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ÚJ KERESÉSI IRÁNYRA ÉPÜLŐ BELSŐPONTOS ALGORITMUS
LINEÁRIS OPTIMALIZÁLÁSRA

DARVAY ZSOLT, RIGÓ PETRA RENÁTA, SZÉNÁSI ESZTER

Egy új keresési irányra alapozott teljes Newton-lépéses belsőpontos al-
goritmust vezetünk be lineáris optimalizálási feladatok megoldására. Az
eljárás során algebrailag ekvivalens átalaḱıtás [2] seǵıtségével változtatjuk
meg a centrális utat megadó egyenletrendszert. Megmutatjuk, hogy a mód-
szer polinomiális komplexitású. Ez az első lineáris optimalizálásra vonatkozó
belsőpontos algoritmus, amely ezzel a speciális keresési iránnyal dolgozik.

1. Bevezetés

Az első belsőpontos algoritmust Karmarkar [4] vezette be 1984-ben lineáris
optimalizálási feladatok megoldására. Roos, Terlaky, Vial [9], Wright [12] és Ye
[13] összefoglalták a belsőpontos algoritmusok elméletére vonatkozó legfontosabb
eredményeket.

A keresési irányok megválasztása fontos szerepet játszik ezeknek az algorit-
musoknak az esetében. 2002-ben Darvay [2] bevezette a centrális út algebrai-
lag ekvivalens átalaḱıtásának módszerét keresési irányok meghatározására. Egy
folytonosan differenciálható és invertálható függvényt alkalmazott a centrális utat
meghatározó rendszer centralizálási egyenletére. A szakirodalomban eddig az iden-
tikus függvényt, a gyökfüggvényt és a φ(t) = t−

√
t függvényt használták [2, 3, 9].

Később, Kheirfam és Haghighi [5] a φ(t) =
√
t

2(1+
√
t)

függvényre épülő irányt hasz-

nálták lineáris komplementaritási feladatok megoldására vonatkozó belsőpontos
algoritmus bevezetésére. Ebben a cikkben egy új belsőpontos algoritmust muta-
tunk be lineáris optimalizálási feladatok megoldására, amely a Kheirfam és Hag-
highi által bevezetett irányra épül. Igazoljuk a módszer polinomialitását is. Az
algoritmusra vonatkozó elemzés a [8] tanulmányban van részletesen bemutatva.

2. A lineáris optimalizálási feladat

A primál feladat a következő:

min{cTx | Ax = b, x ≥ 0}, (1)
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ahol A ∈ Rm×n, rang(A) = m, b ∈ Rm és c ∈ Rn. A duál feladatot az alábbi
módon adhatjuk meg:

max{bTy | ATy + s = c, s ≥ 0}. (2)

Az általánosság megsértése nélkül feltételezhetjük, hogy létezik egy olyan (x0,y0, s0)
hármas, amelyre teljesül a belső pont feltétel:

Ax0 = b, x0 > 0,

ATy0 + s0 = c, s0 > 0. (3)

Az önduális beágyazás technikáját [11, 14] felhasználva a csupa egyesekből álló
n-dimenziós e egységvektor tekinthető kezdeti pontnak. Ennek a technikának a
lényege, hogy az eredeti feladatot beágyazza egy nagyobb dimenziójú, ferdén szim-
metrikus, önduális lineáris programozási feladatba oly módon, hogy az új önduális
lineáris programozási feladatnak a csupa egyes vektor már szigorú belső pontja. A
centrális utat meghatározó rendszer a következőképpen adható meg:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (4)

xs = µe,

ahol µ > 0. Feltételezve, hogy a (3) teljesül, fix µ > 0 esetén a (4) rendszernek
egyértelmű megoldása van, amelyet µ-centrumnak h́ıvunk (Sonnevend [10]). Ha µ
tart nullához, a centrális út a feladat optimális megoldásához konvergál.

