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E cikk célja a diszkrét dinamikus rendszerek elmélete néhany alapfogalmanak
~ koztiik a kdosznak — bemutatasa. A fogalmak ismertetése utan a kaosz harom tu-
lajdonsagat szemléltetjiik a satorfiiggvény és komplex dinamikus rendszerek esetén.

1. Alapfogalmak

Ertelmezziik a diszkrét dinamikus rendszer fogalmat és bemutatjuk alapvets
tulajdonsagait.

Legyen X a valds szdmok vagy a komplex szimok valamely nem iires részhal-
maza a szokisos d eukleidészi tavolsaggal. Az f: X — X folytonos fiiggvényt az
(X, d) metrikus téren értelmezett diszkrét dinamikus rendszernek nevezziik és
(X, f]-fel jeloljiik. A diszkrét dinamikus rendszerben egy zo € X pont palyaja az
az {Tn)neN sorozat, melyet a kdvetkezd rekurziv képlettel értelmeziink:

Zo, T1 = f(xTo), 2 := f{Z1), oy Tn 1= f(Tn-1), ..

vagy méasképpen irva,
In = fn (xo)i

ahol f* az f fiiggvény n. iteraltja.

Az z € X pont az [X, f] diszkrét dinamikus rendszer periodikus pontja, ha
létezik olyan n € N, amelyre f*(z) = z. Az n szimot az z periédusanak nevezziik.
Azonnal belathat6, ha n periédusa z-nek, akkor annak barmely tGbbszérose is
peri6dusa lesz z-nek. A legkisebb periédust az z féperiédusanak nevezziik.

Az x € X pontot az f fixpontjanak nevezziik, ha f(z) = x. Minden fixpont
periodikus, 1 periédussal.

Koézismert, hogy ha az f : [a,b] — [a,b] folytonos fiiggvény, akkor létezik fix-
pontja. Fixpontok létezésére vonatkozik a Banach-féle kontrakcids tétel is.
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100 KOLUMBAN JOZSEF ES SOOS ANNA
Az f fiiggvény kontrakcid, ha létezik olyan « €]0,1[, amelyre
d(f(z), f(y)) < ad(z,y), minden z,y € X esetén.

1.1. TETEL. (Banach-féle fixpont tétel specislis esete) Tételezziik fel, hogy X
zdrt halmaz és f: X — X kontrakcié6. Ekkor f-nek egyetlen fixpontja van. Mi
tobb, minden xo € X pélyaja ehhez a fixponthoz konvergal.

Valéjaban fixpontok létezéséhez elegendd egyetlen palya konvergenci4ja, is.

1.2. TETEL. Legyen z* az [X, f] diszkrét dinamikus rendszerben valamely x,
pont pélydjanak hatédrértéke. Ha f folytonos fiiggvény, akkor =* fixpont.

Bizonyitds. Ertelmezés szerint z, = f(zn—1). Térjiink hatarértékre az egyen-
16ség mindkét oldalan és hasznaljuk fel az f folytonossagat. Ekkor z* = f(z*). O

A periodikus pontok létezésével kapcsolatban megemlitjiik Sharkovsky [14] hi-
res tételét.

1.3. TETEL. A természetes szdmok halmazaban értelmezziik a kovetkez6 ren-
dezési relaciét:

357> ..%2:3=2-5-2.7>...>22.3-22.5-22.7% .

=222 25 1.

Tételezziik fel, hogy [a,b] C R adott intervallum, f : [a,b] — [a,b] folytonos fiigg-
vény és létezik n fSperiédusi pont. Ekkor n > m sziikséges és elégséges ahhoz,
hogy létezzen m periédusi pont is.

Ebbdl a tételbdl kdvetkezik, hogy ha van 3 f6periédusi pont, akkor van akar-
hany peri6édusa is.

A [6] dolgozatban a Sharkovsky tétel tijabb bizonyitasat talaljuk.

Az z* € X periodikus pont, melynek legkisebb periédusa k, vonzd, ha létezik
az r*-nak olyan V kérnyezete, amelyre minden x € V esetén az [X , fk] rendszer-
ben az y-boél indulé palya hatarértéke x*. A legnagyobb ilyen V kdrnyezetet az x
periodikus pont vonzasi tartomanyanak nevezziik. Az z* pontot taszit6é peri-
odikus pontnak nevezziik, ha létezik z*-nek olyan V kérnyezete, hogy barmely
z € V esetén van olyan z = 29, 2_1,Z_2,...,%—p,... sorozat, amelynek z* hatar-
értéke és x_,, = f¥(x_n,—1), n € N. Az z* pont semleges, ha se nem vonzé, se
nem taszito.

