus kriptorendszer jellemzgje.

Ma mar eléggé kézenfekvs az, hogy nem feltétleniil kell az F és a D transz-
formaciok kulcsainak azonosaknak lenniiik, hanem elképzelhets, hogy azok példaul

28 A katonai alkalmazasok kérében természetesen korabban is léteztek ilyenek, de azért érdemes
felfigyelni arra, hogy az amerikai hadsereg még a koreai haboruban is hasznalt az Enigméhoz
hasonlé titkosité/megfejts gépeket

29 A kriptorendszer-generacidkat ugyanigy az alkalmazott technolégia jellemzi, mint a szamito-

gépek generacibit, de ezzel a kérdéssel itt nem foglalkozunk. Megemlitjiik azonban, hogy nem csak
a transzformaciés technolégia, hanem a jellemzé kommunikacios technologia is meghatarozo [2].
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egymasnak az aktulis transzforméaciora vonatkoztatott inverzei, s maguk a transz-
formaciok azok, amelyek azonosak.

Az eldbbiekben lattuk, hogy maguk a transzformalandé blokkok egy felilrsl
korlatos tartomanyba esd természetes szamok. Egyszerd esetben a kulcsok is ter-
mészetes szamok.

A kérdés tehat Ggy tehetd fel, hogy van-e a természetes szamok halmaza felett
értelmezett zart mivelet, amelynek az eredménye is természetes szdm, s rdadasul
egy feliilrél korlatos halmaz tagja.

Nos, a modulo n dsszeadéas és a modulo n szorzas példaul ilyen miiveletek. Nem
véletlen, hogy az RSA rendszer is ezt alkalmazta. A modulo n direkt miiveletek
inverzei is léteznek.

A modulo n 3sszeadas és kivonas inverz mdveletpart mar a XVI. és XVII. sza-
zad fordul6jan de Vigenere alkalmazta az altala kitaldlt tobbabécés rendszerhez,
amelynek alsé hataresete az egyabécés Caesar-féle titkositas is és felsé hataresete
a nagyon sok abécés Enigma titkositas is.

A modulo n kongruenciak a 0-tol (n — 1)-ig terjedd, n darab maradékosztdlyba
képezik le a természetes szamok megszamlalhatéan végtelen nagy halmazat. Ezek
a maradékosztalyok a 0 és (n — 1) k6zotti természetes szamokkal jeldlhetk.

A modulo n miiveleteknek van egy elméleti és egy abbol kovetkezs gyakorlati
elénye is. Az elméleti eldny az, hogy ezek a miiveletek a természetes szamok hal-
maza felett zartak. A gyakorlati elény pedig az, hogy a maradékosztalyok véges
szama miatt a szamitasok soran elkeriilhetd a tdlcsordulés.

Evariste Galois (1811-1832) megmutatta, hogy minden véges halmazon értel-
mezett mivelet izomorf a modulo m maradékosztalyokon értelmezett valamilyen
modulo m mivelettel. Ennek kévetkezménye az, hogy ha a kriptografiai leképe-
zések véges (vagy legalabb megszamlalhatoan végtelen) halmazokon értelmezettek,
akkor a modulo m miiveletek gyakran feltiinnek a legkiilonb6z8bb elvii kriptografiai
leképezések korében is.

Az inverz fogalméardl itt annyit, hogy ha egy A halmaz felett értelmezett és
zart a ® mivelet és az A halmaznak eleme mind @, mind b, akkor ez a két elem
egymésnak inverze a ® miiveletre nézve, ha

a®b=e,
ahol e a ® mivelet egységeleme (amely, persze, szintén eleme az A halmaznak).
Azt, hogy a b elem az a elem inverze, a

b=a"",

jeloléssel jelsljitk. Példaul a szorzas miivelete esetén két szam (a és a~!) akkor
inverzei egymasnak, ha

a-a”t=1.
Jel6ljiink most egy n blokkhossziisagu nyilt széveget P-vel és a mondottak értelmé-
ben értelmezziik P-t szamként. Igen egyszeriien végrehajthaté ekkor a kévetkezd

titkositasi transzformécio:
C — P*modn
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A kapott eredmény mindenképpen 0 és (n — 1) kozé esik, tehat alkalmasan valasz-
tott hatvanyozasi algoritmus (pl. a gyors hatvanyozas) esetében nem fordulhat el
tulcsordulas, akarmekkora is az a hatvanykitevs. Vegylik észre, hogy itt a titkositas
kulcsa maga az a kitevd.

