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Ez a cikk a kriptográfiai rendszerek ún. generációkba sorolásával, valamint a transz-
formációk általános jellemzőivel, tulajdonságaival foglalkozik. Heurisztikus módon meg-
fogalmazza e transzformációk általános követelményeit és ezek alapján kísérletet tesz a 
kriptográfiai rendszerek formáinyelvi definíciójára. Tisztázza a kriptográfiában alkalma-
zott ún. blokk fogalmát és ennek segítségével a linearitásra is ad egy definíciót. Meg-
fogalmaz egy sejtést, amely szükséges és elegendő feltétel a klasszikus helyettesítési és 
permutációs transzformációk felcserélhetőségére, valamint összevonására. Foglalkozik az 
egyszerű leképezőfüggvények inverz tulajdonságaival. Claude E. Shannon javasolta el-
sőként az ún. produkt transzformációkat, amelyek valójában vagy nem kommutatív 
produktumok, vagy összetett függvények. Minden esetre komoly szerepük van a mo-
dern, ún. negyedik generációs, szimmetrikus kriptorendszerekben. A cikk kitér az ún. 
Feistel transzformációkra és alkalmazásaikra, a többkomponensű transzformációk kom-
ponensei invertálhatóságának a kérdésére s végül az ún. aszimmetrikus (nyíltkulcsú) 
kriptorendszerekben alkalmazott transzformációk alapelveire. 

Titkosítási rendszerek (kriptorendszerek) generációi 

Jóllehet ma már nem szokás a számítástechnika (illetve a számítógépek) és 
alkalmazásaik újabb s újabb eredményeit egy-egy új „generációként" emlegetni, ér-
demes arra emlékezni, hogy korábban a számítógépek ún. generációit lényegében 
az alkalmazott technika határozta meg. A kriptorendszerek generációinál egészen 
biztosan nagy szerepe van az alkalmazott titkosítási/megfejtési módszereknek, tech-
nikának, közös néven az ún. transzformációs módszereknek, (matematikai termino-
lógiával: leképezéseknek) de nagy szerepe van az üzenet továbbítási technikájának 
is, vagyis a kommunikációs technológiának és a protokolloknak is. 

Eszerint a kriptogenerációkat két technológia együttesen határozza meg. Neve-
zetesen a transzformációs és a kommunikációs technológia. Valahogyan úgy, aho-
gyan ezt az 1. ábra szemlélteti. 
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Nyílt Titkosított Nyílt 

technológia 
1. ábra. Kriptorendszerek generációinak osztályozási szempontjai 

GENERÁCIÓ JELLEMZŐJE TRANSZFORMÁCIÓS KOMMUNIKÁCIÓS GENERÁCIÓ JELLEMZŐJE 

TECHNOLÓGIA 

1. 
Monoalfabetikus Helyettesítés 

Nagyon ritkán: keverés Nem jellemző 

2. 
Polialfabetikus és 

blokkos 
Helyettesítés 

(kézi módszerrel) 
KULCSSZÓ 

Nem jellemző 

3. 
Mint az előző, de nagyon 

sok ábécével 
Betűnkénti helyettesítés 

(elektro) mechanikus 
(pl. rotoros) géppel 

Rádió kommunikáció 

4. 

Produkt-transzformációk 
sok rundban. 

Igen nagy kulcstér. 
P o l i a l f a b e t i k u s 

rendszerek. 

Számítógéppel végzett 
iteratív transzformációk, 

amelyeknek nem létezik a 
nyers erő módszerénél 

gyorsabb, kulcs nélküli, 
algoritmusos módszere. 

Kommunikáció a 
világhálón, 

magánhálózatokon, 
vagy legalább virtuális 

magánhálózatokon 

5. 

Aszimmetrikus 
kriptorendszerek. 

A kódolás és a dekódolás 
azonos leképzésekkel, de 

inverz kulcsokkal 
történik. 

M o n o a l f a b e t i k u s 
rendszerek 

Számítógéppel, vagy 
célhardverrel 

megvalósított, 
számításigényes 

leképezések igen nagy 
(1000 bitnél nagyobb) 

kulcsokkal és ennek 
megfelelő kulcstérrel 

Kommunikáció a 
világhálón, 

magánhálózatokon, 
vagy legalább virtuális 

magánhálózatokon 

A transzformációk1 

A titkosítás nélküli, ún. nyílt szöveget (P) valamilyen módon a be nem ava-
tottak számára szándékoltan érthetetlen szimbólum-sorozattá, ún. kriptogrammá2 

(C) alakítja át a titkosítás. 

1 Szigorúbb matematikai értelemben leképezésekről van szó. 
2 A kriptogram aránylag új elnevezés. Korábban a francia eredetű siffre jelentette a titkosított 

szöveget és a sifrírozás a titkosítást. 
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A nyílt szövegnek is és a kriptogramnak is külön-külön ábécéje van, sőt a krip-
togramnak több ábécéje is lehet, s a kriptogram ábécé meg is egyezhet a nyílt szöveg 
ábécéjével. Aszerint beszélünk egy- vagy többábécés kriptorendszerről, hogy hány 
ábécét használ a kriptogram. 

A nyílt szöveget egy transzformáció képezi le a kriptogramba. Ezt teheti úgy is, 
hogy a nyílt szöveg minden egyes betűjét külön-külön transzformálja a kriptogram 
egyes betűivé, és teheti úgy is, hogy egy meghatározott hosszúságú betűcsoporton 
egyszerre hajt végre valamilyen transzformációt. Az előbbit folyamatos titkosítás-
nak (Stream Ciphering) az utóbbit pedig blokk titkosításnak (Block Ciphering) 
nevezik. 

2. ábra. A titkosító transzformáció 

Ha a nyílt szöveg betűit egy-egy bájt helyettesíti, akkor nincs is lényeges kü-
lönbség a betűnkénti és a blokkos titkosítás között, csak a blokkok mérete külön-
böző. 

Az ábécékből kiindulva két, alapvető transzformáció típust szokás megkülön-
böztetni, nevezetesen a helyettesítést és a keverést. Az előbbi mind a betűnkénti, 
mind blokkos titkosítás esetében alkalmazható, az utóbbi csak blokkokra. Számos 
érdekes példát ír le -többek között - David Kahn alapműve [15]. 

A transzformációk ezen archetípusai nem is olyan nagyon különbözőek, mint 
azt sokáig gondolták. Mindenesetre a bináris rendszerekben ezek a különbözősé-
gek eléggé összemosódnak [24]. Feltétlenül meg kell említeni, hogy a kezdetektől 
fogva diszkrét ábécé vagy blokkok transzformációjáról volt szó. Jóval azelőtt, hogy 
a digitális, illetve diszkrét rendszerek olyan széles körben elterjedtek volna, mint 
manapság tapasztalhatjuk azt. 

Kézenfekvő matematikai modellek voltak a diszkrét algebra, illetve matematika 
egyes fejezetei, ide értve a számelméletet is. A titkosítás végül is ilyen diszkrét 
elemek leképezését jelenti, s ez az, amit alább részletezünk is. 

Itt kell megemlíteni azt is, hogy a titkosító rendszerek igen korai feltalálói kö-
zött is van, aki már a XVI. század vége felé tudatosan alkalmazott ilyen matematikai 
modellt. 

Biaise De Vigenere-ről [1523-1596], a „Látnokról" van szó, aki lényegében a 
Caesar-féle monoalfabetikus titkosítást fejlesztette tovább és az általa alkalmazott 
matematikai modell a modulo n összeadás, illetve kivonás volt, ahol n az ábécé 
betűinek a száma volt: [15], [21] és [22]. 
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A leképező függvények is diszkrét véges elemű, vagy legalább is megszámlál-
hatóan végtelen sok elemű halmazok felett értelmezettek, és soha nem merült fel, 
hogy a leképező függvények esetleg folytonos függvények is lehetnének. 

Nem merült fel az sem, hogy a transzformációkra formáinyelvi, illetve abszt-
rakt algebrai modelleket állítsanak fel, bár elvileg ezek is célravezetők lehetnének 
(diszkrét esetekben is). 

A formális nyelvek és az absztrakt automaták modelljeinek alkalmazhatósága 
más kérdés. Ezek ugyanis olyan hosszúságtartó (vagy pl. a GSM és a Turing-
gép esetében nem hosszúságtartó) leképezéseket hajtanak végre, amelyek nagyon 
is alkalmazhatók lennének a kriptográfiai leképezések modellezésére. Egy indirekt 
kivételtől eltekintve azonban nem találkoztam ilyen jellegű publikációkkal. 

A kivétel Arto Salomaa, akinek a fő kutatási területe éppen a formális nyel-
vekkel és automatákkal foglalkozik [26], de az utóbbi években a matematikai bo-
nyolultság elmélettel (és a kiszámíthatósággal) is kapcsolatba hozta ezt a kutatási 
területet [27], sőt kifejezetten az aszimmetrikus kriptorendszerekkel kapcsolatban 
is publikált [28]. 

Alább még visszatérek erre a kérdésre. 
A pontosabb formális leírásnak azonban több akadálya is van. Itt talán ele-

gendő csak annyit megemlíteni, hogy ahányféle titkosító leképzés van, annyiféle 
leképzési szabály, ezért általános képzési szabályokat nagyon nehéz adni. Vannak 
azonban emellett más problémák is. 

A kriptográfiai leképezések alapkövetelményei 

A kriptográfiai transzformációk alkalmas matematikai modelljei tehát a leké-
pezések. 