Abban az esetben, ha X C R intervallum, és az f folytonosan derivalhato
fiiggvény, a periodikus pontok természetét a derivalt segitségével is vizsgalhatjuk.

1.4. TETEL. Legyen z* egy k € N periédust pont. Ha | (%) (z*)| < 1, akkor
x* vonzd, ha | ( fk)l (z*)| > 1, akkor z* taszito.
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Bizonyitds. A bizonyitast k = 1 esetén végezziik el, de hasonléan végezhets
nagyobb k esetén is. Az f’ folytonossagabol kovetkezik, hogy ] f'(z*)| <1 akkor
és csak akkor igaz, ha létezik € > 0 és 0 < a < 1 szdm, amelyre ] f'{z)| < & minden
z € U =]z* — ¢,2* + €[ esetén. Azt kell bizonyitani, hogy f™(z) — z* minden
z € U esetén. Alkalmazzuk az

™ (@) = (") f'(f(=)) - f'(=)

lancszaballyal kombinalt kozépérték tételt és felhasznaljuk, hogy z* fixpont. Ezért
létezik x és z* kozott olyan £ pont, amelyre

[f* (@) — 2" = 1f*@) = ()] =1 O |z - 2" < o™

A masodik 4llitas igazolasa hasonl6an torténik. O

Ha | ( ) (z*)| = 1, akkor az z*-ot neutralis periodikus pontnak szokas ne-
vezni. Egy neutralis pont lehet vonzd, taszité vagy semleges.

2. Az exponencialis fliggvény dinamikaja
Els6 példaként tekintsiik az exponencilis fiiggvényt. Legyen
f:R - R, f(z) := 4%, ahola > 0.
A palyat az a paraméter fliggvényében fogjuk tanulmanyozni.

2.1. TETEL.

(1) Haa > e+, akkor minden z € R palyéja szigordan névekvo és +oo-hez tart.

(2) Ha a = e+, akkor e az egyetlen fixpontja az [X, f] diszkrét dinamikus rend-
szernek és ez k6zombds. Ha xg < e, akkor a palyidja névekvé és e-hez tart, ha
zg > e, akkor a palydja szintén névekvs és +oo-hez tart.

(3) Hal<a< er, akkor két fixpont létezik, x, és x;, xp < € < xj. Az T} vonzo,
x; pedig taszité fixpont. Ha xo < xp, akkor palydja novekvo és xp-hez tart, ha
zp < xo < zj, akkor pedig csbkkené és szintén xp-hez tart. Ha zo = x; akkor
a palya allandé, ha xo > xj, akkor a pélya szigortian névekvd és +oo-hez tart.

(4) Ha a = 1, akkor minden pont palysja allandé.

(5) Ha e™¢ < a <1, akkor egyetlen x* fixpont van, és minden pont palyija ehhez
tart. A palya paros indexii és pdratlan indexi tagok sorozatira bomlik, az
egyik névekvé, a méasik cs6kkend.

Ha e™® = a, akkor =* = 1, és ez neutralis.

(6) Ha 0 < a < e~¢, akkor egyetlen * fixpont van, és ez taszit6. A pélya péros
indexd és péaratlan indexid tagok sorozatira bomlik, ezek konvergensek, de
hatarétékiik kiilénbéz6. Pontosabban, ha g(z) = a® , akkor g-nek hérom
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fixpontja van: x < z* < y. Ha zy < z, akkor az (z2,) szigorian névekvs
sorozat és hatarértéke x, az (T2,+1) Sorozat szigorian csékkend és hatarértéke
y. Ha xy = x, akkor mindkét részsorozat allandé, xs, = x, Ton,+1 = y. Ha
x < zog < x*, akkor az (x9,) szigorian csokkené sorozat és hatarértéke z, az
(z2n+1) sorozat szigorian névekvé és hatarértékey. Azy > xo > x* ésxzg > y
esetek az el6bbiek duélisai.

