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DISZKTRÉT DINAMIKUS RENDSZEREK ÉS KÁOSZ 

KOLUMBÁN JÓZSEF ÉS SOÓS ANNA 

K u l c s s z a v a k : diszkrét dinamikus rendszer, fraktál, káosz, invariáns halmaz. 
A M S 2 0 0 0 : 37E15, 37F10 
E cikk célja a diszkrét dinamikus rendszerek elmélete néhány alapfogalmának 

- köztük a káosznak - bemutatása. A fogalmak ismertetése után a káosz három tu-
lajdonságát szemléltetjük a sátorfüggvény és komplex dinamikus rendszerek esetén. 

1. Alapfogalmak 

Értelmezzük a diszkrét dinamikus rendszer fogalmát és bemutatjuk alapvető 
tulajdonságait. 

Legyen A a valós számok vagy a komplex számok valamely nem üres részhal-
maza a szokásos d eukleidészi távolsággal. Az / : X —» X folytonos függvényt az 
(X, d) metrikus téren értelmezett diszkrét dinamikus rendszernek nevezzük és 
[A, /]-fel jelöljük. A diszkrét dinamikus rendszerben egy xo € X pont pályája az 
az (x„)neN sorozat, melyet a következő rekurzív képlettel értelmezünk: 

xo, xi := / (xo) , x2 := f(xi), ..., xn := /(i„-i),... 

vagy másképpen írva, 
x n = / n ( x 0 ) , 

ahol fn az / függvény n. iteráltja. 
Az X € X pont az [A, / ] diszkrét dinamikus rendszer periodikus pontja, ha 

létezik olyan n € N, amelyre / n ( x ) = x. Az n számot az x pe r iódusának nevezzük. 
Azonnal belátható, ha n periódusa x-nek, akkor annak bármely többszöröse is 
periódusa lesz x-nek. A legkisebb periódust az x főperiódusának nevezzük. 

Az x € A pontot az / fixpontjának nevezzük, ha / (x ) = x. Minden fixpont 
periodikus, 1 periódussal. 

Közismert, hogy ha az / : [a, 6] —» [a, b] folytonos függvény, akkor létezik fix-
pontja. Fixpontok létezésére vonatkozik a Banach-féle kontrakciós tétel is. 
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Az / függvény kontrakció, ha létezik olyan a €]0,1[, amelyre 

d(f(x),f(y)) < ad(x,y), minden x, y 6 X esetén. 

1.1. TÉTEL. (Banach-féle üxpont tétel speciális esete) Tételezzük fel, hogy X 
zárt halmaz és f : X —> X kontrakció. Ekkor f-nek egyetlen fixpontja van. Mi 
több, minden x0 € X pályája ehhez a ßxponthoz konvergál. 

Valójában fixpontok létezéséhez elegendő egyetlen pálya konvergenciája is. 

1.2. TÉTEL. Legyen x* az [X,f] diszkrét dinamikus rendszerben valamely x0 

pont pályájának határértéke. Ha f folytonos függvény, akkor x* fixpont. 

Bizonyítás. Értelmezés szerint xn = / ( x n _ i ) . Térjünk határértékre az egyen-
lőség mindkét oldalán és használjuk fel az / folytonosságát. Ekkor x* = f(x*). • 

A periodikus pontok létezésével kapcsolatban megemlítjük Sharkovsky [14] hí-
res tételét. 

1.3. TÉTEL. A természetes számok halmazábam értelmezzük a következő ren-
dezési relációt: 

3 У 5 У 7 У ... У 2 • 3 У 2 • 5 У 2 • 7 У ... У 22 • 3 У 22 • 5 У 22 • 7 У ... 

... У 23 у 22 у 2 У 1. 

Tételezzük fel, hogy [а, 6] С R adott intervallum, f : [a, b] —> [а, b] folytonos függ-
vény és létezik n főperiódusú pont. Ekkor n У m szükséges és elégséges ahhoz, 
hogy létezzen m periódusú pont is. 

Ebből a tételből következik, hogy ha van 3 főperiódusú pont, akkor van akár-
hány periódusú is. 

