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Abstract

Nonlinear time series models with exogenous regressors are essential in econometrics, queu-
ing theory, and machine learning, though their statistical analysis remains incomplete. Key
results, such as the law of large numbers and the functional central limit theorem, are known for
weakly dependent variables. We demonstrate the transfer of mixing properties from the exoge-
nous regressor to the response via coupling arguments. Additionally, we study Markov chains
in random environments with drift and minorization conditions, even under non-stationary
environments with favorable mixing properties, and apply this framework to single-server
queuing models.

Introduction

It is very common in natural and social sciences that for describing the time evolution of certain
quantity of interests, researchers build models incorporating input variables not influenced by
other variables in the system and on which the output variable depends. Such explicative variables,
especially in econometrics literature, are called exogeneous covariates. Let X', ), and Z be complete
and separable metric spaces. The X-valued process (X;):en represents the time series of interest
and the Y-valued process (Y;)iez denotes the exogeneous covariate. We postulate that (Xi)ien
satisfies the recursion

X1 = f(Xt’ Yt,5t+1)v (1)

where X is a possibly random initial state, f : X x Y x Z — X is a measurable function, and
er € Z,t € N represents the noise entering to the system.

The exploration and analysis of non-linear autoregressive processes of this kind constitute a
recent and actively developing area of research. In particular, there is a pronounced surge of interest
within the fields of applied statistics and econometrics regarding the investigation of standard time
series models that incorporate exogeneous regressors. Notable examples include a novel class of
Poisson autoregressive models with exogeneous covariates (PARX) introduced by Agosto et al. [1]
for modeling corporate defaults. Additionally, the recent research by Gorgi and Koopman [23] has
provided valuable insights on observation-driven models involving beta autoregressive processes
with exogeneous factors. Furthermore, the theory of non-linear autoregressive processes allows
researchers for analyzing large-scale stochastic optimization algorithms, which play a pivotal role
in machine learning applications, see [7, 35].

The statistical analysis of general non-linear time series models with exogenous covariates ne-
cessitates the law of large numbers (LLN), central limit theorem (CLT), and others. However, this
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framework is presently unavailable. Researchers have investigated these models under additional
assumptions that facilitate their analysis. The ergodicity of iterations given by (1) has been exten-
sively studied under the restrictive assumption that the data (Y;):ecz and the noise (g¢)sen are both
i.i.d. and also independent of each other (See, [14], [30], and [48]). In this case, the process (X¢)ten
is a Markov chain, and this setting now can be considered to be textbook material. Moving beyond
this simplifying yet unrealistic assumption, Debaly and Truquet established general results for get-
ting stationarity, ergodicity and stochastic dependence properties for general nonlinear dynamics
defined in terms of iterations of random maps [13]. Additionally, there are earlier contributions
that consider more general schemes and investigate them without assuming independence. For
instance, in the paper of Borovkov and Foss [6], Foss and Konstantopoulos [20] and also in the
monograph of Borovkov [5] such processes are treated under the name ”stochastically recursive
sequences”. Among the most recent results, we can mention the paper [24] by Gyorfi et al. that
introduces a novel concept called strong stability and provides sufficient conditions for strong sta-
bility of iterations given by (1). Furthermore, new findings related to Langevin-type iterations
with dependent noise and multitype branching processes were also established.

Assuming that the noise (&¢)tey is i.i.d. and independent of the regressor Y := (Y;)tez, we
have

P(Xy € B|(Xj)j<t. Y) :/ Lip(x, 1, vio1,2eBy v(dz), t>1, (2)
zZ

where v = Law(egg). Clearly, the process (X;);en defines a time-inhomogeneous Markov chain
conditionally on the exogeneous process (Y;);en being interpreted as random environment. This
characterization leads us to term this process a Markov chain in a random environment (MCRE).
This concept is proved to be a good compromise since, many interesting models can be treated as a
MCRE. Furthermore, it is worth noting that the rich theory of general state Markov chains equips
us with powerful analytical tools to study and understand these processes in-depth. Markov chains
in random environments were first studied on countable state spaces in [11, 12, 44]. On general
state spaces [31, 32, 47] investigated their ergodic properties under a rather stringent hypothesis:
essentially, the Doeblin condition was assumed (see Chapter 16 of [42]). Such assumptions are
acceptable on compact state spaces but they fail in most models evolving in R?. For non-compact
state spaces the results of [48] apply (see also Chapter 3 of [5]) but the system dynamics is assumed
to be strictly contracting, which, again, is too stringent for most applications. Markov chains in
stationary random environments were first treated on non-compact state spaces under Lyapunov
and “small set”-type conditions in [22] and [35]. The former paper was based on the control of
the maximal process of the random environment but its techniques worked only assuming that
the system dynamics is contractive with respect to a certain Lyapunov function, whatever the
random environment is. In [35] this decreasing property is required only in an averaged sense.
This result covers important model classes that none of the previous works could: queuing systems
with non-independent service times (or inter-arrival times), linear systems that are stable in the
average, and stochastic gradient Langevin dynamics when the data is merely stationary. In [49],
under a notably weaker, yet in certain aspects, optimal form of the Lyapunov and the small set
conditions, Truquet showed that for a given strongly stationary process (Y;)ien, there exists a
process (X¢)ien satisfying the iteration in (1), and the distribution of the process (Xi, Yi)ien is
unique. Additionally, if the process (Y;)ien is ergodic, then the process (X, Y:)ien is ergodic as
well, hence the strong law of large numbers applies.

As far as we know, there are no known results regarding MCREs when the environment (Y;)ten
is non-stationary. Furthermore, the sequence of iterates (X;);cn is typically non-stationary even in
cases when the environment is stationary but the initial state xg € X is independent of o({e¢, Y; |
t € N}). Weak dependence assumptions offer a valuable approach to address this problem while
allowing for long-range dependencies to be present. The recent work by Truquet [50] directed our
attention to the fact that through arguments based on coupling inequalities, it can be established
under general conditions that the mixing properties of the process (Yi):en are inherited by the
iterates (Xt)ten. Combining this idea with Corollary 2 from Herrndorf’s paper [29], we were able
to establish the functional central limit theorem for the stochastic gradient Langevin iteration in
cases where the data stream is stationary and exhibits favorable mixing properties [36].