Bizonyitds. Igazoltuk, hogy ha egy palya konvergens, akkor a hatarérték fix-
pont, tehat megoldéasa az a® = x egyenletnek. Ez egyenértékialna = '“T’ egyenlet
megoldasaval. Abrazoljuk a ¢(z) := '“T’ fiiggvényt. Ennek maximuma 1, és azt
e-ben éri el. Ha Ina > %, akkor nincs fixpont, ellenkezé esetben van.

4 s
4

3|

RS o 0s 1 15 2 25 3 as 4 2 El 1 2 3 4 s

10, V 4

2. dbra. f(z)=a®, a)l<a<er b)0<a<l
(1) Ha Ina > %, azaz a > e+, akkor az f grafikonja az els6 szogfelezs folott

van, ezért ro € R palyéja szigortan novekvd, és fixpont nincs, tehat a hatarérték
végtelen (1.a abra).
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(2) Ha lna = %, az f grafikonja (e, e) pontban érinti az elss szogfelezét és a
grafikon a szogfelez6 folott helyezkedik el. Ebb6l kovetkezik az 4llitas (1.b abra).

(3) Ha0 < Ina < 1, akkor az y = Ina a ¢ grafikonjat két pontban metszi; a bal-
oldali z koordinatéja legyen xy, a jobboldalié ;. Az f grafikonja az els6 szogfelezot
az (zp,a™), illetve az (z;,a® ) pontban metszi. Ha z < e, akkor 0 < f/(z) < 1, ha
x > e, akkor f'(z) > 1, tehat x, vonzé, z; pedig taszité (2.a abra).

(4) Ha a = 1, akkor f(z) =1, igy = = 1 az egyetlen fixpont.

Ha a < 1, egyetlen z* fixpont van, mert az y = Ina egyenletd egyenes a ¢
grafikonjat egyetlen pontban metszi (2.b abra).

(5) Ha e ¢ < a < 1, akkor

L0y Toy o Loy ML CB T Y, Tas Syl on el e

monoton sorozatok, és kozrefogjak z*-t. Ehhez belatjuk, hogy a g(z) = a®” fiigg-
vény novekvs, g(z) > z, ha < z* és g(z) < z, ha z > z*. Val6ban,

g'(z) =a%a® (Ina)® >0, a lim g(z) =0, lim g(z) =1

a) b)
3. 4bra. g(z) =a®;, a)l>a>e* b)0<a<e™®

Mivel g’ (z) = (Ina)?a®a®" (14a* Ina), a g fiiggvénynek egyetlen inflexiés pont-
ja van minden a > 0 esetén; ettdl balra a fliggvény konvex, jobbra pedig konkav.
Még azt kell belatnunk, hogy ha e™¢ < a < 1, akkor a g(z) = z egyenletnek
egyetlen megoldasa van. Legyen ¢(z) := 2Z. A y/(z) =a™® [~Inalnz + 1] >0
egyenlGtlenség akkor és csak akkor 4ll fenn minden z > 0 esetén, ha a > e™°.
Figyelembe véve, hogy f-nek minden fixpontja fixpontja g-nek is, és g-nek csak
egy van, kovetkezik, hogy x2, és zo,41 hatarértéke z* (3.a abra).

(6) Ha 0 < a < e™¢, akkor f’(z*) < —1. Indukciéval igazolhato, hogy zo = 1
esetén

a=1I <.’1,‘3<...<.’E2n+1<...<:1:2n<...<222<1,

@ 2" = Donun eRia A= T,
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Legyen
z= lim x4 ésy = lim zg,.
n—00 n—oo
Ekkor
z<y, e =zésa” =y.
Innen

zinz =ylny.

Mivel a h(z) = zlnz képlettel értelmezett fliggvénynek % minimumpontja és ez
a fiiggvény szigoruian konvex, az el6bbi egyenletnek legfeljebb két megoldasa van.
Kimutatjuk, hogy = < y (3.b abra). Val6ban, ha x = y, akkor z = z*, mert z*
egyértelmd. De ekkor ¢'(z) = z?(lna)? = (Inz)? > 1, ami ellentmond annak, hogy
az (Tan+1)neN Sorozat szigoruan ndvekvs és z-hez tart. Ebbdl kovetkezik, hogy
r<y. A