A [6] dolgozatban a Sharkovsky tétel újabb bizonyítását találjuk. 
Az x* G X periodikus pont, melynek legkisebb periódusa k, vonzó, ha létezik 

az x*-nak olyan V környezete, amelyre minden x € V esetén az [V, fk] rendszer-
ben az y-ból induló pálya határértéke x*. A legnagyobb ilyen V környezetet az x 
periodikus pont vonzási tartományának nevezzük. Az x* pontot taszító peri-
odikus pontnak nevezzük, ha létezik x*-nek olyan V környezete, hogy bármely 
x € V esetén van olyan x = xo, x-i, x-2, • • •, x-n,... sorozat, amelynek x* határ-
értéke és x-n = fk(x-n-1), n £ N. Az x* pont semleges, ha se nem vonzó, se 
nem taszító. 

Abban az esetben, ha X С R intervallum, és az / folytonosan deriválható 
függvény, a periodikus pontok természetét a derivált segítségével is vizsgálhatjuk. 

1.4. TÉTEL. Legyen x* egy к £ N periódusú pont. Ha | ( f k ) ' (x*) | < 1, akkor 

x* vonzó, ha I (/*)'(x*)| > 1, akkor x* taszító. 
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Bizonyítás. A bizonyítást к = 1 esetén végezzük el, de hasonlóan végezhető 
nagyobb к esetén is. Az / ' folytonosságából következik, hogy | / ' ( x* ) | < 1 akkor 
és csak akkor igaz, ha létezik e > 0 é s 0 < a < l szám, amelyre | / ' (x ) | < a minden 
x e U =]x* - e,x* + esetén. Azt kell bizonyítani, hogy fn(x) —» x* minden 
x 6 U esetén. Alkalmazzuk az 

( / " ) ' ( * ) = / ' ( / n _ 1 ( * ) ) / ' ( / ( * ) ) • / ' ( » ) 

láncszabállyal kombinált középérték tételt és felhasználjuk, hogy x* fixpont. Ezért 
létezik x és x* között olyan £ pont, amelyre 

I Г ( х ) - x*| = | / n ( x ) - / n ( x * ) | = \f'(0\n I* - < 

A második állítás igazolása hasonlóan történik. • 

На I ( / * ) (x*)| = 1» akkor a z T*-ot n e u t r á l i s periodikus pontnak szokás ne-
vezni. Egy neutrális pont lehet vonzó, taszító vagy semleges. 

2. A z e x p o n e n c i á l i s függvény d i n a m i k á j a 

Első példaként tekintsük az exponenciális függvényt. Legyen 

/ : R -» K, f ( x ) := ax, ahol a > 0. 

A pályát az a paraméter függvényében fogjuk tanulmányozni. 

2 .1 . T É T E L . 

(1) На a > e«, akkor minden x 6 R pályája szigorúan növekvő és +oo-hez tart. 
(2) Ha a = ei, akkor e az egyetlen fixpontja az [X,f] diszkrét dinamikus rend-

szernek és ez közömbös. Ha xo < e, akkor a pályája növekvő és e-hez tart, ha 
xo > e, akkor a pályája szintén növekvő és +00-hez tart. 

(3) Ha 1 < a < , akkor két fixpont létezik, хь és Xj, хь < e < Xj. Az хь vonzó, 
Xj pedig taszító fixpont. Ha xo < хь, akkor pályája növekvő és хь-hez tart, ha 
хь < x0 < Xj, akkor pedig csökkenő és szintén хь-hez tart. Ha xq = x3 akkor 
a pálya állandó, ha xq > Xj, akkor a pálya szigorúan növekvő és + oo-hez tart. 

(4) Ha o=l, akkor minden pont pályája állandó. 
(5) Ha e~e < a < 1, akkor egyetlen x* fixpont van, és minden pont pályája ehhez 

tart. A pálya páros indexű és páratlan indexű tagok sorozatára bomlik, az 
egyik növekvő, a másik csökkenő. 
Ha e~e = a, akkor x* = - , és ez neutrális. 

' e ' 
(6) Ha 0 < a < e~e, akkor egyetlen x* fixpont van, és ez taszító. A pálya páros 

indexű és páratlan indexű tagok sorozatára bomlik, ezek konvergensek, de 
határétékük különböző. Pontosabban, ha g(x) = aa , akkor g-nek három 
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fíxpontja van: x < x* < у. Ha XQ < x, akkor az (x2n) szigorúan növekvő 
sorozat és határértéke x, az ( x 2 n + i ) sorozat szigorúan csökkenő és határértéke 
y. Ha XQ = x, akkor mindkét részsorozat állandó, x2 n = x, x 2 n + i = у. Ha 
x < xo < x*, akkor az (x2n) szigorúan csökkenő sorozat és határértéke x, az 
(x2n+i) sorozat szigorúan növekvő és határértéke y. Az y > xо > x* és XQ > у 
esetek az előbbiek duálisai. 