3. Algebrailag ekvivalens átalaḱıtás módszere

Ebben a fejezetben bemutatjuk az algebrailag ekvivalens átalaḱıtás módszerét
[2]. Tekintsük a differenciálható és invertálható φ : (ξ,∞) → R függvényt, ahol
ξ > 0. A (ξ,∞) intervallumra azért van szükség, mivel egyes φ függvények ese-
tében az értelmezési tartomány nem a (0,∞) intervallum. Továbbá, használjuk
az f(x) = [f(x1), . . . , f(xn)]

T jelölést. Ekkor a (4) rendszer az alábbi ekvivalens
alakra transzformálható:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (5)

φ

(
xs

µ

)
= φ(e).
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Erre a rendszerre alkalmazzuk a Newton módszert. Feltételezve, hogy (3) teljesül,
néhány átalaḱıtással az alábbi rendszert kapjuk:

A∆x = 0,

AT∆y +∆s = 0, (6)

s

µ
φ′
(
xs

µ

)
∆x+

x

µ
φ′
(
xs

µ

)
∆s = φ(e)− φ

(
xs

µ

)
.

A (6) rendszer utolsó egyenletét az alábbi alakra hozhatjuk:

s∆x+ x∆s = µ ·
φ(e)− φ

(
xs
µ

)
φ′
(

xs
µ

) . (7)

Bevezetjük az alábbi jelöléseket, amelyeket a skálázásnál fogunk használni:

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (8)

Tekintsük továbbá az A =
1

µ
A · diag

(x
v

)
jelölést. Ekkor az alábbi skálázott

rendszert kapjuk:

Adx = 0,

A
T
∆y + ds = 0, (9)

dx + ds = pv,

ahol

pv =
φ(e)− φ(v2)

vφ′(v2)
. (10)

Látható, hogy különböző φ függvények alkalmazása esetén a pv vektornak
különböző értékeit kapjuk. Ezek új keresési irányra épülő belsőpontos algoritmu-

sokhoz vezetnek. Ebben a cikkben a φ(t) =
√
t

2(1+
√
t)

függvényt használjuk, amit

először Kheirfam és Haghighi [5] vezettek be lineáris komplementaritási feladatok
esetében. Ezáltal megadjuk az első belsőpontos algoritmust lineáris optimalizálás-
ra, amely erre az irányra épül.

Léteznek más módszerek is a keresési irányok meghatározására. 2002-ben Peng,
Roos és Terlaky [7] bevezették az önreguláris barrier függvények osztályát a kere-
sési irányok meghatározására belsőpontos algoritmusok esetében. Bai, Ghami és
Roos [1] elemezték a keresési irányok meghatározására vonatkozó magfüggvényes
módszert belsőpontos algoritmusok esetében.
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3.1. Defińıció. (Bai, Ghami és Roos [1]) Egy ψ : (0,∞) → [0,∞) függvényt
magfüggvénynek nevezünk, ha kétszer folytonosan differenciálható, és ha teljesül-
nek az alábbi feltételek:

1. ψ(1) = ψ′(1) = 0;

2. ψ′′(t) > 0, minden t > 0;

3. limt↓0 ψ(t) = limt→∞ ψ(t) = ∞.

Ebben az esetben a keresési irányokat meghatározó skálázott rendszer a következő:

Ādx = 0,

ĀT∆y + ds = 0, (11)

dx + ds = −∇Ψ(v),

ahol Ψ : Rn
+ → R, Ψ(v) =

∑n
i=1 ψ(vi) a magfüggvényhez tartozó barrier függvény.

A (9) és (11) rendszerekből látszik az algebrailag ekvivalens átalaḱıtás technikája
és a magfüggvényekre épülő módszerek közötti kapcsolat. Különböző φ függvé-
nyekhez különböző magfüggvényeket lehet hozzárendelni a

ψ(t) =

∫ t

1

φ(τ̄2)− φ(1)

τ̄φ′(τ̄2)
dτ̄ , (12)

összefüggés alapján. Fontos megemĺıteni, hogy léteznek olyan φ függvények (pl.
φ(t) = t−

√
t), amelyekhez nem tartozik hagyományos magfüggvény. A következő

fejezetben bemutatjuk az algoritmust.