A visszafejtés ugyanazzal a hatvanyozasi mivelettel térténhet, de ekkor az ¢~
(inverz) hatvanyra kell emelni a C kriptogramot:

C* ' modn = (P“)a—1 modn =P+ =pl=p

A visszafejtés kulcsa tehat a1, vagyis a titkosité kulcs inverze, a titkosité transz-
formécié pedig pontosan megegyezik a visszafejtd transzformaciéval.

A keét kulcs nem azonos, hanem egymas inverzei. Bizonyos szempontbél éppen
olyan trividlis megoldas, mint a kulcsok azonossidga volt a szimmetrikus kripto-
rendszerek esetében. Mig azoknal a transzforméciok voltak egymas inverzei, és a
kulcsok azonosak, az aszimmetrikus kriptorend-szereknél a kulcsok egymaés inver-
zei és a transzformaciok azonosak.3? Maga az ,aszimmetrikus” elnevezés arra utal,
hogy a kulcsok nem azonosak. Egyébként azonban ezek a kétkulcsos rendszerek a
sz6 szoros értelmében legalabb annyira szimmetrikusak, mint a szimmetrikusnak
nevezett (egykulesos) kriptorendszerek.

A 4. 4bra és az 5. Abra pontosan ezt a szimmetriat hivatott bemutatni.

Vegyiik észre azt is, hogy a bemutatott rendszerben fontos szerepe van az n
modulusnak is, azaz az egész titkositd/visszafejté rendszer miikodtetéséhez az in-
verz kulesparon kivil a modulust is ismerni kell, tehat legalabb harom paraméter
van (Itt!).

Az aszimmetrikus kriptorendszerek azért nem annyira egyszeriiek, mint azt az
el6bbiekben bemutattuk. Szamos gyakorlati kévetelmény is létezik, amelyeket ki
kell elégiteni.

Alapelv, hogy ha a két kulcs nem azonos, akkor az egyiket nyilvinossagra is
lehet hozni. Ebbél azonban kdvetkezik, hogy a nyilvanos kulcsb6l semmilyen médon
ne lehessen kiszamitani a parjat, vagyis a titkos kulcsot.

Vizsgaljuk meg most ezt a transzforméaciot egy kissé kozelebbrsl!

Az RSA nyiltkulcst rendszer és az egyiranyu fliggvények3!

Az el6zdekben (amikor csak elsd kozelitésben kivantuk bemutatni az alapelvet)
ismételt hatvanyozassal értiik el, hogy visszakapjuk az eredeti szdveget.

A példaként bemutatott egyszeril hatvinyozas esetén, ha az egyik kitevs és a
modulus ismert, akkor az inverz kitevd kiszamolhat6. Az RSA rendszerben ezért

30 Marmint az itt bemutatott egyszeri esetben. Bonyolultabb rendszereknél azért nem lehet
a transzformaciokat teljesen azonosaknak tekinteni, mint ahogyan a negyedik generacios iterativ
kriptorendszerekben sem voltak teljesen azonosak.

31 Koszonetet kell mondanom Toth Gergelynek, a Veszprémi Egyetem Székesfehérvarra kihe-
lyezett AIFSz kozpontja tanarinak e fejezet megirdsahoz nyijtott segitségéért.
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nem is egyszerten csak inverz kitevékkel, hanem két nagy (10!5® nagysagrend)
primszam Euler fiiggvényével dolgoznak.

Ha taldlunk olyan e és d szamokat, amelyek szorzata valamilyen alkalmas k6zos
n modulussal osztva 1-et ad, akkor titkosithatunk az e és n szamokat hasznalva:

¢ — p® mod n.
A visszafejtésre a p < c? mod n formulat hasznalhatjuk, hiszen
(0.1) ¢ = (p°)* = p*? = p! mod n.

A probléma alapvetSen az, hogy mig val6és szamok esetében egy 0-t6l kiilonb6z6
szamnak mindig van inverze a szorzasra nézve (torténetesen a reciproka), addig ez
a maradékosztalyokban mar korantsem mindig van igy. Példaul egy paros szamot
barmilyen szdmmal megszorozhatunk, a szorzat soha sem fog 1 maradékot adni egy
paros modulus esetében.