Bizonyítás. Igazoltuk, hogy ha egy pálya konvergens, akkor a határérték fix-
pont, tehát megoldása az ax = x egyenletnek. Ez egyenértékű a In a = - f - egyenlet 
megoldásával. Ábrázoljuk a </>(x) := függvényt. Ennek maximuma és azt 
e-ben éri el. Ha Ina > - , akkor nincs fixpont, ellenkező esetben van. 

1. ábra. f(x) = ax, a) a > e ' b) a = e ' 

a) b) 

2. ábra. / (x) = a x , a) 1 < a < e i b) 0 < a < 1 

(1) Ha Ina > i , azaz a > e«, akkor az / grafikonja az első szögfelező fölött 
van, ezért xo € К pályája szigorúan növekvő, és fixpont nincs, tehát a határérték 
végtelen (l.a ábra). 
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(2) Ha Ina = A, az / grafikonja (e,e) pontban érinti az első szögfelezőt és a 
grafikon a szögfelező fölött helyezkedik el. Ebből következik az állítás (l .b ábra). 

(3) Ha 0 < Ina < A, akkor az y = Ina а g> grafikonját két pontban metszi; a bal-
oldali x koordinátája legyen хь, a jobboldalié Xj. Az / grafikonja az első szögfelezőt 
az (хь,аХ ь) , illetve az ( X j , a x í ) pontban metszi. Ha x < e, akkor 0 < f'(x) < 1, ha 
x > e, akkor f'(x) > 1, tehát хь vonzó, Xj pedig taszító (2.a ábra). 

(4) Ha a = 1, akkor f ( x ) = 1, így х = 1 az egyetlen fixpont. 
Ha a < 1, egyetlen x* fixpont van, mert az у = Ina egyenletű egyenes а </? 

grafikonját egyetlen pontban metszi (2.b ábra). 
(5) Ha e~e < a < 1, akkor 

20,2:2, •••, ••• és Xi, £3, ...,22n+l, ••• 

monoton sorozatok, és közrefogják 2*-t. Ehhez belátjuk, hogy a g(x) = aa' függ-
vény növekvő, 3(2) > 2, ha x < x* és 3(2) < 2, ha 2 > 2*. Valóban, 

g'(x) = axaa' ( Ina) 2 > 0, а lim g(x) - 0, lim 3(2) = 1. 

3. ábra. g(2) = aa', a) 1 > a > e~e b) 0 < a < e~e 

Mivel g"(2) = ( lna ) 3 a x a° ' ( 1 + a 1 Ina), a g függvénynek egyetlen inflexiós pont-
ja van minden a > 0 esetén; ettől balra a függvény konvex, jobbra pedig konkáv. 
Még azt kell belátnunk, hogy ha e~e < a < 1, akkor a g(2) = 2 egyenletnek 
egyetlen megoldása van. Legyen ip(x) := Ijpr. A ip'(x) = a~x [— In a In 2 + A] > 0 
egyenlőtlenség akkor és csak akkor áll fenn minden 2 > 0 esetén, ha a > e~e. 
Figyelembe véve, hogy f-nek minden fixpontja fixpontja 3-nek is, és 3-nek csak 
egy van, következik, hogy x2n és x 2 n+i határértéke 2* (3.a ábra) . 

(6) Ha 0 < a < e~e, akkor / ' (2*) < - 1 . Indukcióval igazolható, hogy 20 — l 
esetén 

a = 21 < 23 < ... < 22„+l < ... < 2 2 n < ... < x 2 < 1, 
aX2" = 22n+i és aX2'"1 - x2„-
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Legyen 
x = lim X2n+i és y = lim x2n-

71—»OO 71—»OO 

Ekkor 
X < y, ay — X és ax = y. 

Innen 
x l n x = y Íny. 