Inz Iny Inz*

Y T z*

=Ina

egyenlGség alapjan mindkett kiilonbozik z*-t6l. Mivel z,z*, és y fixpontjai g-nek
és tobb fixpont nincs, tovibba x* taszitd, kovetkezik, hogy =* az x és y kozott
helyezkedik el. Eszrevessziik, hogy z és y kett6 periédust pontja f-nek. Az z és y
vonzb, az =* taszitéd fixpontja g-nek. A tétel allitasa kovetkezik a g fiiggvény fenti
tulajdonsagaibol. a

Az 1o = a palyajat el6szor Euler [8] tanulményozta, ezért ezt a palyat, vagyis
az

sorozatot, Euler toronynak nevezziik. 1728-ban Daniel Bernoulli Christian
Goldbergnek cimzett levelében felveti azon x és y, T # y, szamok meghatarozisa-
nak kérdését, amelyek teljesitik az z¥ = y* feltételt. Egy ilyen szampart Bernoulli
parosnak neveziink. Bernoulli azt irta a levélben, hogy egyetlen eset van, amikor
ezek a szamok egészek (r = 2,y = 4), de végtelen sok racionalis megoldas létezik.
Azt is megjegyezte, hogy vannak irracionalis megoldésok is, anélkiil, hogy ezekrél
részletesen irt volna. Euler megjegyzi, hogy az

1 n 1n+l
=(1+—) ésy=<1+—)
n n

racionalis megoldasai a Bernoulli feladatnak, minden n € N\ {0} esetén.

Flechsenhaar [10] igazolta, hogy més racionalis megoldas nincs. Erre vonatko-
zban az olvasé talal informacidkat a [11] és [4] dolgozatban is. Vegyiik észre, hogy
hal<a<er és az exponencialis fiiggvény ket fixpontja z és y, akkor az x és y
Bernoulli parost képez. Ezek szerint 1 < a < e+ esetén az exponencialis fiiggvény
zp és z; fixpontja Bernoulli parost képez, és ezen kiviil mas val6s Bernoulli paros
nincs.
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A Bernoulli paroshoz hasonléan, 0 < a < e™¢ esetén létezik olyan (z,y) szam-
par, amelyre z # y és x* = y¥Y. Egy ilyen szdmpéart Euler parosnak neveziink.
Az elGbbi tétel bizonyitasabol kovetkezik, hogy ezek g-nek fixpontjai. Koénnyen
igazolhato, hogy (z,y) akkor és csak akkor Euler paros, ha (%, %) Bernoulli paros.

Goldbach Bernoullihoz kiild6tt levelében a Bernoulli parosok egy parametrikus
abrazolasat adta. Ha (x,y) egy ilyen paros és y > x, akkor létezik olyan s > 1,
hogy y = sz. Ekkor z** = (sz)*, vagyis z* = sz, tehat

1 s
T =ss"1, y:ss—l.

Ehhez hasonléan, az Euler parosok parametrikus alakja a kévetkezd:

s 1
r=8l-s, y=sl-s, s> 1.

Ezekr6l a kérdésekrdl tovabbi informaciékat [1], {7] és [12] dolgozatban olvas-
hatunk.

3. A kaosz

Az A C X nem iires halmazt az (X, f] diszkrét dinamikus rendszer invarians
halmazanak nevezziik, ha f(A) = A, ahol f(A) := {y € X|3z € A : f(z) = y}.
Minden fixpontbol képzett halmaz invaridns halmaz. Az A invaridns halmazt a
diszkrét dinamikus rendszer attraktoranak nevezziik, ha létezik olyan A-t tartal-
mazé V nyilt halmaz, hogy barmely = € V esetén f¥(z)-nek az A-t6l mért tavol-
saga, vagyis,

sup {min {d (f*(v),a) |a € A} |ve V}

nullahoz tart, ha k végtelenbe tart. A legnagyobb ilyen V halmazt az A von-
zasi tartomanyanak nevezziik. Példaul, vonzé fixpontbdl képzett halmaz attrak-
tor. A taszito fixpont fogalmanak altalanositdsaként, hasonld médon értelmezziik a
taszit6 invaridns halmaz fogalmat is.

Az [X, f] invarians halmazai gyakran fraktalhalmazok.

Azt mondjuk, hogy f kaotikusan viselkedik az A invaridns halmazon, ha a
kovetkezd harom tulajdonsag teljesiil:

(i) Létezik olyan zo € A, amelynek palyadja A-ban sird, vagyis A minden

elemét tetszleges pontossaggal megkozeliti.