Heurisztikus módon kikövetkeztethető, hogy a kriptográfiai transzformációk-
nak milyen feltételeket kell kielégíteniük. Ezek a következők: 

a. Mivel mind a nyíltszöveg ábécé, mind a kriptogram ábécé véges halmazok3, 
ezért a leképező függvény véges halmazt képez le véges halmazra. 

b. A leképező függvény egyértékű és 
c. ha egyértelműen visszafejthetőnek kell lennie (márpedig annak kell lennie), 

akkor léteznie kell a leképezés inverzének is, továbbá 
d. az inverz leképezésnek is egyértékűnek kell lennie, 
e. a c. és a d. feltételekből pedig az következik, hogy a titkosítási leképezés köl-

csönösen egyértelmű (bijektív) kell, hogy legyen.4 

A felsorolt követelmények nagyon logikusnak tűnnek, de ezek alól a szabályok 
alól is van kivétel. A modern kriptográfiában ugyanis találhatók ún. valószínűségi 

3 . . . és az ezekből az elemekből alkotott véges hosszúságú blokkok {string) száma is véges 
4 Létezik olyan kriptográfiai transzformáció is, amely a nyílt ábécé elemeit a képtartomány egy-

egy valódi részhalmazára képezi le, de ezek a részhalmazok diszjunktak és a leképző függvényre 
ilyen kiterjesztéssel is érvényesek a mondott feltételek. 
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kriptorendszerek is, amelyeknél a leképezésekhez valószínűségek tartoznak, s véges 
(bár nagyon kicsi) valószínűséggel előfordulhat az is, hogy egy titkosított üzenet 
nem fejthető vissza. Némely alkalmazásnál (pl. titkosított beszéd-átvitel), amely 
redundáns információt továbbít, ez az információvesztés nem okoz gondot. 

A felsorolt öt feltétel tehát szükséges, de még nem elégséges feltétel. Ezért a 
leképezések tulajdonságaira alább még visszatérünk. 

A módszer és a kulcs 

Vannak még a gyakorlati alkalmazhatóságból következő feltételek is. A leké-
pezés bonyolultságát, a hozzá szükséges számítási kapacitást (és/vagy idő-igényt), 
valamint az algoritmus gyorsaságát már említettük. 

Régi tapasztalati tény, hogy ha sokszor használják ugyanazt a titkosító leké-
pezést, akkor azt majdnem biztosan feltörik.5 Ezért aztán időről-időre változtatni 
kell azt. Nagyon nehéz azonban magát a módszert változtatni, mert nem csak arról 
van szó, hogy egyre újabb s újabb módszert kell kitalálni, hanem arról is, hogy ha a 
mód; zer alkalmazásához már gépet is szerkesztettek, akkor minden egyes módszer-
váltáskor a titkosító/megfejtő gép helyett is újat kell készíteni. Ezért már a XVII. 

5 Tulajdonképpen ilyen feltöréseknek tekinthetők a rég elfeledett ókori írások megfejtése, pedig 
több ilyen esetben maga az írás nyelve sem volt ismert. Minden ilyen sikeres megfejtés alapvető 
feltétele volt azonban, hogy sok írott szöveg állt az elemzők rendelkezésére. 
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században íelmerült és a XIX. században expressis verbis meg is fogalmazták, hogy 
egy titkosítási transzformáció erőssége6 végső soron az abban alkalmazható kul-
csok számától függ: minél több a lehetséges kulcsok száma, azaz minél nagyobb a 
kulcstér, annál nehezebb vagy reménytelenebb a kulcs ismerete nélkül hozzájutni a 
titkosított információhoz.7 

A titkosító transzformációk közös és általános tulajdonsága, hogy a leképző 
függvénynek van legalább egy paramétere, amely ismerete nélkül a leképzés nem 
valósítható meg. Ugyanez igaz a transzformáció inverzére, azaz a titkosított in-
formáció visszafejtésére is. Ez a paraméter a titkosítás kulcsa. Ha a kulcstér gya-
korlatilag igen nagy, akkor maga a leképezés akár közzé is tehető, mert a kulcs 
önmagában garantálja a titkosítás biztonságát. Ez, nevezetesen az extrém nagy 
kulcstér, valamennyi mai kriptorendszer alapvető és közös elve. 

A szimmetrikus és az aszimmetrikus kriptorendszerek összevetése 

Valamennyi tradicionális kriptorendszer ugyanazt a kulcsot alkalmazta mind a 
titkosításhoz, mind a visszafejtéshez, pedig mint ma már tudjuk, ennek nem kell 
feltétlenül így lennie. 

Vizsgáljuk meg ehhez a teljes titkosítás-visszafejtés folyamatot! 
Az Еце és a Dkd leképező függvényeknek a paramétereikkel együtt kell egymás 

inverzeinek lenniük. 

. . -, Titkosítás Titkosított Megfejtés . . -, Nyílt szöveg ( k ó d o l á s ) g z ö v e g ( d e k ő d o l á s ) Nyílt szöveg 

4- ábra. Szimmetrikus (tradicionális) kriptorendszer blokkvázlata 

6 Pontosabb elemzéssel alább megmutatjuk, hogy a kriptogram ábécé (vagy ábécék), mint 
halmazok rangja alapvetően meghatározó a kriptorendszer feltörése szempontjából és a lehetséges 
kulcsok számát is az ábécé(k) számossága korlátozza. 

Egy kriptorendszer erősségét a feltörésének a nehézsége határozza meg. Ma már nem tekintik 
erősnek az olyan titkosításokat, amelyek algoritmusos módon feltörhetők. Az erős kriptorendsze-
rek csakis úgy törhetők fel, hogy valamennyi lehetséges kulcsot végig kell próbálgatni. Ezt a nyers 
erő módszerének nevezik. 

7 Alább majd megmutatjuk, hogy elsődlegesen a kriptogram ábécék elemszáma a meghatározó. 
A kulcstér „mindössze" illeszkedik ehhez. 
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A tradicionális kriptorendszereknél magától értetődőnek tekintették, hogy a 
Ke és а К о kulcsok azonosak, és az imígyen azonos paraméterekkel rendelkező E 
és D leképező függvények egymás inverzei. 

Az ilyen rendszereket ma szimmetrikus kriptorendszereknek nevezzük és kizá-
rólagos alkalmazásuk az ősidőktől kezdve az 1970-es évek közepéig tartott, de a 
mai legmodernebb kriptográfiában is megvan a jelentőségük (mármint a modern 
változataiknak). 

A kulcsok egymás inverzei ^ 

Nyílt szöveg Titkosítás Titkosított Megfejtés 
(kódolás) szöveg (dekódolás) 

5. ábra. Az aszimmetrikus kriptorendszer blokkvázlata 

Nyílt szöveg 

A transzformációk (azaz leképezések) egymás inverzei, a kulcsok pedig azono-
sak. 

Tulajdonképpen kézenfekvő megoldás az is, hogy nem a leképző függvények 
egymás inverzei, hanem a titkosító és a visszafejtő kulcsok vannak valamilyen mű-
veletre nézve inverz viszonyban egymással. Erre az ötletre azonban Whitfield Difiié 
előtt (1976) senki sem jött rá. 

Ezekkel a rendszerekkel majd alább, az aszimmetrikus kriptorendszerek kap-
csán foglalkozunk. Egy szimmetrikus kriptorendszerben tehát egyetlen kulcsot al-
kalmaznak, amelyet természetesen titokban kell tartani. Mondhatjuk úgy is, hogy 
ettől függ a rendszer biztonsága. 

A titkosító (E) és a visszafejtő (D) algoritmusok, illetve függvények egymás 
inverzei, de általános esetben nem azonosak. Kérdés, hogy lehet-e olyan, elegendően 
biztonságos, titkosító rendszert szerkeszteni, amelyben nem csak a kulcsok, hanem 
ez a két függvény is azonos. 

Nos, lehet, bár a modern, ún. erős kriptorendszerek esetében csak valami ha-
sonló, de nem egészen azonos dolgot. 

Î livel az inverz algebrai fogalma mindig csakis egy adott műveletre vonatkozik, 
az aszimmetrikus rendszerekben az E leképző függvény az, amelyre nézve az e és 
a d kulcsok egymás inverzei. 

Ezt a két ábrát éppen azért tüntettük fel így, egymás alatt, hogy felhívjuk a 
figyelmet a szimmetrikus és az aszimmetrikus kriptorendszerek - jobb szó híján -
szimmetriájára. 
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A tradicionális kriptorendszerek körében azonban megvalósítható, hogy egy 
titkosító-megfejtő függvénypár két tagja azonos legyen, vagyis egy olyan leképző 
függvényt találjunk, amely saját maga inverze. Elvileg az aszimmetrikus kripto-
rendszerek esetében is szerkeszthető olyan, amelyben a „két" kulcs azonos és saját 
maga inverze, de ez határeset, amikor csakis a leképezőfüggvény jellegéből álla-
pítható meg, hogy a kriptorendszer szimmetrikus vagy aszimmetrikus-e. Az ilyen 
rendszernek azért nincs is gyakorlati jelentősége, mert az aszimmetrikus rendsze-
rek transzformációinak a számítási kapacitás-igénye nagyságrenddel nagyobb, mint 
az azonos kriptográfiai erősségű szimmetrikus rendszereké, és értelmetlenül gazda-
ságtalan lenne sokkal nagyobb költséggel megvalósítani egy szimmetrikus funkciójú 
rendszert, mint azt a szimmetrikus algoritmusokkal lehet. 

A transzformációk tulajdonságai 

Leképezések vagy függvények? 
Az eddigiekben utaltunk ugyan arra, hogy a transzformáció szigorúan vett ma-

tematikai értelemben nem azonos a kriptográfiában alkalmazott leképezésekkel, de 
ezt az állítást nem vizsgáltuk. Nos ennek itt a helye. 

A kriptográfiai függvények (nyílt) ábécéből (titkos) ábécébe képező transzfor-
mációk. Matematikai értelemben azonban transzformációnak olyan leképezést ne-
vezünk, amely egy halmazt saját magába képez le. Általános esetben a kriptográfiai 
leképezésektől nem követeljük meg, hogy értelmezési tartományuk és értékkészletük 
megegyezzen; de még azt sem, hogy akár csak tartalmazzák egymást. 

Másrészt nem árt tisztázni, hogy tulajdonképpen mi is ezeknek a kriptográfiai 
leképezéseknek az értelmezési tartománya és az értékkészlete. 

