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Abstract

Nonlinear time series models with exogenous regressors are essential in econometrics, queu-
ing theory, and machine learning, though their statistical analysis remains incomplete. Key
results, such as the law of large numbers and the functional central limit theorem, are known for
weakly dependent variables. We demonstrate the transfer of mixing properties from the exoge-
nous regressor to the response via coupling arguments. Additionally, we study Markov chains
in random environments with drift and minorization conditions, even under non-stationary
environments with favorable mixing properties, and apply this framework to single-server
queuing models.

Introduction

It is very common in natural and social sciences that for describing the time evolution of certain
quantity of interests, researchers build models incorporating input variables not influenced by
other variables in the system and on which the output variable depends. Such explicative variables,
especially in econometrics literature, are called exogeneous covariates. Let X , Y, and Z be complete
and separable metric spaces. The X -valued process (Xt)t∈N represents the time series of interest
and the Y-valued process (Yt)t∈Z denotes the exogeneous covariate. We postulate that (Xt)t∈N
satisfies the recursion

Xt+1 = f(Xt, Yt, εt+1), (1)

where X0 is a possibly random initial state, f : X × Y × Z → X is a measurable function, and
εt ∈ Z, t ∈ N represents the noise entering to the system.

The exploration and analysis of non-linear autoregressive processes of this kind constitute a
recent and actively developing area of research. In particular, there is a pronounced surge of interest
within the fields of applied statistics and econometrics regarding the investigation of standard time
series models that incorporate exogeneous regressors. Notable examples include a novel class of
Poisson autoregressive models with exogeneous covariates (PARX) introduced by Agosto et al. [1]
for modeling corporate defaults. Additionally, the recent research by Gorgi and Koopman [23] has
provided valuable insights on observation-driven models involving beta autoregressive processes
with exogeneous factors. Furthermore, the theory of non-linear autoregressive processes allows
researchers for analyzing large-scale stochastic optimization algorithms, which play a pivotal role
in machine learning applications, see [7, 35].

The statistical analysis of general non-linear time series models with exogenous covariates ne-
cessitates the law of large numbers (LLN), central limit theorem (CLT), and others. However, this
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framework is presently unavailable. Researchers have investigated these models under additional
assumptions that facilitate their analysis. The ergodicity of iterations given by (1) has been exten-
sively studied under the restrictive assumption that the data (Yt)t∈Z and the noise (εt)t∈N are both
i.i.d. and also independent of each other (See, [14], [30], and [48]). In this case, the process (Xt)t∈N
is a Markov chain, and this setting now can be considered to be textbook material. Moving beyond
this simplifying yet unrealistic assumption, Debaly and Truquet established general results for get-
ting stationarity, ergodicity and stochastic dependence properties for general nonlinear dynamics
defined in terms of iterations of random maps [13]. Additionally, there are earlier contributions
that consider more general schemes and investigate them without assuming independence. For
instance, in the paper of Borovkov and Foss [6], Foss and Konstantopoulos [20] and also in the
monograph of Borovkov [5] such processes are treated under the name ”stochastically recursive
sequences”. Among the most recent results, we can mention the paper [24] by Györfi et al. that
introduces a novel concept called strong stability and provides sufficient conditions for strong sta-
bility of iterations given by (1). Furthermore, new findings related to Langevin-type iterations
with dependent noise and multitype branching processes were also established.

Assuming that the noise (εt)t∈N is i.i.d. and independent of the regressor Y := (Yt)t∈Z, we
have

P(Xt ∈ B | (Xj)j<t, Y) =

∫
Z
1{f(Xt−1,Yt−1,z)∈B} ν(dz), t ≥ 1, (2)

where ν = Law(ε0). Clearly, the process (Xt)t∈N defines a time-inhomogeneous Markov chain
conditionally on the exogeneous process (Yt)t∈N being interpreted as random environment. This
characterization leads us to term this process a Markov chain in a random environment (MCRE).
This concept is proved to be a good compromise since, many interesting models can be treated as a
MCRE. Furthermore, it is worth noting that the rich theory of general state Markov chains equips
us with powerful analytical tools to study and understand these processes in-depth. Markov chains
in random environments were first studied on countable state spaces in [11, 12, 44]. On general
state spaces [31, 32, 47] investigated their ergodic properties under a rather stringent hypothesis:
essentially, the Doeblin condition was assumed (see Chapter 16 of [42]). Such assumptions are
acceptable on compact state spaces but they fail in most models evolving in Rd. For non-compact
state spaces the results of [48] apply (see also Chapter 3 of [5]) but the system dynamics is assumed
to be strictly contracting, which, again, is too stringent for most applications. Markov chains in
stationary random environments were first treated on non-compact state spaces under Lyapunov
and “small set”-type conditions in [22] and [35]. The former paper was based on the control of
the maximal process of the random environment but its techniques worked only assuming that
the system dynamics is contractive with respect to a certain Lyapunov function, whatever the
random environment is. In [35] this decreasing property is required only in an averaged sense.
This result covers important model classes that none of the previous works could: queuing systems
with non-independent service times (or inter-arrival times), linear systems that are stable in the
average, and stochastic gradient Langevin dynamics when the data is merely stationary. In [49],
under a notably weaker, yet in certain aspects, optimal form of the Lyapunov and the small set
conditions, Truquet showed that for a given strongly stationary process (Yt)t∈N, there exists a
process (Xt)t∈N satisfying the iteration in (1), and the distribution of the process (Xt, Yt)t∈N is
unique. Additionally, if the process (Yt)t∈N is ergodic, then the process (Xt, Yt)t∈N is ergodic as
well, hence the strong law of large numbers applies.

As far as we know, there are no known results regarding MCREs when the environment (Yt)t∈N
is non-stationary. Furthermore, the sequence of iterates (Xt)t∈N is typically non-stationary even in
cases when the environment is stationary but the initial state x0 ∈ X is independent of σ({εt, Yt |
t ∈ N}). Weak dependence assumptions offer a valuable approach to address this problem while
allowing for long-range dependencies to be present. The recent work by Truquet [50] directed our
attention to the fact that through arguments based on coupling inequalities, it can be established
under general conditions that the mixing properties of the process (Yt)t∈N are inherited by the
iterates (Xt)t∈N. Combining this idea with Corollary 2 from Herrndorf’s paper [29], we were able
to establish the functional central limit theorem for the stochastic gradient Langevin iteration in
cases where the data stream is stationary and exhibits favorable mixing properties [36].

Rosenblatt introduced the alpha-mixing coefficient in 1965, defined the class of strongly mixing
processes and proved the central limit theorem for strongly mixing stationary processes [46]. Over
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the past decades, researchers have established numerous strong results for non-stationary mixing
processes, including various versions of the law of large numbers and the central limit theorem. The
main goal of this paper is to investigate the sequence of iterates (Xt)t∈N through the transitions
of mixing properties, leveraging these established results.

The paper is organized as follows: In the first section, we provide sufficient conditions for a
recursion of the form (1) to inherit the mixing properties of the process (Yt)t∈N. Leveraging these
conditions along with existing results from the literature on strongly mixing sequences, we prove the
strong and L1 law of large numbers for suitable functionals of the process (Xt)t∈N. Furthermore,
we also show the possibility of constructing confidence intervals.

The second section focuses on the investigation of MCREs under long-term contractivity and
minorization conditions satisfied by models discussed in [35]. By establishing a coupling inequality
and a moment estimate for such chains, the framework presented in Section 1 becomes directly
applicable to these processes. Additionally, in this section, using the Cramér-Rao bound, we prove
an inequality for variances of sums crucial for the functional cental limit theorem by Merlevède
and Peligrad [39]. To the best of our knowledge, this technique represents a novel contribution to
the theory of MCREs. In the third and final section of the paper, we revisit single-server queuing
models discussed in [35] and [34], and prove the functional central limit theorem for them.

Notations and conventions. Let R+ := {x ∈ R : x ≥ 0} and N+ := {n ∈ N : n ≥ 1}. Let
(Ω,F ,P) be a probability space. We denote by E[X] the expectation of a random variable X. For
1 ≤ p <∞, Lp is used to denote the usual space of p-integrable real-valued random variables and
∥X∥p stands for the Lp-norm of a random variable X.

In the sequel, we employ the convention that inf ∅ = ∞,
∑l

k = 0 and
∏l

k = 1 whenever k, l ∈ Z,
k > l. Lastly, ⟨· | ·⟩ denotes the standard Euclidean inner product on finite dimensional vector

spaces. For example, on Rd, ⟨x | y⟩ =
∑d

i=1 xiyi.

1 Transition of mixing properties

In this section, we study the transition of mixing properties of the covariate process to the response
and its immediate consequences under minimal assumptions on the iteration (1). To this end, we
first introduce the basic concepts that we use in our analysis. Several notions of mixing exist in the
literature. The interested reader should consult the excellent survey by Bradley [8], for example.
In our context α-mixing holds particular importance, therefore let us first recall the key concepts
related to this type of mixing. We define the measure of dependence, denoted as α(G,H), for any
two sub-σ-algebras G,H ⊂ F , using the equation:

α(G,H) = sup
G∈G,H∈H

|P(G ∩H)− P(G)P(H)| . (3)

Furthermore, considering an arbitrary sequence of random variables (Wt)t∈Z, we introduce
the σ-algebras FW

t,s := σ (Wk, t ≤ k ≤ s), where −∞ ≤ t ≤ s ≤ ∞. Additionally, we define the
dependence coefficients as follows:

αW
j (n) = α

(
FW

−∞,j ,FW
j+n,∞

)
, j ∈ Z.

The mixing coefficient of W is αW (n) = supj∈Z α
W
j (n), n ≥ 1 which is obviously non-increasing.

Note that, for strictly stationary W , αW
j (n) does not depend on j, and thus αW (n) = αW

0 (n).

We classify W as strongly mixing if limn→∞ αW (n) = 0. Strongly mixing processes are signifi-
cant because many fundamental theorems known for sequences of i.i.d. random variables can be
appropriately extended to such processes. The primary importance of this lies in enabling the
statistical analysis of heterogeneously distributed dependent data even when the exact underlying
dynamics generating the time series are unknown. The available theoretical framework includes
the strong law of large numbers by McLeish [38], the L1-law of large numbers by Hansen [28],
and the Central Limit Theorem by White [52], among others. For better clarity, these results are
collected in Appendix A.

Now, we turn to the analysis of the iteration (1). For better readability, we introduced the
complete separable metric space Z in the introduction. However, we can always assume that
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Z = [0, 1] without loss of generality. Indeed, since Z is a complete separable metric space, the
Borel isomorphism theorem guarantees the existence of a bi-measurable bijection ϕ : Z → A, where
A ⊆ [0, 1]. Given an iteration of the form (1), we can always define an equivalent iteration:

Xt+1 = f̃(Xt, Yt, ε̃t+1),

where ε̃t = ϕ(εt) ∈ [0, 1], t ∈ N, and

f̃(x, y, u) = f(x, y, ϕ−1(u)), x ∈ X , y ∈ Y, u ∈ A.

Since this transformation does not alter the dynamics of the iteration, we conclude that it suffices
to assume Z = [0, 1]. Therefore, from this point onward, we adopt this assumption.

Let us introduce the notation Ỹn = (Yn, εn+1), n ∈ N. Furthermore, for a fixed x ∈ X , we
define the process

Zx
s,t =

{
x, if t ≤ s

f
(
Zx
s,t−1, Yt−1, εt

)
, if t > s.

(4)

Note that, for s ∈ N and t ≥ s, ZXs
s,t = Xt.

Definition 1.1. We say that the iteration (1) satisfies the coupling condition if for some x0 ∈ X ,

sup
j∈N

P
(
Z

Xj

j,j+n ̸= Zx0
j,j+n

)
→ 0, n→ ∞.

Bounding the mixing coefficient of a process is typically a non-trivial task in general. The
following lemma presents an upper bound for the α-mixing coefficient of the iterates (Xn)n∈N

given αỸ .

Lemma 1.2. Assume that X0 is a random initial state independent of σ(Yn, εn+1 | n ∈ N),
moreover the iteration (1) satisfies the coupling condition with x0 ∈ X .

Then for 0 ≤ m < n, we have

αX(n) ≤ αỸ (m+ 1) + b(n−m),

where b(n) = supj∈N P
(
Z

Xj

j,j+n ̸= Zx0
j,j+n

)
.

Proof. Let j ∈ N and n ≥ 1 be arbitrary. Suppose A ∈ FX
0,j and B ∈ FX

j+n,∞ are arbi-
trary events. Then by the definition of the generated σ-algebra, exist collections of Borel sets
(Ak)k≤j , (Bk)k≥j+n ⊆ B(X ) such that

A = (Xk ∈ Ak, 0 ≤ k ≤ j) and B = (Xk ∈ Bk, k ≥ j + n).

Let 0 ≤ m < n be arbitrary, and introduce the event B̃ =
(
Zx0

j+m,k ∈ Bk, k ≥ j + n
)
. We can

estimate

|P (A ∩B)− P (A)P (B)| = |cov(1A,1B)| ≤ |cov(1A,1B̃)|+ |cov(1A,1B − 1B̃)|. (5)

Using that A is σ(X0) ∨ FY
0,j−1 ∨ Fε

1,j and B̃ is FY
j+m,∞ ∨ Fε

j+m+1,∞-measurable, and that X0

is independent of σ(Yn, εn+1 | n ∈ N), we have

|cov(1A,1B̃)| ≤ E
∣∣∣E [1A(1B̃ − P(B̃))

∣∣∣X0

]∣∣∣ ≤ α(FY
0,j−1 ∨ Fε

1,j ,FY
j+m,∞ ∨ Fε

j+m+1,∞)

= α(F Ỹ
0,j−1,F Ỹ

j+m,∞) ≤ αỸ (m+ 1).

Observe that on the event {Xj+n = Zx0
j+m,j+n}, we have 1B = 1B̃ , and thus the second term

in (5) can be estimated as

|Cov(1A,1B − 1B̃)| = |E[(1A − P(A))(1B − 1B̃)]| ≤ P
(
ZX0
0,j+n ̸= Zx0

j+m,j+n

)
= P

(
Z

Xj+m

j+m,j+n ̸= Zx0
j+m,j+n

)
≤ b(n−m).
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Given that A ∈ FX
0,j and B ∈ FX

j+n,∞ were arbitrary, we have shown that

α(FX
0,j ,FX

j+n,∞) ≤ αỸ (m+ 1) + b(n−m).

Since the upper bound is independent of j, taking the supremum over j, we arrive at the desired
inequality.

Remark 1.3. In the above Lemma, it is enough to prescribe that an appropriate version of X
satisfy the coupling condition. The proof of the coupling condition for Markov chains in random
environments (See Appendix C) hinges on this observation.

Remark 1.4. The recent work by Truquet [50] employs a similar inequality (equation (3) on
page 3) to establish the transition of mixing in random iteration. However, that approach differs
from ours in two significant aspects. Firstly, the analysis in [50] is limited to discrete-valued time
series models with strictly stationary exogenous covariates. Secondly, unlike in Lemma 1.2, the
upper estimate of the strong mixing coefficient in [50] incorporates the tail sum of non-coupling
probabilities.