Rosenblatt introduced the alpha-mixing coefficient in 1965, defined the class of strongly mixing
processes and proved the central limit theorem for strongly mixing stationary processes [46]. Over



the past decades, researchers have established numerous strong results for non-stationary mixing
processes, including various versions of the law of large numbers and the central limit theorem. The
main goal of this paper is to investigate the sequence of iterates (Xi):cn through the transitions
of mixing properties, leveraging these established results.

The paper is organized as follows: In the first section, we provide sufficient conditions for a
recursion of the form (1) to inherit the mixing properties of the process (Y;)ien. Leveraging these
conditions along with existing results from the literature on strongly mixing sequences, we prove the
strong and L' law of large numbers for suitable functionals of the process (X;)ien. Furthermore,
we also show the possibility of constructing confidence intervals.

The second section focuses on the investigation of MCREs under long-term contractivity and
minorization conditions satisfied by models discussed in [35]. By establishing a coupling inequality
and a moment estimate for such chains, the framework presented in Section 1 becomes directly
applicable to these processes. Additionally, in this section, using the Cramér-Rao bound, we prove
an inequality for variances of sums crucial for the functional cental limit theorem by Merlevede
and Peligrad [39]. To the best of our knowledge, this technique represents a novel contribution to
the theory of MCRESs. In the third and final section of the paper, we revisit single-server queuing
models discussed in [35] and [34], and prove the functional central limit theorem for them.

Notations and conventions. Let Ry := {z € R: z > 0} and Ny := {n € N: n > 1}. Let
(Q2, F,P) be a probability space. We denote by E[X] the expectation of a random variable X. For
1 < p < oo, LP is used to denote the usual space of p-integrable real-valued random variables and
| X||p stands for the LP-norm of a random variable X.

In the sequel, we employ the convention that inf ) = oo, Zﬁc =0and HL = 1 whenever k,l € Z,
k > 1. Lastly, (- | -) denotes the standard Euclidean inner product on finite dimensional vector
spaces. For example, on RY, (z | y) = Zle Tl

1 Transition of mixing properties

In this section, we study the transition of mixing properties of the covariate process to the response
and its immediate consequences under minimal assumptions on the iteration (1). To this end, we
first introduce the basic concepts that we use in our analysis. Several notions of mixing exist in the
literature. The interested reader should consult the excellent survey by Bradley [8], for example.
In our context a-mizing holds particular importance, therefore let us first recall the key concepts
related to this type of mixing. We define the measure of dependence, denoted as a(G,H), for any
two sub-g-algebras G, H C F, using the equation:
a(G,H)= sup |P(GNH)-PG)P(H)|. (3)
GeG,HeH
Furthermore, considering an arbitrary sequence of random variables (W;)icz, we introduce
the o-algebras ft‘j‘g =0 (Wi, t <k <s), where —oo <t < s < co. Additionally, we define the
dependence coefficients as follows:
a}”(n) =« (]'"Evoo,j,ijznm) , j €.
The mixing coefficient of W is o'V (n) = sup;y oz}/v(n), n > 1 which is obviously non-increasing.
Note that, for strictly stationary W, o} (n) does not depend on j, and thus o' (n) = af’ (n).
We classify W as strongly mixing if lim, ., @'V (n) = 0. Strongly mixing processes are signifi-
cant because many fundamental theorems known for sequences of i.i.d. random variables can be
appropriately extended to such processes. The primary importance of this lies in enabling the
statistical analysis of heterogeneously distributed dependent data even when the exact underlying
dynamics generating the time series are unknown. The available theoretical framework includes
the strong law of large numbers by McLeish [38], the L!-law of large numbers by Hansen [28],
and the Central Limit Theorem by White [52], among others. For better clarity, these results are

collected in Appendix A.

Now, we turn to the analysis of the iteration (1). For better readability, we introduced the
complete separable metric space Z in the introduction. However, we can always assume that



Z = [0,1] without loss of generality. Indeed, since Z is a complete separable metric space, the
Borel isomorphism theorem guarantees the existence of a bi-measurable bijection ¢ : Z — A, where
A C[0,1]. Given an iteration of the form (1), we can always define an equivalent iteration:

Xep1 = f(X4, Yy, E011),
where €, = ¢(e¢) € [0,1], t € N, and

f@yu) = flz,y,0 ' (v), z€X,yeY ueA

Since this transformation does not alter the dynamics of the iteration, we conclude that it suffices
to assume Z = [0, 1]. Therefore, from this point onward, we adopt this assumption.
Let us introduce the notation Y,, = (Y,,,en41), n € N. Furthermore, for a fixed x € X, we

define the process
x &€, 1f t S S
Zé;t — . : (4)
f (Zs,t—la Y;t—h&:) , ift>s.
Note that, for s € N and ¢ > s, Zg,(ts - X,

Definition 1.1. We say that the iteration (1) satisfies the coupling condition if for some xo € X,

o
sgg]P’( ”+n7éZ“+n)—>O, n — 00.
j

Bounding the mixing coefficient of a process is typically a non-trivial task in general. The

following lemma presents an upper bound for the a-mixing coefficient of the iterates (Xp)nen
given a¥ .

Lemma 1.2. Assume that Xo is a random initial state independent of o(Yn,ent1 | n € N),
moreover the iteration (1) satisfies the coupling condition with xo € X.
Then for 0 < m < n, we have

aX(n) < aY(m + 1)+ b(n—m),
j.g+n Jid+n

where b(n) = sup ;e P (Z e A ) .

Proof. Let 5 € N and n > 1 be arbitrary. Suppose A € }"Xj and B € }"j_ﬁ_noo are arbi-

trary events. Then by the definition of the generated o-algebra, exist collections of Borel sets
(Ak)kgj; (Bk)kzj+n - B( ) such that

A:(XkeAk,nggj)andB:(XkGBk,k2j+n).

Let 0 < m < n be arbitrary, and introduce the event B = (Zmom i €Br, kE>j+ n) . We can
estimate

|[P(ANB) — P(A)P(B)| = |cov(1a,1p)| < [cov(la,1z)| + [cov(la,1p —15)|. (5)

Using that A is o(Xy) V .7-"8;-71 V Fi; and B is ]:j};m 0o V Fiimi1,0o-measurable, and that Xo
is independent of o(Y;,, €41 | n € N), we have
cov(Ta, 1) SE[E [1a(15 - ‘XOH < AFY VT Flimoe V Fopmsto0)
(ij 17}—]1;77100) SCM (m+1)

Observe that on the event {X,;, = Z79,, ..}, we have 15 = 15, and thus the second term
in (5) can be estimated as

(Cov(La, 15 = 15)| = [E[(La — P(A)(Lp = 1)l <P (23510 # 285 im)

=P ( J—lf;bmj+n # ZJI-?-m J+n> < b(n —m).