(Az itt következő diszkusszió során megkísérlem a kriptográfiai leképezések egy 
- nagyon egyszerű - formáinyelvi megközelítését.) 

A kriptográfiai leképezések egy véges szimbólumhalmazból (nyílt ábécé) alko-
tott véges sorozatok halmazából képeznek egy vagy több véges szimbólumhalmaz 
(titkos ábécék) uniójából képzett sorozatok halmazára. 

Formálisan: egy ip leképzés kriptográfiai transzformációnak tekinthető, ha p : 
P* -4 C* alakú, 
ahol P - input szimbólumok halmaza, nyílt ábécé, 

P* - P elemeiből alkotott füzérek halmaza 
n 

С — [J Ci, output szimbólumok halmazainak (kriptogram ábécék) egyesítése, 
»= 1 

ahol С* - С elemeiből alkotott sorozatok halmaza. 
n 

А С = (J Ci, definícióban szereplő n érték a kriptogram ábécék számát je-
i= í 

lenti. A n= 1 esetben monoalfabetikus titkosírásokról beszélünk Ismert n >1 esetén 
és első fajú polialfabetikus titkosírásoknak nevezhetjük őket, míg abban az eset-
ben, ha az ábécék száma - kívülállók számára - nem ismert, akkor nevezhetjük 
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6. ábra. Kriptográfiai leképzések 
Polialfabetikus (kriptogram) ábécék 

azokat másodfajú polialfabetikus titkosírásoknak.8 Az első- és a másodfajú polial-
fabetikus rendszerek közti lényegi megkülönböztetést indokolja, hogy az első fajú 
többábécés rejtjelezések megfejthetők9 betűgyakorisági analízis segítségével, míg a 
másodfajú polialfabetikus titkosírások nem. A de Vigenere kód esetében Babbage 
zsenialitása éppen abban nyilvánult meg, hogy módszert talált arra, hogy hogyan 
alakítson át egy másodfajú polialfabetikus rendszert első fajú rendszerré, azaz ho-
gyan határozza meg az ábécék számát vagy - ezzel lényegében azonos jelentéssel -
az alkalmazott blokk hosszát. 

Ez a módszer - nevezetesen a dupletek ismétlődési távolságának a megkeresése 
és e távolságok legnagyobb közös osztójának a meghatározása - azonban távol áll 
a direkt megfejtésre való betűgyakoriság analízistől. Jó arra, hogy visszavezesse a 
megoldási problémát az első fajú polialfabetikus rendszerekére, de máskülönben 
nem része a megoldásnak. (Erre utaltunk a 6. lábjegyzetben is.) 

Babbage előtt több mint 300 évig feltörhetetlennek tartották de Vigenere titko-
sítási módszerét, és az is volt a Babbage-féle visszavezetés ismerete híján. A sors és 
iróniája, valamint a brit katonai bürokrácia vaskalapossága, hogy Babbage-nak nem 
engedték meg a visszavezetési módszere publikálását. (Ez aztán még kétszer meg-
ismétlődött: Turing Enigma feltörése és a Colossus megépítése, valamint a GCHQ 
nyíltkulcsú kriptorendszerének Diffie előtti felfedezése esetében is.) 

A formális megközelítésből látszik, hogy a leképezések értelmezési tartománya 
és értékkészlete is véges vagy megszámlálhatóan végtelen halmaz, hiszen véges hal-

8 Ezek itt bevezetett, a szakirodalomban nem ismert elnevezések. 
9 Ti. az egyszerű helyettesítéses rendszerekhez hasonlóan, amelyek archetípusa pl. a Caesar-féle 

titkosítás. 
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mázok elemeiből alkotott füzérek (string) halmazai10. A leképző függvények tehát 
legfeljebb megszámlálhatóan végtelen halmazok felett vannak értelmezve, „folyto-
nos" halmazok feletti függvények értelemszerűen szóba sem jöhetnek. 

A formálnyelvi leírás egyik alapproblémája már e ponton jelentkezik és azzal 
kapcsolatos, hogy mit tekintünk ábécének. 

Itt - egyelőre - azoknak a szimbólumoknak a P halmazát, amelyből a nyílt üze-
net szavait képezzük és értelemszerűen kiterjesztjük ezt а С kriptogram ábécé(k)re 
is. Ezek nyilvánvalóan véges ábécék. 

Blokkrendszerű titkosítások esetén az ábécékből alkotott szavak hossza nem 
csak korlátozott, hanem egy megadott véges érték (az AES-nél pl. 128 bit). Ezek-
ből ugyancsak végesszámú van (az AES esetében éppen 2128 db), és e halmaz véges 
volta miatt ezek is tekinthetők egy véges ábécé elemeinek.11 Mivel minden gya-
korlati esetben megegyezik a kriptogram és a nyílt szöveg blokkjainak a hosszú-
sága, (sőt ugyanez szokott lenni a kulcshossz is) ezért a mondottak a kriptogram 
ábécé(k)re is érvényesek. A leképezések vizsgálatakor egyáltalán nem mindegy, hogy 
az itt említett kétféle ábécé-értelmezés közül melyiket fogadjuk el. A 6. ábrán szem-
léletesen bemutatott halmazok és jelölésrendszer remélhetően világossá teszi az ér-
telmezést. Az ábra a polialfabetikus rendszerek kedvéért mind az ábécéket, mind 
azok elemeiből alkotott szavak halmazait feltünteti. 

A leképezések linearitása 
A kriptográfiai leképezések általános vizsgálatakor a P* nyíltszöveg füzérek 

közötti műveleteket és ezeknek а С* képtartományban való megjelenését vizsgál-
juk. Formálnyelvi megközelítésben tehát ekkor éppen a korábban említett második 
ábécé-értelmezést alkalmazzuk, vagyis azt, amikor a leképezés értelmezési tarto-
mányának (és értékkészletének is) az elemei a P*, illetve a C* füzérek. Emlékez-
tetünk arra, hogy e diszkusszió során nem tekintjük e füzérek hosszát sem előre 
definiáltnak, sem azonosnak, legfeljebb felülről korlátosnak, hogy megszámlálható 
halmazokkal tudjunk számolni. 

Hagyományosan egy leképzést akkor szokás lineárisnak nevezni, ha az értel-
mezési tartomány elemein értelmezett valamely műveletekre nézve művelettartó, 
azaz mindegy, hogy a műveletet előbb elvégezzük az értelmezési tartomány elemei 
közt, majd az eredményt képezzük le, vagy előbb a leképzést az operandusokra 
alkalmazzuk, és a képelemek közt végezzük el a megfelelő12 műveletet. 

1 0 Vagy véges sok véges halmaz uniójából alkotott füzérek halmaza 
1 1 Igaz, hogy ennél az ábécénél igen nagy az elemek száma. Ha azonban nem így lenne, ak-

kor - az alkalmazott transzformáció bonyolultságától függetlenül - az elemek gyakoriságának az 
elemzésével tulajdonképpen nagyon könnyen feltörhető lenne a kriptogram. 

1 2 Hangsúlyozni kell a „megfelelő" szó jelentőségét a megfogalmazásban. Általános esetben 
ugyanis nem várható el, hogy a leképzés értelmezési tartománya és értékkészlete megegyezzen, 
így a leképzés előtti művelet egy az értelmezési tartományon értelmezett művelet, míg a képele-
meken végzett művelet az értékkészlet felett értelmezett művelet. 
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Formálisan: egy ip : A —> В leképezés lineáris valamely + és ф műveletek szem-
pontjából, ha 

Va, 6 6 A : ip(a + b) = <p(a) © <p(b), 

ahol + : A X A —t A és © : В x В —> В megfelelő A és В feletti műveletek13. 
Kriptográfiai leképezések esetében a leképezés értelmezési tartománya egy 

adott szimbólumhalmaz elemeiből alkotott füzérek14 halmaza. Hasonlóképpen az 
értékkészlet is füzérek halmaza, csak a füzérek halmaza nem ugyanaz, mint az értel-
mezési tartomány esetében. Sőt a füzéreket alkotó ábécék sem feltétlenül azonosak 
a nyílt P ábécé és а С kriptogram ábécé esetében. 

Ilyen halmazokon természetes módon definiálhatjuk a füzérek összefűzésének 
műveletét (catenation, katenáció, konkatenáció,). Szokásos jelölése a || jel, de hasz-
nálatos még a " jelölés is. Ezek szerint a || b, illetve a' b olyan szimbólum sorozatot 
jelöl, amelynek első tagjai az a füzér elemeivel egyeznek meg, a továbbiak pedig a 
b sorozat megfelelő elemeivel. 

Kriptográfiai leképzések linearitásáról tehát az összefűzés művelet tekinteté-
ben beszélhetünk. Ezek szerint lineárisnak nevezünk egy tp : A* —> B* kriptográfiai 
transzformációt, ha 

Va, be A* : ip(a || 6) = ip(a) || <p(b). 

A legtöbb kriptográfiai leképzés nyilván nem lineáris a fenti definíció szerint. Ez 
ugyanis azt jelentené, hogy a teljes titkos szöveg a nyílt szöveg külön-külön részei-
nek titkosításával áll elő, amelyeket a nyílt szövegnek megfelelő sorrendben fűzünk 
össze. Ez viszont lehetőséget nyújtana a támadónak arra, hogy ha sikerül az üzenet 
küldőjét rávennie, hogy ugyanazt az üzenetet jól körülhatárolható helyen történő 
változtatással küldje el, akkor a titkos szövegben történt változásból következtetni 
lehessen a kódolás mikéntjére, sőt magára a kulcsra is (choosen plain text attack). 