(ii) Az A-beli periodikus pontok halmaza A-ban sird .

(iii) A palya viselkedése érzékeny a kezdeti feltételekre, vagyis létezik olyan
§ > 0, hogy adott z € A esetén létezik A-ban z-hez tetsz&legesen kozeli
y pont és k € N gy, hogy d (f*(z), f*(y)) > 6. Mas széval, ha a pontok
kozelednek, a palydk nem feltétleniil kézelednek minden hataron tal.
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A kéosz fogalmanak értelmezése Devaney [5] mivében szerepel elgszor. Utolag
Banks és tarsai [2]-ben kimutattak, hogy a (iii) tulajdonsag az els6 ketts kovetkez-
meénye.

Szamitogép segitségével a diszkrét dinamikus rendszerek attraktorait kénnyen
megjelenithetjiik. Ha adott = kezd6pontra abréazoljuk az f*(x) iteraltakat, példaul
k > 100 esetén, a kapott abra megkozeliti az attraktort, legaldbbis szemmel a
kapott ponthalmazt nem tudjuk megkiilonboztetni az attraktortol.

4. A satorfiiggvény dinamikaja
Masodik példank legyen a satorfiiggvény. Ha A > 0, legyen f) : R — R,

Az, haz <

hvlm) =
A—Az, haz>

= 8=

A palyéak és az invarians halmaz tanulméanyozasat a A paraméter fiiggvényében
végezzik.

a; e s b; e s C)

4. abra. A sator fiiggvény a) A=3 b)A=1 c)A=3

1) Tekintsiik el6szor azt az esetet, amikor A < 1. A sator teteje az els6 szogfe-
lez6 alatt helyezkedik el. Az xo-bél az ; -et tgy szdrmaztatjuk, hogy az (zo, f(zo))
ponton 4t huzott vizszintes egyenessel metsziik az els6 szogfelezét és a metszés-
pontot vetitjiik a vizszintes tengelyre. Ha a szerkesztést az (z1, f(z1)) pontbol
megismételjiik, az zo-t kapjuk. Hasonléan szerkesztjiikk meg a kovetkezSé ponto-
kat. Ebben az esetben minden z val6s szam palyaja konvergens és hatarértéke 0.
Az A = {0} invarians halmaz attraktor, mert az R minden elemét magédhoz vonzza.
(4.c 4bra)

2) Ha A = 1, akkor minden z < 1 fixpontja f-nek. Ezért A = ]—oo0, 3] vonzo
invarians halmaz (4.b abra).

3) Ha 1 < X < 2, akkor a sator teteje az els6 szogfelezs felett és az y = 1
egyenes alatt helyezkedik el. A grafikont az els6 szogfelezé két pontban metszi,
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tehat két fixpont van: 0 és ;%7. Mindkét fixpont taszit6. Konnyen beldthat6, hogy

A = [0,1] taszité invarians halmaz. Mi tobb, ha z¢ € R\ A, akkor

lim f*(zo) = —c0 (4.a abra).
k—o0

4) Mindségileg 4j helyzet all elg, ha A > 2. Ekkor a sator teteje az y = 1
egyenes felett helyezkedik el, igy a [0, 1] intervallum nem invarins f-re nézve.

Az invarians halmaz tanulmanyozéasahoz sziikségiink van a Cantor-halmaz meg-
hatarozasara.

A [0,1] intervallumbél tekintsiik azokat a valés szdmokat, amelyek a harmas
szamrendszerben az 1-es szamjegy felhasznaldsa nélkiil Abrazolhatéak. Ezek alkot-
jadk a Cantor-halmazt:

C :={0,0;03...a;... | a; € {0,2}}.

Ha ezeket a szamokat dbrazoljuk a szamegyenesen, észrevessziik, hogy a vesszs utan
akkor és csak akkor nem szerepel az 1-es szimjegy, ha a szam a [0, 1] intervallum
els, illetve a harmadik harmadaban helyezkedik el. Legyen C; := [0,1] U [§,1].
Ha a misodik szdmjegy sem 1, akkor a szimok

0,00a3, ..., 0,02a3..., 0,20as..., 0,22as...

alakiiak. Ezek a Cp := [0, §]U[%, 3]U[§, 2] U8, 1] halmazban vannak. Folytatva
a gondolatmenetet, az n. lépésben a C,, halmazt szerkesztjiik meg, amelyik 27

darab 3i hossziisagu szakaszbdl all (. 4bra). A Cantor-halmaz ezek metszeteként

jelenik meg: C := NpenCh.