Given that A € ]:(i(j and B € FX

j4n,0o Were arbitrary, we have shown that

AW FEL F o) < a¥ (m+1) + b(n —m).

Since the upper bound is independent of j, taking the supremum over j, we arrive at the desired
inequality. O

Remark 1.3. In the above Lemma, it is enough to prescribe that an appropriate version of X
satisfy the coupling condition. The proof of the coupling condition for Markov chains in random
environments (See Appendiz C) hinges on this observation.

Remark 1.4. The recent work by Truquet [50] employs a similar inequality (equation (3) on
page 3) to establish the transition of mizring in random iteration. However, that approach differs
from ours in two significant aspects. Firstly, the analysis in [50] is limited to discrete-valued time
series models with strictly stationary exogenous covariates. Secondly, unlike in Lemma 1.2, the
upper estimate of the strong mizing coefficient in [50] incorporates the tail sum of non-coupling
probabilities.

Combining Lemma 1.2 with the theorems on strongly mixing processes presented in Appendix
A, we obtain the following general umbrella theorem. This result equips us with essential tools
for the statistical analysis of time series involving non-stationary exogenous covariates, including
versions of the weak and strong law of large numbers and theoretical guarantees for constructing
confidence intervals. However, this theorem does not cover all relevant aspects. For strongly mixing
processes, there are further results concerning the distribution of extreme values [51], concentration
inequalities [40], and the law of the iterated logarithm [45]. Leveraging Lemma 1.2, these results
can be readily extended to random iterations driven by strongly mixing sequences.

Theorem 1.5. Assume that Xo is a random initial state independent of o(Yn,ent1 | n € N),
moreover the iteration (1) satisfies the coupling condition with xo € X.

Consider a measurable function ® : X — R such that p, = E[®(X,,)] exists and is finite for
alln € N. Let b(n), n € N be as in Lemma 1.2, and define

n

Sp= (®(Xk) =), n>L

k=1

Then the following statements hold:

A) If the process (Yn)nen is strongly mizing and sup, oy E|®(X,)[? < oo for some p > 1, then the
L' law of large numbers holds:

— =0, as n— oo.

B) Assume that there exist constants ¢ > 0 and r > 2 such that

T

a?(n) +b(n) <ecn 2.

Moreover, suppose that for some r/2 < p <r < 00, we have sup, ey E|®(X,,)|P < co. Then,
S,

n a.s.
— =0, as n— oo.
n

C) If for r > 2, sup, oy E|®(X,)|" < 0o and

f:(k +1)2 (a?(zf)% + b(k)%) < o0,
k=0

then the distributions of n=/2S,, and N(0, Var(n='/28,,)) are weakly approaching, that is for
any bounded continuous function g : R — R,

E {g (n*1/25n)} — / g (Var(n*1/25n)1/2t) \/%efé dt =+ 0 as n — oo.
R



Furthermore, there exists o > 0 such that for any a > 0, we have

1 ¢
limsupP(n~'/2|S,| > a </]17aac ot)——e~ 7 dt.
PR IS 2 0) < f Taarelot) 52

n—oo
Proof. Define the process W,, = ®(X,,) — pin, for n € N. By Lemma 1.2, we have
W) < aX(n) <a¥ ([n/2) +1) +b(n— [n/2]). (6)

From inequality (6), it follows immediately that if (f’n)neN is strongly mixing, then so is
(Wy)nen. Thus, part A) follows directly from Theorem A.3 and Remark A.4.

For part B), again using (6) and applying Remark A.2, we see that the conditions of Theorem
A.1 are satisfied, from which the result follows immediately.

Finally, under the assumptions of part C), we can verify that

>kt 1% (k)7 < oo,
k=0

and hence by Theorem A.5 and Corollary A.6, the distributions of n='/25,, and N'(0, Var(n=1/28,,))
are weakly approaching. Furthermore, Remark A.7 guarantees the existence of ¢ > 0 such that
oy, = Var(n~1/25,)1/2 < ¢ for all n > 1. Therefore, for any a > 0, we have

P(n='/2S,| > a) < P(n~Y/2|S,| > a) — / 1o (o)
R

1
[ 1y (ot
/R[ ape(0t) =

Taking the upper limit as n — oo yields

1 2
e /2t
2T

e*t2/2 dt.

1 2
limsup P(n~"/?|S,| > a) S/Laac(at) e /2 4.
[ o) —

n— oo 2

2 Markov chains in random environments

This section is devoted to study an important class of random iterations incorporating exoge-
neous covariates, called Markov chains in random environments. For convenience, we adopt the
parametric kernel formalism to set Lyapunov and “small set”-type conditions. Let us introduce

Q(y,z, B) =/ Liy(a,y,»)eBy dz-
[0,1]
The function @ : X x Y x B(X) — [0, 1] is a parametric probabilistic kernel, which means:

i For each pair (y,z) € Y x X, the mapping B — Q(y, x, B) defines a Borel probability measure
on the Borel sigma-algebra B(X).

ii For any choice of set B € B(X), the mapping (z,y) — Q(y, x, B) is a measurable function with
respect to the product sigma-algebra B(X) @ B()).

Definition 2.1. Let P : X xB — [0, 1] be a probabilistic kernel. For a bounded measurable function
¢: X = R, we define

[Pé](z) = //Y ¢(2)P(x,dz), x € X.

This definition makes sense for any nmon-negative measurable ¢, too.



Consistently with Definition 2.1, for y € ), we write Q(y)¢ to denote the action of the kernel
Q(y,-,-) on ¢. It is important to note that if y;,...,yr—1 € Y with 0 <1 < k, then the successive
application of the kernels is interpreted in the order corresponding to the composition of conditional
expectations:

QYr-1) - - Q(y)d] = [Q(y)[- - - [Q(yr—1)]]]-

This convention will be important later in the proof of Lemma C.1.