Pierre Fermat [1601-1665] 1660 koriil rajott32, hogy az eljaras ,miikodik”, ha az
e - d szorzat primszam. Fermat eredményének azonban nem sok gyakorlati alkalma-
zasa van; tekintve, hogy csak az e = 1 vagy d = 1 esetben mikodik. Ez kriptografiai
szempontbdl azt jelentené, hogy magat a nyilt széveget kiildjik el a cimzettnek.

Szerencsére Leonard Euler [1707-1783] altalanosabb formulat talalt a Fermat
képletnél, amelyben a kitevének nem kell primszamnak lennie, és a hatvanyozas
utan mégis visszakapjuk osztasi maradékként az eredeti szamot.

Az Euler féle képletben

p¢% =pmodn,

(0.2) hae-d=k-p(n)+1 alakaq,

ahol k tetszéleges természetes szam. A p(n) jeldlés az n szamnal kisebb, n-hez re-
lativ primek darabszamat jeloli, azaz hogy hany olyan szam van 0 és n kozott,
amelyeknek 1-en kiviil nincs olyan osztojuk, amely n-et is osztana.3® A (0.2) fel-
tétel ekvivalens azzal a feltétellel, hogy e és d egymas inverzei a ¢(n) modulusra.
Ha tehat a kodolast és a dekodolast az Gizenetblokk hatvanyozaséaval oldjuk meg,
amint azt a (0.1) formulaban tettiik, akkor ez mikodni fog abban az értelemben,
hogy az ismételt hatvanyozassal visszakapjuk az eredeti lizenetet. A gond csak ¢(n)
kiszamitasanal van.

Primszamokra elég kézenfekvé, hogy p(p) = p — 1, és azt is viszonylag konnyt
belatni, hogy szorzat ¢-je a -k szorzata, azaz

(0.3) e(p-q) = p(p) »(p).

32 Kis (m4s néven: ,karacsonyi”) Fermat tétel: ap — 1 = 1 mod p, ha p primszam.

33 Fermat-val ellentétben Euler bebizonyitotta a sajat tételét, és ezzel visszamendleg a kis-
Fermat tétel is bizonyitast nyert. Egy primszamot ugyanis 1-en kiviil egyetlen nala kisebb termé-
szetes szAm sem oszt, azaz hozz4a képest az §sszes nala kisebb szam relativ primszam. Ezek szerint
primszamokra ¢(p) = p — 1, amibdl kévetkezik a kis-Fermat tétel 4llitasa.
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Vagyis egy tetsz6leges n modulus ¢-je konnyen meghatarozhato, ha ismerjiik n
primtényezds felbontasat.

Rivest, Shamir és Adleman frappans médon oldottak meg, hogy a kulcsokat lét-
rehozo illetékes” ismerje a modulus primfelbontéasat, az illetéktelen tamadé azon-
ban ne keriilhessen birtokaba ennek az informaciénak: egyszertien valasztottak két
primszamot, és ezek szorzatat hasznaltak a kédolaskor modulusként.

A modulus primtényezéinek segitségével meghatarozhatd az n modulus Euler-
féle o-je, ebbdl pedig az e és d kitevk, amelyek egymaés inverzei a ¢(n) szdmra
nézve.34

Ha egy illetéktelen akarja megfejteni a titkos d szamot a kézzétett e és n szdmok
alapjan, mindenképpen meg kell hataroznia ¢(n)-et, hogy megtudja, egyaltalan mi-
lyen modulusra kell kiszAmitania az e szam inverzét.

Jelenlegi ismereteink szerint viszont az Euler féle p(n)-et csakis n primtényezs-
inek ismeretében lehet meghatarozni. Ezek megkeresése a jelenleg hasznalt kulcs-
meéretek és szamitastechnika esetén sokszorosa a Vilagegyetem varhaté életkoranak.

Az RSA kodolas erdsségét tehat egy szemteleniil egyszerd un. egyiranyu fligg-
vény adja. A titkositas kulcsanak létrehozoja maga valasztja meg a torzstényezdket,
majd azok dsszeszorzdsa révén szamitja ki a kddolaskor/dekddolaskor hasznalt n
modulust. A torzstényezdk ismeretében a modulus kiszamitasa nevetségesen egy-
szerii: egyetlen szorzasi miivelet. A tadmadé azonban a forditott miveletet kénytelen
elvégezni, azaz egyediil az n modulus alapjan meghatarozni azokat a primszamo-
kat, amelyek szorzataként a modulus létrejott. A miivelet, amely az egyik irdnyban
akar tollal és papiron is viszonylag gyorsan elvégezhetd, visszafelé még a vilag min-
den informatikai kapacitasanak birtokaban is elképzelhetetleniil hosszi id8kig tartd
feladatot ré a rendszer feltordjére.