Mivel a h(x) = x l n x képlettel értelmezett függvénynek \ minimumpontja és ez 
a függvény szigorúan konvex, az előbbi egyenletnek legfeljebb két megoldása van. 
Kimutatjuk, hogy x < у (3.b ábra) . Valóban, ha x = y, akkor x = x*, mert x* 
egyértelmű. De ekkor g'(x) = x 2 ( l na ) 2 = (lnx)2 > 1, ami ellentmond annak, hogy 
az (x2n+i)n€N sorozat szigorúan növekvő és x-hez tart. Ebből következik, hogy 
x < y. A 

l n x Íny lnx* 
y x x* 

egyenlőség alapján mindkettő különbözik x*-tól. Mivel x,x*, és y fixpontjai y-nek 
és több fixpont nincs, továbbá x* taszító, következik, hogy x* az x és y között 
helyezkedik el. Észrevesszük, hogy x és y kettő periódusú pont ja f-nek. Az x és y 
vonzó, az x* taszító fixpontja y-nek. A tétel állítása következik a g függvény fenti 
tulajdonságaiból. • 

Az xo = a pályáját először Euler [8] tanulmányozta, ezért ezt a pályát, vagyis 
az 

a, aa, aa'\... 

sorozatot, E u l e r toronynak nevezzük. 1728-ban Daniel Bernoulli Christian 
Goldbergnek címzett levelében felveti azon x és у, x Ф y, számok meghatározásá-
nak kérdését, amelyek teljesítik az x y = yx feltételt. Egy ilyen számpárt Bernou l l i 
párosnak nevezünk. Bernoulli azt írta a levélben, hogy egyetlen eset van, amikor 
ezek a számok egészek (x = 2, y = 4), de végtelen sok racionális megoldás létezik. 
Azt is megjegyezte, hogy vannak irracionális megoldások is, anélkül, hogy ezekről 
részletesen írt volna. Euler megjegyzi, hogy az 

x = ( l + i ) " é s y = ( l + i ) n + 

racionális megoldásai a Bernoulli feladatnak, minden n € N \ {0} esetén. 
Flechsenhaar [10] igazolta, hogy más racionális megoldás nincs. Erre vonatko-

zóan az olvasó talál információkat a [11] és [4] dolgozatban is. Vegyük észre, hogy 
ha 1 < a < ei. és az exponenciális függvény két fixpontja x és y, akkor az x és y 
Bernoulli párost képez. Ezek szerint 1 < a < e* esetén az exponenciális függvény 
Xb és Xj fixpontja Bernoulli párost képez, és ezen kívül más valós Bernoulli páros 
nincs. 
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A Bernoulli pároshoz hasonlóan, 0 < a < e~e esetén létezik olyan (x, y) szám-
pár, amelyre x ф у és xx — yy. Egy ilyen számpárt Euler p á r o s n a k nevezünk. 
Az előbbi tétel bizonyításából következik, hogy ezek 5-nek fixpontjai. Könnyen 
igazolható, hogy (x, y) akkor és csak akkor Euler páros, ha f i , i j Bernoulli páros. 

Goldbach Bernoullihoz küldött levelében a Bernoulli párosok egy parametrikus 
ábrázolását adta. Ha (x, y) egy ilyen páros és у > x, akkor létezik olyan s > 1, 
hogy y = sx. Ekkor xsx = (sx)x , vagyis x s = sx, tehát 

1 s 
X = S з — l , y = s 8 - 1 . 

Ehhez hasonlóan, az Euler párosok parametrikus alakja a következő: 

s 1 
x = s 1 - « , y — s 1 - » , s > 1. 

Ezekről a kérdésekről további információkat [1], [7] és [12] dolgozatban olvas-
hatunk. 

3. A káosz 

Az A Ç X nem üres halmazt az [X, f ] diszkrét dinamikus rendszer invariáns 
ha lmazának nevezzük, ha f(A) — A, ahol f(A) := {y € X |3x € A : / (x ) = y}. 
Minden fixpontból képzett halmaz invariáns halmaz. Az A invariáns halmazt a 
diszkrét dinamikus rendszer attraktorának nevezzük, ha létezik olyan A-t tartal-
mazó V nyílt halmaz, hogy bármely x eV esetén fk(x)-nek az A-tól mért távol-
sága, vagyis, 

s u p { m i n { d ( / f c ( n ) , a ) | e € A} | v € V) 

nullához tar t , ha к végtelenbe ta r t . A legnagyobb ilyen V halmazt az A von-
zási tartományának nevezzük. Például, vonzó fixpontból képzett halmaz at t rak-
tor. A taszító fixpont fogalmának általánosításaként, hasonló módon értelmezzük a 
taszító invariáns halmaz fogalmát is. 