We say that @ satisfies the drift (or Lyapunov) condition if there exists a measurable mapping
V : X — [0,00), which we call Lyapunov-function, and measurable functions v, K : Y — (0, 00),
such that for all (y,z) € Y x X,

@@W@%=AV@Q@JA@SKMW@+K@- (7)

We may, and from now on, we will assume that K(.) > 1 in the drift condition (7).
The parametric kernel obeys the minorization condition with R > 0, if there exists a probability
kernel kg : Y x B(X) — [0,1] and a measurable function § : [0,00) x J — [0,1) such that for all

(.2, A) € Yx V ([0, R]) x B(X),
Q(y,x, A) Z (1 - ﬁ(R7 y))”R(:U?A)' (8)

The minorization condition stipulates the existence of “small sets”. Therefore, it is also referred
to as a "small set”-type condition.

If v, K are independent of y and v < 1 then (7) is the standard drift condition for geometrically
ergodic Markov chains, see Chapter 15 of [42]. Ergodic properties of Markov chains in stationary
random environments was studied by Lovas and Résonyi in [35] when ~(y) > 1 may well occur but
the environment satisfies the following long-term contractivity condition:

n—oo

lim sup E1/™ (K(YO) 11 V(Yk)> <1 (9)
k=1
Under the assumption that E [log(v(Y0))+] + E [log(K (Yp))+] < oo and

lim sup H (Y )" <1, P—as., (10)

which is notably weaker than (9), in [49] Truquet proved that there exists a stationary process
((Yy, X))tez satisfying the iteration (1), and the distribution of this process is unique. If, in
addition, the environment (Y;):cz is ergodic, the process ((Yz, X;))tez is also ergodic. As a re-
sult, the strong law of large numbers holds for any measurable function ¥ : ) x X — R with
E(|T (Yo, Xg)|) < oo i.e.

1 n
— E U (Y, X3)) — E(¥ (Yo, X()), asn — oo, P— aus.
n

k=1

In this case, the condition (10) boils down to E [log(v(Ys))] < 0. Truquet has also shown that if
the iteration (1) is initialized with deterministic 2o € X, denoted as (X7°),en, then Law(X70)
converges to Law(X{) in total variation as n — oo, where Law(X() here denotes the marginal
distribution of the stationary solution ((Yz, X;))tez. On the other hand, contrarily to [35], Truquet
did not provide a rate estimate.

Independent and identically distributed sequences of random variables (Y;,),en satisfy the long-
term contractivity condition (9) if E(v(Yp)) < 1. Naturally, the question arises whether the
inequality (9) still holds when E(y(Yy)) < 1 and the sequence oY (n), n € N, tends to zero
rapidly enough. In his Master’s thesis on the stability of general state Markov chains [19], Déniel
Felsmann provided an example of a strongly stationary stochastic process (Y;,)necz and a function 7 :
Y — (0,00) such that E(y(Yp)) < 1, yet lim,, oo E (TT7_; 7(Y%)), i-e., the long-term contractivity



condition in (9) is not satisfied. Since the thesis is available only in Hungarian, the example in
question is presented in Appendix B.

In the forthcoming discussion, we refrain from assuming stationarity for the environment
(Yo)nen. Instead, we regard it purely as a sequence of weakly dependent random variables. Con-
sequently, the anticipation of the existence of limiting distributions, as demonstrated in [35], [36],
or [49], is not viable. Instead, we employ the methodology delineated in Section 1 to establish the
L'-law of large numbers and the functional central limit theorem.

We impose the following additional assumptions on the environment. In absence of stationarity,
it is required that the long-term contractivity condition (9) holds uniformly along trajectories. With
the second condition, essentially, we stipulate that the minorization coefficient 8 : [0,00) x Y —
[0,1) appearing in (8) can be substituted with a constant on appropriately chosen level sets of the
Lyapunov function. This latter criterion is satisfied in all applications discussed in [35].

Assumption 2.2. We assume that the parametric kernel Q : Y x X x B(X) — [0,1] satisfies the
drift condition (7) with v, K : Y — (0,00) such that

E (K(Yj) 11 V(Ykﬂ-)) <oo, jEN, n>1.
k=1
Furthermore the following two conditions hold:
A) 7 := limsup sup E/" (K(Yj) H’Y(Yk+j)> < 1, where we define K(Y_1) := 1.
n—oo j>-—1 el

B) For some 0 < r < 1/4 — 1, the parametric kernel Q obeys the minorization condition with

2K (y) =
) and (3 := iggﬁ(R(y),y) <1

R(y) =

Lemma 2.3. Let (X,)nen be a Markov chain in a random environment (Yy,)nen with parametric
kernel @ : Y x X x B(X) — [0,1] satisfying part A) of Assumption 2.2. Additionally, let Xo be a
random initial state independent of o(Yy, ent1 | n € N) and such that E(V(Xp)) < oo.

Then for any measurable function ® : X — R satisfying

|®(z)]" < C(1+V(x)), = € X.
for some constants C' > 0 and r € R, it follows that

supE (|2(X,,)|") < oo.
neN

Proof. Using Lemma C.1 from Appendix C,we can derive the following estimate:

E(1QVarr) ... QV)V](X0)) < E(V(X0))E (H v(Yw) Y E (K0 ] )
k=0 k=0

j=k+1
Given Assumption 2.2, the Cauchy criterion applies to the sum in the second term. Consequently,

ilégE([Q(Ynfl) - Q(Y0)V](Xo)) < o0,

which further implies

ilégﬂ‘: (I2(Xn)[") < C(1+ Z‘égE(V(X"))) =C(+ ilégE([Q(Kz—l) - Q(Yo)V](Xo))) < o0

O

The following lemma ensures that under the drift and minorization conditions specified in
Definition 2.2, the coupling condition holds for a suitable version of the chain.



Lemma 2.4. Let (X,)nen be a Markov chain in a random environment (Y, )nen with random
initial state Xo independent of o(Yp,ent1 | n € N) such that E(V(Xy)) < oo. Then under
Assumption 2.2, the chain (X, )nen admits a random iteration representation of the form (1) with
appropriate f : X x Y x [0,1] = X which satisfies the coupling condition. More precisely, there
exist c1,co > 0 constants depending only on 7, 3 and r such that

swpP (2, # Z211) < 0 (V@) + BV(X0) + e, n 2 N

JEN

holds for x € X and appropriate N > 0.