Blokkhosszúság15 

A következőkben megmutatjuk, hogy a blokkhosszúság fogalma a linéarités 
segítségével sokkal pontosabban meghatározható, mint az a mai, modern krip-
torendszerekben szokásos. Ezeknél ugyanis blokknak nevezzük azt a szimbólum-
füzért, amelyen a kriptotranszformációt végrehajtjuk. A vonatkozó szakirodalom 
többnyire megemlíti ugyan, hogy ezek a transzformációk nemlineárisak, de eleddig 

1 3 Vektorterek (lineáris terek) esetében nem csak az alaphalmazon belül értelmezett művelet 
művelettartását követelik meg, de az ún. skalárral való szorzás műveletre is előírják ugyanezt. 
Kriptográfiai leképzések esetén ilyen külső műveletet nem definiálunk, így ennek vizsgálatától 
eltekinthetünk. 

1 4 Algebrai értelemben itt szimbólum-sorozatokról van szó. Mégis, a gyakorlatban elterjedt 
szóhasználat miatt ezeket inkább füzéreknek (string) nevezzük vagy - a formáinyelvi megközelí-
tésnél — az adott nyelv szavainak. 

15 A blokkhosszúság e definíciója új, eleddig ezt a megközelítést - tudtommal - nem hasz-
nálta a szakirodalom. Azért vezettük be, mert a leképezések linearitása, illetve nemlinearitása 
szempontjából hasznos. 

Alkalmazott Matematikai Lapok 23 (2006) 



4 1 6 t ó t h m i h A l y 

sehol sem bukkantam rá a linéarités, illetve a nemlinearitás pontosabb definíció-
jára. Más szóval arra, hogy az említett kriptotranszformációk miért, illetve mitől 
nemlineárisak. 

Technológiai szempontból megoldhatatlan, hogy egy kriptográfiai leképzés tet-
szőlegesen hoszszú szövegekre is nemlineáris módon viselkedjék. Minden gyakor-
latban használt algoritmus esetében van egy a sorozatok hosszára vonatkozó felső 
korlát, hogy ha az ilyen hosszúságú sorozatokat tekintjük az ábécé elemeinek, ak-
kor az ezekből alkotott sorozatok halmazán az összefűzés műveletére vonatkozóan 
a leképzés már lineáris. Azt a legkisebb ilyen értéket, amelyre az adott leképzés li-
neárisan viselkedik, a leképzés blokkhosszúságának nevezzük. 

Vegyük észre, hogy itt nem a hagyományos értelemben vett „blokkonkénti" le-
képezés linearitásáról vagy nemlinearitásáról van szó, hanem épp fordítva: 

A kriptográfiai leképzés linearitásának előbbi definíciója segítségével lehet a 
blokk fogalmát és a blokkhosszúságot definiálni.16 

Nagyon leegyszerűsítve: Blokkok azok a legrövidebb füzérek, amelyekre, mint 
argumentumokra a kriptográfiai transzformációk linearitása teljesül.1' 

Formálisan: Legyen ip : A* —> B* kriptográfiai leképzés, n természetes szám, to-
vábbá ip' : (An)* —» B* leképzés úgy, hogy Vs € (A")* sorozat esetén ip(s) = tp'(s). 

Ekkor azt a legkisebb n természetes számot, amelyre <p' lineáris, a ip leképezés 
blokkhosszának nevezzük. 

Ehhez érdemes némi magyarázatot fűzni: p az A ábécé elemeiből alkotott tet-
szőleges hosszúságú sorozatokon értelmezett függvény. An az A ábécé elemeiből 
alkotott pontosan n-hosszúságú sorozatok (blokkok) halmaza, az ezekből mint ele-
mekből alkotott sorozatok alkotják (An)* elemeit. Az ezen a halmazon értelmezett 
ip' leképezés csak annyiban tér el a p leképezéstől, hogy nincs feltétlenül bármi-
lyen hosszúságú sorozaton értelmezve, csak azokon, amelyek hosszúsága a talált n 
szám egész számú többszöröse. Akkor mondjuk, hogy ez az n a leképzésre jellemző 
ún. blokkhossz, ha a leképzés a blokkokra megszorítva lineáris, és nincs olyan n-nél 
kisebb korlát, amelyre a leképzés ugyanezt tudná. 

A mai, gyakorlatban alkalmazott kriptorendszerek mind meghatározott hosszú-
ságú blokkokra osztják a nyílt szöveget és e blokkokat külön-külön transzformálják 

1 6 Ez a fajta linéarités nem is ad választ arra, hogy mennyire nemlineáris egy ilyen blokk 
leképezése. 

Ez a kérdés pedig a gyakorlatban létezik. A DES esetében - a NIST javaslatára - éppen a 
„nemlinearitás növelésére" bevezették a rund transzformációk sorába az expanzió-kompreszszió 
párt. Közvetve az ún. lavinahatás növelése és ez által a feltörés megnehezítése miatt. Ez a fajta 
művelet azonban a későbbi szimmetrikus rendszerekben nincs meg, tehát a mondott okból nem is 
volt rá szükség. Ennek az okát viszont - tudtommal - nem publikálták, hanem „csak tudomásul 
vették", hogy a Feistel függvények szerinti iteratív transzformációk az expanzó-kompresszió pár 
nélkül is rendelkeznek a lavinahatással. 

1 7 Ennek a definíciónak az ötlete és a formális megfogalmazása Tóth Gergelytől, a Veszprémi 
Egyetem székesfehérvári AIFSz Képző Központjának a tanárától származik. 
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kriptogram blokkokká. Mind a nyílt szöveg, mind a kriptogram blokkjai ugyanolyan 
hosszúságúak s ezzel azonos a kulcs hosszúsága is.18 

Nyilvánvaló, hogy 
a. A blokk nem osztható, azaz nem alkalmazható a titkosítási leképezés rész-

blokkokra. Ha a teljes titkosítandó szöveg blokkokra bontása végén részblokk 
adódna, akkor azt valamilyen előzetes megegyezés szerint fel kell tölteni (pad-
ding). 

b. Az egymást követő blokkok titkosítási leképezése egymás után és egymástól 
függetlenül történik. Ilyen értelemben a blokkokból alkotott sorozat részeire 
(ti. az egyes blokkjaira) érvényes az előbbiekben megfogalmazott linearitás-
definició. 
Azonban ez alól is van kivétel, nevezetesen a szimmetrikus rendszerekben al-

kalmazott láncolás elve, amelyet ugyan a DES kapcsán vezettek be, de bármelyik 
„blokkos" titkosításnál alkalmazható [5]. 

Az utóbb említett ellenpélda szemlélteti, hogy láncolt titkosításnál a „blokk" 
fogalmát pontatlanul alkalmazzák az egymás után végrehajtott transzformációkra, 
amelyek ekkor egyáltalán nem függetlenek egymástól. Ilyen esetekben tulajdonkép-
pen az egész transzformálandó nyílt szöveget kellene egyetlen oszthatatlan „blokk-
nak" tekinteni. 

A tükörszimmetrikus, öninvertáló transzformációk 
E leképzés-típusoknak a szimmetrikus kriptorendszerek körében van jelentő-

sége. Gyakorlati szempontból nagyon is jelentős dolog, hogy ha ugyanazzal a géppel 
(vagy algoritmussal) tudunk titkosítani és visszafejteni, a gép mindennemű átállí-
tása nélkül. így működött pl. a második világháborúban elhíresült német titkosító 
gép, az Enigma is, amelyet a maga idején megfejthetetlen kódolónak tartottak. 
Nos, végül is nem volt megfejthetetlen, de a feltöréséhez zsenik kellettek és nagyon 
időigényes feladatnak bizonyult. 

Az Enigma egy érdekes tanulsága az, hogy a megfejtést az ábécék extrém nagy 
száma tette szinte lehetetlenné. Ez, ti. az ábécék száma még a legegyszerűbb, ke-
reskedelmi változatnál is 26"3 volt, de a katonai változatoknál ezt kb. ezerszeresére 
növelték. Ráadásul a kulcstér is nagyon nagy (de az ábécék számától elvileg füg-
getlen) volt. 

A titkosító és a visszafejtő algoritmus hasonló „tükörszimmetriája" fellelhető 
a modern iterációs kriptorendszerekben is - ha eltekintünk a kulcsütemezés meg-
fordításától. Az Enigma a mindaddig legelterjedtebb titkosítási transzformációt 
alkalmazta, ti. a helyettesítést. A 26 betűs ábécéből képzett nyílt szöveg minden 
egyes betűjét egy kriptogram betűbe képezte le. A bonyolultságát azzal érték el, 
hogy egy meglehetősen hosszú betűsorozaton belül ugyanazt a nyíltszöveg betűt 
mindig más és más kriptogram betűnek feleltette meg. 

1 8 Egyetlen egy, részbeni kivétel a DES ún. rund transzformációján belül alkalmazott expanzió, 
majd a szubkulcs-mûvelet utáni kompresszió. 
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Itt most nem foglakozunk azzal, hogy ezt hogyan valósította meg az Enigma. Az 
egyik lényeges következmény az, hogy az ilyen tükörszimmetrikus és polialfabetikus 
helyettesítés messze nem használja ki a lehetséges kriptogram ábécék mindegyikét. 
Ezt azonban nagyon nagyszámú ábécé esetén „megengedheti magának" a kripto-
rendszer. Ezt a tükörszimmetriát megörökölték az Enigmától a modern iterációs 
kriptorendszerek is (DES, IDEA, AES.. . ) , de a visszafejtésnél alkalmazott fordí-
tott szubkulcs-sorozattal kiküszöbölték a tükörszimmetriának az Enigmánál még 
meglévő hátrányát. 

A tükörszimmetrikus kriptotranszformációkat leképezéseknek tekintve teljesül-
nie kell annak a feltételnek is, hogy a leképezés értéktartománya és értékkészlete 
azonos. Más szóval a nyílt ábécé azonos a kriptogram ábécével - vagy ábécékkel, 
polialfabetikus rendszerek esetén19. 