Combining Lemma 1.2 with the theorems on strongly mixing processes presented in Appendix
A, we obtain the following general umbrella theorem. This result equips us with essential tools
for the statistical analysis of time series involving non-stationary exogenous covariates, including
versions of the weak and strong law of large numbers and theoretical guarantees for constructing
confidence intervals. However, this theorem does not cover all relevant aspects. For strongly mixing
processes, there are further results concerning the distribution of extreme values [51], concentration
inequalities [40], and the law of the iterated logarithm [45]. Leveraging Lemma 1.2, these results
can be readily extended to random iterations driven by strongly mixing sequences.

Theorem 1.5. Assume that X0 is a random initial state independent of σ(Yn, εn+1 | n ∈ N),
moreover the iteration (1) satisfies the coupling condition with x0 ∈ X .

Consider a measurable function Φ : X → R such that µn = E [Φ(Xn)] exists and is finite for
all n ∈ N. Let b(n), n ∈ N be as in Lemma 1.2, and define

Sn =

n∑
k=1

(Φ(Xk)− µk) , n ≥ 1.

Then the following statements hold:

A) If the process (Ỹn)n∈N is strongly mixing and supn∈N E|Φ(Xn)|p <∞ for some p > 1, then the
L1 law of large numbers holds:

Sn

n

L1

→ 0, as n→ ∞.

B) Assume that there exist constants c > 0 and r > 2 such that

αỸ (n) + b(n) ≤ c n−
r

r−2 .

Moreover, suppose that for some r/2 < p ≤ r <∞, we have supn∈N E|Φ(Xn)|p <∞. Then,

Sn

n

a.s.→ 0, as n→ ∞.

C) If for r > 2, supn∈N E|Φ(Xn)|r <∞ and

∞∑
k=0

(k + 1)2
(
αỸ (k)

r−2
r+2 + b(k)

r−2
r+2

)
<∞,

then the distributions of n−1/2Sn and N (0,Var(n−1/2Sn)) are weakly approaching, that is for
any bounded continuous function g : R → R,

E
[
g
(
n−1/2Sn

)]
−
∫
R
g
(
Var(n−1/2Sn)

1/2t
) 1√

2π
e−

t2

2 dt→ 0 as n→ ∞.
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Furthermore, there exists σ > 0 such that for any a > 0, we have

lim sup
n→∞

P(n−1/2|Sn| ≥ a) ≤
∫
R
1[−a,a]c(σt)

1√
2π
e−

t2

2 dt.

Proof. Define the process Wn = Φ(Xn)− µn, for n ∈ N. By Lemma 1.2, we have

αW (n) ≤ αX(n) ≤ αỸ (⌊n/2⌋+ 1) + b(n− ⌊n/2⌋). (6)

From inequality (6), it follows immediately that if (Ỹn)n∈N is strongly mixing, then so is
(Wn)n∈N. Thus, part A) follows directly from Theorem A.3 and Remark A.4.

For part B), again using (6) and applying Remark A.2, we see that the conditions of Theorem
A.1 are satisfied, from which the result follows immediately.

Finally, under the assumptions of part C), we can verify that

∞∑
k=0

(k + 1)2αW (k)
r−2
r+2 <∞,

and hence by Theorem A.5 and Corollary A.6, the distributions of n−1/2Sn andN (0,Var(n−1/2Sn))
are weakly approaching. Furthermore, Remark A.7 guarantees the existence of σ > 0 such that
σn := Var(n−1/2Sn)

1/2 < σ for all n ≥ 1. Therefore, for any a > 0, we have

P(n−1/2|Sn| ≥ a) ≤ P(n−1/2|Sn| ≥ a)−
∫
R
1[−a,a]c(σnt)

1√
2π
e−t2/2 dt

+

∫
R
1[−a,a]c(σt)

1√
2π
e−t2/2 dt.

Taking the upper limit as n→ ∞ yields

lim sup
n→∞

P(n−1/2|Sn| ≥ a) ≤
∫
R
1[−a,a]c(σt)

1√
2π
e−t2/2 dt.

2 Markov chains in random environments

This section is devoted to study an important class of random iterations incorporating exoge-
neous covariates, called Markov chains in random environments. For convenience, we adopt the
parametric kernel formalism to set Lyapunov and “small set”-type conditions. Let us introduce

Q(y, x,B) =

∫
[0,1]

1{f(x,y,z)∈B} dz.

The function Q : X × Y × B(X ) → [0, 1] is a parametric probabilistic kernel, which means:

i For each pair (y, x) ∈ Y ×X , the mapping B 7→ Q(y, x,B) defines a Borel probability measure
on the Borel sigma-algebra B(X ).

ii For any choice of set B ∈ B(X ), the mapping (x, y) 7→ Q(y, x,B) is a measurable function with
respect to the product sigma-algebra B(X )⊗ B(Y).

Definition 2.1. Let P : X×B → [0, 1] be a probabilistic kernel. For a bounded measurable function
ϕ : X → R, we define

[Pϕ](x) =

∫
X
ϕ(z)P (x, dz), x ∈ X .

This definition makes sense for any non-negative measurable ϕ, too.
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Consistently with Definition 2.1, for y ∈ Y, we write Q(y)ϕ to denote the action of the kernel
Q(y, ·, ·) on ϕ. It is important to note that if yl, . . . , yk−1 ∈ Y with 0 ≤ l < k, then the successive
application of the kernels is interpreted in the order corresponding to the composition of conditional
expectations:

[Q(yk−1) . . . Q(yl)ϕ] = [Q(yl)[. . . [Q(yk−1)ϕ]]].

This convention will be important later in the proof of Lemma C.1.
We say that Q satisfies the drift (or Lyapunov) condition if there exists a measurable mapping

V : X → [0,∞), which we call Lyapunov-function, and measurable functions γ,K : Y → (0,∞),
such that for all (y, x) ∈ Y × X ,

[Q(y)V ](x) :=

∫
X
V (z)Q(y, x, dz) ≤ γ(y)V (x) +K(y). (7)

We may, and from now on, we will assume that K(.) ≥ 1 in the drift condition (7).
The parametric kernel obeys the minorization condition with R > 0, if there exists a probability

kernel κR : Y × B(X ) → [0, 1] and a measurable function β : [0,∞) × Y → [0, 1) such that for all

(y, x,A) ∈ Y×
−1

V ([0, R])× B(X ),

Q(y, x,A) ≥ (1− β(R, y))κR(y,A). (8)

The minorization condition stipulates the existence of “small sets”. Therefore, it is also referred
to as a ”small set”-type condition.

If γ,K are independent of y and γ < 1 then (7) is the standard drift condition for geometrically
ergodic Markov chains, see Chapter 15 of [42]. Ergodic properties of Markov chains in stationary
random environments was studied by Lovas and Rásonyi in [35] when γ(y) ≥ 1 may well occur but
the environment satisfies the following long-term contractivity condition:

lim sup
n→∞

E1/n

(
K(Y0)

n∏
k=1

γ(Yk)

)
< 1. (9)

Under the assumption that E [log(γ(Y0))+] + E [log(K(Y0))+] <∞ and

lim sup
n→∞

n∏
k=1

γ(Y−k)
1/n < 1, P− a.s., (10)

which is notably weaker than (9), in [49] Truquet proved that there exists a stationary process
((Yt, X

∗
t ))t∈Z satisfying the iteration (1), and the distribution of this process is unique. If, in

addition, the environment (Yt)t∈Z is ergodic, the process ((Yt, X
∗
t ))t∈Z is also ergodic. As a re-

sult, the strong law of large numbers holds for any measurable function Ψ : Y × X → R with
E(|Ψ(Y0, X

∗
0 )|) <∞ i.e.

1

n

n∑
k=1

Ψ(Yk, X
∗
k) → E(Ψ(Y0, X

∗
0 )), as n→ ∞, P− a.s.

In this case, the condition (10) boils down to E [log(γ(Y0))] < 0. Truquet has also shown that if
the iteration (1) is initialized with deterministic x0 ∈ X , denoted as (Xx0

n )n∈N, then Law(Xx0
n )

converges to Law(X∗
0 ) in total variation as n → ∞, where Law(X∗

0 ) here denotes the marginal
distribution of the stationary solution ((Yt, X

∗
t ))t∈Z. On the other hand, contrarily to [35], Truquet

did not provide a rate estimate.

Independent and identically distributed sequences of random variables (Yn)n∈N satisfy the long-
term contractivity condition (9) if E(γ(Y0)) < 1. Naturally, the question arises whether the
inequality (9) still holds when E(γ(Y0)) < 1 and the sequence αY (n), n ∈ N, tends to zero
rapidly enough. In his Master’s thesis on the stability of general state Markov chains [19], Dániel
Felsmann provided an example of a strongly stationary stochastic process (Yn)n∈Z and a function γ :
Y → (0,∞) such that E(γ(Y0)) < 1, yet limn→∞ E (

∏n
k=1 γ(Yk)), i.e., the long-term contractivity

7



condition in (9) is not satisfied. Since the thesis is available only in Hungarian, the example in
question is presented in Appendix B.

In the forthcoming discussion, we refrain from assuming stationarity for the environment
(Yn)n∈N. Instead, we regard it purely as a sequence of weakly dependent random variables. Con-
sequently, the anticipation of the existence of limiting distributions, as demonstrated in [35], [36],
or [49], is not viable. Instead, we employ the methodology delineated in Section 1 to establish the
L1-law of large numbers and the functional central limit theorem.

We impose the following additional assumptions on the environment. In absence of stationarity,
it is required that the long-term contractivity condition (9) holds uniformly along trajectories. With
the second condition, essentially, we stipulate that the minorization coefficient β : [0,∞) × Y →
[0, 1) appearing in (8) can be substituted with a constant on appropriately chosen level sets of the
Lyapunov function. This latter criterion is satisfied in all applications discussed in [35].

Assumption 2.2. We assume that the parametric kernel Q : Y × X × B(X ) → [0, 1] satisfies the
drift condition (7) with γ,K : Y → (0,∞) such that

E

(
K(Yj)

n∏
k=1

γ(Yk+j)

)
<∞, j ∈ N, n ≥ 1.

Furthermore the following two conditions hold:

A) γ̄ := lim sup
n→∞

sup
j≥−1

E1/n

(
K(Yj)

n∏
k=1

γ(Yk+j)

)
< 1, where we define K(Y−1) := 1.

B) For some 0 < r < 1/γ̄ − 1, the parametric kernel Q obeys the minorization condition with

R(y) =
2K(y)

rγ(y)
, and β̄ := sup

y∈Y
β (R(y), y) < 1.

Lemma 2.3. Let (Xn)n∈N be a Markov chain in a random environment (Yn)n∈N with parametric
kernel Q : Y × X × B(X ) → [0, 1] satisfying part A) of Assumption 2.2. Additionally, let X0 be a
random initial state independent of σ(Yn, εn+1 | n ∈ N) and such that E(V (X0)) <∞.

Then for any measurable function Φ : X → R satisfying

|Φ(x)|r ≤ C(1 + V (x)), x ∈ X .

for some constants C > 0 and r ∈ R, it follows that

sup
n∈N

E (|Φ(Xn)|r) <∞.

Proof. Using Lemma C.1 from Appendix C,we can derive the following estimate:

E([Q(Yn−1) . . . Q(Y0)V ](X0)) ≤ E(V (X0))E

(
n−1∏
k=0

γ(Yk)

)
+

n−1∑
k=0

E

K(Yk)

n−1∏
j=k+1

γ(Yj)

 .

Given Assumption 2.2, the Cauchy criterion applies to the sum in the second term. Consequently,

sup
n∈N

E([Q(Yn−1) . . . Q(Y0)V ](X0)) <∞,

which further implies

sup
n∈N

E (|Φ(Xn)|r) ≤ C(1 + sup
n∈N

E(V (Xn))) = C(1 + sup
n∈N

E([Q(Yn−1) . . . Q(Y0)V ](X0))) <∞.

The following lemma ensures that under the drift and minorization conditions specified in
Definition 2.2, the coupling condition holds for a suitable version of the chain.
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Lemma 2.4. Let (Xn)n∈N be a Markov chain in a random environment (Yn)n∈N with random
initial state X0 independent of σ(Yn, εn+1 | n ∈ N) such that E(V (X0)) < ∞. Then under
Assumption 2.2, the chain (Xn)n∈N admits a random iteration representation of the form (1) with
appropriate f : X × Y × [0, 1] → X which satisfies the coupling condition. More precisely, there
exist c1, c2 > 0 constants depending only on γ̄, β̄ and r such that

sup
j∈N

P
(
Z

Xj

j,j+n ̸= Zx
j,j+n

)
≤ c1 (V (x) + E(V (X0)) + 1) e−c2n

1/2

, n ≥ N

holds for x ∈ X and appropriate N > 0.

Proof. The proof follows a similar argument as in [36]. For detailed steps, see Appendix C.

With the above Lemma and the results obtained for general random iterations in Section 1 in
hand, we are now ready to prove the following theorem.

Theorem 2.5. Let (Xn)n∈N be a Markov chain in a random environment (Yn)n∈N satisfying
Assumption 2.2, with X0 a random initial state independent of σ(Yn, εn+1 | n ∈ N), such that
E[V (X0)] <∞.

Consider a measurable function Φ : X → R satisfying

|Φ(x)|p ≤ C(1 + V (x)), x ∈ X , (11)

for some constants C > 0 and p > 1, and define

Sn :=

n∑
k=1

(Φ(Xk)− E[Φ(Xk)]) , n ∈ N.

Under the above conditions, the following statements hold:

A) If the environment process (Yn)n∈N is strongly mixing, then the L1 law of large numbers holds:

Sn

n

L1

→ 0, as n→ ∞.

B) Suppose that for some constants c > 0 and r > 2, the mixing coefficients satisfy αY (n) ≤
c n−

r
r−2 , n ∈ N, and (11) holds with an exponent p such that r/2 < p ≤ r <∞. Then,

Sn

n

a.s.→ 0, as n→ ∞.

C) If (11) holds with p > 2 and the mixing coefficients satisfy∑
n∈N

(n+ 1)2αY (n)
p−2
p+2 <∞, (12)

then the distribution of Sn/
√
n and N (0,Var(n−1/2Sn)) are weakly approaching. Moreover,

there exists σ > 0 such that for any a > 0, we have

lim sup
n→∞

P
(
n−1/2|Sn| ≥ a

)
≤
∫
R
1[−a,a]c(σt)

1√
2π
e−t2/2 dt.

Proof. For any n, j ∈ N, the sigma-algebras FY
0,j ∨ FY

n+j,∞ and Fε
1,j ∨ Fε

n+j,∞ are independent.
Hence, by [9, Lemma 8 on page 13], we obtain

α
(
F Ỹ

0,j ,F Ỹ
n+j,∞

)
= α

(
FY

0,j ∨ Fε
1,j ,FY

n+j,∞ ∨ Fε
n+j,∞

)
≤ α

(
FY

0,j ,FY
n+j,∞

)
+ α

(
Fε

1,j ,Fε
n+j,∞

)
,

where Ỹn = (Yn, εn+1) for n ∈ N.
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On the other hand, since Fε
1,j and Fε

n+j,∞ are also independent, we have α
(
Fε

1,j ,Fε
n+j,∞

)
= 0.

By the definition of the dependence coefficient (3), the reverse inequality holds trivially, and
therefore

α
(
F Ỹ

0,j ,F Ỹ
n+j,∞

)
= α

(
FY

0,j ,FY
n+j,∞

)
, n, j ∈ N.

This implies that αỸ (n) = αY (n) for all n ∈ N.

Furthermore, by Lemma 2.3, the bound supn∈N E|Φ(Xn)|p <∞ holds for the same p > 1 as in
(11).