Az [X, f ] invariáns halmazai gyakran fraktálhalmazok. 
Azt mondjuk, hogy / kaot ikusan viselkedik az A invariáns halmazon, ha a 

következő három tulajdonság teljesül: 

(i) Létezik olyan xo € A, amelynek pályája A-ban sűrű, vagyis A minden 
elemét tetszőleges pontossággal megközelíti. 

(ii) Az A-beli periodikus pontok halmaza A-ban sűrű . 

(iii) A pálya viselkedése érzékeny a kezdeti feltételekre, vagyis létezik olyan 
<5 > 0, hogy adott x € A esetén létezik A-ban x-hez tetszőlegesen közeli 
y pont és к e N úgy, hogy d ( f k ( x ) , fk(y)) > 6. Más szóval, ha a pontok 
közelednek, a pályák nem feltétlenül közelednek minden határon túl. 
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A káosz fogalmának értelmezése Devaney [5] művében szerepel először. Utólag 
Banks és társai [2]-ben kimutatták, hogy a (iii) tulajdonság az első kettő következ-
ménye. 

Számítógép segítségével a diszkrét dinamikus rendszerek attraktorait könnyen 
megjeleníthetjük. Ha adott x kezdőpontra ábrázoljuk az fk(x) iteráltakat, például 
к > 100 esetén, a kapott ábra megközelíti az attraktort, legalábbis szemmel a 
kapott ponthalmazt nem tud juk megkülönböztetni az attraktortól. 

4. A s á t o r f ü g g v é n y d i n a m i k á j a 

Második példánk legyen a sátorfüggvény. Ha A > 0, legyen f \ : 

/ л (* ) := 
Ах, ha x < к 

Л - А х , h a x í i 

A pályák és az invariáns halmaz tanulmányozását a A paraméter függvényében 
végezzük. 

a) b) c) 

4. á b r a . A sátor függvény a) A = | b) A = 1 с) A = ^ 

1) Tekintsük először azt az esetet, amikor A < 1. A sátor teteje az első szögfe-
lező alatt helyezkedik el. Az xo-ból az ц -et úgy származtatjuk, hogy az (xo, /(xo)) 
ponton át húzott vízszintes egyenessel metszük az első szögfelezőt és a metszés-
pontot vetítjük a vízszintes tengelyre. Ha a szerkesztést az (x i , / (x i ) ) pontból 
megismételjük, az x2-t kapjuk. Hasonlóan szerkesztjük meg a következő ponto-
kat. Ebben az esetben minden xo valós szám pályája konvergens és határértéke 0. 
Az A = {0} invariáns halmaz attraktor, mert az К minden elemét magához vonzza. 
(4.с ábra) 

2) Ha A = 1, akkor minden x < A fixpontja f-nek. Ezért A = ] -oo , vonzó 
invariáns halmaz (4.b ábra). 

3) Ha 1 < A < 2, akkor a sátor teteje az első szögfelező felett és az у - 1 
egyenes alatt helyezkedik el. A grafikont az első szögfelező két pontban metszi, 
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tehát két fixpont van: 0 és yy-y. Mindkét fixpont taszító. Könnyen belátható, hogy 
A = [0,1] taszító invariáns halmaz. Mi több, ha xo € R \ A, akkor 

lim fk(xo) = —oo (4.a ábra). 
k—*oo 

4) Minőségileg új helyzet áll elő, ha Л > 2. Ekkor a sátor teteje az у = 1 
egyenes felett helyezkedik el, így a [0,1] intervallum nem invariáns / - re nézve. 

Az invariáns halmaz tanulmányozásához szükségünk van a Cantor-halmaz meg-
határozására. 

A [0,1] intervallumból tekintsük azokat a valós számokat, amelyek a hármas 
számrendszerben az l-es számjegy felhasználása nélkül ábrázolhatóak. Ezek alkot-
ják a Cantor-halmazt: 

С := {0, aia2...ai... | at G {0,2}}. 

Ha ezeket a számokat ábrázoljuk a számegyenesen, észrevesszük, hogy a vessző után 
akkor és csak akkor nem szerepel az l-es számjegy, ha a szám a [0,1] intervallum 
első, illetve a harmadik harmadában helyezkedik el. Legyen C\ := [O, | ] U [y, 1]. 
Ha a második számjegy sem 1, akkor a számok 

0,00a3,..., 0,02a3..., 0,20a3..., 0,22a3... 

alakúak. Ezek a C2 := [ 0 i é ] u [ § > § ] u [ f > I ] u [ f M ] halmazban vannak. Folytatva 
a gondolatmenetet, az n. lépésben a Cn halmazt szerkesztjük meg, amelyik 2n 

darab -é: hosszúságú szakaszból áll (. ábra). A Cantor-halmaz ezek metszeteként 
jelenik meg: С := Ппе^С«. 