Ekkor, és csakis ekkor lehetséges, hogy a leképezés önmaga inverze. Mint emlí-
tettük, ennek gyakorlati szempontból van jelentősége, jóllehet csökkenti az aktuális 
kriptorendszer erősségét. Az Enigma esetében pl. egyfajta „fogódzót" jelentett a 
kódfejtőnek az, hogy az Enigma sohasem képzett le egy betűt önmagába. Ez a gép 
leképzési tükörszimmetriájának a következménye volt.20 

A tükörszimmetrikus leképezést még a legegyszerűbb helyettesítő titkosítások-
nál is meg lehet valósítani. Egy sztenderd, n betűs ábécé és Caesar-féle titkosítás 
esetén azonban ilyenkor a kulcstér a felére csökken. Az n betűs kevert ábécék esetén 
pedig (n — 1)! helyett (n/2)!-ra csökken a kulcstér. 

Az alap-transzformációk 
Két alapvető transzformáció-típus létezik ősidők óta. Ezek a következők: 

• helyettesítés (substitution), 
• transzpozíció (más néven keverés vagy permutáció). 

A helyettesítés alapértelmezésben betűt helyettesít betűvel, a transzpozíció pedig 
egy meghatározott hosszúságú szövegblokkon belül áthelyezi, összekeveri a betű-
ket.21 

Érdemes megjegyezni, hogy e két alaptranszformációnak nem csak történeti 
érdekessége van, hanem fellelhetők a legmodernebb titkosító rendszerekben is. Igaz, 
nem egymagukban, hanem összetett, beágyazott alkalmazásaikban. 

Végül is mindkét alaptranszformáció megfogalmazható függvényként is, ame-
lyek bijektív leképezést hajtanak végre.22 

1 9 Több-ábécés rendszerek és bonyolultabb — pl. iterációs - transzformációk esetében bonyo-
lultabb feltételek is megfogalmazhatók. Az iterációs, szimmetrikus kriptorendszereknél pl. csakis 
úgy teljesül ez a „tükörszimmetria", hogy az inverz leképezésnél fordított sorrendben kell alkal-
mazni az egyes menetek (rundok) szubkulcsait, mint a titkosításnál. Ez más szóval az alkalmazott 
ábécék sorrendjének a megfordítását (is) jelenti. 

2 0 Valamint annak, hogy a valamennyi kriptogram ábécé páros számú betűbó'l (26 betűből) állt. 
2 1 A kettő közötti határ egyáltalán nem olyan éles, mint az korábban látszott. 
A „betűnkénti helyettesítés" pl. ASCII kód esetén bináris blokkot helyettesít blokkal. Ez a fo-

lyamatos (stream) titkosítás és a blokkos titkosítás határait mossa össze. 
2 2 A véges elemű nyílt ábécé az elemek számának összes permutációja szerint keverhető össze, 

tehát ennyi féle keverési kulcs létezhet. Ha ezeket a permutációkat megszámozzuk, akkor az i-edik 
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Ha a nyílt szöveget és a kriptogramot egy-egy ábécé felett értelmezzük, ak-
kor ezeknek a transzformációknak az értelmezése triviális. Az is nyilvánvaló, hogy 
egymástól függetlenek, tehát akár fel is cserélhetők. A transzformációk felcserélhe-
tősége másképp fogalmazva sorrend-függetlenséget is jelent s a titkosításnál, illetve 
a visszafejtésnél nagyon is jelentős lehet. 

Nem nyilvánvaló a helyettesítés és a transzpozíció felcserélhetősége, ha a betűk 
helyett bináris blokkokban gondolkodunk. 

Például minden egyes betűt egy-egy 8 bites blokk (byte) helyettesít. Ebben az 
esetben csak akkor sorrend-függetlenek a transzformációk, ha az egyik blokkhosszú-
sága egész számú többszöröse a másik transzformáció blokkhosszúságának [1]. 

Ez szigorúbb feltétel annál, amit korábban a linearitással kapcsolatban meg-
adtunk, de nincs azzal ellentmondásban. 

A transzformációk egyesítése 
Vizsgáljuk meg a következő ábrát, amely a megfejtés megnehezítése céljából 

három transzformációt hajt végre egymás után rendre a AJ, K2 és K3 kulcsokkal. 

A'i K2 K3 

С = EK3{DK2[EK1(P)]} 

7. ábra. T ö b b egymás utáni transzformáció 

Vegyük észre, hogy ha a AJ, K2 és K3 kulcsok azonosak, akkor ez a három 
transzformáció egyetlen egykulcsos transzformációval helyettesíthető. A komponens 
transzformációk számának növelése bonyolítja ugyan a titkosítási transzformációt, 
de a nyers erő módszerével szemben nem nyújt nagyobb védelmet, mint egyetlen 
transzformáció. Másképpen fogalmazva: ha kitalálják a kulcsot, akkor annak ismé-
telt alkalmazása sem jelent komoly védelmet a feltöréssel szemben. 

Az itt bemutatott összetett transzformáció szó szoros értelmében nem kommu-
tatív produkt transzformáció, mert a komponensei nem felcserélhetőek. A leképe-
zések felcserélhetősége viszont fontos kérdés, mint korábban már megmutattam. 

Itt célszerű megjegyezni, hogy a „dupla DES,, titkosítást nem használják, mert 
talállak olyan feltörési módszert, amely a fent ábrázolt feltörési láncot mindkét 
végéről egyszerre támadja a nyers erő módszerével és kimutatható, hogy a krip-

permutáció egy i sorszámú leképezésként is felfogható. Nincs tehát éles elvi határ a helyettesítő 
és a permutációs leképezések között sem. 
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tográfiai erősség szempontjából lényeges, ún. ekvivalens kulcshossz nem több mint 
egyetlen kulcs duplája. 

A tripla DES esetében viszont háromszoros ekvivalens kulcshosszal lehet szá-
molni. 

A Feistel transzformációk 
A 7. ábra kapcsán láttuk, hogy a transzformációk ismételt alkalmazása csak ak-

kor jelent nagyobb védelmet, ha mindegyik komponens-transzformációnak más-más 
kulcsa van. A többkulcsos rendszer használata viszont bonyolultabb. Kérdés, hogy 
hogyan lehet egykulcsos (szimmetrikus) titkosító rendszert úgy megszerkeszteni, 
hogy úgy működjön, mint egy többkulcsos, ismételt transzformációkat alkalmazó 
rendszer. 

A megoldást Horst Feistel, az IBM munkatársa találta ki az 1970-es évek ele-
jén.23 

A titkosítási rendszeréhez felhasználta a 70-es években már széles körben ren-
delkezésre álló számítógépeket. 

Nagyon leegyszerűsítve azt találta ki, hogy a titkosítás К kulcsából egy ún. 
kulcs ütemező algoritmussal meghatározott számú „alkulcsot" (szubkulcsot) állít 
elő, és ugyanazt az összetett transzformáció sorozatot - „menet" (round, kör) -
többször egymás után végrehajtja, de minden egyes alkalommal más-más szub-
kulccsal. Tehát minden egyes rundhoz más-más szubkulcsot alkalmaz. 

Ezzel a megoldással a titkosítás ún. erőssége nem lett nagyobb, mint amit a 
К kulcs hossza (kulcstere) meghatározott, de maga a módszer annyira bonyolulttá 
vált, hogy csakis a nyers erő módszerével lehetett próbálkozni a feltörésénél. A DES 
mellesleg 64 bites nyíltszöveg blokkokhoz 64 bites kulcsot használt, de a 64 bites 
(8 bájtos) kulcsban „csak" 56 független bit volt, mert minden kulcsbájt egyik bitje 
paritásbit volt. így a DES kulcstere 256 különböző kulcsból állt. 

Ennek a megoldásnak különös jelentőséget ad az a tény, hogy egyrészt 25 évig 
kiválóan működött, másrészt a mai szabványosított utódja24 is lényegében hasonló 

2 3 Feistel 1932-ben emigrált Németországból az USA-ba. A háború alatt titkos üzenetek meg-
fejtésével foglalkozott. Az IBM a 70-es évek elején a Lloyd biztosító társaság számára fejlesztett 
titkosító rendszert. Feistel a rendszerét „Dataseal"-nek akarta elnevezni de az IBM csak Demonst-
ration Cipher-nek nevezte, amely elnevezés rövidített változataként a „Démon" elnevezést hasz-
nálta. Ebből lett később a „Lucifer" kriptorendszer, amely alapját képezte az 1975-ben Data 
Encryption Standard (DES) néven szabványosított ún. iterációs kriptorendszernek [15]. 

2 4 Az ún. Advanced Encryption Standard (AES), amit egy hosszú pályázati és döntési folyamat 
után a belga Vincent Rijmen és Joan Damon Rijndael nevű iterációs kriptorendszere nyert el. Az 
AES 128 bites változatát 2000 októberében szabványosította a NIST. 

Ha arra gondolunk, hogy de Vigenere polialfabetikus rendszere kb. 300 évig ellenállt a feltörés-
nek, akkor a 25 év nem tűnik soknak. 

De Vigenere rendszerének a feltöréséhez azonban nem voltak meg sem azok a matematikai 
eszközök, amelyek a II. világháborúban már rendelkezésre álltak, sem a feltörő-gépek megszer-
kesztéséhez szükséges technológia nem állt még rendelkezésre. 

Babbage zsenialitása kellett hozzá, mint ahogyan Rejewskyé az Enigma feltöréséhez. 
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elven épül fel, csak egy-egy menetben másféle transzformációkat alkalmaz és а К 
kulcs hossza is 128 bit lett. 

A Feistel transzformációhoz előbb még három segédfogalmat kell definiálni. 
Ezek a következők: 

a. Egy szorzat transzformáció (product cipher) két vagy több komponens transz-
formációt kombinál olyan módon és céllal, hogy az eredő transzformáció biz-
tonságosabb legyen, mint a komponensek bármelyike.25 A továbbiakban ezt 
inkább összetett transzformációnak nevezzük. 

b. Egy helyettesítési-permutációs hálózat (SP) olyan összetett transzformációt 
hajt végre, amely számos, egymást követő fokozatból áll, s e fokozatok mind-
egyike vagy helyettesítést, vagy permutációt hajt végre (lásd 8. ábra). 

c. Egy iterált blokk transzformáció egy belső, ún. rund függvény meghatározott 
számú sorozatos megismétlését jelenti. Fontos paramétere a menetek (rundok) 
száma: r; a blokkban lévő bitek száma: n és az ún. bemeneti kulcs bitszáma: k. 