4. Új keresési irányra épülő belsőpontos algoritmust lineáris
optimalizálásra

Tekintsük a φ : (0,∞) → R függvényt:

φ(t) =

√
t

2(1 +
√
t)
. (13)

Ezt a függvényt alkalmazzuk az (5) rendszerre. Ebben az esetben a pv vektor az
alábbi módon ı́rható:

pv = e− v2. (14)

A (9) skálázott rendszer a következő alakra hozható:

Adx = 0,

A
T
∆y + ds = 0, (15)

dx + ds = e− v2.
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A centrális úttól való távolság mérésére az alábbi centralitási mértéket használjuk:

δ(x, s;µ) = ∥pv∥ = ∥e− v2∥. (16)

Fontos megjegyezni, hogy ezt a centralitási mértéket már korábban is használta
a szakirodalom [9], de azokban az esetekben a primál-duál logaritmikus barrier
módszert használták a keresési irányok megválasztására, és nem az algebrailag
ekvivalens átalaḱıtás módszerét.

Az algoritmust az 1. ábra szemlélteti.

Primál-duál belsőpontos algoritmus lineáris optimalizálásra

Legyen ϵ > 0 a pontossági paraméter, 0 < θ < 1 a redukciós paraméter és τ > 0 a
centralitási paraméter. Feltételezzük, hogy az (x0,y0, s0) hármasra teljesül a belső

pont feltétel és µ0 =
(x0)

T
s0

n . Továbbá, feltételezzük, hogy δ(x0, s0;µ0) < τ .

begin
x := x0; y := y0; s := s0; µ := µ0;
while xT s > ϵ do begin

Kiszámı́tjuk a (∆x,∆y,∆s) irányokat a (9)-ből alkalmazva a (14)-t;
x := x+∆x;
y := y +∆y;
s := s+∆s;
µ := (1− θ)µ;

end
end.

1. ábra. Új keresési irányra épülő belsőpontos algoritmus lineáris optimalizálásra

Az alábbi tételben igazoljuk, hogy az algoritmus O
(√
n log n

ε

)
bonyolultságú.

4.1. Tétel. (5.7. Tétel [8]) Feltételezzük, hogy x0 = s0 = e. Ha θ = 1
5
√
n
és

τ = 2
3 , akkor az 1. ábrán megadott algoritmus legfeljebb⌈

5
√
n log

n

ε

⌉
iterációban álĺıt elő optimális megoldást. A kapott vektorokra teljesül az xT s < ε
összefüggés.

5. Numerikus eredmények

A bevezetett belsőpontos algoritmust implementáltuk Matlab programozási
nyelvben, hogy illusztráljuk az algoritmus működését. A kezdeti pontok meg-
határozására a Mehrotra heurisztikát használtuk [6]. A keresési irányokat a (6)

Alkalmazott Matematikai Lapok (2020)
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rendszerből határoztuk meg a φ(t) =
√
t

2(1+
√
t)

függvényt felhasználva. Minden ite-

rációban ellenőriztük, hogy az adott pontoknak a centrális úttól való távolsága
kisebb legyen a τ centralitási paraméternél, amelynek alapértelmezett értéke a mi
esetünkben τ = 1

2 volt.
1. Feladat

Oldjuk meg az alábbi lineáris optimalizálási feladatot:

min −3x1 − 2x2,

x1 + 2x2 ≤ 20,

2x1 + x2 ≤ 15,

x1, x2 ≥ 0.

Előbb át́ırjuk a feladatot (1) alakra. Ekkor

A =

(
1 2 1 0

2 1 0 1

)
, b =

(
20

15

)
, c =

(
−3

−2

)
.

Ebben az esetben az elméleti megoldás x1 = 10
3 , x2 = 25

3 és az optimum − 80
3 . Az

implementált algoritmus az alábbi eredményt adta: x1 = 3.3333, x2 = 8.3333 és a
célfüggvény értéke −26.667.