5. ábra. A Cantor-halmaz megközelítése 

Térjünk vissza a sátorfüggvényhez а Л = 3 paraméter esetén. Ha xo € R \ [0,1], 
akkor /п(хo) határértéke -oo. Ugyanez a helyzet, ha x0 € ]y, ugyanis ekkor 
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/ ( x 0 ) > 1. Indukcióval igazolható, hogy ha Ç 1 \ C, akkor létezik olyan p € N, 
amelyre fp(xo) € К \ [0,1], tehát fn(xo) határértéke -oo. 

4.1. TÉTEL. А С (taszító) invariáns halmaz f-re nézve. 

Bizonyítás. Legyen xo € C. Először igazoljuk, hogy С invariáns f-re. Va-
lóban, ha x e C, akkor ternáris ábrázolása 0, aia2..an... alakú, ahol an e {0,2} 
minden n esetén. Két esetet különböztetünk meg. Ha x 6 [O, , akkor ai = 0 
és f ( x ) = 3x = 0, a2-..an..., tehát f ( x ) 6 C. Ha x e [§>l]> akkor oi = 2, 
1 - x = 0,0b2...bn... és f ( x ) = 3(1 - x) = 0, b2...bn..., ahol bn € {0,2} minden n e N 
esetén. Következésképpen f(C) С C. A fordított reláció igazolására tételezzük fel, 
hogy у € С. Ismét két eset lehetséges. Ha y S [О, , akkor x = | szintén eleme 
C-nek és f(x) = y, t ehát у € С. На у e [§, l ] , akkor x = 1 - | eleme C-nek és 
f ( x ) = y, tehát y e / ( C ) ebben az esetben is. Következik, hogy / ( C ) = C. 

А С taszító, mer t ha XQ € К \ C, akkor fn(xo) határértéke —oo, függetlenül 
attól, hogy milyen közel van Xq a C-hez. • 

A fenti bizonyításból látható, hogy ha ük = 0, akkor fk(x) = 0,ak+iak+2---. 
A fentiekhez hasonlóan igazolható, hogy ha gi és 92-vel jelöljük az / leszűkítéseinek 
inverzét, 

X X 
9i(x) = - , g2(x) = 1 - - , 

akkor 
C = 5 l ( C ) U f l 2 ( C ) , 

vagyis С ö n h a s o n l ó halmaz. 
Igazolhatjuk azt is, hogy 

C = n n 6 N / " ( / ) , a h o l / = [0,1]. 

4.2. TÉTEL. / viselkedése А С halmazon kaotikus. 

Bizonyítás. Az (i) igazolásához képezzük az összes olyan véges ternáris törtet , 
amelyeket a 0 és 2 számjegyekkel szerkeszthetünk. Ezek a következők: 

0,0 0,2 
0,00 0,02 0,20 0,22 
0,000 0,002 0,020 0,200 0,022 0,202 0,220 0,222 

Legyen XQ az a ternáris tört, amelyet úgy kapunk, hogy a 0 egészrész után a fenti 
táblázatban szereplő törteket a vesszők elhagyásával egymás után írjuk. Ebben az 
l-es nem szerepel, t ehá t xo € C. Az xo ábrázolásában minden, 0 és 2 számjeggyel 
képezhető véges sorozat szerepel, mégpedig úgy, hogy előtte egy 0 van. Legyen 
x = 0,aia2...afc... tetszőlegesen választott tört C-ből és e > 0. Tekintsünk egy к 
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természetes számot, amelyre 1 < 3fce. Mivel az а ^ . - . а ^ véges sorozat XQ ábrá-
zolásában előfordul, és azt 0 előzi meg, létezik olyan q természetes szám, amelyre 
f ( x o) = 0, aia2...afcbfc+ibfc+2... alakú. Következésképpen, 

|/«(®o) - x\ < 3- fc < e. 