Nyílt szöveg (blokk) 

Kriptogram (blokk) 

8. ábra. Egy összetett transzformációt végrehajtó SP hálózat 

A Feistel transzformáció az iterált blokk transzformáció egy tovább bonyolí-
tott változata. Eredeti (vagy első, a Luciferben alkalmazott) változatában a nyílt 
szöveg blokkjainak hosszúsága n = 2í, a rundok száma pedig legalább 4. Jellem-
zően páros számú rundot alkalmaz. A bemeneti kulcs bitjeinek száma megegyezik 

2 5 Figyeljük meg, hogy az elnevezés ugyan transzformációk szorzatára utal, de a definíció meg-
engedi a komponensek egymásba való beépítését, az összetett függvényeket. Ezért pontosabb is 
összetett transzformációról beszélni. 
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a blokkmérettel, tehát szintén 2t bit. Tartozik hozzá egy kulcs ütemező folyamat, 
amely minden rund számára más-más szubkulcsot állít elő a bemeneti kulcsból. 

A páros számú rundnak jó oka van. A Feistel transzformáció ugyanis a nyílt-
szöveg blokkot megfelezi26 és a (szub)kulcsfüggő komponens transzformációt csak 
egy t hosszúságú félblokkon hajtja végre egy-egy menetben. A két félblokkot az-
tán összekeveri a menet végén, és a következő menetben megcseréli a félblokkokat. 
Szigorúan véve csakis azokat a szimmetrikus transzformációkat nevezik Feistel függ-
vényeknek, amelyekre jellemzők a fél-blokkok és ezek menetenkénti felcserélése. 

Az egész eljárás jobban megérthető a 9. ábra alapján. 
Az eljárásban nem tüntettük fel a szubkulcsokat ütemező algoritmust és még 

egy-két finom részletet sem. Egyébként igen figyelemre méltó az / Feistel függvény, 
amely itt a 32 bites félblokkokhoz 48 bites szubkulcsokat alkalmaz, mert - többek 
között - tartalmaz egy kiterjesztési és egy kompressziós transzformációt is. 

Emiatt előfordulhat (és a DES-ben elő is fordul), hogy maga az / Feistel függ-
vény nem is invertálható, de ettől még a teljes rund, illetve azok sorozata mégis 
csak invertálható.27 A megfejtéskor ugyanezt a 16 menetes eljárást alkalmazzák, de 
a szubkulcsok sorrendje fordítottja a titkosításkor alkalmazott sorrendének. A fél-
blokk kiterjesztése, majd a kulcsfüggő művelet végrehajtása utáni kompressziója 
(amelyek beleértendők az / Feistel transzformációba) ún. lavina hatást eredményez, 
ami azt jelenti, hogy a nyíltszöveg blokk egyetlen bitjének a megváltoztatása a hoz-
zátartozó kriptogram blokkban legalább 32 bit változását okozza. A lavinahatás a 
rundok számának növelésével növekszik. Ez minden iterációs kriptorendszerben így 
van. Az AES-ben is és több más, ismert rendszerben is. 

Egyébként a 128 bites AES nem bontja félblokkokra a bemeneti nyíltszöveg 
blokkot és 12 menetes iterációt alkalmaz. 

A lavinahatás miatt nem véletlen, hogy az iterációs, szimmetrikus kriptorend-
szerek megfejtési kísérletei során először csak kevesebb számú runddal titkosított 
változatok megfejtésére szoktak törekedni. Ez még a legújabb AES feltörési kísér-
leteinél is így van. 

A lavinahatásról még annyit, hogy az közvetlen rokonságban van a matemati-
kai értelemben vett kaotikus folyamatokkal. 

2 6 Van negyedelő eljárás is, pl. az IDEA esetében. 
2 7 Ez Menezes [24] állítása, de nem bizonyítja. A DES részletesebb elemzése azonban alátá-

masztja ezt az állítást. Ténykérdés ugyanis, hogy az expanzió-kompresszió transzformáció-pár 
alkalmazása miatt legalább is kétségek merülnek fel az f függvény invertálhatóságával kapcso-
latban. Az is tény azonban, hogy a DES 25 évig jól működött. Az invertálhatóságot viszont e 
cikk elején a transzformációk általános követelményei során triviális alapfeltételnek tekintettünk. 
Mármint a teljes transzformációét, s nem annak komponenseiét. Feistel egyik óriási innovációja 
az, hogy rájött, hogy összetett transzformációk esetében nem feltétlenül kell minden komponens-
nek invertálhatónak lenni ahhoz, hogy az eredő transzformáció invertálható legyen. Az igazsághoz 
hozzátartozik azonban, hogy a Luciferben még nem volt ilyen expanzió-kompresszió pár, s azt az 
NSA javaslatára építette be a DES-be Feistel. 

A nem invertálható komponensek beépítésének az a fő előnye és célja, hogy lehetetlenné tegye 
a transzformáció algoritmikus feltörését. 
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Nyíltszöveg blokk 

Kriptogram blokk 

9. ábra. A Feistel transzformációt alkalmazó 16 menetes, 64 bites DES vázlata 
(csavart létra) 

Az aszimmetrikus kriptorendszerek 
Említettük, hogy kb. az 1970-es évek közepén következett be az az áttörés, 

amely a nagyon bonyolult és nagy számítás igényű szimmetrikus kriptorendszerek 
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bevezetését jelentette, méghozzá a civil alkalmazásokba.28 Innen számítjuk az ún. 
negyedik és ötödik generációs kriptorendszerek korszakát.29 A szimmetrikus krip-
torendszerek elterjedésének azonban óriási gyakorlati akadálya volt, hogy a titkos 
kulcsot a titkosított kommunikációt megelőzően és igen nagy biztonsággal el kellett 
juttatni a kommunikációban részt vevő másik partnernek. A kulcsok eljuttatásá-
nak, nyilvántartásának és egyáltalában a kulcsok menedzselésének (a szimmetri-
kus rendszerekben) megoldatlan problémája sürgetően megkövetelte valamilyen új 
megoldás kialakítását. Állíthatjuk, hogy tulajdonképpen ez az igény váltotta ki az 
aszimmetrikus (nyíltkulcsú) kriptorendszerek feltalálását. 

Kb. ugyanebben az időben támadt egy zseninek, nevezetesen Whitfield Diffie-
nek az az ötlete, hogy valahogyan el kellene kerülni a kulcsok utaztatását. 

Ennél, persze, konkrétabb ötlete is volt a megoldásra, amin aztán Martin Hell-
mannal és Ralph Merklevel együtt dolgoztak. 1976-ban jelentették be az ötletüket 
egy konferencián [35], de ők akkor még nem találtak rá működőképes implementá-
ciót. 

Diffie olyan, ún. egyirányú függvényeket keresett, amelyeket az egyik irányban 
aránylag könnyen ki lehet számolni, de a másik irányban csak olyan sok számítási 
kapacitással, ami nem éri meg a dolgot, vagy nincs annyi ráfordítható idő. 

Ma már széles körben ismert Ron Rivest, Adi Shamir és Leon Adleman felta-
lálók neveinek kezdőbetűiről elnevezett RSA titkosítás, amely alapja a természetes 
számok prím faktorizációja. (IFP = Integer Factorization Problem). Nagyon leegy-
szerűsítve ugyanis arról van szó, hogy két nagy prímszámot aránylag nem nehéz 
összeszorozni, de egy igen nagy szám esetében csak nagyon sok próbálkozással le-
het az adott szám törzstényezőit meghatározni. Ez egy tipikus egyirányú függvény-
probléma. 

No de hogyan lehet összehozni egy szöveg titkosítását számokkal? Nos, blokk 
titkosítás esetén egy nbites blokk mindig tekinthető olyan egészszámnak, amely 
értéke 0 és 2" — 1 közé esik. Fontos, hogy egészszámokról van szó, s ennek a követ-
kezőkben komoly jelentősége lesz. Fontos az is, hogy egy korlátos tartományba eső 
pozitív egészekről, vagyis természetes számokról van szó. 

Térjünk vissza azonban a 3. ábra teljes titkosítási/visszafejtési folyamatához. 
Láttuk, hogy triviális megoldásnak tekintették korábban, hogy az E és a D 

transzformációk kulcsai azonosak, maguk a transzformációk pedig egymás inver-
zei. Sőt: gyakorlati szempontok miatt esetleg saját maguk inverzei. Ez valamennyi 
szimmetrikus kriptorendszer jellemzője. 

Ma már eléggé kézenfekvő az, hogy nem feltétlenül kell az E és a D transz-
formációk kulcsainak azonosaknak lenniük, hanem elképzelhető, hogy azok például 

2 8 A katonai alkalmazások körében természetesen korábban is léteztek ilyenek, de azért érdemes 
felfigyelni arra, hogy az amerikai hadsereg még a koreai háborúban is használt az Enigmához 
hasonló titkosító/megfejtő gépeket 

2 9 A kriptorendszer-generációkat ugyanúgy az alkalmazott technológia jellemzi, mint a számító-
gépek generációit, de ezzel a kérdéssel itt nem foglalkozunk. Megemlítjük azonban, hogy nem csak 
a transzformációs technológia, hanem a jellemző kommunikációs technológia is meghatározó [2]. 

Alkalmazott Matematikai Lapok 23 (2006) 



425 TÓTH MIHÁLY: a l a p v e t ő m a t e m a t i k a i t r a n s z f o r m á c i ó k a k r i p t o g r á f i á b a n 

egymásnak az aktuális transzformációra vonatkoztatott inverzei, s maguk a transz-
formációk azok, amelyek azonosak. 

Az előbbiekben láttuk, hogy maguk a transzformálandó blokkok egy felülről 
korlátos tartományba eső természetes számok. Egyszerű esetben a kulcsok is ter-
mészetes számok. 