34 A modszer elvébsl kovetkezik, hogy az n modulusnak és e-nek relativ primeknek kell lenniiik.
Igen nagy szamokrol lévén szd, ezt nem is olyan egyszerd megvizsgalni. Ehelyett a gyakorlatban
azt teszik, hogy e-nek egy nagy primszamot valasztanak, amely ha sem p-vel, sem g-val nem
egyezik, akkor biztosan relativ prim n-hez képest is.

Erre a célra Mersenne vagy Fermat primeket szokas valasztani, mert a binaris alakjaik nagyon
kénnyen elSallithatok. A gyors hatvanyozas alkalmazhat6saga miatt a Fermat primek tulajdonkép-
pen alkalmasabbak lennének, de mindéssze 6 ilyen primszam van, amelyek koziil a legnagyobbat
valéban gyakorta hasznaljak is nyilt kulcsként.

A Mersenne primekbél sokkal tobb van, de ezekkel az eljards szimitasigénye lényegesen na-
gyobb.

(Az oka a gyors hatvanyozasban rejlik.)

A Fermat szamok 22* _ 1 alaku szamok, de csak k < 6 esetén primek. A gyakorlatban éppen
a k = 5-6t szoktak alkalmazni. Az ilyen binaris szamok Hamming stlya csak 2, és ezért a gyors
hatvanyozas valéban gyorsan végrehajthato.

A Mersenne szamok 2% — 1 alakiiak és nem mindegyik ilyen szam prim. A k természetes szamra
viszont nincs semmilyen kikotés.
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Tovabbi, titkositasra alkalmazhat6 csoportmiiveletek

A diszkrét logaritmus probléma (DLP)
Véges elemszami G csoportban a g generald elem és egy szabadon valasztott
a csoport-elem ismeretében hatarozzuk meg azt az z kitevst, amelyre g* = a (z =
log, g, de z-nek egészszamnak kell lennie) [22].

A Diffie-Hellman (DH) probléma

Véges elemszamu G csoportban a g generald elem, valamint g2 és g® ismereté-
ben hatarozzuk meg g%-t.

A kovetkezd csoportok hasznalata terjedt el:

e A p elembdl all6 mod p maradékosztalyok multiplikativ csoportjaként értel-
mezhetd csoport, amely valodi (és véges) részhalmaza a természetes szamok
halmazanak.

e A GF(2™) test 2™ — 1 elemi multiplikativ csoportja.

e Az elliptikus gérbék pontjain értelmezett csoport.

Ezek részletesebb diszkussziéja nélkiil csak azt szeretnénk kiemelni, hogy mindegyik
ilyen aszimmetrikus kriptorendszer az inverz kulcsok elvét alkalmazza ugyanazon
csoportmiivelet mellett.

Mindegyikre léteznek megoldasi algoritmusok, amelyek elsdsorban a szadmitas-
igény és a futasi id6k tekintetében versenyeznek egymassal. Mégsem jelenthetd ki
azonban, hogy egyik algoritmus jobb, mint egy masik, mert a hatékonysaguk a
konkrét alkalmazastél is filigg.

Az RSA algoritmus pl. maig is a legelterjedtebb, és nem is ok nélkiil, de csak
adott (s nem is tal nagy) blokkhosszisagi nyiltszovegek titkositasara alkalmas.

Nem véletlen az sem, hogy pl. a digitalis alairasok esetében a Diffie-Hellman
algoritmust szabvanyositottak, és az sem véletlen, hogy nagyon hosszi iizenetek egy
menetben val6 nyiltkulesi titkositasara pedig ma az an. NTRU (Number Theory
Research Group at MIT) rendszert tartjak a legalkalmasabbnak.

Mindezek bemutatasa azonban messze meghaladja e cikk terjedelmi korlatait
és célkitizését is.

Osszefoglalas

A kriptografia torténetének és fejlédésének nagy mérfoldkovei jo rendszerezési
alapot nyujtanak e cikkben bevezetett kriptogeneraciok fogalmahoz. Attekintve a
kriptorendszerek fejlédését azt talaltam, hogy néhany alapvetd fogalom nem, vagy
nem egyértelmden definialt. Ilyen volt pl. az an. blokkos titkositasok blokk fogalma,
a tobb helylitt emlitett linearis transzformaciok fogalma és maguk a kriptografiai
transzformaciok is.