0 T H '
—_—

————— I

4

—— —— —— e i e — —
- - - - LK _J - - L2 L - .
LR ] - ;" i - - e - - -
*

- - L d . - e -~ - - Ll d -

5. abra. A Cantor-halmaz megkdozelitése

Térjiink vissza a satorfiiggvényhez a A = 3 paraméter esetén. Ha zo € R\ [0, 1],
akkor f™(zg) hatarértéke —oco. Ugyanez a helyzet, ha o € ]-:13-, %[, ugyanis ekkor
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f(zo) > 1. Indukciéval igazolhaté, hogy ha z¢ € R\ C, akkor létezik olyan p € N,
amelyre fP(zg) € R\ [0,1], tehat f™(zo) hatarértéke —oo.

4.1. TETEL. A C (taszit6) invaridns halmaz f-re nézve.

Bizonyitds. Legyen zq € C. El6szor igazoljuk, hogy C invarians f-re. Va-
l6ban, ha x € C, akkor ternaris abrazolasa 0,a1a2...a,... alakd, ahol a, € {0,2}
minden n esetén. Két esetet killiinboztetlink meg. Ha z € [O, %], akkor a; = 0
és f(z) = 3z = 0,a2..an..., tehat f(z) € C. Ha z € [%,1], akkor a3 = 2,
1—z =0,0b..b,... 6s f(z) =3(1—z) = 0,bs...bp..., ahol b, € {0,2} mindenn € N
esetén. Kovetkezésképpen f(C) C C. A forditott relacié igazolasara tételezziik fel,
hogy y € C. Ismét két eset lehetséges. Ha y € [0, }], akkor z = ¥ szintén eleme
C-nek és f(z) =y, tehat y € C. Ha y € [,1], akkor z = 1 — ¥ eleme C-nek és
f(z) =y, tehat y € f(C) ebben az esetben is. Kovetkezik, hogy f(C) = C.

A C taszit6, mert ha x5 € R\ C, akkor f™(xz¢) hatarértéke —oo, fiiggetleniil
attél, hogy milyen kozel van zy a C-hez. 0

A fenti bizonyitasboél lathaté, hogy ha ax = 0, akkor f*(z) = 0,ar41ak42....
A fentiekhez hasonl6éan igazolhatd, hogy ha g; és go-vel jeldljiik az f lesziikitéseinek
inverzét,

gl(x) =73 g2(m) =1=-7
akkor

vagyis C dnhasonlé halmaz.
Igazolhatjuk azt is, hogy

C = Npenf™(I), ahol I =10,1].
4.2. TETEL. f viselkedése a C' halmazon kaotikus.

Bizonyitds. Az (i) igazolasahoz képezziik az 6sszes olyan véges ternaris tortet,
amelyeket a 0 és 2 szamjegyekkel szerkeszthetiink. Ezek a kovetkez6k:

0,0 0,2
0,00 0,02 0,20 0,22
0,000 0,002 0,020 0,200 0,022 0,202 0,220 0,222

Legyen zo az a ternaris tort, amelyet ugy kapunk, hogy a 0 egészrész utan a fenti
tablazatban szerepld torteket a vessz6k elhagyasaval egymas utan irjuk. Ebben az
1-es nem szerepel, tehat zo € C. Az xo dbrazolasdban minden, 0 és 2 szamjeggyel
képezhet6 véges sorozat szerepel, mégpedig ugy, hogy eldtte egy 0 van. Legyen
z = 0,a1az...a%... tetszélegesen valasztott tort C-bél és € > 0. Tekintsiink egy &
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természetes szamot, amelyre 1 < 3%¢. Mivel az ajas...ax véges sorozat xy abra-
zolasaban eléfordul, és azt 0 el6zi meg, létezik olyan ¢ természetes szam, amelyre
fUzo) = 0,a102...akbg+1br42... alaka. Kdvetkezésképpen,

1f9(zo) —z) <37 % < e

Ezzel igazoltuk, hogy zo palyadja C-ben slird. Figyelembe véve, hogy minden k
esetén 0, a1a2...ax—10a1a2...ak_10a1a2...ax_1... kK periddust pont, kdvetkezik, hogy
a periodikus pontok halmaza stri C-ben.