A kérdés tehát úgy tehető fel, hogy van-e a természetes számok halmaza felett 
értelmezett zárt művelet, amelynek az eredménye is természetes szám, s ráadásul 
egy felülről korlátos halmaz tagja. 

Nos, a modulo n összeadás és a modulo n szorzás például ilyen műveletek. Nem 
véletlen, hogy az RSA rendszer is ezt alkalmazta. A modulo n direkt műveletek 
inverzei is léteznek. 

A modulo n összeadás és kivonás inverz műveletpárt már a XVI. és XVII. szá-
zad fordulóján de Vigenere alkalmazta az általa kitalált többábécés rendszerhez, 
amelynek alsó határesete az egyábécés Caesar-féle titkosítás is és felső határesete 
a nagyon sok ábécés Enigma titkosítás is. 

A modulo n kongruenciák a 0-tól (n — l)-ig terjedő, n darab maradékosztályba 
képezik le a természetes számok megszámlálhatóan végtelen nagy halmazát. Ezek 
a maradékosztályok a 0 és (n — 1) közötti természetes számokkal jelölhetők. 

A modulo n műveleteknek van egy elméleti és egy abból következő gyakorlati 
előnye is. Az elméleti előny az, hogy ezek a műveletek a természetes számok hal-
maza felett zártak. A gyakorlati előny pedig az, hogy a maradékosztályok véges 
száma miatt a számítások során elkerülhető a túlcsordulás. 

Evariste Galois (1811-1832) megmutatta, hogy minden véges halmazon értel-
mezett művelet izomorf a modulo m maradékosztályokon értelmezett valamilyen 
modulo m művelettel. Ennek következménye az, hogy ha a kriptográfiai leképe-
zések véges (vagy legalább megszámlálhatóan végtelen) halmazokon értelmezettek, 
akkor a modulo m műveletek gyakran feltűnnek a legkülönbözőbb elvű kriptográfiai 
leképezések körében is. 

Az inverz fogalmáról itt ahnyit, hogy ha egy A halmaz felett értelmezett és 
zárt a <g> művelet és az A halmaznak eleme mind a, mind b, akkor ez a két elem 
egymásnak inverze a <g> műveletre nézve, ha 

a® b = e, 

ahol e a <8> művelet egységeleme (amely, persze, szintén eleme az A halmaznak). 
Azt, hogy a b elem az a elem inverze, a 

b = a~\ 

jelöléssel jelöljük. Például a szorzás művelete esetén két szám (a és a - 1 ) akkor 
inverzei egymásnak, ha 

a • a - 1 = 1. 
Jelöljünk most egy n blokkhosszúságú nyílt szöveget P-vel és a mondottak értelmé-
ben értelmezzük P-t számként. Igen egyszerűen végrehajtható ekkor a következő 
titkosítási transzformáció: 

С <- P a mod n 
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A kapott eredmény mindenképpen 0 és (n — 1) közé esik, tehát alkalmasan válasz-
tott hatványozási algoritmus (pl. a gyors hatványozás) esetében nem fordulhat elő 
túlcsordulás, akármekkora is az a hatványkitevő. Vegyük észre, hogy itt a titkosítás 
kulcsa maga az a kitevő. 

A visszafejtés ugyanazzal a hatványozási művelettel történhet, de ekkor az a - 1 

(inverz) hatványra kell emelni а С kriptogramot: 

С01'1 mod n = (P a )° ' mod n = Pa a ~' = P 1 = P. 

A visszafejtés kulcsa tehát a~l, vagyis a titkosító kulcs inverze, a titkosító transz-
formáció pedig pontosan megegyezik a visszafejtő transzformációval. 

A két kulcs nem azonos, hanem egymás inverzei. Bizonyos szempontból éppen 
olyan triviális megoldás, mint a kulcsok azonossága volt a szimmetrikus kripto-
rendszerek esetében. Míg azoknál a transzformációk voltak egymás inverzei, és a 
kulcsok azonosak, az aszimmetrikus kriptorend-szereknél a kulcsok egymás inver-
zei és a transzformációk azonosak.30 Maga az „aszimmetrikus" elnevezés arra utal, 
hogy a kulcsok nem azonosak. Egyébként azonban ezek a kétkulcsos rendszerek a 
szó szoros értelmében legalább annyira szimmetrikusak, mint a szimmetrikusnak 
nevezett (egykulcsos) kriptorendszerek. 

A 4. ábra és az 5. ábra pontosan ezt a szimmetriát hivatott bemutatni. 
Vegyük észre azt is, hogy a bemutatott rendszerben fontos szerepe van az n 

modulusnak is, azaz az egész titkosító/visszafejtő rendszer működtetéséhez az in-
verz kulcspáron kívül a modulust is ismerni kell, tehát legalább három paraméter 
van (Itt!). 

Az aszimmetrikus kriptorendszerek azért nem annyira egyszerűek, mint azt az 
előbbiekben bemutattuk. Számos gyakorlati követelmény is létezik, amelyeket ki 
kell elégíteni. 

Alapelv, hogy ha a két kulcs nem azonos, akkor az egyiket nyilvánosságra is 
lehet hozni. Ebből azonban következik, hogy a nyilvános kulcsból semmilyen módon 
ne lehessen kiszámítani a párját, vagyis a titkos kulcsot. 

Vizsgáljuk meg most ezt a transzformációt egy kissé közelebbről! 

Az RSA nyíltkulcsú rendszer és az egyirányú függvények31 

Az előzőekben (amikor csak első közelítésben kívántuk bemutatni az alapelvet) 
ismételt hatványozással értük el, hogy visszakapjuk az eredeti szöveget. 

A példaként bemutatott egyszerű hatványozás esetén, ha az egyik kitevő és a 
modulus ismert, akkor az inverz kitevő kiszámolható. Az RSA rendszerben ezért 

3 0 Mármint az itt bemutatott egyszerű esetben. Bonyolultabb rendszereknél azért nem lehet 
a transzformációkat teljesen azonosaknak tekinteni, mint ahogyan a negyedik generációs iteratív 
kriptorendszerekben sem voltak teljesen azonosak. 

3 1 Köszönetet kell mondanom Tóth Gergelynek, a Veszprémi Egyetem Székesfehérvárra kihe-
lyezett AIFSz központja tanárának e fejezet megírásához nyújtott segítségéért. 
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nem is egyszerűen csak inverz kitevőkkel, hanem két nagy (10150 nagyságrendű) 
prímszám Euler függvényével dolgoznak. 

Ha találunk olyan e és d számokat, amelyek szorzata valamilyen alkalmas közös 
n modulussal osztva 1-et ad, akkor titkosíthatunk az e és n számokat használva: 

с <— pe mod n. 

A visszafejtésre a p <— cd mod n formulát használhatjuk, hiszen 

(0.1) cd = {pe)d = pe d = p1 mod п. 

A probléma alapvetően az, hogy míg valós számok esetében egy 0-tól különböző 
számnak mindig van inverze a szorzásra nézve (történetesen a reciproka), addig ez 
a maradékosztályokban már korántsem mindig van így. Például egy páros számot 
bármilyen számmal megszorozhatunk, a szorzat soha sem fog 1 maradékot adni egy 
páros modulus esetében. 

Pierre Fermât [1601-1665] 1660 körül rájött3 2 , hogy az eljárás „működik", ha az 
e • d szorzat prímszám. Fermât eredményének azonban nem sok gyakorlati alkalma-
zása van; tekintve, hogy csak az e = 1 vagy d = 1 esetben működik. Ez kriptográfiai 
szempontból azt jelentené, hogy magát a nyílt szöveget küldjük el a címzettnek. 

Szerencsére Leonard Euler [1707-1783] általánosabb formulát talált a Fermât 
képletnél, amelyben a kitevőnek nem kell prímszámnak lennie, és a hatványozás 
után mégis visszakapjuk osztási maradékként az eredeti számot. 

Az Euler féle képletben 

pe d = p mod n, 

(0.2) ha e • d = к • ip(n) + 1 alakú, 

ahol к tetszőleges természetes szám. A ip(n) jelölés az n számnál kisebb, n-hez re-
latív prímek darabszámát jelöli, azaz hogy hány olyan szám van 0 és n között, 
amelyeknek 1-en kívül nincs olyan osztójuk, amely n-et is osztaná.33 A (0.2) fel-
tétel ekvivalens azzal a feltétellel, hogy e és d egymás inverzei a ip(n) modulusra. 
Ha tehát a kódolást és a dekódolást az üzenetblokk hatványozásával oldjuk meg, 
amint azt a (0.1) formulában tettük, akkor ez működni fog abban az értelemben, 
hogy az ismételt hatványozással visszakapjuk az eredeti üzenetet. A gond csak ip(n) 
kiszámításánál van. 

Prímszámokra elég kézenfekvő, hogy ip(p) = p — 1, és azt is viszonylag könnyű 
belátni, hogy szorzat ip-je a ip-к szorzata, azaz 

(0.3) <p(p-q)=ip(p)-ip(p). 

3 2 Kis (más néven: „karácsonyi") Fermât tétel: ар — 1 = 1 mod p, ha p prímszám. 
3 3 Fermat-val ellentétben Euler bebizonyította a saját tételét, és ezzel visszamenőleg a kis-

Fermat tétel is bizonyítást nyert. Egy prímszámot ugyanis 1-en kívül egyetlen nála kisebb termé-
szetes szám sem oszt, azaz hozzá képest az összes nála kisebb szám relatív prímszám. Ezek szerint 
prímszámokra <p(p) = p — 1, amiből következik a kis-Fermât tétel állítása. 
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Vagyis egy tetszőleges n modulus y>-je könnyen meghatározható, ha ismerjük n 
prímtényezős felbontását. 

Rivest, Shamir és Adleman frappáns módon oldották meg, hogy a kulcsokat lét-
rehozó „illetékes" ismerje a modulus prímfelbontását, az illetéktelen támadó azon-
ban ne kerülhessen birtokába ennek az információnak: egyszerűen választottak két 
prímszámot, és ezek szorzatát használták a kódoláskor modulusként. 