Ezzel igazoltuk, hogy xo pályája C-ben sűrű. Figyelembe véve, hogy minden к 
esetén 0,aia2...afc_i0aia2...a;c_i0aia2...aA :_i... к periódusú pont, következik, hogy 
a periodikus pontok halmaza sűrű C-ben. 

A (iii) tulajdonság igazolásához legyen 6 = Tetszőleges к természetes szám 
és x = 0, aia2...afc... esetén tekintsük az у = 0, aia2...afc6fc+i6fc+2... Cantor-számot, 
ahol bk+i ф cifc+i • Ekkor 

\x-y\<3-k és | / f c ( x ) - / * ( y ) | > 1 . 

• 
Igazolható, hogy minden A > 2 esetén létezik egy Cantor-típusú invariáns 

halmaz, és az / viselkedése ezen szintén kaotikus. Az is bizonyítható, hogy ha 
1 < A < 2, akkor az / a [0,1] intervallumon kaotikusan viselkedik. 

5. Komplex dinamikus rendszerek 

A komplex számsíkon értelmezett dinamikus rendszerek invariáns halmazai 
igen gyakran fraktálhalmazok. Az olyan egyszerű függvény esetén is, mint az 
f(x) = x2 + c, ahol с konstans, bonyolult invariáns halmazokhoz jutunk (lásd 
a 11. Ábrát). 

Tekintsük az n > 2 fokszámú / : С —» С polinomfüggvényeket: 

f ( z ) := a0 + aiz + ... + anzn. 

A komplex dinamikus rendszerek elmélete racionális függvények esetén is hasonló. 
Az / függvényhez tartozó Julia-halmaz a taszító periodikus pontok halmazának 
zárt burkolója. Ezt a halmazt J( / ) - fe l fogjuk jelölni. A Julia-halmaz kiegészítő 
halmazát Fatou-halmaznak nevezzük, és F(/)-fel jelöljük. 

A következőkben a Julia-halmaz tulajdonságait mutat juk be. Megmutatjuk, 
hogy invariáns az / - r e és annak inverzére, és / a J ( / ) - n kaotikusan viselkedik. 

A legegyszerűbb eset, ha f(z) = z2. Ekkor fk(z) = z2 . А к periódusú pontok 

f 2лИ ч 
I z 6 C| г = e î ^ ï ) , 0 < I < 2k - 2 \ 

halmaz elemei. Ezek taszító pontok, mert 

J ( f ) -.= {z € C| |z| = 1} 

= 2. Tehát 
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Ebben az esetben azonnal következik, hogy 

j ( f ) = f ( j ( f ) ) = r 4 a f ) ) . 

Ha |z| < 1, akkor 
0, (fc->oo), 

és ha |z| > 1, akkor fk(z) —» oo, de fk(z) £ J ( f ) , ha |z| = 1. 
Legyen с € С, és értelmezzük az / függvényt a következő képlettel: 

/ ( z ) := z2 + c. 

Ekkor kis |z| esetén fk(z) —> w, ahol w az / 0-hoz közeli fixpontja, és fk(z) —» oo, 
ha z nagy. A Julia-halmaz ebben az esetben is a két vonzási tartomány határpont-
jainak halmaza (6. ábra). 

a) b) 

6. ábra. а) с = - 0 , 1 + 0, Ii b) с = - 0 , 5 + 0,5i 

а) b) 

7. ábra. а) с = - 0 , 1 + 0,05i b) с = - 0 , 2 + 0, 75i 
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8 . á b r a . а) с = 0,25 + 0,52г b ) с = - 0 , 5 + 0, 55г 

b) 

9. ábra . а) с = 0, 66г b) с = —г 

Az / polinomhoz tartozó Julia-halmaz tulajdonságait a következő tételben fog-
lalhatjuk össze. (A bizonyítást a [9] könyvben találjuk.) 

5 .1 . T É T E L . 

a) J ( f ) kompakt halmaz és J(f ) Ф 0. 

b) J = f ( J ( f ) ) = f ~ 1 ( J ( f ) ) , vagyis J invariáns f-re és f~l-re is. 

c) J(fP) = J(f ) minden p 6 N \ {0} esetén. 

d) J ( f ) belseje üres. 

e) J(f ) perfekt halmaz (zárt és nincsenek izolált pontjai), tehát megszámlál-
hatatlan. 
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f ) Ha w vonzó fixpontja f-nek, akkor dA(w) = J ( f ) , ahol 

A(w) '.= [z 6 C| fk(z) w, hak 0 0 } 

és ЭА az A halmaz határát jelöli. Ezt azt jelenti, hogy a Julia-halmaz 
minden egyes vonzó fixpont vonzási tartományának határpontjaival egyezik 
meg. Mi több, a Julia-halmaz minden pontja határpontja minden vonzási 
tartománynak. 

g) Ha z € J ( f ) , akkor J ( f ) az \Jf=lf~k(z) zárt burkolója. 