A (iii) tulajdonsag igazolasahoz legyen § = % TetszGleges k természetes szam
ésr = 0,a1as...ax... esetén tekintsiikk az y = 0, a1as...axbgr1bk+2... Cantor-szamot,
ahol by41 # ax+1. Ekkor

|z —yl <37% & |F*(z) - fFAy)l 2

L -

O

Igazolhat6, hogy minden A > 2 esetén létezik egy Cantor-tipusii invarians
halmaz, és az f viselkedése ezen szintén kaotikus. Az is bizonyithato, hogy ha
1 < X €2, akkor az f a [0, 1] intervallumon kaotikusan viselkedik.

5. Komplex dinamikus rendszerek

A komplex szamsikon értelmezett dinamikus rendszerek invarians halmazai
igen gyakran fraktalhalmazok. Az olyan egyszerid fliggvény esetén is, mint az
f(z) = 22 + ¢, ahol ¢ konstans, bonyolult invaridns halmazokhoz jutunk (lasd
a 11. Abrat).

Tekintsiik az n > 2 fokszami f : C — C polinomfiiggvényeket:

f(z):=ap+ a1z + ... + anz™

A komplex dinamikus rendszerek elmélete racionalis fiiggvények esetén is hasonl6.
Az f fliggvényhez tartoz6 Julia-halmaz a taszité periodikus pontok halmazanak
zart burkoloja. Ezt a halmazt J(f)-fel fogjuk jelolni. A Julia-halmaz kiegészitd
halmazat Fatou-halmaznak nevezziik, és F(f)-fel jeloljiik.

A kovetkezékben a Julia-halmaz tulajdonsigait mutatjuk be. Megmutatjuk,
hogy invaridns az f-re és annak inverzére, és f a J(f)-n kaotikusan viselkedik.

A legegyszertbb eset, ha f(z) = z2. Ekkor f¥(z) = z2.. A k periédust pontok

2mil
{z€C|z=e(2 ‘1),0§l<2k—2}

halmaz elemei. Ezek taszit6 pontok, mert |( fk)’ (z)l = 2. Tehat

J(f) = {z € ClJz| = 1}.
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Ebben az esetben azonnal kovetkezik, hogy

Ha |z| < 1, akkor
F*(z) = 0, (k= o),

és ha |z| > 1, akkor f*(z) — oo, de f*(z) € J(f), ha |z| = 1.
Legyen c € C, és értelmezziik az f fliggvényt a kovetkezd képlettel:

f(z2):=22+c

Ekkor kis |z| esetén f*(z) — w, ahol w az f 0-hoz kozeli fixpontja, és f*(z) — oo,
ha z nagy. A Julia-halmaz ebben az esetben is a két vonzasi tartomény hatéarpont-
jainak halmaza (6. abra).

a) b)

6. abra. a) c= —-0,1+0,12 b) ¢=-0,5+0,57

a) b)

7. abra. a) ¢c=-0,1+0,05 b) ¢=-0,2+0,75¢
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8. abra. a) ¢ =0,25+0,52i b) c=-0,5+ 0,55

-
e L
g%ﬁ""'x
kB *Q 4
3,"\,‘, -
’ﬁ“:‘ -t

.,.“& $aa .
w k

Wie «r‘é;

Ty a

Ta
A WL

-

a) b)

9. dbra. a) ¢c=0,66i b) c=—i

Az f polinomhoz tartozo6 Julia-halmaz tulajdonsagait a kovetkezé tételben fog-
lalhatjuk 6ssze. (A bizonyitast a [9] konyvben talaljuk.)

5.1. TETEL.

a) J(f) kompakt halmaz és J(f) # 0.

b) J=f(J(f)) = fYJ(f)), vagyis J invaridns f-re és f~1-re is.
c) J(fP) = J(f) minden p € N\ {0} esetén.

d) J(f) belseje iires.

e) J(f) perfekt halmaz (zart és nincsenek izolalt pontjai), tehat megszamlal-
hatatlan.
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f) Ha w vonz6 fixpontja f-nek, akkor 0A(w) = J(f), ahol
A(w) := {z € C| f¥(2) - w, hak — oo}

és OA az A halmaz hatarat jeloli. Ezt azt jelenti, hogy a Julia-halmaz
minden egyes vonzé fixpont vonzasi tartoméanyanak hatarpontjaival egyezik
meg. Mi tobb, a Julia-halmaz minden pontja hatdrpontja minden vonzasi
tartomanynak.

g) Ha z € J(f), akkor J(f) az UL, f~*(z) zart burkoléja.