Finally, by Lemma 2.4, the chain (Xn)n∈N admits a random iteration representation satisfying

the coupling condition with b(n) = O(e−cn1/2

) for some c > 0.

Therefore, all conditions of Theorem 1.5 are satisfied, which completes the proof.

Following Lindvall [33], Györfi and Morvai introduced a stronger concept of stability known as
forward coupling [25]. This notion of stability has proven useful in the study of queuing systems.
Specifically, under mild ergodicity assumptions, it was found that waiting times in single-server
queuing systems operating in a subcritical regime are forward coupled with a stationary and ergodic
sequence (See in Section 3).

Definition 2.6. We say that the sequence (Wn)n∈N is forward coupled with the sequence (W ′
n)n∈N

if there exists an almost surely finite random time τ such that

Wn =W ′
n

for n > τ .

The next theorem revisits the case of a stationary environment, previously studied by Gerencsér
[21], Rásonyi [22], Lovas [35], Truquet [49], and others, and establishes novel results.

Theorem 2.7. Let (Yn)n∈Z be a strongly stationary process, and assume that Assumption 2.2
holds. Furthermore, let X0 be a random initial state independent of σ(Ym, εn+1 | m ∈ Z, n ∈
N). Consider the stationary process (Yn, X

∗
n)n∈Z satisfying the iteration (1). Then, appropriate

versions of (Xn)n∈N and (X∗
n)n∈N are forward coupled. Moreover, the tail probability of the random

coupling time τ satisfies the estimate

P(τ > n) ≤ c1 (1 + E(V (X0))) e
−c2n

1/2

with constants c1, c2 > 0 depending only on β̄, γ̄ and r.

Proof. The proof follows similar lines as the proof of Lemma 2.4. For readability, it is provided in
Appendix C.

The following important corollary of the above theorem provides an explicit and tractable
upper bound for the total variation distance between Law(Xn) and Law(X∗

n), n ∈ N. This bound
is significantly sharper than those presented in our earlier paper [35].

Corollary 2.8. Under the conditions of Theorem 2.7, the following rate estimate holds:

∥Law(Xn)− Law(X∗
n)∥TV ≤ 2c1 (1 + E(V (X0))) e

−c2n
1/2

,

with the same constants c1 and c2 as in Theorem 2.7.

Proof. According to the optimal transportation cost characterization of the total variation distance,
we have

1

2
∥Law(Xn)− Law(X∗

n)∥TV ≤ inf
κ∈C(Xn,X∗

n)

∫
X×X

1x̸=y κ(dx, dy),

10



where C(Xn, X
∗
n) denotes the set of probability measures on B(X×X ) with marginals Law(Xn) and

Law(X∗
n), respectively. By a slight abuse of notation, we can assume that (Xn)n∈N and (X∗

n)n∈N
are forward coupled. Using Theorem 2.7, we can estimate the right-hand side further by writing

inf
κ∈C(Xn,X∗

n)

∫
X×X

1x̸=y κ(dx, dy) ≤ P(Xn ̸= X∗
n) = P(τ > n) ≤ c1 (1 + E(V (X0))) e

−c2n
1/2

which gives the desired inequality.

In the remaining part of this section, we aim to verify the Central Limit Theorem (CLT) for
certain functionals of a Markov chain in a non-stationary random environment. There are multiple
approaches to achieve this result. For instance, we can use Corollary A.6, or the results described
in Merlevède and Peligrad’s recent paper [39]. The advantage of the latter approach is that it not
only yields the usual CLT but also the functional CLT, and the conditions on the decay of the
mixing properties are weaker. Regardless of the chosen method, we must verify the equality (35),
which states that the variance of the sum grows at the same rate as the sum of the variances.
Using either Remark A.7 or Lemma 2.3, it can be easily shown that Var(Sn) grows at most at the
same rate as the sum of the variances Var(Φ(Xk)), k = 1, 2, . . . , n. However, it is far from trivial
to establish a lower bound for Var(Sn) to ensure the equality in (35). For this, we follow a new
approach employing the law of total variance and the Cramér-Rao bound known from estimation
theory and information geometry. For any fixed n ≥ 1, we treat the conditional distribution of
X := (X1, . . . , Xn) given the environment Y := (Y0, . . . , Yn−1) as a parametric statistical model,
where the environment Y is considered as the parameter. For technical reasons, we will restrict
our discussion in the remaining part of this section to the case when Y = Rm with m ∈ N+.

Assumption 2.9. We assume the existence of a reference Borel measure ν on B(X ) such that, for
all (y, x) ∈ Y × X , the measure Q(y, x, ·) is absolutely continuous with respect to ν. Furthermore,
the parametric family of conditional densities

Y ∋ y 7→ py(z | x) =
dQ(y, x, ·)

dν
(z), (x, z) ∈ X × X

and the measurable function Φ : X → R, playing the role of an estimator, satisfy all the regularity
conditions required for the Cramér-Rao inequality (See Theorem 1A on page 147 in [3] or for a
more general version, Corollary 5 in [2]).

Lemma 2.10. Let (Xn)n∈N be a Markov chain in a random environment (Yn)n∈N with parametric
kernel Q : Y ×X ×B(X ) → [0, 1] and Φ : X → R satisfying Assumption 2.9. Suppose that X0 is a
random initial state independent of σ(Yn, εn+1 | n ∈ N) with distribution Law(X0) being absolutely
continuous w.r.t. ν, where ν is as in Assumption 2.9.

Then, for the variance of the parial sum Sn = Φ(X1) + . . .+Φ(Xn), we have the lower bound

Var(Sn) ≥
n−1∑
k=0

E
[

1

r(Ik)
∥∂yk

E [Sn | Y ]∥2
]
, n ≥ 1,

where r(Ik) denotes the spectral radius of the Fisher information matrix

Ik := E
[
(∂y log py(Xk+1 | Xk))

⊤
(∂y log py(Xk+1 | Xk))

∣∣∣Y ] .
Proof. By the law of total variance, we can write

Var(Sn) = E
[
Var(Sn | FY

0,n−1)
]
+Var

(
E
[
Sn | FY

0,n−1

])
≥ E

[
Var(Sn | FY

0,n−1)
]
. (13)

For typographical reasons, we use the notations VarY (Sn) := Var(Sn | Y ) and CovY (·, ·) :=
Cov(·, · | Y ). The conditional variance of the partial sum can be expressed as follows:

VarY (Sn) =

n∑
k,l=1

CovY (Φ(Xk),Φ(Xl)) = 1⊤CovY (Φ(X))1, (14)
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where CovY (Φ(X)) is the conditional covariance matrix of the random vector

Φ(X) = (Φ(X1), . . . ,Φ(Xn))
⊤,

1 = [1, . . . , 1]⊤ ∈ Rn denotes the size n vector of 1-s.
Using the Cramér-Rao inequality, we arrive at the following estimate

CovY (Φ(X)) ≥ (∂yϕ(Y ))I(Y )−1(∂yϕ(Y ))⊤, (15)

where ϕ : Yn → Rn, ϕ(y) = E
[
Φ(X) | Y = y

]
and I(y) is the Fisher information matrix.

Note that ∂yϕ(y) ∈ Lin(Yn,Rn) and I(y) ∈ Lin(Yn) are linear operators with block represen-
tation

∂yϕ(y) =
[
∂y0

ϕ(y), . . . , ∂yn−1
ϕ(y)

]
[I(y)]kl = E

[(
∂yk

log p(X | y)
)⊤ (

∂yl
log p(X | y)

)∣∣∣Y = y
]
= −E

[
∂2ykyl

log p(X | y)
∣∣Y = y

]
,

where ∂yi
ϕ(y) ∈ Lin(Y,Rn), i = 0, . . . , n− 1, and [I(y)]kl ∈ Lin(Y), k, l = 0, . . . , n− 1.

By the Markov property, for the conditional density of X given y can be expressed as the

product of π(X0) =
dLaw(X0)

dν and the parametric transition densities pyk−1
(xk | xk−1), k = 1, . . . , n.

Consequently, we obtain

log p(X | y) = log π(X0) +

n∑
k=1

log pyk−1
(Xk | Xk−1),

which implies that the Fisher information matrix has a block-diagonal form:

[I(y)]kl =

{
Ik := E

[
(∂yk

log pyk
(Xk+1 | Xk))

⊤
(∂yk

log pyk
(Xk+1 | Xk))

∣∣∣Y = y
]

if k = l

0 if k ̸= l.

Observe that 1⊤∂yϕ(y) = ∂yE
[
Sn | Y = y

]
∈ Lin(Yn,R) hence substituting back the above

form of the Fisher information matrix into (14) and applying (15) yields

VarY (Sn) ≥
n−1∑
k=0

∂yk
E [Sn | Y ] I−1

k ∂yk
E [Sn | Y ]

⊤ ≥
n−1∑
k=0

1

r(Ik)
∥∂yk

E [Sn | Y ]∥2,

where r(Ik) refers to the spectral radius of the Fisher operator Ik. At least, by (13), we obtain

Var(Sn) ≥
n−1∑
k=0

E
[

1

r(Ik)
∥∂yk

E [Sn | Y ]∥2
]
. (16)

Combining the above lemma with Corollary A.6 leads to the following significant conclusion.

Corollary 2.11. In addition to the conditions of Theorem 2.5 and Lemma 2.10, assume that the
function Φ : X → R satisfies inequality (11) for some exponent p > 2. Further, suppose that

lim inf
n→∞

1

n

n−1∑
k=0

E
[

1

r(Ik)
∥∂yk

E [Sn | Y ]∥2
]
> 0.

Then it is evident that the sequence (n/Var(Sn))n≥1 is bounded. Consequently, by Corollary A.6,
it follows that in addition to the results of Theorem 2.5, we also have

1

Var(Sn)1/2
Sn =⇒ N (0, 1), as n→ ∞

in distribution. Therefore, the Central Limit Theorem holds.
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To derive a lower bound for Var(Sn), we strongly relied on the Cramér-Rao bound, which re-
quires certain differentiability and regularity conditions. However, these differentiability assump-
tions can be relaxed, either by applying a version of the Cramér–Rao inequality developed for
non-differentiable models [18], or by using some other information inequality (see, e.g., paragraph
3 in Chapter 30 of [3]).

It seems that it might be as difficult to evaluate the lower bound in (16) as to directly verify
that

Var(Sn) = O

(
n∑

k=1

Var(Φ(Xk))

)
.

To show that the lower bound on the right-hand side of (16) is tractable, we establish a more explicit
sufficient condition under the assumptions that X ,Y ⊆ R and the function f in the iteration (1)
satisfies some monotonicity condition.

Proposition 2.12. Assume that X ,Y ⊆ R, moreover the function f : X × Y × [0, 1] → R
defining the iteration (1) is continuously differentiable and monotonically increasing in its first
two variables. Besides the assumptions of Lemma 2.10, assume also that

r∗ := sup
n∈N

E [r(In)] = sup
n∈N

E
[
(∂y log py(Xn+1 | Xn))

2
]
<∞, (17)

and there exists a function g : Y × [0, 1] → (0,∞) such that

∂yf(x, y, u) ≥ g(y, u), x, y ∈ R, u ∈ [0, 1].

Then, for the variance of the partial sums Sn = X1 + . . .+Xn, we have

Var(Sn) ≥
1

r∗

n−1∑
k=0

E [g(Yk, ε1)]
2
.

Proof. By the Cauchy-Schwartz inequality, for k = 0, . . . , n− 1, we have

E [∂yk
E [Sn | Y ]]

2 ≤ E
[

1

r(Ik)
(∂yk

E [Sn | Y ])
2

]
E[r(Ik)]

hence using the inequality (17), we arrive at

Var(Sn) ≥
n−1∑
k=0

E
[

1

r(Ik)
∥∂yk

E [Sn | Y ]∥2
]
≥ 1

r∗

n−1∑
k=0

E [∂yk
E [Sn | Y ]]

2
. (18)

Fix 0 ≤ k < n. Then, by the monotonicity assumption, we have ∂yk
E [Xl | Y ] ≥ 0 for any

l = 1, . . . , n. Hence, using that the process (εn)n≥1 is i.i.d. and independent of the environment
(Yn)n∈N, we can estimate as

∂yk
E [Sn | Y ] =

n∑
l=1

∂yk
E [Xl | Y ] ≥ ∂yk

E [Xk+1 | Y ] = E [∂yf(Xk, Yk, εk+1) | Y ] ≥ E[g(Yk, ε1) | Y ].

Substituting this estimate back into the inequality (18), we obtain the desired result.

Remark 2.13. If the environment (Yn)n∈Z is stationary, then the lower bound for the variance of
Sn = X1 + . . .+Xn given in Proposition 2.12 simplifies to

Var(Sn) ≥
n

r∗
E [g(Y0, ε1)]

2
,

so the inequality required in the assumptions of Corollary 2.11 is clearly satisfied.

Using the recent results by Merlevède and Peligrad in [39], we can derive the following functional
central limit theorem for certain functionals of a MCRE. This result is significantly stronger than
the statement formulated in Corollary 2.11.
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Theorem 2.14. Assume that the conditions of Corollary 2.11 hold, with the exception that instead
of the inequality (12) appearing among the conditions of Theorem 2.5, we only require that∑

n≥1

n2/(p−2)αY (n) <∞.

Furthermore, for n ≥ 1, let vn(t) = min{1 ≤ k ≤ n | Var(Sk) ≥ tVar(Sn)}, and for 1 ≤ k ≤ n,
define

ξk,n =
Φ(Xk)− E[Φ(Xk)]

Var(Sn)1/2
.

Then the sequence of functions Bn(t) =
∑vn(t)

k=1 ξk,n, t ∈ (0, 1], n ≥ 1, converges in distribution
in D([0, 1]) (equipped with the uniform topology) to (Bt)t∈[0,1], where (Bt)t∈[0,1] is a standard
Brownian motion.

Proof. In the proof, we check the conditions of Corollary 2.2 found on page 3 of [39]. These
conditions can be divided into two groups: conditions on the moments of the random variables
ξk,n, 1 ≤ k ≤ n, and conditions on the mixing properties of these variables. We first verify the
fulfillment of the conditions in the first group.

By Lemma 2.3, we have c1 = supn∈N E(|Φ(Xn)|p) <∞, and Lemma 2.10 ensures that n/Var(Sn) <
c2 for some constant c2 > 0 and for all n ≥ 1. Then, we have

∥ξk,n∥p =
1

Var(Sn)1/2
∥Φ(Xk)− E[Φ(Xk)]∥p ≤ 2n−1/2

(
n

Var(Sn)

)1/2

∥Φ(Xk)∥p ≤ 2c
1/r
1 c

1/2
2 n−1/2,

from which it immediately follows that max1≤k≤n∥ξk,n∥p → 0 as n → ∞, and furthermore,
supn≥1

∑n
k=1∥ξk,n∥2p < ∞. Comparing this with the remark following Corollary 2.2 in [39], we

conclude that condition (3) and the first part of condition (7) related to moments in [39] are satis-
fied. Additionally, condition (1) is inherently satisfied by the array {ξk,n | 1 ≤ k ≤ n, n ≥ 1} due
to its definition.