Az értelmezés szerint a periodikus pontok halmaza sűrű J( / ) -ben. Másrészt 
J ( / ) -ben találunk olyan pontokat, amelyek pályája sűrű J ( / ) -ben . Igazolható, 
hogy a pálya viselkedése érzékeny a kezdeti feltételekre , / ( / ) -n . 

A Julia-halmazokkal kapcsolatban meg kell említenünk a M a n d e l b r o t - h a l -
m a z t (10. ábra). Ha fc(z) := z2 + c, akkor legyen M azon с pontok halmaza, 
amelyekre a hozzátartozó J ( f c ) Julia-halmaz összefüggő': 

M := {с G C| J(fc) összefüggő} . 

z - I 0 
R< 

10. ábra. Mandelbrot-halmaz 

Az értelmezés alapján elég nehéz megjeleníteni a Mandelbrot-halmazt. 
A következő tétel a Mandelbrot-halmaz olyan jellemzését adja, amely segít-

ségével lehetővé válik a számítógépes megjelenítés. 

5.2. T É T E L . 

M = {с G C| A 0 pályája fc-ben korlátos} = {с G C| fk(0) ф> oo, ha к -> ОО} . 
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Vizsgáljuk meg a Julia-halmaz alakját, ha с paraméter a komplex síkban vál-
tozik. 

Egy periodikus pályát vonzónak nevezünk, ha a megfelelő periodikus pont 
vonzó. 

A vonzó periodikus pontok meghatározzák a J( /c ) alakját. Igazolható, hogy, 
ha w / oo vonzó periodikus pont, akkor létezik olyan 2 kritikus pontja / c-nek 
( f é ( z ) = 0), amelyre f k ( z ) a w-t tartalmazó periodikus pályához tar t . Figyelembe 
véve, hogy 0 az egyetlen kritikus pontja /c-nek, legfeljebb egy vonzó periodikus 
pálya lehet. На с / M az 5.2. Tétel értelmében fk(0) —> 00, tehát /c-nek nincsen 
periodikus pályája. 

A Julia-halmazokat tanulmányozhatjuk az szerint, hogy mennyi a periódusa 
azoknak a pontoknak, amelyeknek pályája vonzó. На с / M, akkor nincs vonzó 
pálya, tehát J ( / c ) nem összefüggő. Pontosabban: 

Ha |c| > I (5 + 2\/б), akkor J ( / c ) széteső. 
Ha |c| < j , akkor J ( / c ) egyszerű zárt görbe. Ekkor с a Mandelbrot-halmaz 

belsejében van (7. és 8. ábra). 
Ha jc 4- 11 < akkor létezik kettő periódusú vonzó pálya. Ekkor / 2 ne-

gyedfokú polinom, tehát /c-nek két fixpontja és két 2 periódusú periodikus pontja 
van. Legyenek ezek w\ és w2. Ekkor a w, vonzástartománya egy egyszerű zárt 
Ci görbe által határolt halmaz, г £ {1,2}. A Julia-halmaz tulajdonságai alapján 
C , C J ( / C

2 ) = J ( / C ) . 

Hasonlóan tanulmányozhatjuk J ( f c ) alakját a p periódusú vonzó pályák léte-
zése esetén (9. ábra). 

11. á b r a . Julia-halmazok 

A 11. ábra a Julia-halmazok alakját a c-nek a Mandelbrot halmazban elfoglalt 
helye szerint szemlélteti. 
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D I S C R E T E D Y N A M I C A L S Y S T E M S A N D C H A O S 

J Ó Z S E F K O L U M B A N A N D A N N A S o ó s 

In the last decades there has been an explosion of interest in the dynamical systems. T h i s is 
due to its applications in biology, economics, engineering, physics, etc. and to the availability of 
powerful computers. 

Our goal in this article is to illustrate by some examples (like the exponential function, tent 
function, and complex polynomial functions) the basic notions (as periodic point, invariant set 
and chaos) of discrete dynamical systems theory. 
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