Az értelmezés szerint a periodikus pontok halmaza strd J(f)-ben. Masrészt
J(f)-ben taldlunk olyan pontokat, amelyek palyaja strd J(f)-ben. Igazolhato,
hogy a palya viselkedése érzékeny a kezdeti feltételekre J(f)-n.

A Julia-halmazokkal kapcsolatban meg kell emliteniink a Mandelbrot-hal-
mazt (10. dbra). Ha f.(z) := 2% + ¢, akkor legyen M azon c pontok halmaza,
amelyekre a hozzatartozo J(f.) Julia-halmaz 6sszefiiggs:

M := {c € C| J(f.) Osszefiiggs} .

-2 1 o
Re

10. abra. Mandelbrot-halmaz

Az értelmezés alapjan elég nehéz megjeleniteni a Mandelbrot-halmazt.
A kovetkezs tétel a Mandelbrot-halmaz olyan jellemzését adja, amely segit-
ségével lehetévé valik a szamitégépes megjelenités.

5.2. TETEL.
M = {c € C| a 0 palyaja f.-ben korlatos} = {c € C| f¥(0) > 00, ha k — oo} .
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Vizsgaljuk meg a Julia-halmaz alakjat, ha ¢ paraméter a komplex sikban val-
tozik.

Egy periodikus péalyat vonzdénak neveziink, ha a megfelel6 periodikus pont
vonzo.

A vonzé periodikus pontok meghatarozzak a J(f.) alakjat. Igazolhat6, hogy,
ha w # oo vonz6 periodikus pont, akkor létezik olyan z kritikus pontja f.-nek
(f!(z) = 0), amelyre f*(z) a w-t tartalmazé periodikus palyahoz tart. Figyelembe
véve, hogy 0 az egyetlen kritikus pontja f.-nek, legfeljebb egy vonzé periodikus
palya lehet. Ha ¢ ¢ M az 5.2. Tétel értelmében f¥(0) — oo, tehat f.-nek nincsen
periodikus palyaja.

A Julia-halmazokat tanulmanyozhatjuk az szerint, hogy mennyi a periédusa
azoknak a pontoknak, amelyeknek palyaja vonz6. Ha ¢ ¢ M, akkor nincs vonzo
palya, tehat J ( fc) nem Gsszefiiggs. Pontosabban:

Ha |c| > 1 (5 +2V/6), akkor J(f.) szétes6.

Ha |c| < i, akkor J(f.) egyszeri zart gorbe. Ekkor ¢ a Mandelbrot-halmaz
belsejében van (7. és 8. abra).

Ha |c+ 1] < %, akkor létezik kettS periédust vonzé palya. Ekkor f2 ne-
gyedfoku polinom, tehat f.-nek két fixpontja és két 2 periédust periodikus pontja
van. Legyenek ezek w; és wy. Ekkor a w; vonzastartomanya egy egyszeri zart
C; gorbe altal hatarolt halmaz, ¢ € {1,2}. A Julia-halmaz tulajdonsagai alapjan
C:.c J(fcz) 7 J(fc)

Hasonl6an tanulmanyozhatjuk J(f.) alakjat a p periédust vonzé palyak léte-
zése esetén (9. bra).

At *ﬁf%*

11. abra. Julia-halmazok

A 11. 4bra a Julia-halmazok alakjat a c-nek a Mandelbrot halmazban elfoglalt
helye szerint szemlélteti.
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DISCRETE DYNAMICAL SYSTEMS AND CHAOS

JO6zser KOLUMBAN AND ANNA S00s

In the last decades there has been an explosion of interest in the dynamical systems. This is
due to its applications in biology, economics, engineering, physics, etc. and to the availability of
powerful computers.

Our goal in this article is to illustrate by some examples (like the exponential function, tent
function, and complex polynomial functions) the basic notions {as periodic point, invariant set
and chaos) of discrete dynamical systems theory.
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