A modulus prímtényezőinek segítségével meghatározható az n modulus Euler-
féle ip-je, ebből pedig az e és d kitevők, amelyek egymás inverzei a ip(n) számra 
nézve.34 

Ha egy illetéktelen akarja megfejteni a titkos d számot a közzétett e és n számok 
alapján, mindenképpen meg kell határoznia ip(n)-et, hogy megtudja, egyáltalán mi-
lyen modulusra kell kiszámítania az e szám inverzét. 

Jelenlegi ismereteink szerint viszont az Euler féle p(n)-et csakis n prímtényező-
inek ismeretében lehet meghatározni. Ezek megkeresése a jelenleg használt kulcs-
méretek és számítástechnika esetén sokszorosa a Világegyetem várható életkorának. 

Az RSA kódolás erősségét tehát egy szemtelenül egyszerű ún. egyirányú függ-
vény adja. A titkosítás kulcsának létrehozója maga választja meg a törzstényezőket, 
majd azok összeszorzása révén számítja ki a kódoláskor/dekódoláskor használt n 
modulust. A törzstényezők ismeretében a modulus kiszámítása nevetségesen egy-
szerű: egyetlen szorzási művelet. A támadó azonban a fordított műveletet kénytelen 
elvégezni, azaz egyedül az n modulus alapján meghatározni azokat a prímszámo-
kat, amelyek szorzataként a modulus létrejött. A művelet, amely az egyik irányban 
akár tollal és papíron is viszonylag gyorsan elvégezhető, visszafelé még a világ min-
den informatikai kapacitásának birtokában is elképzelhetetlenül hosszú időkig tartó 
feladatot ró a rendszer feltörőjére. 

3 4 A módszer elvéből következik, hogy az n modulusnak és e-nek relatív prímeknek kell lenniük. 
Igen nagy számokról lévén szó, ezt nem is olyan egyszerű megvizsgálni. Ehelyett a gyakorlatban 
azt teszik, hogy e-nek egy nagy prímszámot választanak, amely ha sem p-vel, sem q-val nem 
egyezik, akkor biztosan relatív prím n-hez képest is. 

Erre a célra Mersenne vagy Fermât prímeket szokás választani, mert a bináris alakjaik nagyon 
könnyen előállíthatók. A gyors hatványozás alkalmazhatósága miatt a Fermât prímek tulajdonkép-
pen alkalmasabbak lennének, de mindössze 6 ilyen prímszám van, amelyek közül a legnagyobbat 
valóban gyakorta használják is nyílt kulcsként. 

A Mersenne prímekből sokkal több van, de ezekkel az eljárás számításigénye lényegesen na-
gyobb. 

(Az oka a gyors hatványozásban rejlik.) 
A Fermât számok 22k - 1 alakú számok, de csak к < 6 esetén prímek. A gyakorlatban éppen 

а к — 5-öt szokták alkalmazni. Az ilyen bináris számok Hamming súlya csak 2, és ezért a gyors 
hatványozás valóban gyorsan végrehajtható. 

A Mersenne számok 2fc — 1 alakúak és nem mindegyik ilyen szám prím. А к természetes számra 
viszont nincs semmilyen kikötés. 
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További, titkosításra alkalmazható csoportmûveletek 

A diszkrét logaritmus probléma (DLP) 
Véges elemszámú G csoportban a g generáló elem és egy szabadon választott 

a csoport-elem ismeretében határozzuk meg azt az x kitevőt, amelyre gx = a (x = 
logag, de x-nek egészszámnak kell lennie) [22]. 

A Diffie-Hellman (DH) probléma 
Véges elemszámú G csoportban a g generáló elem, valamint ga és gb ismereté-

ben határozzuk meg gab-t. 
A következő csoportok használata terjedt el: 

• A p elemből álló mod p maradékosztályok multiplikatív csoportjaként értel-
mezhető csoport, amely valódi (és véges) részhalmaza a természetes számok 
halmazának. 

• A GF(2m) test 2m — 1 elemű multiplikatív csoportja. 
• Az elliptikus görbék pontjain értelmezett csoport. 

Ezek részletesebb diszkussziója nélkül csak azt szeretnénk kiemelni, hogy mindegyik 
ilyen aszimmetrikus kriptorendszer az inverz kulcsok elvét alkalmazza ugyanazon 
csoportművelet mellett. 

Mindegyikre léteznek megoldási algoritmusok, amelyek elsősorban a számítás-
igény és a futási idők tekintetében versenyeznek egymással. Mégsem jelenthető ki 
azonban, hogy egyik algoritmus jobb, mint egy másik, mert a hatékonyságuk a 
konkrét alkalmazástól is függ. 

Az RSA algoritmus pl. máig is a legelterjedtebb, és nem is ok nélkül, de csak 
adott (s nem is túl nagy) blokkhosszúságú nyíltszövegek titkosítására alkalmas. 

Nem véletlen az sem, hogy pl. a digitális aláírások esetében a Diffie-Hellman 
algoritmust szabványosították, és az sem véletlen, hogy nagyon hosszú üzenetek egy 
menetben való nyíltkulcsú titkosítására pedig ma az ún. NTRU (Number Theory 
Research Group at MIT) rendszert tartják a legalkalmasabbnak. 

Mindezek bemutatása azonban messze meghaladja e cikk terjedelmi korlátait 
és célkitűzését is. 

Összefoglalás 

A kriptográfia történetének és fejlődésének nagy mérföldkövei jó rendszerezési 
alapot nyújtanak e cikkben bevezetett kriptogenerációk fogalmához. Áttekintve a 
kriptorendszerek fejlődését azt találtam, hogy néhány alapvető fogalom nem, vagy 
nem egyértelműen definiált. Ilyen volt pl. az ún. blokkos titkosítások blokk fogalma, 
a több helyütt említett lineáris transzformációk fogalma és maguk a kriptográfiai 
transzformációk is. 

E cikkben leírt áttekintés alapvető motívuma éppen e fogalmak „rendbetétele" 
volt. Legalább is megkíséreltem néhány általam felfedezni vélt ilyen hiányt pótolni 
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és ebben az írásban összefoglalni mindazt, amire jutottam. Szép számmal maradtak 
nyitott kérdések is. 

írásommal buzdítani is szeretnék fiatal kutatókat arra, hogy érdemes egy tu-
dományterület alapkérdéseivel foglakozni. 

A cikk a kriptorendszerek generációinak fogalmi és definitív bevezetése után a 
kriptográfiai transzformációk (matematikai értelemben leképezések) általános jel-
lemzőivel, tulajdonságaival foglalkozik. 

Megmutatja, hogy matematikai értelemben miért helyesebb leképezésekről be-
szélni, mint transzformációkról és vizsgálja e leképzések értelmezési tartományait, 
valamint az értékkészletét. 

Definiálja a leképzések őstartományán értelmezhető műveletet, nevezetesen a 
konkatenációt, és ennek az értelmezési tartománya segítségével definíciót ad a krip-
tográfiai „blokk" fogalmára. 

Heurisztikus módon megfogalmazza e leképezések általános követelményeit. 
Megfogalmaz egy sejtést, amely szükséges és elegendő feltétel a klasszikus helyette-
sítési és permutációs transzformációk felcserélhetőségére, valamint összevonására. 
(A blokkhosszúságok egészszámú arányára vonatkozó kijelentésről van szó.) 

Foglalkozik az egyszerű leképző függvények inverz tulajdonságaival. Claude E. 
Shannon javasolta elsőként az ún. produkt transzformációkat, amelyek valójában 
vagy nem kommutatív produktumok, vagy összetett függvények. Minden esetre 
komoly szerepük van a modern, ún. negyedik generációs, szimmetrikus kriptorend-
szerekben. A cikk kitér az ún. Feistel transzformációkra és alkalmazásaikra, a több-
komponensű transzformációk komponensei invertálhatóságának a kérdésére, s végül 
az ún. aszimmetrikus (nyíltkulcsú) kriptorendszerekben alkalmazott transzformá-
ciók kapcsán azt igyekszik bemutatni, hogy azok a tradicionális kriptorendszerek-
nek mintegy a tükörképei. 

Megfogalmaz egy állítást is arra, hogy az aszimmetrikus kriptorendszerekben 
alkalmazott művelet (amelyre az inverz kulcsok vonatkoznak) véges halmazok ese-
tén szükségképpen izomorf a modulo m maradékosztályok feletti valamilyen műve-
lettel. 

Ezért aztán egyáltalán nem véletlen, hogy a modulo m aritmetika a legkülön-
bözőbb alapelvű kriptorendszerek esetében minduntalan visszaköszön. 

(A szerző számára talán legfrappánsabb módon a Knapsack-féle nyíltkulcsú 
rendszerben, amely egy távolság különböző távolságokkal való lefedéséből indul ki, 
vagyis egy geometriai problémából. A fedő távolságoknak szupernövekvő sorozatot 
kell alkotniuk, s akkor a lefedés kimutathatóan egyértelmű és unikális. A Knapsack 
rendszert ugyan nem szabványosították, de nagyszerűen bemutatható a segítségé-
vel a modulo n műveletek előfordulása. [4]-ben megtalálható a részletes leírása is 
kidolgozott példával együtt.) 
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BASIC MATHEMATICAL TRANSFORMATIONS IN C R Y P T O G R A P H Y 

MIHÁLY T Ó T H 

This paper introduces the concepts of Crypto-generations then deals with the mapping and 
transformation functions of Cryptosystems. It pays particular interest on the concept of blocks 
and alternating block cipher transformations, the concept of linearity and the changeability of 
substitution and permutation type transformations. It defines the general conditions of those 
transformation. The paper discusses the invertibility of crypto-transformations particularly Feistel 
functions. 

The paper demonstrates the symmetry of iterative and public key transformations. Its main 
goal is to make clear some basic concepts of four and fifth generation cryptosystems. 
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