We now proceed to verify the conditions related to the mixing properties. The precise definitions
of the weak strong mixing coefficients α1(k), α1,n(k), and α2,n(k) can also be found in [39]. For
our purposes, it suffices to note that the following sequence of inequalities holds:

α1,n(k) ≤ α2,n(k) ≤ 2αΦ(X)(k), 1 ≤ k ≤ n, n ≥ 1,

therefore, to verify the second part of condition (7) in [39] and to satisfy condition (8), it is enough
to establish that ∑

n≥1

n2/(p−2)αΦ(X)(n) <∞. (19)

From here, the proof continues by estimating the mixing coefficient αΦ(X) and follows exactly
the same path as described in the proof of Theorem 1.5 and 2.5. By Lemma 2.4, the chain (Xn)n∈N

admits a random iteration representation satisfying the coupling condition with b(n) = O(e−cn1/2

),
c > 0. Therefore, we can estimate

αΦ(X)(n) ≤ αX(n) ≤ αY (⌊n/2⌋+ 1) + b(n− ⌊n/2⌋), n > 2N,

where N > 0 is as in Lemma 2.4. Considering that
∑∞

n=1 n
2/(p−2)b(n − ⌊n/2⌋) < ∞, and that

the condition
∑

n≥1 n
2/(p−2)αY (n) < ∞ assumed, we obtain that the infinite series appearing in

condition (19) is convergent.
With this, we have verified all of the conditions of Corollary 2.2 in [39], from which it follows

that the statement formulated in the theorem holds. This completes the proof.

Remark 2.15. In the proof of the above Theorem 2.14, we do not use Theorem 2.1 of [39] in its
strongest form, but rather we verify only the conditions of Corollary 2.2. It is likely that Theorem
2.14 can be further strengthened and generalized for Markov chains in a random environment
satisfying a weak-strong mixing-type condition. However, this is beyond the scope of the present
study.
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3 Single server queuing systems

In the early 20th century, Danish engineer Agner Krarup Erlang pioneered what would later be
known as queuing theory [17]. His work at a telephone company, where he developed a mathe-
matical model to determine the minimum number of telephones needed to handle calls efficiently,
laid the foundation for this field. Today, queuing theory extends far beyond telecommunications,
significantly influencing areas like inventory management, logistics, transportation, industrial en-
gineering, and service design. Notably, it plays a key role in reducing costs within product-service
design [43].

For simplicity, we focus on single-server queuing systems with infinite buffer and first-in, first-
out (FIFO) service discipline (see Figure 1). It’s worth noting that more complex queuing systems,
such as those with multiple servers, can be analyzed using analogous methods. Let the time between

Requests

Buffer
(Infinite capacity)

Server
(FIFO discipline)

Figure 1: Schematic overview of the single-server queuing system under investigation: Zn is the
time between the arrivals of the n-th and (n + 1)-th customers, Sn is the time to serve the n-th
customer, and Wn is their waiting time before service.

the arrival of customers n + 1 and n is be denoted by Zn+1, and the service time for customer
n is given by Sn, for n ∈ N. Then, the evolution of the waiting time Wn of customer n can be
described by the Lindley recursion

Wn+1 = (Wn + Sn − Zn+1)+, n ∈ N, (20)

with W0 := 0, meaning that we begin with an empty queue.

The ergodic theory of general state space Markov chains allows to treat the case where (Sn)n∈N,
(Zn)n∈N are i.i.d. sequences, independent of each other. However, dependencies frequently arise
in queuing networks when the arrival processes intertwine with the departure processes of other
queues. Additionally, factors like complex processing operations, including batching or the presence
of multiple distinct customer classes, can introduce intricate interdependencies within the system.
Consequently, the renewal process assumption for the arrival process, which makes queueing models
amenable to simple analysis, no longer holds.

To the best of our knowledge, Loynes was the first who studied the stability of waiting times
under the assumption that the pair (S,Z) is merely stationary and ergodic [37]. Stability of Wn,
n ∈ N means here that there exist a unique limit distribution of Wn as n → ∞, whatever the
initialization W0 is. Loynes introduced the terminology categorizing queues as ’subcritical’ when
E(S0) < E(Z0), ’critical’ when E(S0) = E(Z0), and ’supercritical’ when E(S0) > E(Z0). Loynes
proved for single-server queuing systems that subcritical queues are stable, supercritical queues are
unstable and critical queues can be stable, properly substable, or unstable [37].

Building upon Loynes’s foundational work, Györfi and Morvai expanded and refined the un-
derstanding of these queuing systems in [25]. They extended Loynes’ result by proving that for
subcritical queues, an even stronger version of stability called forward coupling holds also true (c.f.
Definition 2.6). Györfi and Morvai’s theorem concerning queues in this general setting reads as
follows:

Theorem 3.1. Let ξn = Sn−Zn+1 and assume that the process (ξn)n∈Z is stationary and ergodic
with E(S0) < E(Z0). Then (Wn)n∈N is forward coupled with a stationary and ergodic (W ′

n)n∈Z
such that W ′

0 = supn∈N Yn, where Y0 = 0 and Yn =
∑n

k=1 ξ−k, n ≥ 1.

While the aforementioned theorems ensure that the distribution of waiting times converges to
a well-defined limiting law, they regrettably do not furnish any insights into the properties of this
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stationary limit, nor do they shed light on the speed of convergence. When addressing the latter
question, the only available rate estimate that comes to our aid is encapsulated in an inequality
found in Theorem 4 on page 25 of [4], which is expressed as:

∥Law(Wn)− Law(W ′
0)∥TV ≤ P

(
min

0<k<n
Xk > max(W1,W

′
0 + ξ0)

)
, (21)

where ξn is as in Theorem 3.1, and (Xn)n∈N is defined as X0 = 0, Xn =
∑n

k=1 ξk, n ≥ 1. However,
it’s worth noting that the primary limitation of this formula lies in its practical applicability. Eval-
uating the probability on the right-hand side of this equation can be a formidable task, rendering
it impractical as a concrete and readily usable rate estimate.

If the inter-arrival times are i.i.d. and the sequences S and Z are independent of each other,
then the process W can be viewed as a Markov chain in the random environment S, with driving
noise Z. Conversely, if the service times are i.i.d., and again S and Z are independent, W can be
regarded as a Markov chain in the random environment Z, with driving noise S. Therefore, both
of these special cases of queuing systems fall within the theoretical framework outlined in Section
2. In [34, 35], we analyzed such queuing models with an additional Gärtner-Ellis-type condition
(see Assumption 3.4 below or Assumption 4.2 in [35]), which is a well-established practice in
queuing theory. For instance, in Section 3 of [25], similar conditions are employed to investigate
the exponential tail behavior of the limit distribution of queue length when arrivals exhibit weak
dependence. Further justification for the applicability of Gärtner-Ellis-type conditions can be
found in Remark 4.3 of [35].

In what follows, we revisit the queuing model studied in [35]. Specifically, we consider the case
where S and Z are independent, and the latter is an i.i.d. sequence. The reverse case discussed in
[34] can be treated analogously. We begin by examining the scenario where the sequence of service
times is strictly stationary. Regarding this case, we formulate our standing assumptions.

Assumption 3.2. There exists an M > 0 such that the sequence of service times (Sn)n∈Z is
a strictly stationary process taking values in [0,M ]. Furthermore, (Sn)n∈Z is independent of the
sequence (Zn)n∈Z.

Assumption 3.3. The inter-arrival times (Zn)n∈Z form an i.i.d. sequence of R+-valued random
variables, and E[S0] < E[Z1] holds.

Assumption 3.4. There exists η > 0 such that for all t ∈ (−η, η), the limit

Γ(t) := lim
n→∞

1

n
logEet(S1+...+Sn)

exists and Γ is differentiable on (−η, η).
Under Assumptions 3.2, 3.3, and 3.4, by Lemma 4.4 of [35], the sequence of waiting times

(Wn)n∈N, defined by the Lindley recursion (20), forms a Markov chain in the random environment
(Sn)n∈Z on the state space X = R+ with parametric kernel

Q(s, w,A) := P
[
(w + s− Z1)+ ∈ A

]
, s ∈ [0,M ], w ∈ R+, A ∈ B (R+) .

Furthermore, there exists t̄ > 0 such that, with the following coefficients:

V (w) := et̄w − 1, w ≥ 0,

γ(s) := E
[
et̄(s−Z1)

]
, s ≥ 0,

K := et̄M ,

the drift condition (7) and the long-term contractivity condition (9) are satisfied, meaning

[Q(s)V ](w) ≤ γ(s)V (w) +K,

and

γ̄ := lim sup
n→∞

(
E1/n

[
K

n∏
k=1

γ(Sk)

])
< 1.

We now introduce an additional assumption on the inter-arrival times, which will be required
to establish the minorization condition.
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Assumption 3.5. One has P (Z0 ≥ τ) > 0 for

τ :=M +
4

1
γ̄1/2 − 1

.

This does not impose a significant restriction, since if Z0 is an unbounded random variable,
Assumption 3.5 is automatically satisfied.

By Lemma 4.6 of [35], under Assumptions 3.2, 3.3, 3.4, and 3.5, it can be shown that there

exists β̄ ∈ (0, 1) such that, for all s ∈ [0,M ], A ∈ B (R+), and w ∈
−1

V ([0, R(s)]),

Q(s, w,A) ≥ (1− β̄)δ0(A), where R(s) =
2K(s)

ϵγ(s)
, (22)

ϵ :=
(

1
γ̄1/2 − 1

)
/2, and δ0 is the one-point mass concentrated at 0.

The main result of Chapter 4, which discusses queuing theory applications in [35], is Theorem
4.7. It states that under Assumptions 3.2, 3.3, 3.4, and 3.5, there exists a probability measure µ∗
on B(R+), independent of the initial length of the queue, such that

∥Law(Wn)− µ∗∥TV ≤ c1e
−c2n

1/3

, (23)

for some c1, c2 > 0. Furthermore, if (Sn)n∈Z is ergodic, then for an arbitrary measurable and
bounded function Φ : R+ → R,

Φ(W0) + . . .+Φ(Wn−1)

n
→
∫
R+

Φ(z)µ∗(dz), (24)

in Lp, for all 1 ≤ p <∞.
Using Theorem 2.7 and Corollary 2.8, we can prove even more. In the queuing model we study,

for instance, the sequence of waiting times (Wn)n∈N is forward coupled with a strictly stationary
sequence (W ∗

n)n∈N. This does not require assuming the ergodicity of the service time sequence, and
we obtain a tractable upper bound on the tail probability of the random coupling time. Finally,
we demonstrate a faster convergence rate than that presented in the estimate (23). The following
theorem addresses this result.

Theorem 3.6. Let Assumptions 3.2, 3.3, 3.4, and 3.5 be in force. Then there exists a stationary
process (Sn,W

∗
n)n∈Z that satisfies the Lindley recursion (20). Moreover, appropriate versions of

the processes (Wn)n∈N and (W ∗
n)n∈N are forward coupled. For the tail probability of the random

coupling time τ , we have the bound

P(τ > n) ≤ c1e
−c2n

1/2

,

for suitable constants c1, c2 > 0, depending only on the quantities β̄, γ̄, and ϵ. Furthermore, for
the total variation distance of Law(Wn) and Law(W ∗

n) we have the following estimate:

∥Law(Wn)− Law(W ∗
n)∥TV ≤ 2c1e

−c2n
1/2

,

with the same constants c1 and c2.

Proof. The sequence of service times (Sn)n∈N is strictly stationary, so Assumption 2.2 A) simplifies
to the (9) long-term contractivity condition used in our earlier paper [35]. We have already shown
above that this holds under the conditions of the theorem. From the minorization condition (22),
part B) of Assumption 2.2 follows. Thus, we can apply Theorem 2.7, which states that there exists
a stationary process (Sn,W

∗
n)n∈Z that satisfies the Lindley recursion (20). Moreover, appropriate

versions of the processes (Wn)n∈N and (W ∗
n)n∈N are forward coupled. Considering the specific form

of the Lyapunov function in the drift condition, V (w) = et̄w − 1, and the initial condition W0 = 0,
we obtain

E(V (W0)) = 0.
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Therefore, for the tail probability of the random coupling time τ , we have

P(τ > n) ≤ c1(1 + E(V (W0)))e
−c2n

1/2

= c1e
−c2n

1/2

,

as stated. Finally, the estimate for the total variation distance between Law(Wn) and Law(W ∗
n)

immediately follows from Corollary 2.8.

In the remaining part of this section, we relax the assumption that the sequence of service times
(Sn)n∈Z is stationary. We only assume that it is a sequence of weakly dependent variables with
sufficiently favorable mixing properties. Accordingly, our assumptions will be as follows.

Assumption 3.7. We assume that the inter-arrival time sequence (Zn)n≥1 is i.i.d. and indepen-
dent of the service time sequence (Sn)n∈N. Moreover, we also assume that E(Z2

0 ) <∞.

Assumption 3.8. We assume that the service time sequence (Sn)n∈N takes values in Y = [0,M ].
For t ≥ 0, we define the function

Λ(t) = lim sup
n→∞

sup
j∈N

1

n
logE

[
exp

(
t

n∑
k=0

(Sk+j − Zk+j+1)

)]
.

Assume that there exists a parameter t̄ > 0 such that Λ(t̄) < 0.

Remark 3.9. In Lemma 4.4 of [35], under Assumption 3.4, we showed that there exists a param-
eter t̄ > 0 such that in Assumption 3.8, Λ(t̄) < 0. Although such a condition is quite standard
in both queuing theory and large deviation theory, verifying the differentiability of the function
t 7→ Γ(t) in Assumption 3.4 can be challenging in practice. Moreover, the proof of Lemma 4.4 in
[35] does not generalize to the case of a non-stationary sequence (Sn)n∈N, since the definition of
the function Λ includes a supremum, which prevents the application of convexity-based arguments.

For fixed n, j ∈ N, define

λn,j(t) =
1

n
logE

[
exp

(
t

n∑
k=0

(Sk+j − Zk+j+1)

)]
.

If lim supn→∞ E(Sn) < E(Z1), it can be shown that for sufficiently large n, λ′n,j(0) < 0. Addi-

tionally, if the mixing coefficients αS(n) decay sufficiently fast to zero, it can be established that
λ′′n,j(0) < ∞. However, this alone does not ensure the existence of a parameter t̄ > 0 such that
Λ(t̄) < 0.

The goal of the next proposition is to provide a sufficient condition under which the otherwise
difficult-to-verify requirement on Λ(t) in Assumption 3.8 holds. This condition relies on a mixing
property stronger than α-mixing, known as ψ-mixing. In analogy with the dependence measure
α(G,H) introduced in Section 1, we define

ψ(G,H) = sup

{∣∣∣∣ P(G ∩H)

P(G)P(H)
− 1

∣∣∣∣∣∣∣∣P(G) > 0, P(H) > 0, G ∈ G, H ∈ H
}
. (25)

Furthermore, for an arbitrary sequence of random variables (Wt)t∈Z, the sequence of ψ-mixing
coefficients is defined as

ψW (n) = sup
j∈Z

ψ(FW
−∞,j ,FW

j+n,∞), n ∈ N.

We say that the process (Wn)n∈Z is ψ-mixing if ψW (n) → 0 as n→ ∞.
It is straightforward to show that every ψ-mixing process is also α-mixing, but the converse does

not hold. Moreover, ψ-mixing is one of the strongest forms of strong mixing conditions, implying
several others such as α-, β-, ϕ-, and ρ-mixing. Nevertheless, the class of ψ-mixing processes
remains of considerable interest. For instance, in the case of strictly stationary, finite-state Markov
chains, the notions of α- and ψ-mixing coincide (See Theorem 3.1 in [8]).
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To formulate the next proposition, we need the notion of stochastic ordering. A real-valued
random variable W1 is said to be stochastically smaller than another random variable W2, denoted
by W1 ⪯W2, if

P(W1 > x) ≤ P(W2 > x), x ∈ R,

or, equivalently,
E[u(W1)] ≤ E[u(W2)],

for every monotonically increasing function u : R → R.