Proof. The proof follows a similar argument as in [36]. For detailed steps, see Appendix C. O

With the above Lemma and the results obtained for general random iterations in Section 1 in
hand, we are now ready to prove the following theorem.

Theorem 2.5. Let (X,,)nen be a Markov chain in a random environment (Y, )nen satisfying
Assumption 2.2, with Xo a random initial state independent of 0(Yn,ent1 | n € N), such that
E[V(Xp)] < co.

Consider a measurable function ® : X — R satisfying

|®(2)]P <C(1+V(z)), =€k, (11)

for some constants C > 0 and p > 1, and define

n

Spi=> (®(Xi) —E[®(X))]), neN.
k=1

Under the above conditions, the following statements hold:
A) If the environment process (Y )nen is strongly mizing, then the L' law of large numbers holds:

S 1
- L—) 0, asn— oo.
n
B) Suppose that for some constants ¢ > 0 and r > 2, the miring coefficients satisfy a¥ (n) <
en” ™2, n €N, and (11) holds with an exponent p such that r/2 < p <r < co. Then,
S,
- g 0, asn— oo.
n
C) If (11) holds with p > 2 and the mizing coefficients satisfy

3 (n+1)2aY (n)77 < oo, (12)

neN

then the distribution of S,//n and N(0,Var(n='/28,)) are weakly approaching. Moreover,
there exists o > 0 such that for any a > 0, we have

1,
limsupP (n~1/%[S,| > a) < / g o (o) ——=e 72 dt.
n—)oop | n| o o R [ ] ( )\/271'

Proof. For any n,j € N, the sigma-algebras Fj ; V F). and Fi; V Fi i o

j n+j,00 are independent.
Hence, by [9, Lemma 8 on page 13|, we obtain

Y Y _ Y e Y e
o (fo,jvfnﬂyoo) = a(Fo; VFL s Farjoo V Frtioo)
Y Y € £
Sa (]:071'7‘7:n+j70<>) ta ( 1,js n+j7<>0) ]

where Y,, = (Yo, en41) for n € N.



On the other hand, since F7 ; and F_ ;  are also independent, we have o (]'—16,3‘7 flﬂ.,oo) =0.
By the definition of the dependence coefficient (3), the reverse inequality holds trivially, and
therefore

% Y Y Y .
& (fo,j’fnﬂ,oo) = (Fo s Fatjoo) s M EN

This implies that oY (n) = a¥(n) for all n € N.

Furthermore, by Lemma 2.3, the bound sup,,cy E|®(X,,)|P < oo holds for the same p > 1 as in
(11).

Finally, by Lemma 2.4, the chain (X, )nen admits a random iteration representation satisfying
the coupling condition with b(n) = 0(6_6"1/2) for some ¢ > 0.

Therefore, all conditions of Theorem 1.5 are satisfied, which completes the proof.
O

Following Lindvall [33], Gyorfi and Morvai introduced a stronger concept of stability known as
forward coupling [25]. This notion of stability has proven useful in the study of queuing systems.
Specifically, under mild ergodicity assumptions, it was found that waiting times in single-server
queuing systems operating in a subcritical regime are forward coupled with a stationary and ergodic
sequence (See in Section 3).

Definition 2.6. We say that the sequence (W, )nen is forward coupled with the sequence (W), )nen
if there exists an almost surely finite random time T such that

W, =W,
forn>rT.

The next theorem revisits the case of a stationary environment, previously studied by Gerencsér
[21], Résonyi [22], Lovas [35], Truquet [49], and others, and establishes novel results.

Theorem 2.7. Let (Y,)nez be a strongly stationary process, and assume that Assumption 2.2
holds. Furthermore, let Xo be a random initial state independent of (Y, ens1 | m € Z, n €
N). Consider the stationary process (Yo, X, )nez satisfying the iteration (1). Then, appropriate
versions of (Xn)nen and (X)nen are forward coupled. Moreover, the tail probability of the random
coupling time T satisfies the estimate

1/2

P(r >n) <c (14+E(V(Xp)))e ="
with constants c1,ca > 0 depending only on 5,7 and r.

Proof. The proof follows similar lines as the proof of Lemma 2.4. For readability, it is provided in
Appendix C. O

The following important corollary of the above theorem provides an explicit and tractable
upper bound for the total variation distance between Law(X,,) and Law(X};), n € N. This bound
is significantly sharper than those presented in our earlier paper [35].

Corollary 2.8. Under the conditions of Theorem 2.7, the following rate estimate holds:

[ Law(X,) — Law(X ) |lrv < 2¢1 (1 +E(V(Xo))) e—cznl/z’
with the same constants c¢; and co as in Theorem 2.7.

Proof. According to the optimal transportation cost characterization of the total variation distance,
we have

1
2 Law(X,) — Law(X*)|lpy < inf sy (dz, dy),
5ILaw(X,) ~Law(X)lry < _inf [ 1 n(dady)

10



where C(X,,, X}}) denotes the set of probability measures on B(X x X') with marginals Law(X,,) and
Law(X}), respectively. By a slight abuse of notation, we can assume that (X, )nen and (X;)nen
are forward coupled. Using Theorem 2.7, we can estimate the right-hand side further by writing

1/2

inf © dz,dy) <P(X, # X)) =P(r >n) < 1+ E(V(X, e
el [ Ly nldedn) SPOG £ XD =B > ) S (14 BV (X0)

which gives the desired inequality. O

In the remaining part of this section, we aim to verify the Central Limit Theorem (CLT) for
certain functionals of a Markov chain in a non-stationary random environment. There are multiple
approaches to achieve this result. For instance, we can use Corollary A.6, or the results described
in Merlevede and Peligrad’s recent paper [39]. The advantage of the latter approach is that it not
only yields the usual CLT but also the functional CLT, and the conditions on the decay of the
mixing properties are weaker. Regardless of the chosen method, we must verify the equality (35),
which states that the variance of the sum grows at the same rate as the sum of the variances.
Using either Remark A.7 or Lemma 2.3, it can be easily shown that Var(S,) grows at most at the
same rate as the sum of the variances Var(®(Xy)), k = 1,2,...,n. However, it is far from trivial
to establish a lower bound for Var(S,,) to ensure the equality in (35). For this, we follow a new
approach employing the law of total variance and the Cramér-Rao bound known from estimation
theory and information geometry. For any fixed n > 1, we treat the conditional distribution of
X = (X1,...,X,) given the environment Y := (Yp,...,Y,,_1) as a parametric statistical model,
where the environment Y is considered as the parameter. For technical reasons, we will restrict
our discussion in the remaining part of this section to the case when Y = R™ with m € N,..