2. Feladat

Tekintsük az alábbi lineáris programozási feladatot:

min
3

10
x1 +

3

10
x2 +

2

5
x3 +

2

5
x4,

x1 + x2 ≥ 200,

x3 + x4 ≥ 200,

x1 + x2 + x3 + x4 ≤ 800,

1

120
x1 +

1

100
x2 ≤ 8,

1

75
x3 +

1

50
x4 ≤ 8,

x1, x2, x3, x4 ≥ 0.

Ekkor

A =


1 1 0 0 −1 0 0 0 0

0 0 1 1 0 −1 0 0 0

1 1 1 1 0 0 1 0 0
1

120
1

100 0 0 0 0 0 1 0

0 0 1
75

1
50 0 0 0 0 1

 , b =


200

200

800

8

8

 , c =


3
10
3
10
2
5
2
5

 .
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Az optimális megoldás x1 = 0, x2 = 200, x3 = 0, x4 = 200 és a célfüggvény
értéke 140. Az implementált algoritmus az alábbi eredményeket szolgáltatta:
x1 = 0.00094021, x2 = 200.00, x3 = 0.00023505, x4 = 200.00, a célfüggvény
értéke pedig 140.00.

6. Összefoglalás

Egy új keresési irányra épülő belsőpontos algoritmust vezettünk be lineáris
optimalizálási feladatok megoldására. Az algebrailag ekvivalens átalaḱıtás techni-
kájában egy speciális függvényt használtunk a keresési irányok megválasztására.
A módszer polinomialitására vonatkozó tételt is bemutattuk. Numerikus ered-
ményekkel szemléltettük az algoritmus működését. További kutatási tervek közé
tartozik egy olyan hosszú lépéses belsőpontos algoritmus megadása, amely ezt az
irányt használja a keresési irányok meghatározására.
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editor, System Modelling and Optimization: Proceedings of the 12th IFIP-Conference held
in Budapest Hungary, September 1985 Lecture Notes in Control and Information Sciences,
84, Springer Verlag, Berlin, West-Germany. pp. 866-876 (1986).

[11] T. Terlaky: An easy way to teach interior-point methods, Eur. J. Oper. Res., Vol. 130
No. 1 pp. 1-19, (2001). DOI: 10.1016/S0377-2217(00)00094-1

[12] S.J. Wright: Primal-Dual Interior-Point Methods, SIAM, Philadelphia, USA (1997).

[13] Y. Ye: Interior Point Algorithms, Theory and Analysis, John Wiley & Sons, Chichester,
UK (1997).

[14] Y. Ye, M. J. Todd and S. Mizuno: An O(
√
nL)-iteration homogeneous and self-dual

linear programming algorithm, Math. Oper. Res., Vol. 19 No. 1, pp. 53-67, (1994). DOI:
10.1287/moor.19.1.53

Darvay Zsolt egyetemi docens a kolozsvári
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a belsőpontos algoritmusok keresési irányainak
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cikkben bevezetett algoritmus bonyolultságára
vonatkozó elemzést vezette le. Már az egyetemi

tanulmányainak utolsó évében részmunkaidőben elkezdett dolgozni a SAS Insti-
tute Kft-nél analitikai konzulensként, és ezt azóta teljes állásban folytatta. Mun-
kája során rendszerkialaḱıtással, vizualizációval, előrejelzéssel és optimalizációval
foglalkozik.
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INTERIOR-POINT ALGORITHM FOR LINEAR OPTIMIZATION BASED ON A NEW
SEARCH DIRECTION

Zsolt Darvay, Petra Renáta Rigó, Eszter Szénási

We propose a new full-Newton step interior-point algorithm for linear optimization. We
use the algebraic equivalent transformation technique [2] in order to determine the new search
directions. We show that the method has polynomial complexity. Up to our best knowledge this
is the first interior-point algorithm solving linear optimization problems, which uses this special
search direction.
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