Proposition 3.10. Let the sequence of inter-arrival times (Zn)n≥1 be i.i.d. and independent of the
service time sequence (Sn)n∈N, which is assumed to be ψ-mixing and takes values in Y = [0,M ].
Suppose furthermore that there exists a random variable S∗ such that E[S∗] < E[Z1], moreover
Sn ⪯ S∗ for all n ∈ N.

Then there exists t̄ > 0 such that
Λ(t̄) < 0,

where Λ(t) is the rate function defined in Assumption 3.8.

Proof. Let j ∈ N and n ≥ 1 be arbitrary but fixed, and define Wk = et(Sk−1−Zk), k = 1, . . . , n.
Our goal is to estimate E[Wj+1 · · ·Wj+n]. For integers p, q satisfying pq ≤ n < p(q + 1), which
allows us to write

Wj+1 · · ·Wj+n = η1 · · · ηp∆n,

where ηk =
∏q−1

l=0 Wj+k+lp, k = 1, . . . , p, and ∆n =Wj+pq+1 · · ·Wj+n.
Using ∆n ≤ etM(p−1) and Hölder-inequality, we have

E[Wj+1 · · ·Wj+n] ≤ etM(p−1)

p∏
k=1

E1/p[ηpk]. (26)

For any fixed k, by independence, we have

E[ηpk] = E

[
q−1∏
l=0

etp(Sj+k−1+lp−Zj+k+lp)

]
= E

[
e−tpZ1

]q E[q−1∏
l=0

etpSj+k−1+lp

]
.

Using layer cake representation, and that Sn ⪯ S∗, for n ∈ N, we can write

E

[
q−1∏
l=0

etpSj+k−1+lp

]
=

∫
[0,∞)q

P(etpSj+k−1+lp ≥ τl, l = 0, . . . , q − 1) dτ0 . . . dτq−1

≤ (1 + ψS(p))q−1

q−1∏
l=0

∫
[0,∞)

P(etpSj+k−1+lp ≥ τl) dτl

= (1 + ψS(p))q−1

q−1∏
l=0

E
[
etpSj+k−1+lp

]
≤ (1 + ψS(p))q−1E

[
etpS

∗
]q
.

To sum up, and taking the supremum in j, we obtain the following estimate:

sup
j∈N

E[Wj+1 · · ·Wj+n] ≤ etM(p−1)(1 + ψS(p))q−1E[etp(S
∗−Z1)]q. (27)

Since d
dhE

[
eh(S

∗−Z1)
]∣∣

t=0
= E[S∗ − Z1] < 0, for arbitrary m satisfying E[S∗ − Z1] < m < 0

there exists h0 > 0 such that

E
[
eh(S

∗−Z1)
]
< 1 +mh, 0 < h < h0.

Let h′0 ∈ (0, h0) be fixed. By the ψ-mixing property of the sequence (Sn)n∈N, there exists
p0 ≥ 1 such that

ζ := (1 + ψS(p0))(1 +mh′0) < 1.
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Using (27) with t = t̄ := h′0/p0 and qn =
⌊

n
p0

⌋
, n ≥ 1, we obtain

sup
j∈N

E[Wj+1 · · ·Wj+n] ≤ eh
′
0Mζqn ≤ eh

′
0Mζ−1ζn/p0 ,

and thus

sup
j∈N

1

n
logE

[
exp

(
t̄

n∑
k=0

(Sk+j − Zk+j+1)

)]
≤ n+ 1

np0
log ζ +

1

n
log(eh

′
0Mζ−1)

which immediately implies that

Λ(t̄) = lim sup
n→∞

sup
j∈N

1

n
logE

[
exp

(
t̄

n∑
k=0

(Sk+j − Zk+j+1)

)]
≤ 1

p0
log ζ < 0.

It is conceivable that the requirement on Λ(t) in Assumption 3.8 could be verified under mixing
conditions on the sequence (Sn)n∈N that are weaker than ψ-mixing. In particular, [10] addresses
large deviation theorems under strong mixing. The authors showed that for stationary processes
with a hyper-exponential mixing rate—specifically, α(n) ≪ exp(−n(log n)1+δ) for some δ > 0—the
existence of a limit analogous to the one in the definition of the rate function Λ is ensured (see
Theorem 1 in [10]). However, they also provided counterexamples based on Doeblin recurrent,
irreducible Markov chains with countable state spaces to demonstrate that this decay condition on
the mixing coefficient cannot be significantly weakened.

Lemma 3.11. Under Assumption 3.7, the sequence of waiting times (Wn)n∈N, defined by the
Lindley recursion (20), forms a Markov chain in the random environment (Sn)n∈Z on the state
space X = R+ with the parametric kernel

Q(s, w,A) := P
[
(w + s− Z1)+ ∈ A

]
, s, w ∈ R+, A ∈ B (R+) .

For the Lyapunov function V (w) = etw − 1, w ∈ R+, the drift condition holds for any choice of
t > 0:

[Q(s)V ](w) ≤ γ(s)V (w) +K(s)

with γ(s) = K(s) = E
[
et(s−Z1)

]
, s ≥ 0.

Proof. The sequence of waiting times (Wn)n∈N, governed by the Lindley recursion (20), consti-
tutes a non-linear autoregressive process of the form (1). In this framework, (Sn)n∈N represents
the sequence of exogenous covariates, while (Zn)n∈N plays the role of the noise process (εn)n∈N.
Furthermore, by Assumption 3.7, (Zn)n∈N is i.i.d. and independent of (Sn)n∈N, and thus the
identity in the form (2) holds. Consequently, (Wn)n∈N can be interpreted as a Markov chain in a
random environment defined by (Sn)n∈N, with the corresponding parametric kernel given by

Q(s, w,A) = P((s+ w − Z1) ∈ A)+, s, w ∈ R+, A ∈ B(R+).

Let t > 0 be arbitrary and define V (w) = etw − 1. Using the inequality e(x)+ − 1 ≤ ex for all
x ∈ R, we obtain the drift condition:

[Q(s)V ](w) = E [V ((w + s− Z1)+)] = E
[
et(w+s−Z1)+ − 1

]
≤ E

[
et(w+s−Z1)

]
= E

[
et(s−Z1)

] (
etw − 1

)
+ E

[
et(s−Z1)

]
= γ(s)V (w) +K(s),

where γ(s) = K(s) = E
[
et(s−Z1)

]
, s ≥ 0 which completes the proof.

The following lemma, which ensures the fulfillment of part B) of Assumption 2.2, essentially
coincides with Lemma 4.6 in [35]. We include the proof here solely for the sake of completeness.
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Lemma 3.12. Assume that P(Z1 ≥M+τ) > 0 holds for some τ > 0. Then, there exists β̄ ∈ (0, 1)
such that, for all s ∈ [0,M ] and w ∈ [0, τ ],

Q(s, w,A) ≥ (1− β̄)δ0(A), A ∈ B(R+),

where δ0 denotes the Dirac measure concentrated at 0.

Proof. Let s ∈ [0,M ], w ∈ [0, τ ], and A ∈ B(R+). We can write

Q(s, w,A) = P
(
[w + s− Z1]+ ∈ A

)
≥ P

(
[w + s− Z1]+ = 0

)
δ0(A)

= (1− P (s+ w − Z1 > 0)) δ0(A)

≥ (1− P (M + τ − Z1 > 0)) δ0(A),

which shows that the desired inequality holds for any choice of β̄ satisfying

P (Z1 < M + τ) < β̄ < 1.

Let Assumptions 3.7 and 3.8 be in force, and let t̄ > 0 be as specified in Assumption 3.8. Then,
by Lemma 3.11, for the Lyapunov function V (w) = et̄w − 1, w ≥ 0, the drift condition (7) holds
with γ(s) = K(s) = E[et̄(s−Z1)], for s ∈ Y = [0,M ]. Furthermore, since γ(s) = K(s) ≤ et̄M , we
have

E

[
K(Sj)

n∏
k=1

γ(Sk+j)

]
≤ et̄M(n+1),

for all j ∈ N and n ≥ 1, hence the integrability condition in Assumption 2.2 is satisfied. Moreover,
by Assumptions 3.7 and 3.8,

γ̄ = lim sup
n→∞

sup
j≥−1

E1/n

[
exp

(
t̄

n∑
k=0

(Sk+j − Zk+j+1)

)]
= eΛ(t̄) < 1,

which implies that part A) of Assumption 2.2 also holds.
Suppose that for some 0 < r < 1/γ̄ and τ := 1

t̄ log
(
1 + 2

r

)
,

P (Z1 ≥M + τ) > 0.

We now verify part B) of Assumption 2.2. We have R(s) = 2K(s)
rγ(s) = 2/r since γ(s) = K(s) for all

s ∈ [0,M ]. By Lemma 3.12, there exists β̄ ∈ (0, 1) such that for all s ∈ [0,M ] and w ∈ [0, τ ],

Q(s, w,A) ≥ (1− β̄)δ0(A), A ∈ B(R+),

where δ0 denotes the Dirac measure concentrated at 0. Note that w ∈ [0, τ ] if and only if V (w) ∈
[0, 2/r] = [0, R(s)], for s ∈ [0,M ]. Therefore, the minorization condition (8) holds with κR(s, ·) =
δ0(·) for s ∈ [0,M ]. Furthermore, the minorization coefficient β(R(s), s) = β̄ ∈ (0, 1) is independent
of s, hence part B) of Assumption 2.2 is also satisfied.

Theorem 3.13. Assume that the sequences (Sn)n∈N and (Zn)n≥1 satisfy Assumptions 3.7 and
3.8, moreover for some 0 < r < 1/γ̄,

P
(
Z1 ≥M +

1

t̄
log

(
1 +

2

r

))
> 0,

where t̄ is as in Assumption 3.8, and γ̄ = exp(Λ(t̄)).
Then for the sequence of waiting times (Wn)n∈N, defined by the Lindley recursion (20), the

following statements hold.

A) If the sequence of service times (Sn)n∈N is strongly mixing, then the L1 weak law of large
numbers holds:

1

n

n∑
k=1

[Wk − E(Wk)]
L1

→ 0, as n→ ∞.
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B) If there exists c > 0 and κ > 1 such that αS(n) ≤ cn−κ, n ≥ 1, then

1

n

n∑
k=1

[Wk − E(Wk)]
a.s.→ 0, as n→ ∞.

C) If the sequence of mixing coefficients (αS(n))n∈N satisfies the condition∑
n∈N

(n+ 1)2αS(n)δ <∞

for some exponent δ ∈ (0, 1), then there exists a constant σ > 0 such that

lim sup
n→∞

P

(
1√
n

∣∣∣∣∣
n∑

k=1

(Wk − E(Wk))

∣∣∣∣∣ ≥ a

)
≤
∫
R
1[−a,a]c(σt)

1√
2π
e−

t2

2 dt, a > 0.

Proof. From Lemma 3.11, it follows that the sequence of waiting times (Wn)n∈N is a Markov chain
in a random environment (Sn)n∈N, which satisfies the drift condition (7) with V (w) = etw − 1 and
γ(s) = K(s) = E

[
et(s−Z0)

]
.

Given that Sn ∈ [0,M ] for all n ∈ N, it holds that E [K(Sj)
∏n

k=1 γ(Sk+j)] ≤ etM(n+1), which
implies that the integrability condition in Assumption 2.2 is trivially satisfied, i.e.,

E

[
K(Sj)

n∏
k=1

γ(Sk+j)

]
<∞ for all j ∈ N and n ≥ 1.

Moreover, by Assumption 3.8, the parameter t > 0 can be chosen such that

γ̄ = lim sup
n→∞

sup
j∈N

E1/n

[
n∏

k=0

γ(Sk+j)

]
< 1,

which ensures that part A) of Assumption 2.2 is satisfied.
Notice that, since γ = K, hence by Lemma 3.12, the parametric kernel Q satisfies the minoriza-

tion condition (8) with

R(s) =
2K(s)

rγ(s)
=

2

r
, β(R(s), s) = β̄ < 1, and κR(s)(s,A) = δ0(A).

We can conclude that part B) of Assumption 2.2 also holds.
In Theorem 2.5, the inequality (11) is satisfied with Φ = id[0,∞) for any p > 1, while the

deterministic initial condition W0 = 0 obviously ensures EV (W0) <∞.
We have thus shown that all conditions of Theorem 2.5 are met, from which the assertions of

the present theorem follow.

In what follows, we will demonstrate that the seemingly complex and technical conditions of
Lemma 2.10 and Theorem 2.14 boil down to easily verifiable and natural conditions concerning the
sequence (Sn)n∈N and the inter-arrival time distribution Z1. Utilizing this framework, we establish
the functional central limit theorem for the sequence of waiting times (Wn)n∈N.

Assume that the law of Z1 is absolutely continuous with respect to the Lebesgue measure, i.e.,
Law(Z1)(dz) = fZ1

(z) dz, where fZ1
(z) = 0 for z ≤ 0. For any Borel set A ∈ B(R+), we can

express Q(s, w,A) as follows:

Q(s, w,A) =

∫
[0,∞)

1A

(
(w + s− z)+

)
fZ1

(z) dz

= 1A(0)P(Z1 > w + s) +

∫ w+s

0

1A(w + s− z)fZ1
(z) dz

= 1A(0)P(Z1 > w + s) +

∫
[0,∞)

1A(z)fZ1
(w + s− z) dz

=

∫
X=R+

1A(z)
(
P(Z1 > w + s)1{0}(z) + fZ1

(w + s− z)1(0,∞)(z)
)
dν(z),
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where ν(dz) = δ0(dz) + dz.
To sum up, we obtained that there exists a Borel measure ν on B(X ), such that Q(s, w, ·) ≪ ν

for all (s, w) ∈ Y ×X , where X = R+ and Y = [0,M ]. Moreover, the transition densities are given
by

ps(z | w) =
dQ(s, w, ·)

dν
(z) = P(Z1 > w + s)1{0}(z) + fZ1

(w + s− z)1(0,∞)(z). (28)

For a fixed n ≥ 1, let w = [w1, . . . , wn] and s = [s0, . . . , sn−1], and define the likelihood function
as

p(w | s) =
n∏

k=1

psk−1
(wk | wk−1). (29)

If the density function fZ1
: R → [0,∞) is continuously differentiable everywhere, then at every

point w ∈ [0,∞)n where p(w | s) > 0, the derivative ∂si log p(w | s) = ∂sipsi(wi+1 | wi) for
i = 0, . . . , n− 1 exists and is finite. Furthermore, we have

∂

∂si

∫
Xn

(w1 + . . .+ wn)p(w | s) dw =

∫
Xn

(w1 + . . .+ wn) ∂sip(w | s) dw, (30)

hence the regularity conditions required for the Cramér-Rao inequality are satisfied.

Lemma 3.14. Assume that fZ1
: [0,∞) → [0,∞) is continuously differentiable everywhere, and∫

[0,∞)

f ′Z1
(z)2

fZ1(z)
dz <∞.

Then there exists a constant r∗ > 0 such that for any n ≥ 1, and Σn =
∑n

k=1Wk, the following
inequality holds:

Var(Σn) ≥
1

r∗

n−1∑
k=0

P(Sk > Z1)
2.