Assumption 2.9. We assume the existence of a reference Borel measure v on B(X) such that, for
all (y,xz) € Y x X, the measure Q(y,x,) is absolutely continuous with respect to v. Furthermore,
the parametric family of conditional densities

dQ(ya T,

Yoy—=pylz|z)= P )(z), (x,2) e X x X

and the measurable function ® : X — R, playing the role of an estimator, satisfy all the reqularity
conditions required for the Cramér-Rao inequality (See Theorem 1A on page 147 in [3] or for a
more general version, Corollary 5 in [2]).

Lemma 2.10. Let (X,,)nen be a Markov chain in a random environment (Y, )nen with parametric
kernel Q : Y x X x B(X) — [0,1] and ® : X — R satisfying Assumption 2.9. Suppose that Xy is a
random initial state independent of o(Yy, ent1 | n € N) with distribution Law(Xo) being absolutely
continuous w.r.t. v, where v is as in Assumption 2.9.

Then, for the variance of the parial sum S, = ®(X1) + ... + ®(X,,), we have the lower bound

Var Z |: ||ayk [ n |Y}2:| , n > 1,

k=0
where r(Ii) denotes the spectral radius of the Fisher information matriz
I == E (0, 1082, (Xir1 | X0)) " (9 logpy(Xes1 | Xi)|Y] .
Proof. By the law of total variance, we can write
Var(S,) =E [Var(Sn | F({n_l)} —|—Var( [ | gn 1]) >E [Var(Sn | F({n_l)} . (13)

For typographical reasons, we use the notations Vary(S,) := Var(S, | Y) and Covy(:,-) =
Cov(-,- | Y). The conditional variance of the partial sum can be expressed as follows:

Vary (S Z Covy (®(X3,), ®(X;)) = 1T Covy (B(X))1, (14)
k,l=1

11



where Covy (®(X)) is the conditional covariance matrix of the random vector
O(X) = ((X1),..., B(X,)) T,

1=11,...,1]" € R™ denotes the size n vector of 1-s.
Using the Cramér-Rao inequality, we arrive at the following estimate

Covy (P(X)) > (8,0 (Y)I(Y) (8,0 (Y)) T, (15)

where ¢ : V" — R", ¢(y) = E [(I)(X) |Y = ﬂ and I(y) is the Fisher information matrix.

Note that 0,¢(y) € Lin(Y™,R™) and I(y) € Lin(Y™) are linear operators with block represen-
tation o a

Byd(y) = [0y b (y), - -, Dy, b(y)]
I(y)l =E [(% logp(X | )" (9y, logp(X | p)) ‘Z = y] = —E[02, logp(X | )|Y =],

where 0y, ¢(y) € Lin(Y,R"), i = 0,. —1, and [I(y)]x € Lin(Y), k,1 =0,...,n — 1.
By the Markov property, for the condltlonal density of X given y can be expressed as the
product of 7(Xy) = dLagi,EXO) and the parametric transition densities p,, , (zx | zx=1), k=1,...,n

Consequently, we obtain
log p(X | y) =log w(Xo) + Y 1ogpy,_, (X | Xx—1),
k=1

which implies that the Fisher information matrix has a block-diagonal form:

()]t = {Ik =E [(3% 10g Py, (Xi1 | Xi)) " (9y, 10g py (Xt | Xk))‘X = y} ifh=1
= 0 i k£

Observe that 1T6‘y¢( ) =20 E[ » | Y =y] € Lin(Y", R) hence substituting back the above
form of the Fisher information matrix into (14) and applying (15) yields

|
—

n

Vary (S Z Sn | Y] I 0, B[S | Y] > 10y, E [Sn | Y]|1%,

1
0 T(Ik

where r(I},) refers to the spectral radius of the Fisher operator Ij,. At least, by (13), we obtain

=
Il

Var(s Z[ 0B | VI (16)

O
Combining the above lemma with Corollary A.6 leads to the following significant conclusion.

Corollary 2.11. In addition to the conditions of Theorem 2.5 and Lemma 2.10, assume that the
function ® : X — R satisfies inequality (11) for some exponent p > 2. Further, suppose that

n—1

1 1 2
hn%fnzxa[( 0, E[S. | V]

Then it is evident that the sequence (n/Var(Sy)),,~, is bounded. Consequently, by Corollary A.6,
it follows that in addition to the results of Theorem 2.5, we also have

1

Var(s, 72 5n = N(0.1), asn — o0

in distribution. Therefore, the Central Limit Theorem holds.

12



To derive a lower bound for Var(S,,), we strongly relied on the Cramér-Rao bound, which re-
quires certain differentiability and regularity conditions. However, these differentiability assump-
tions can be relaxed, either by applying a version of the Cramér—Rao inequality developed for
non-differentiable models [18], or by using some other information inequality (see, e.g., paragraph
3 in Chapter 30 of [3]).

It seems that it might be as difficult to evaluate the lower bound in (16) as to directly verify

that
Var (S, <Z Var(® ) .

To show that the lower bound on the right-hand side of (16) is tractable, we establish a more explicit
sufficient condition under the assumptions that X', C R and the function f in the iteration (1)
satisfies some monotonicity condition.