E cikkben leirt attekintés alapvetd motivuma éppen e fogalmak ,rendbetétele”
volt. Legalabb is megkiséreltem néhany altalam felfedezni vélt ilyen hianyt p6tolni
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és ebben az frasban sszefoglalni mindazt, amire jutottam. Szép szammal maradtak
nyitott kérdések is.

Irasommal buzditani is szeretnék fiatal kutatokat arra, hogy érdemes egy tu-
domanyteriilet alapkérdéseivel foglakozni.

A cikk a kriptorendszerek generacidinak fogalmi és definitiv bevezetése utan a
kriptografiai transzforméciok (matematikai értelemben leképezések) altalanos jel-
lemzdivel, tulajdonsagaival foglalkozik.

Megmutatja, hogy matematikai értelemben miért helyesebb leképezésekrsl be-
szélni, mint transzforméaciokrol és vizsgalja e leképzések értelmezési tartomanyait,
valamint az értékkészletét.

Definialja a leképzések Gstartomanyan értelmezhetd miiveletet, nevezetesen a
konkatenaci6t, és ennek az értelmezési tartomanya segitségével definiciét ad a krip-
tografiai ,blokk” fogalmara.

Heurisztikus moédon 'megfogalmazza e leképezések altalanos kovetelményeit.
Megfogalmaz egy sejtést, amely sziikséges és elegendd feltétel a klasszikus helyette-
sitési és permutécids transzformaciok felcserélhetdségére, valamint Gsszevonasara.
(A blokkhosszusagok egészszamu aranyara vonatkozé kijelentésrsl van sz6.)

Foglalkozik az egyszeri leképzé fiiggvények inverz tulajdonsigaival. Claude E.
Shannon javasolta elsSként az in. produkt transzformaciokat, amelyek valéjaban
vagy nem kommutativ produktumok, vagy Gsszetett fiiggvények. Minden esetre
komoly szerepiik van a modern, un. negyedik generacios, szimmetrikus kriptorend-
szerekben. A cikk kitér az un. Feistel transzforméaciokra és alkalmazasaikra, a tobb-
komponensi transzformaciok komponensei invertalhatésaganak a kérdésére, s végiil
az Gn. aszimmetrikus (nyiltkulesi) kriptorendszerekben alkalmazott transzforma-
ciok kapcsan azt igyekszik bemutatni, hogy azok a tradicionélis kriptorendszerek-
nek mintegy a titkkorképei.

Megfogalmaz egy allitast is arra, hogy az aszimmetrikus kriptorendszerekben
alkalmazott mivelet (amelyre az inverz kulcsok vonatkoznak) véges halmazok ese-
tén sziikségképpen izomorf a modulo m maradékosztalyok feletti valamilyen miive-
lettel.

Ezért aztan egyaltalan nem véletlen, hogy a modulo m aritmetika a legkiilon-
boz6bb alapelvi kriptorendszerek esetében minduntalan visszakdszon.

(A szerzd szamara talan legfrappansabb médon a Knapsack-féle nyiltkulcsa
rendszerben, amely egy tavolsag kiilonb6zs tavolsagokkal valé lefedésébdl indul ki,
vagyis egy geometriai problémabél. A fedd tavolsagoknak szupernovekvs sorozatot
kell alkotniuk, s akkor a lefedés kimutathatéan egyértelmd és unikalis. A Knapsack
rendszert ugyan nem szabvinyosftottdk, de nagyszerien bemutathaté a segitségé-
vel a modulo n miveletek el6fordulasa. [4]-ben megtalalhat6 a részletes leirasa is
kidolgozott példaval egylitt.)
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BASIC MATHEMATICAL TRANSFORMATIONS IN CRYPTOGRAPHY
MisALy TOTH

This paper introduces the concepts of Crypto-generations then deals with the mapping and
transformation functions of Cryptosystems. It pays particular interest on the concept of blocks
and alternating block cipher transformations, the concept of linearity and the changeability of
substitution and permutation type transformations. It defines the general conditions of those
transformation. The paper discusses the invertibility of crypto-transformations particularly Feistel
functions.

The paper demonstrates the symmetry of iterative and public key transformations. Its main
goal is to make clear some basic concepts of four and fifth generation cryptosystems.
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