Proof. Fix n ≥ 1 and let s = [s0, . . . , sn−1] ∈ [0,M ]n. Since (Sn)n∈N is a scalar-valued process,
the Fisher information matrix is diagonal. Therefore, using (28), for k = 0, . . . , n− 1, we have

r(I(sk)) = [I(s)]kk = E
[
(∂sk log psk(Wk+1 |Wk))

2
∣∣∣S = s

]
= E

[∫
R

fZ1
(Wk + sk)

2

P(Z1 > Wk + sk)
1{0}(z) +

f ′Z1
(Wk + sk − z)2

fZ1(Wk + sk − z)
1(0,∞)(z) (δ0(dz) + dz)

∣∣∣∣S = s

]
= E

[
fZ1

(Wk + sk)
2

P(Z1 > Wk + sk)
+

∫
[0,∞)

f ′Z1
(Wk + sk − z)2

fZ1
(Wk + sk − z)

dz

∣∣∣∣∣S = s

]

≤ sup
z∈[0,∞)

fZ1
(z)2

P(Z1 > z)
+

∫
[0,∞)

f ′Z1
(z)2

fZ1
(z)

dz.

By l’Hôpital’s rule, we have limz→∞
fZ1

(z)2

P(Z1>z) = limz→∞ −f ′Z1
(z) = 0, which implies that

sup
z∈[0,∞)

fZ1(z)
2

P(Z1 > z)
<∞.

Therefore, there exists an upper bound for r(I(sk)) that is independent of both k and n; let this
bound be denoted by r∗.

Since the mapping (s, w, z) 7→ (s+w−z)+, defining the Lindley recursion (20), is monotonic in
both s and w, we observe that for each 1 ≤ j ≤ n and 0 ≤ k ≤ n−1, the derivative ∂skE [Wj | S] ≥
0. Therefore,

∥∂skE [Σn | S]∥2 =

 n∑
j=1

∂skE [Wj | S]

2

≥ (∂skE [Wk+1 | S])2 = P(Wk + Sk − Zk+1 > 0 | S)2

≥ P(Sk − Z1 > 0 | S)2.
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By Lemma 2.10 and the Cauchy-Schwartz inequality, using the bounds obtained above, we get

Var(Σn) ≥
n−1∑
k=0

E
[

1

r(Ik)
∥∂skE [Σn | S]∥2

]

≥
n−1∑
k=0

1

r∗
E
[
P(Sk − Z1 > 0 | S)2

]
≥ 1

r∗

n−1∑
k=0

P(Sk > Z1)
2,

which completes the proof.

Theorem 3.15. Beyond the conditions established in Theorem 3.13, suppose that the function
fZ1

: [0,∞) → [0,∞) is continuously differentiable everywhere, and that∫
[0,∞)

f ′Z1
(z)2

fZ1(z)
dz <∞.

Additionally, assume that

lim inf
n→∞

1

n

n−1∑
k=0

P(Sk > Z1)
2 > 0, (31)

and that for some exponent δ > 0, the series of mixing coefficients (αS(n))n∈N satisfies∑
n≥1

nδαS(n) <∞.

Let Σn = W1 + . . . +Wn, vn(t) = min{1 ≤ k ≤ n | Var(Σk) ≥ tVar(Σn)}, and for 1 ≤ k ≤ n,
define

ξk,n =
Wk − E[Wk]

Var(Σn)1/2
.

Then the sequence of functions Bn(t) =
∑vn(t)

k=1 ξk,n, for t ∈ (0, 1] and n ≥ 1, converges in
distribution in D([0, 1]) (equipped with the uniform topology) to a standard Brownian motion B.

Proof. In the proof of Theorem 3.13, we showed that under these conditions, the sequence (Wn)n∈N
forms a Markov chain in a random environment, which satisfies the conditions of Theorem 2.5.
Additionally, Lemma 3.14, in conjunction with the condition (31), guarantees that

lim inf
n→∞

1

n

n−1∑
k=0

E
[

1

r(Ik)
∥∂skE [Sn | S]∥2

]
> 0.

With the Lyapunov function V (w) = et̄w−1, the inequality (11) that appears in the conditions
of Theorem 2.5 holds for Φ = idR+ and any p > 1. Consequently, the sequence (αS(n))n∈N satisfies
the condition regarding the mixing coefficients in Theorem 2.14.

Overall, we conclude that the conditions of Theorem 2.14 are met, which leads to the desired
result.

The conditions in Assumptions 3.7 and 3.8 can most likely be significantly weakened. We
conjecture that the boundedness condition on the service times (Sn)n∈N and the assumption on
the tail probabilities of Z1 are of a purely technical nature and may be removed in future work.
Theorem 1.8 in [34], for instance, addresses the case when both S and Z are unbounded, (Sn)n∈N
is i.i.d., and so is (Zn)n≥1. In that setting, the main challenge is that the condition on the
minorization coefficient in part B) of Assumption 2.2 is no longer satisfied. However, the results of
our paper [35] can still be applied under appropriate assumptions on the environment. One such
condition, as formulated in Theorem 1.8 of [34], is that Z1 has a Gumbel-like tail:

P(Z1 ≥ z) ≤ C1 exp(−C2e
C3z), for some C1, C2, C3 > 0.

Answering such questions, as well as investigating the case when the service times (Sn)n∈N are
i.i.d. and the inter-arrival times (Zn)n≥1 are weakly dependent, will be the subject of our future
research.
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[24] L. Györfi, A. Lovas, and M. Rásonyi, On the strong stability of ergodic iterations, arXiv
preprint, (2023), p. 2304.04657.

[25] L. Györfi and G. Morvai, Queueing for ergodic arrivals and services, in Limit theorems in
probability and statistics, I. Berkes, et al., ed., vol. 2, 2002, pp. 127–141. Fourth Hungarian
colloquium on limit theorems in probability and statistics, Balatonlelle, Hungary, 1999.

[26] Y. Hafouta, On the functional CLT for slowly mixing triangular arrays, arXiv preprint
arXiv:2111.05807, (2021).

[27] P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic press,
2014.

[28] B. Hansen, A weak law of large numbers under weak mixing, https://users.ssc.wisc.
edu/~bhansen/papers/wlln.pdf (2019).

[29] N. Herrndorf, A Functional Central Limit Theorem for Weakly Dependent Sequences of
Random Variables, The Annals of Probability, 12 (1984), pp. 141 – 153.

[30] M. Iosifescu, Iterated function sytems. a critical survey, Mathematical Reports, (2009),
pp. 181–229.

[31] Y. Kifer, Perron-Frobenius theorem, large deviations, and random perturbations in random
environments, Math. Zeitschrift, 222 (1996), pp. 677–698.

[32] Y. Kifer, Limit theorems for random transformations and processes in random environments,
Transactions of the American Mathematical Society, 350 (1998), pp. 1481–1518.

[33] T. Lindvall, Lectures on the coupling method, Courier Corporation, 2002.
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A Brief survey of key results on α-mixing sequences

In this section, we present a selection of theorems from the literature on α-mixing sequences.
These results encompass fundamental topics such as the law of large numbers, and the central
limit theorem. However, we do not address all relevant topics–for instance, the distribution of
extreme values in α-mixing sequences or concentration inequalities. For a detailed treatment of
these subjects, we refer the interested reader to [51] and [40].

By integrating the theorems presented here with the transition of mixing results from Sections
1 and 2, we establish a robust theoretical framework. This framework enables the statistical
analysis of non-linear autoregressive processes with exogenous covariates and Markov chains in
random environments. Given the vast literature on α-mixing processes, a comprehensive review is
beyond the scope of this paper. Instead, we focus on key results that are particularly useful for the
statistical analysis of weakly dependent sequences. For readers seeking a more in-depth overview,
we recommend Doukhan [15], which, with its detailed references and literature survey, provides an
excellent starting point.

In theorems concerning α-mixing sequences, the key condition is typically about how rapidly
the mixing coefficient sequence (αW (n))n∈N decays to zero. In the econometric literature, the term
size is frequently used to characterize this behavior (cf. Definition 3.45 in [52]). However, since
the definition is not uniform, despite its ability to make theorems more concise and elegant, we
avoid using size to prevent misunderstandings.

In the context of stationary processes, it is well-known that strong mixing implies ergodicity
ensuring the applicability of the strong law of large numbers. For non-stationary, heterogeneously
distributed α-mixing sequences, McLeish [38] established the following version of the strong law of
large numbers.

Theorem A.1 (McLeish, 1975). Consider a sequence of R-valued random variables (Wn)n∈N with
EWn = 0, n ∈ N and with α-mixing coefficients satisfying αW (n) ≤ cn−

r
r−2 , n ∈ N, for c > 0 and

r > 2. Suppose that for some p such that r/2 < p ≤ r <∞,

∞∑
n=1

E2/r|Wn|p

n2p/r
<∞.

Under these conditions,

1

n

n∑
k=1

Wn
a.s.→ 0, n→ ∞.

Remark A.2. The condition related to the decay of the moments in Theorem A.1

∞∑
n=1

E2/r|Wn|p

n2p/r
<∞

is automatically satisfied if supn∈N E|Wn|p <∞.

In the context of ergodic theory, we distinguish between ergodic, weakly mixing, and strongly
mixing processes. We classify a collection of random variables of the form {ξn,i | 1 ≤ i ≤ n} as
weakly mixing if

1

n

n∑
k=1

αξn,·(k) → 0, n→ ∞,

where αξn,·(·) denotes the α-mixing coefficient corresponding to the nth row of the array.
Hansen established the weak law of large numbers, more precisely L1-law of large numbers,

for heterogenous weak mixing processes and arrays [28]. A notable and valuable characteristic of
this result is the absence of a stationarity assumption, thereby broadening the applicability of the
result. The elegance of Hansen’s proof lies in its simplicity, leveraging the standard representation
of the variance of the truncated mean as the weighted Cesàro sum of covariances, and bounds the
latter using the mixing inequality for bounded random variables.

As noted by Hansen [28], strong mixing implies weak mixing, and weak mixing, in turn, im-
plies ergodicity, moreover this nesting is strict. However, for any process (Wn)n∈N, the sequence
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of mixing coefficients (αW (n))n∈N is monotonically decreasing. Consequently, their Cesàro sum
converges to zero if and only if αW (n) → 0 as n → ∞. As a result, the classes of weakly mixing
and strongly mixing random sequences coincide. Thus, for weakly dependent sequences, Hansen’s
theorem can be stated as follows:

Theorem A.3 (Hansen, 2019). Consider a strongly mixing R-valued process (Wn)n∈N, and define
the sequence of partial sums Sn :=

∑n
k=1Wk, n ≥ 1. Additionally, suppose that the condition

lim
B→∞

sup
n≥1

1

n

n∑
k=1

E(|Wk|1(|Wk| ≥ B)) = 0 (32)

holds. Then, we have
Sn

n
− E(Sn)

n

L1

→ 0, n→ ∞.

Proof. Hansen stated and proved this theorem, in a bit more general setting, for triangular arrays
of weakly mixing variables (See Theorem 1 on page 4 in [28]). For making the explanation self-
contained, we present the proof of this simpler version here.

Without the loss of generality we can assume that E(Wn) = 0, n ∈ N. Let ε > 0 be arbitrary
and choose B > 0 such that

sup
n

1

n

n∑
k=1

E(|Wk|1(|Wk| > B)) < ε. (33)

Let us introduce

W ′
n =Wn1(|Wn| ≤ B)− E(Wn1(|Wn| ≤ B))

W ′′
n =Wn1(|Wn| > B)− E(Wn1(|Wn| > B)).

Obviously, Wn =W ′
n +W ′′

n , n ∈ N hence by the triangle inequality and (33), we have

1

n
E

∣∣∣∣∣
n∑

k=1

Wk

∣∣∣∣∣ ≤ 1

n
E

∣∣∣∣∣
n∑

k=1

W ′
k

∣∣∣∣∣+ 2

n

n∑
k=1

E(|Wk|1(|Wk| > B)) <
1

n
E

∣∣∣∣∣
n∑

k=1

W ′
k

∣∣∣∣∣+ 2ε. (34)

Furthermore, W ′
n satisfies the bound |W ′

n| ≤ 2B, and for its mixing coefficient αW ′
(n) ≤ αW (n),

n ∈ N holds, consequently by the mixing inequality for bounded variables (cf. Theorem A.5 in [27]
or the proof of Lemma A.1. in [36]),

|E(W ′
kW

′
l )| = |Cov(W ′

k,W
′
l )| ≤ 16B2αW (|k − l|).

By Jensen’s inequality, we can estimate

E2

∣∣∣∣∣
n∑

k=1

W ′
k

∣∣∣∣∣ ≤
n∑

k,l=1

E(W ′
kW

′
l ) ≤ 16B2

n∑
k,l=1

αW (|k − l|) = 16B2n

(
αW (0) + 2

n∑
k=1

αW (k)

)
.

Substituting this into (34) yields

1

n
E

∣∣∣∣∣
n∑

k=1

Wk

∣∣∣∣∣ < 4B

(
αW (0)

n
+

2

n

n∑
k=1

αW (k)

)1/2

+ 2ε,

where the upper bound tends to 2ε as n → ∞ since (Wn)n∈N is strongly mixing, and thus
lim supn→∞

1
nE |

∑n
k=1Wk| < 2ε holds for arbitrary ε > 0 which completes the proof.

Remark A.4. The average uniform integrability condition (32) is automatically satisfied if the
process (Wn)n∈N has a uniformly bounded moment supn∈N E(|Wn|r) <∞ for some r > 1.
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Our objective is to establish the (functional) central limit theorem for certain functionals of the
sequence of iterates (Xn)n∈N when (Yn)n∈N is merely α-mixing and stationarity is not assumed.
While we studied this problem in the context of stochastic gradient Langevin dynamics [36], our
focus was limited to stationary data streams. Our approach relied significantly on Corollary 2 in
[29], which offers broad applicability, extending even to non-stationary processes. However, the
condition limn→∞ n−1E(S2

n) = σ2 required by this corollary is not generally met in cases when the
exogenous regressor (Yn)n∈N is non-stationary.

Very recently there was major progress on the functional CLT for non-stationary mixing se-
quences. In [41] Merlevède, Peligrad and Utev answered the question raised by Ibragimov con-
cerning the CLT for triangular arrays of non-stationary weakly dependent variables under the
Lindeberg condition (cf. page 1 in [26]). Subsequently, Merlevède and Peligrad proved the func-
tional CLT for triangular arrays satisfying a dependence condition weaker than the standard strong
mixing condition, termed the weak strong mixing condition [39]. Both of these results require the
condition:

n∑
k=1

Var(Wk) = O(Var(Sn)) (35)

which is difficult to verify in general. A key contribution of our paper is the derivation of a
Cramér-Rao lower bound for the variance of partial sums in (35), facilitating a functional CLT
when (Xn)n∈N forms a Markov chain in a random environment (See Section 2).

Essentially, aside from certain moment conditions, Theorem 1 in Ekström’s paper [16] mandates
only the verification that the α-mixing coefficients exhibit a sufficiently rapid decrease:

Theorem A.5 (Ekström, 2014). Let {ξn,i | 1 ≤ i ≤ dn, n ∈ N} be an array of R-valued random

variables with Eξn,i = 0, 1 ≤ i ≤ dn, n ∈ N, and define Sn =
∑dn

k=1 ξn,k, n ∈ N. Assume that for
some r > 0,

i. sup
n∈N

max
1≤i≤dn

E|ξn,i|2+r <∞, and

ii. supn∈N
∑∞

k=0(k + 1)2
(
αξn,·(k)

) r
4+r <∞,

where αξn,·(·) denotes the strong mixing coefficient corresponding to the nth row in the array.