Proposition 2.12. Assume that X,)Y C R, moreover the function f : X x Y x [0,1] — R
defining the iteration (1) is continuously differentiable and monotonically increasing in its first
two variables. Besides the assumptions of Lemma 2.10, assume also that

r* = SUII\)IE [r(In)] = sug]E (Oy log py(Xnt1 | Xn))2 < 00, (17)
ne ne

and there exists a function g : Y x [0,1] = (0,00) such that
Oyf(x,y,u) > g(y,u), w,y €R,uel01]

Then, for the variance of the partial sums S, = X1 + ...+ X,,, we have

1
Var(S,) > ey Z g(Yi,e1)]
k=0

Proof. By the Cauchy-Schwartz inequality, for kK =0,...,n — 1, we have

E[0,E[S, | Y] <E [ (OpE[S, | YDQ] Efr(1,)]

1
r(Ik)
hence using the inequality (17), we arrive at

n—1

Var(s >ZE[ ||aykEu|Y||2] ZE WE[S, | Y. (18)

Fix 0 < k < n. Then, by the monotonicity assumption, we have 0, E[X;|Y] > 0 for any
I =1,...,n. Hence, using that the process (¢,),>1 is i.i.d. and independent of the environment
(Yy)nen, we can estimate as

Oy E[Sn | Y] = Z E[X) | Y] 2 0y,E [Xpq1 | Y] = E [0y f ( Xk, Yi,€k41) | Y] = E[g(Y, 1) | Y].

Substituting this estimate back into the inequality (18), we obtain the desired result.
O

Remark 2.13. If the environment (Y, )nez is stationary, then the lower bound for the variance of
Sn = X1+ ...+ X, given in Proposition 2.12 simplifies to

Var(S,) > Elg(Yo. &)

so the inequality required in the assumptions of Corollary 2.11 is clearly satisfied.

Using the recent results by Merlevede and Peligrad in [39], we can derive the following functional
central limit theorem for certain functionals of a MCRE. This result is significantly stronger than
the statement formulated in Corollary 2.11.
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Theorem 2.14. Assume that the conditions of Corollary 2.11 hold, with the exception that instead
of the inequality (12) appearing among the conditions of Theorem 2.5, we only require that

Z n?P=2aY (n) < co.

n>1

Furthermore, for n > 1, let v, (t) = min{l < k < n | Var(Sg) > tVar(S,)}, and for 1 <k <n,
define
P(Xi) — E[D(Xy)]

Ekyn = Var(Sn)1/2

Then the sequence of functions By (t) = Z’;(f) &y t € (0,1], n > 1, converges in distribution

in D([0,1]) (equipped with the uniform topology) to (Bi)icjo,1), where (Bt)iepo,1] s a standard
Brownian motion.

Proof. In the proof, we check the conditions of Corollary 2.2 found on page 3 of [39]. These
conditions can be divided into two groups: conditions on the moments of the random variables
&km, 1 < k < n, and conditions on the mixing properties of these variables. We first verify the
fulfillment of the conditions in the first group.

By Lemma 2.3, we have ¢; = sup,,cy E(|®(X,,)|P) < 00, and Lemma 2.10 ensures that n/Var(S,,)
co for some constant cg > 0 and for all n > 1. Then, we have

1 n 1/2 )
Irnllp = Farrgyi7z 19(X0) ~ EL@(X0]p < 20712 (vw)) 19Xl < 261" eg*n "2,
from which it immediately follows that maxi<g<nl|/knlp — 0 as n — oo, and furthermore,
SUP,,>1 2 opeyllknllz < co. Comparing this with the remark following Corollary 2.2 in [39], we
conclude that condition (3) and the first part of condition (7) related to moments in [39] are satis-
fied. Additionally, condition (1) is inherently satisfied by the array {xn |1 < k <n, n > 1} due
to its definition.

‘We now proceed to verify the conditions related to the mixing properties. The precise definitions
of the weak strong mixing coefficients a1 (k), a1,,(k), and s, (k) can also be found in [39]. For
our purposes, it suffices to note that the following sequence of inequalities holds:

a1n(k) < ag (k) <222V (k), 1<k<n, n>1,
therefore, to verify the second part of condition (7) in [39] and to satisfy condition (8), it is enough

to establish that
Z n2/(p_2)aq>(x)(n) < 00. (19)
n>1

From here, the proof continues by estimating the mixing coefficient a®X) and follows exactly

the same path as described in the proof of Theorem 1.5 and 2.5. By Lemma 2.4, the chain (X,,)nen
1/2
);

admits a random iteration representation satisfying the coupling condition with b(n) = O(e~"

¢ > 0. Therefore, we can estimate
X (n) <aX(n) <a¥(|n/2] +1)+b(n—|n/2]), n>2N,

where N > 0 is as in Lemma 2.4. Considering that Y"°°  n?/®=2p(n — |n/2|) < oo, and that
the condition >, -, n¥®P=2a¥ (n) < oo assumed, we obtain that the infinite series appearing in
condition (19) is convergent.
With this, we have verified all of the conditions of Corollary 2.2 in [39], from which it follows
that the statement formulated in the theorem holds. This completes the proof.
O

Remark 2.15. In the proof of the above Theorem 2.14, we do not use Theorem 2.1 of [39] in its
strongest form, but rather we verify only the conditions of Corollary 2.2. It is likely that Theorem
2.14 can be further strengthened and generalized for Markov chains in a random environment
satisfying a weak-strong mizing-type condition. However, this is beyond the scope of the present
study.
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3 Single server queuing systems

In the early 20th century, Danish engineer Agner Krarup Erlang pioneered what would later be
known as queuing theory [17]. His work at a telephone company, where he developed a mathe-
matical model to determine the minimum number of telephones needed to handle calls efficiently,
laid the foundation for this field. Today, queuing theory extends far beyond telecommunications,
significantly influencing areas like inventory management, logistics, transportation, industrial en-
gineering, and service design. Notably, it plays a key role in reducing costs within product-service
design [43].

For simplicity, we focus on single-server queuing systems with infinite buffer and first-in, first-
out (FIFO) service discipline (see Figure 1). It’s worth noting that more complex queuing systems,
such as those with multiple servers, can be analyzed using analogous methods. Let the time between

Requests ——

Buffer Server
(Infinite capacity) (FIFO discipline)

Figure 1: Schematic overview of the single-server queuing system under investigation: Z,, is the
time between the arrivals of the n-th and (n 4 1)-th customers, S, is the time to serve the n-th
customer, and W, is their waiting time before service.

the arrival of customers n 4+ 1 and n is be denoted by Z,, 11, and the service time for customer
n is given by S, for n € N. Then, the evolution of the waiting time W,, of customer n can be
described by the Lindley recursion

Wn+1 - (Wn+5n _Zn+1)+7 nENa (20)

with Wy := 0, meaning that we begin with an empty queue.