Then the distributions Law(d
−1/2
n Sn) and N (0,Var(d

−1/2
n Sn)) are weakly approaching, that is

for any bounded continuous function g : R → R,

E
[
g
(
d−1/2
n Sn

)]
−
∫
R
g
(
Var(d−1/2

n Sn)
1/2t

) 1√
2π
e−

t2

2 dt→ 0 as n→ ∞.

Proof. For the proof, we refer the reader to [16].

Corollary A.6. Let (Wn)n∈N be a sequence of R-valued zero mean random variables. Suppose there

exists r > 0 such that supn∈N E|Wn|2+r < ∞ and
∑∞

k=0(k + 1)2
(
αW (k)

) r
4+r < ∞ holds. Under

these conditions, the distributions of n−1/2Sn and N (0,Var(n−1/2Sn)) are weakly approaching.
Moreover, if the sequence (n/σ2

n)n≥1 is bounded, where σ2
n = ES2

n, n ∈ N, then Law(Sn/σn)
converges weakly to the standard normal distribution.

Proof. The first part of the statement is immediately follows from Theorem A.5 with ξn,i =
√
n

σn
Wi,

1 ≤ i ≤ dn = n, n ≥ 1, since ξn,· and W have the same α-mixing coefficient for every n.

As for the second part, let ξn,i =
√
n

σn
Wi, 1 ≤ i ≤ n, n ≥ 1. Easily seen that max1≤i≤n E|ξn,i|2+r ≤

(n/σ2
n)

1+r/2E|Wi|2+r hence by Theorem A.5, for any bounded continuous function g : R → R,

E

[
g

(
n−1/2

n∑
k=1

ξn,k

)]
−
∫
R
g(t)

1√
2π
e−

t2

2 dt→ 0, as n→ ∞,

which completes the proof.

The next important remark in its original form can be found in Ekström’s paper (c.f. Remark
1 on page 1 in [16]).

Remark A.7. Assume that for r > 2, supn∈N E|Wn|r < ∞ and
∑∞

k=0

(
αW (k)

)1− 2
r < ∞. Then

the variance of n−1/2Sn is bounded.
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B Counterexample to long-term contractivity condition

In this point we present an example for a stationary stochastic process (Yn)n∈N and a function
γ : Y → (0,∞), outlined in Balázs Felsmann’s Master’s thesis, where E(γ(Y0)) < 1, and despite
the favorable mixing properties of (Yn)n∈N, the long-term contractivity condition (9) fails to hold.

Let (Zn)n∈Z be a sequence of i.i.d. Bernoulli variables with P(Z0 = 0) = P(Z0 = 1) = 1/2, and
define the process

Yn = Zn + Zn−1, n ∈ Z,
which takes its values in Y = {0, 1, 2}. Clearly, (Yn)n∈N is a stationary process such that Yn and Ym
are independent for |m−n| > 1 hence αY (n) = 0 for n ≥ 2. We consider a function γ : Y → (0, 1),
where γ(i) = γi, i = 0, 1, 2 will be specified later. Let us introduce the following sequences.

an = E

(
n∏

k=1

γ(Yk)

)
, bn = E

(
1{Zn=0}

n∏
k=1

γ(Yk)

)
, cn = E

(
1{Zn=1}

n∏
k=1

γ(Yk)

)
, n ∈ N. (36)

Clearly, we have an = bn + cn, n ∈ N, moreover we can write

bn+1 = E

(
1{Zn+1=0}1{Zn=0}

n+1∏
k=1

γ(Yk)

)
+ E

(
1{Zn+1=0}1{Zn=1}

n+1∏
k=1

γ(Yk)

)

=
1

2
(γ0bn + γ1cn),

and similarly

cn+1 = E

(
1{Zn+1=1}1{Zn=0}

n+1∏
k=1

γ(Yk)

)
+ E

(
1{Zn+1=1}1{Zn=1}

n+1∏
k=1

γ(Yk)

)

=
1

2
(γ1bn + γ2cn),

hence the linear recursion [
bn+1

cn+1

]
=

1

2
Γ

[
bn
cn

]
(37)

holds, where Γ =

[
γ0 γ1
γ1 γ2

]
, and b0 = c0 = 1/2. Thus for (an)n∈N, we have

an =
1

2n+1
[1, 1]Γn

[
1
1

]
.

By setting γ0 = 3, γ1 = γ2 = 0, we obtain a0 = 1 and an = 1
2 (3/2)

n, for n ≥ 1, thus an → ∞, as
n → ∞. For ε ∈ (0, 1/4), let us define γε : Y → (0,∞), γε(y) = γ(y) + ε, y = 0, 1, 2. So, we have
E(γε(Y0)) = 3/4 + ε < 1, on the other hand

E1/n

(
n∏

k=1

γε(Yk)

)
≥ E1/n

(
n∏

k=1

γ(Yk)

)
=

3

2
2−1/n, n ≥ 1,

and thus

lim inf
n→∞

E1/n

(
n∏

k=1

γε(Yk)

)
≥ 3

2

which means that the long-term contractivity condition fails to hold in this situation.

C Coupling condition for MCREs

In this section, our primary objective is to establish an upper bound for the non-coupling prob-
abilities as in Definition 1.1. Our approach refines the proof of Lemma 3.10 in [36]. To achieve
this, we introduce the following lemma, which is identical to Lemma 7.4 in [35]. It describes the
consequences of the drift condition satisfied by Q(yk−1) . . . Q(yl), where y ∈ YN and k, l ∈ N, l < k
are arbitrary and fixed.
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Lemma C.1. For x ∈ X , y ∈ YN and k, l ∈ N, l < k, we have

[Q(yk−1) . . . Q(yl)V ] (x) ≤ V (x)

k−1∏
r=l

γ(yr) +

k−1∑
r=l

K(yr)

k−1∏
j=r+1

γ(yj).

Proof. We proceed by induction. Let x ∈ X and l ∈ N be arbitrary but fixed. For the base case
k = l + 1, we have

[Q(yl)V ] (x) ≤ γ(yl)V (x) +K(yl), (38)

which follows directly from the drift condition (7).

Induction hypothesis: Assume that the inequality holds for some k > l, with fixed x ∈ X and
l ∈ N:

[Q(yk−1) . . . Q(yl)V ] (x) ≤ V (x)

k−1∏
r=l

γ(yr) +

k−1∑
r=l

K(yr)

k−1∏
j=r+1

γ(yj). (39)

Induction step: We verify that inequality (39) holds for k + 1. By the drift property for Q(yk) we
have

[Q(yk)V ](x) ≤ γ(yk)V (x) +K(yk).

Operators V 7→ [Q(y)V ], y ∈ Y are linear, monotone and for V ≡ 1 [Q(y)V ] ≡ 1, y ∈ Y.
Therefore, taking into account that successive applications of kernels are evaluated in reverse order
(see the remark following Definition 2.1), we can write

[Q(yk) . . . Q(yl)V ] (x) = [Q(yk−1) . . . Q(yl)[Q(yk)V ]] (x)

≤ γ(yk) [Q(yk−1) . . . Q(yl)V ] (x) +K(yk),

thus by applying the induction hypothesis (39), we obtain

[Q(yk) . . . Q(yl)V ] (x) ≤ γ(yk)

V (x)

k−1∏
r=l

γ(yr) +

k−1∑
r=l

K(yr)

k−1∏
j=r+1

γ(yj)

+K(yk)

= V (x)

k∏
r=l

γ(yr) +

k∑
r=l

K(yr)

k∏
j=r+1

γ(yj)

which completes the proof.

In our earlier papers (See Lemma 7.1 in [35] and Lemma 3.9 in [36]), we relied on special
cases of the following lemma. It is also a variant of Lemma 6.1 in [22], albeit in a somewhat
broader context. Such representations of parametric kernels satisfying the minorization condition
(8) can be deemed standard. For the sake of completeness and to ensure self-containment of our
explanation, we present and prove it in its most general form.

Lemma C.2. Let R > 0 be arbitrary and suppose the parametric kernel Q : Y×X ×B(X ) → [0, 1]
satisfies the minorization condition given by (8). Then there exists a measurable mapping TR :
X × Y × [0, 1] → X such that

Q(y, x,A) =

∫
[0,1]

1TR(x,y,u)∈A du,

for all x ∈ X , A ∈ B(X ) and y ∈ Y. Furthermore, for any fixed y ∈ Y, there exists a Borel set
U = U(y) ∈ B([0, 1]) with Lebesgue measure Leb1(U) ≥ 1− β(R, y) such that for u ∈ U ,

TR(x1, y, u) = TR(x2, y, u), x1, x2 ∈
−1

V ([0, R]). (40)
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Proof. We proceed as in Lemma 7.1 in [35], following the proof of Lemma 6.1 in [22]. The case
of countable X is straightforward and thus omitted. For the uncountable case, we can assume, by
the Borel isomorphism theorem, that X = R and B(X ) = B(R) is the standard Borel σ-algebra of
R.

It is easy to see that if β(R, y) = 0 for some y ∈ Y in the minorization condition (8), then for

any A ∈ B(X ) and x ∈
−1

V ([0, R]), both Q(y, x,A) ≥ κR(y,A) and Q(y, x,X \ A) ≥ κR(y,X \ A)
hold simultaneously. Consequently, we have

Q(y, ·, A)|−1

V ([0,R])
= κR(y,A), A ∈ B(X ).

For x ∈
−1

V ([0, R]), A ∈ B(X ) = B(R), and y ∈ Y let

qR(y, x,A) :=


1

β(R,y) [Q(y, x,A)− (1− β(R, y))κR(y,A)] if β(R, y) ̸= 0

0 if β(R, y) = 0

Additionally, introduce the pseudoinverses of the corresponding cumulative distribution functions
as follows:

Q−1(y, x, z) := inf{r ∈ Q | Q(y, x, (−∞, r]) ≥ z}
κ−1
R (y, z) := inf{r ∈ Q | κR(y, (−∞, r]) ≥ z}

q−1
R (y, x, z) := inf{r ∈ Q | qR(y, x, (−∞, r]) ≥ z}.

There exists a measurable mapping χ : [0, 1] → [0, 1]2 such that the pushforward measure

χ∗(dx) equals dxdy. In other words, for every Borel set B ∈ B([0, 1]2), Leb2(B) = Leb1(
−1
χ (B)),

where Lebk refers to the Lebesgue measure on [0, 1]k, k = 1, 2. Finally, we define

TR(x, y, u) =

{
1χ(u)1≥β(R,y)κ

−1
R (y, χ(u)2) + 1χ(u)1<β(R,y)q

−1
R (y, x, χ(u)2) if V (x) ≤ R

Q−1(y, x, χ(u)2) if V (x) > R.

It is evident that x 7→ TR(x, y, u) is constant on
−1

V ([0, R]) whenever χ(u)1 ≥ β(R, y), implying

(40) with U =
−1
χ ([β(R, y), 1]× [0, 1]).

Furthermore, for any fixed r ∈ R, y ∈ Y and x ∈
−1

V ([0, R]) by the change of variable formula
and the definitions of TR and qR, we can write∫

[0,1]

1{TR(x,y,u)≤r} du =

∫ 1

0

∫ 1

0

1{1s≥β(R,y)κ
−1
R (y,t)+1s<β(R,y)q

−1
R (y,x,t)≤r}dsdt

= (1− β(R, y))

∫ 1

0

1κ−1
R (y,t)≤rdt+ β(R, y)

∫ 1

0

1q−1
R (y,x,t)≤rdt

= (1− β(R, y))κR(y, (−∞, r]) + β(R, y)qR(y, x, (−∞, r])

= Q(y, x, (−∞, r]).

Similarly, for x /∈
−1

V ([0, R]), we have∫
[0,1]

1TR(x,y,u)≤r du =

∫ 1

0

∫ 1

0

1Q−1(y,x,s)≤rdsdt =

∫ 1

0

1Q−1(y,x,s)≤rds = Q(y, x, (−∞, r]).

thus the claimed identity holds.
It remains only to show that TR is measurable with respect to sigma algebras B(R)⊗ B(Y)⊗

B([0, 1]) and B(R). Indeed, TR is a composition of measurable functions.
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By Assumption 2.2 B), there exists 0 < r < 1/γ̄−1 such that β̄ := supy∈Y β(R(y), y) < 1 holds

with R(y) := 2K(y)
rγ(y) . We define the measurable mapping

(x, y, u) 7→ f(x, y, u) := TR(y)(x, y, u), x ∈ X , y ∈ Y, u ∈ [0, 1]. (41)

Let (εt)t∈N be a sequence of i.i.d. variables uniformly distributed on [0, 1] such that sigma
algebras Fε

0,∞ and σ(Yt, Xt, t ∈ N) are independent. Furthermore, for s ∈ N and x ∈ X , let us
introduce the family of auxiliary processes

Zx,y
s,t =

{
x if t ≤ s

f(Zx,y
s,t−1, yt−1, εt) if t > s,

(42)

where y = (y0, y1, . . .) ∈ YN can be any fixed trajectory. Clearly, for Y = (Yn)n∈N, the process

ZXs,Y
s,t , t ≥ s is a version of (Xt)t≥s. In the forthcoming part of the section, we will prove that

this process satisfies the coupling condition. First, we will show that for any fixed x ∈ N and
y ∈ YN, the process Zx,y

s,t , t ≥ s is a Harris recurrent time-inhomogeneous Markov chain. The
next lemma provides a quenched version of the coupling condition, controlling the coupling time
between iterations starting from different initial values.

Lemma C.3. Let x1, x2 ∈ X and y ∈ YN be arbitrary but fixed. Then for 0 < m < n, we have

P(Zx1,y
0,n ̸= Zx2,y

0,n ) ≤ β̄m+(1+r)⌊
n−1
m ⌋

V (x1) + V (x2)

2

⌊n−1
m ⌋∏

j=0

γ(yj) +

m−1∑
k=0

k⌊n−1
m ⌋∑

l=k

K(yl)

⌊n−1
m ⌋∏

j=1

γ(yl+j)

 .

Proof. For the sake of brevity, we employ a more concise notation: Zi
n = Zxi,y

0,n , i = 1, 2, and n ∈ N,
moreover we introduce

Zn :=
(
Z1
n, Z

2
n

)
, ∥Zn∥ := max

(
V (Z1

n), V (Z2
n)
)

and the sequence of successive visiting times

σ0 := 0, σk+1 = inf
{
n > σk

∣∣∥Zn∥ ≤ R(yn)
}
, k ∈ N

that are obviously Fε
1,∞-stopping times. Note that on {∥Zn∥ > R(yn)} we have

γ(yn)(V (Z1
n) + V (Z2

n)) + 2K(yn) ≤ (1 + r)γ(yn)(V (Z1
n) + V (Z2

n)) (43)

and thus for k ≥ 1 and s ≥ 1, by the Markov inequality, we obtain

P(σk+1 − σk > s | Fε
1,σk

) ≤ E

P(Cσk+s | Zσk+s−1)

s−1∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk


≤ (1 + r)γ(yσk+s−1)

R(yσk+s)
E

(V (Z1
σk+s−1) + V (Z2

σk+s−1)
) s−2∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk

 ,

where Cn is the shorthand notation for the event {∥Zn∥ > R(yn)}, n ∈ N.
By the tower rule, we can write

E

(V (Z1
σk+s−1) + V (Z2

σk+s−1)
) s−2∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk

 =

E

E
[
V (Z1

σk+s−1) + V (Z2
σk+s−1)

∣∣Fε
1,σk+s−2

] s−2∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk

 .
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Using the Markov property of (Z̄n)n∈N and the drift property of the parametric kernel (7), we
have

E
[
V (Z1

σk+s−1) + V (Z2
σk+s−1)

∣∣Fε
1,σk+s−2

]
= E

[
V (Z1

σk+s−1) + V (Z2
σk+s−1)

∣∣Z̄σk+s−2

]
= [Q(yσk+s−2)V ](Z1

σk+s−2) + [Q(yσk+s−2)V ](Z2
σk+s−2)

≤ γ(yσk+s−2)
(
V (Z1

σk+s−2) + (Z2
σk+s−2)

)
+ 2K(yσk+s−2).

Now, inequality (43) yields

E
[
V (Z1

σk+s−1) + V (Z2
σk+s−1)

∣∣Fε
1,σk+s−2

]
1Cσk+s−2

≤ (1+r)γ(yσk+s−2)
(
V (Z1

σk+s−2) + (Z2
σk+s−2)

)
.

Finally, we arrive at

E

(V (Z1
σk+s−1) + V (Z2

σk+s−1)
) s−2∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk

 ≤

(1 + r)γ(yσk+s−2)E

(V (Z1
σk+s−2) + V (Z2

σk+s−2)
) s−3∏
j=1

1Cσk+j

∣∣∣∣∣∣Fε
1,σk

 .

Iteration of this argument in s− 2 steps leads to the following estimation:

P(σk+1 − σk > s | Fε
1,σk

) ≤
(1 + r)s−1

∏s−1
j=1 γ(yσk+j)

R(yσk+s)
E
(
V (Z1

σk+1) + V (Z2
σk+1)

∣∣Zσk

)
≤
r(1 + r)s−1

∏s
j=1 γ(yσk+j)

2K(yσk+s)

[
γ(yσk

)
(
V (Z1

σk
) + V (Z2

σk
)
)
+ 2K(yσk

)
]

≤ (1 + r)sK(yσk
)

s∏
j=1

γ(yσk+j),

where we used that V (Z1
σk
) + V (Z2

σk
) ≤ 2R(yσk

), and K(·) ≥ 1.
Along similar lines, we can show that

P(σ1 > s) ≤
(1 + r)s−1

∏s−1
j=1 γ(yj)

R(ys)
[γ(y0) (V (x1) + V (x2)) + 2K(y0)]

≤ (1 + r)s
s∏

j=1

γ(yj)

[
γ(y0)

2
(V (x1) + V (x2)) +K(y0)

]
.

Clearly, for any 0 < m ≤ n, on the event {σm > n} we have {σk+1 − σk > ⌊n/m⌋} ∩ {σk ≤
k ⌊n/m⌋} for some k = 0, 1, . . .m − 1 hence by the union bound and the estimates we obtain for
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the time elapsed between consecutive visits, we can write

P(σm > n) ≤ P

(
m−1⋃
k=0

{σk+1 − σk > ⌊n/m⌋} ∩ {σk ≤ k ⌊n/m⌋}

)

≤
m−1∑
k=0

P ({σk+1 − σk > ⌊n/m⌋} ∩ {σk ≤ k ⌊n/m⌋})

=

m−1∑
k=0

k⌊n/m⌋∑
l=k

P (σk+1 − σk > ⌊n/m⌋ | σk = l)P(σk = l)

≤ P(σ1 > ⌊n/m⌋) +
m−1∑
k=1

k⌊n/m⌋∑
l=k

P (σk+1 − σk > ⌊n/m⌋ | σk = l)

≤
[
γ(y0)

2
(V (x1) + V (x2)) +K(y0)

]
(1 + r)⌊n/m⌋

⌊n/m⌋∏
j=1

γ(yj)

+ (1 + r)⌊n/m⌋
m−1∑
k=1

k⌊n/m⌋∑
l=k

K(yl)

⌊n/m⌋∏
j=1

γ(yl+j).

Next, we estimate the probability of no-coupling on events when small sets are visited at least
m-times. By Lemma C.2 and the choice of R(y) in the definition of f in (41) and (42), for each

j = 1, . . . ,m, x 7→ f(x, yj , εσj+1) is constant on the level set
−1

V ([0, R(yσj
)]) with probability at

least 1− β̄ independently of Fε
0,σj

thus no-coupling happens with probability at most β̄. Therefore,
we can estimate:

P(Zx1,y
0,n ̸= Zx2,y

0,n , σm < n) ≤ β̄m.

Finally, we combine this upper bound with that one what we got for the tail probability of the
visiting times, and obtain

P(Zx1,y
0,n ̸= Zx2,y

0,n ) ≤ P(Zx1,y
0,n ̸= Zx2,y

0,n , σm < n) + P(σm > n− 1)

≤ β̄m +

[
γ(y0)

2
(V (x1) + V (x2)) +K(y0)

]
(1 + r)⌊

n−1
m ⌋

⌊n−1
m ⌋∏

j=1

γ(yj)

+ (1 + r)⌊
n−1
m ⌋

m−1∑
k=1

k⌊n−1
m ⌋∑

l=k

K(yl)

⌊n−1
m ⌋∏

j=1

γ(yl+j)

= β̄m + (1 + r)⌊
n−1
m ⌋

V (x1) + V (x2)

2

⌊n−1
m ⌋∏

j=0

γ(yj) +

m−1∑
k=0

k⌊n−1
m ⌋∑

l=k

K(yl)

⌊n−1
m ⌋∏

j=1

γ(yl+j)


which completes the proof.

Proof of Lemma 2.4. The process ZX0,Y
0,n , n ∈ N is a version of (Xn)n∈N thus to simplify the

notation in this proof, we may and will redefine (Xn)n∈N as Xn := ZX0,Y
0,n . Furthermore, we

indicate the dependence of Z on the driving noise by writing Zx,y,ε
s,t instead of Zx,y

s,t , where ε refers
to ε = (ε1, ε2, . . .). We also introduce the usual left shift operation: (Sy)j = yj+1 and similarly
(Sε)j = εj+1, j ∈ N.

For arbitrary but fixed j ∈ N and x ∈ X , we can write

P(ZXj ,Y,ε
j,j+n ̸= Zx,Y,ε

j,j+n) = P(ZXj ,S
jY,Sjε

0,n ̸= Zx,SjY,Sjε
0,n )
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thus by the tower rule and Lemma C.3, for 0 < m < n, we have

P(ZXj ,S
jY,Sjε

0,n ̸= Zx,SjY,Sjε
0,n ) = E

[
P
(
Z

Xj ,S
jY,Sjε

0,n ̸= Zx,SjY,Sjε
0,n

∣∣∣FY
0,∞ ∨ σ(Xj)

)]
≤ β̄m+

(1 + r)⌊
n−1
m ⌋E

E [V (Xj) | FY
0,∞
]
+ V (x)

2

⌊n−1
m ⌋∏

r=0

γ(Yr+j) +

m−1∑
k=0

k⌊n−1
m ⌋∑

l=k

K(Yl+j)

⌊n−1
m ⌋∏

r=1

γ(Yl+r+j)

 .
(44)

As for E
[
V (Xj) | FY

0,∞
]
, by Lemma C.1, we obtain

E
[
V (Xj) | FY

0,∞
]
= E

[
[Q(Yj−1), . . . , Q(Y0)V ](X0) | FY

0,∞
]

≤ E(V (X0))

j−1∏
i=0

γ(Yi) +

j−1∑
r=0

K(Yr)

j−1∏
i=r+1

γ(Yi),
(45)

where we used that the initial state X0 is independent of σ(Yn, εn+1 | n ∈ N).
For n > 1, we choose mn = n−1

⌊n1/2⌋−1
. It is easy to check that mn ≥

⌊
n1/2

⌋
for n > 1 hence

β̄mn ≤ β̄⌊n
1/2⌋. Furthermore, let us fix γ′ > γ̄ such that γ̃ := (1 + r)γ′ < 1. Then by Assumption

2.2 A), there exists N ∈ N such that

sup
j≥−1

E

[
K(Yj)

n∏
k=1

γ(Yk+j)

]
≤ (γ′)n, n ≥ N,

where for our convenience, we employ the convention K(Y−1) := 1. Using (45), for
⌊
n1/2

⌋
≥ N ,

we obtain

E

E [V (Xj) | FY
0,∞
] ⌊n1/2⌋−1∏

r=0

γ(Yr+j)

 ≤ E(V (X0))E

⌊n
1/2⌋+j−1∏
i=0

γ(Yi)

+

j−1∑
r=0

E

K(Yr)

⌊n1/2⌋+j−1∏
i=r+1

γ(Yi)


≤ E(V (X0))(γ

′)⌊n
1/2⌋+j +

j−1∑
r=0

(γ′)⌊n
1/2⌋+j−1−r

≤ (γ′)⌊n
1/2⌋

(
E(V (X0)) +

1

1− γ′

)
.

Similarly, for
⌊
n1/2

⌋
− 1 ≥ N , we get

E

V (x)

⌊n1/2⌋−1∏
r=0

γ(Yr+j)

 ≤ (γ′)⌊n
1/2⌋V (x),

moreover

mn−1∑
k=0

k(⌊n1/2⌋−1)∑
l=k

E

K(Yl+j)

⌊n1/2⌋−1∏
r=1

γ(Yl+r+j)

 ≤
mn−1∑
k=0

k(⌊n1/2⌋−1)∑
l=k

(γ′)⌊n
1/2⌋−1

= mn

[
(mn − 1)(

⌊
n1/2

⌋
− 2)

2
+ 1

]
(γ′)⌊n

1/2⌋−1.

To sum up, and taking into account that mn = O(n1/2), we obtain

P(ZXj ,Y,ε
j,j+n ̸= Zx,Y,ε

j,j+n) ≤ β̄n1/2−1 +
(1 + r)⌊n

1/2⌋−1

2
(γ′)⌊n

1/2⌋
(
V (x) + E(V (X0)) +

1

1− γ′

)
+ cn3/2(1 + r)⌊n

1/2⌋−1(γ′)⌊n
1/2⌋−1

≤ β̄n1/2−1 +

[
(V (x) + E(V (X0)) +

1
1−γ̃

2
+ cn3/2

]
γ̃⌊n

1/2⌋−1
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for some c > 0, whenever n ≥ (N + 2)2 which implies the desired estimate.

The proof of Theorem 2.7 follows a similar approach to that of Lemma 2.4, with a few key
differences. The most significant distinction to keep in mind is that the distribution of X∗

0 heavily
depends on the whole trajectory (Yn)n∈Z.

Lemma C.4. Under the conditions of Theorem 2.7, we have

lim sup
n→∞

E1/n

[
V (X∗

0 )

n−1∏
k=0

γ(Yk)

]
≤ γ̄.

Proof. Without the loss of generality, for our convenience, we can assume that the i.i.d. driving
noise is a double-sided infinite process (εn)n∈Z, as well. Let x ∈ X be arbitrary and deterministic.

Then by Corollary 1 and the subsequent Note in [49], Law(Zx,Y
0,m ) = Law(Zx,Y

−m,0) → Law(X∗
0 ), as

m→ ∞ in total variation hence

E

[
V (X∗

0 )

n−1∏
k=0

γ(Yk)

]
= lim

M→∞
lim

m→∞
E

[
min

(
M,V (Zx,Y

−m,0)

n−1∏
k=0

γ(Yk)

)]
. (46)

By Lemma C.1, we can write

E

[
V (Zx,Y

−m,0)

n−1∏
k=0

γ(Yk)

∣∣∣∣∣FY
−∞,∞

]
= [Q(Y−1) . . . Q(Y−m)V ](x)

n−1∏
k=0

γ(Yk)

≤ V (x)

n−1∏
r=−m

γ(Yr) +

−1∑
r=−m

K(Yr)

n−1∏
j=r+1

γ(Yj)

thus by the tower rule, we have

E

[
min

(
M,V (Zx,Y

−m,0)

n−1∏
k=0

γ(Yk)

)]
≤ V (x)E

[
n−1∏

r=−m

γ(Yr)

]
+

−1∑
r=−m

E

K(Yr)

n−1∏
j=r+1

γ(Yj)

 .
(47)

.
By Assumtion 2.2, for any fixed γ̄ < γ′ < 1, exists N ∈ N such that

E

K(Y0)

n∏
j=1

γ(Yj)

 ≤ (γ′)n, n ≥ N,

and thus we can further estimate the right-hand side in (47) as follows:

E

[
min

(
M,V (Zx,Y

−m,0)

n−1∏
k=0

γ(Yk)

)]
≤ V (x)(γ′)n+m +

−1∑
r=−m

(γ′)n−1−r

≤ V (x)(γ′)n+m +
(γ′)n

1− γ′
.

Substituting this estimate back into (46) yields

lim sup
n→∞

E1/n

[
V (X∗

0 )

n−1∏
k=0

γ(Yk)

]
≤ γ′.

Now, taking the limit γ′ ↓ γ̄ gives the desired inequality.
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Proof of Theorem 2.7. We consider the processes ZX0,Y
0,n and Z

X∗
0 ,Y

0,n , n ∈ N, where the latter is a
version of (X∗

n)n∈N. For the coupling time, along similar lines as in the proof of Lemma 2.4, by
using Lemma C.3, we obtain

P(τ > n) ≤ P
(
ZX0,Y
0,n ̸= Z

X∗
0 ,Y

0,n

)
≤ β̄m +

(1 + r)⌊
n−1
m ⌋

2
E

(E [V (X∗
0 ) | FY

−∞,∞
]
+ E(V (X0))

) ⌊n−1
m ⌋∏

r=0

γ(Yr)


+ (1 + r)⌊

n−1
m ⌋

m−1∑
k=0

k⌊n−1
m ⌋∑

l=k

E

K(Yl)

⌊n−1
m ⌋∏

r=1

γ(Yl+r)

 .
where 0 < m < n. Again, as in the proof of Lemma 2.4, let us fix mn = n−1

⌊n1/2⌋−1
, n > 1, and

γ′ > γ̄ such that γ̃ := (1+ r)γ′ < 1. By Assumption 2.2 and Lemma C.4, we can choose N ∈ N be
so large that such that

E

[
K(Y0)

n∏
k=1

γ(Yk)

]
≤ (γ′)n and E

[
V (X∗

0 )

n−1∏
k=0

γ(Yk)

]
≤ (γ′)n, n ≥ N.

For
⌊
n1/2

⌋
≥ N , we have

P(τ ≥ n) ≤ β̄⌊n
1/2⌋ + (1 + r)⌊n

1/2⌋−1

2
(1 + E(V (X0))) (γ

′)⌊n
1/2⌋

+ (1 + r)⌊n
1/2⌋−1

mn−1∑
k=0

k(⌊n1/2⌋−1)∑
l=k

(γ′)⌊n
1/2⌋−1

≤ β̄⌊n
1/2⌋ + 1 + E(V (X0))

2
γ̃⌊n

1/2⌋ + γ̃⌊n
1/2⌋−1

mn−1∑
k=0

(k(
⌊
n1/2

⌋
− 2) + 1),

where
∑mn−1

k=0 (k(
⌊
n1/2

⌋
− 2) + 1) = O(n3/2) which completes the proof.
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