The ergodic theory of general state space Markov chains allows to treat the case where (S, )nen,
(Zn)nen are i.i.d. sequences, independent of each other. However, dependencies frequently arise
in queuing networks when the arrival processes intertwine with the departure processes of other
queues. Additionally, factors like complex processing operations, including batching or the presence
of multiple distinct customer classes, can introduce intricate interdependencies within the system.
Consequently, the renewal process assumption for the arrival process, which makes queueing models
amenable to simple analysis, no longer holds.

To the best of our knowledge, Loynes was the first who studied the stability of waiting times
under the assumption that the pair (S, Z) is merely stationary and ergodic [37]. Stability of W,
n € N means here that there exist a unique limit distribution of W,, as n — oo, whatever the
initialization Wy is. Loynes introduced the terminology categorizing queues as ’subcritical” when
E(So) < E(Zy), ’critical’ when E(Sp) = E(Zp), and ’supercritical” when E(Sp) > E(Zp). Loynes
proved for single-server queuing systems that subcritical queues are stable, supercritical queues are
unstable and critical queues can be stable, properly substable, or unstable [37].

Building upon Loynes’s foundational work, Gyorfi and Morvai expanded and refined the un-
derstanding of these queuing systems in [25]. They extended Loynes’ result by proving that for
subcritical queues, an even stronger version of stability called forward coupling holds also true (c.f.
Definition 2.6). Gyorfi and Morvai’s theorem concerning queues in this general setting reads as
follows:

Theorem 3.1. Let &, = S, — Z,+1 and assume that the process (&,)nez is stationary and ergodic
with E(Sy) < E(Zp). Then (Wyp)nen is forward coupled with a stationary and ergodic (W) )nez
such that W{ = sup,,cy Yn, where Yo =0 and Y, =Y p_, &k, n > 1.

While the aforementioned theorems ensure that the distribution of waiting times converges to
a well-defined limiting law, they regrettably do not furnish any insights into the properties of this
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stationary limit, nor do they shed light on the speed of convergence. When addressing the latter
question, the only available rate estimate that comes to our aid is encapsulated in an inequality
found in Theorem 4 on page 25 of [4], which is expressed as:

|Law(W,,) — Law(W{)|lrv <P (Orr}cin Xy > max(Wy, Wi + fo)) , (21)
<k<n

where &, is as in Theorem 3.1, and (X, )nen is defined as Xo =0, X,, = >} _, &, n > 1. However,
it’s worth noting that the primary limitation of this formula lies in its practical applicability. Eval-
uating the probability on the right-hand side of this equation can be a formidable task, rendering
it impractical as a concrete and readily usable rate estimate.

If the inter-arrival times are i.i.d. and the sequences S and Z are independent of each other,
then the process W can be viewed as a Markov chain in the random environment S, with driving
noise Z. Conversely, if the service times are i.i.d., and again S and Z are independent, W can be
regarded as a Markov chain in the random environment Z, with driving noise S. Therefore, both
of these special cases of queuing systems fall within the theoretical framework outlined in Section
2. In [34, 35], we analyzed such queuing models with an additional Gértner-Ellis-type condition
(see Assumption 3.4 below or Assumption 4.2 in [35]), which is a well-established practice in
queuing theory. For instance, in Section 3 of [25], similar conditions are employed to investigate
the exponential tail behavior of the limit distribution of queue length when arrivals exhibit weak
dependence. Further justification for the applicability of Gartner-Ellis-type conditions can be
found in Remark 4.3 of [35].

In what follows, we revisit the queuing model studied in [35]. Specifically, we consider the case
where S and Z are independent, and the latter is an i.i.d. sequence. The reverse case discussed in
[34] can be treated analogously. We begin by examining the scenario where the sequence of service
times is strictly stationary. Regarding this case, we formulate our standing assumptions.

Assumption 3.2. There exists an M > 0 such that the sequence of service times (Sy)nez is
a strictly stationary process taking values in [0, M]. Furthermore, (Sp)ncz is independent of the
sequence (Zp)nez-

Assumption 3.3. The inter-arrival times (Z,)nez form an i.i.d. sequence of R -valued random
variables, and E[Sy] < E[Z1] holds.

Assumption 3.4. There exists n > 0 such that for all t € (—n,n), the limit

1
F(t) = hm 710gE€t(Sl+”'+Sn)
n—oo N

exists and T is differentiable on (—n,n).

Under Assumptions 3.2, 3.3, and 3.4, by Lemma 4.4 of [35], the sequence of waiting times
(W) nen, defined by the Lindley recursion (20), forms a Markov chain in the random environment
(Sn)nez on the state space X = Ry with parametric kernel

Q(s,w,A) :=P[(w+s—2Z), € A]l,se[0,M,weR,AcB(Ry).
Furthermore, there exists ¢ > 0 such that, with the following coefficients:
V(w):= et — 1, w>0,
v(s):=E {et_(s_zl)] , >0,
K= ™,
the drift condition (7) and the long-term contractivity condition (9) are satisfied, meaning

[Q(s)V](w) < ~(s)V(w) + K,
K T[S

k=1

We now introduce an additional assumption on the inter-arrival times, which will be required
to establish the minorization condition.

and

7 := limsup (]El/"

n— oo
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Assumption 3.5. One has P(Zy > 7) > 0 for

4
T::M—kli.
iz 1

This does not impose a significant restriction, since if Zj is an unbounded random variable,
Assumption 3.5 is automatically satisfied.
By Lemma 4.6 of [35], under Assumptions 3.2, 3.3, 3.4, and 3.5, it can be shown that there

_ -1
exists 8 € (0,1) such that, for all s € [0, M], A€ B(Ry), and w €V ([0, R(s)]),

Q(s,w, A) > (1 - B)dy(A), where R(s) = 25(@))

; (22)

€:= (71—1/2 — 1) /2, and 0p is the one-point mass concentrated at 0.

The main result of Chapter 4, which discusses queuing theory applications in [35], is Theorem
4.7. Tt states that under Assumptions 3.2, 3.3, 3.4, and 3.5, there exists a probability measure .
on B(R,), independent of the initial length of the queue, such that

||LaW(Wn) _ M*”TV S Cle—czhl/S) (23)

for some ci,co > 0. Furthermore, if (S,), o, is ergodic, then for an arbitrary measurable and
bounded function ® : Ry — R,

S(Wo)+ ...+ D(W,_1) _> D(2)ps(d2), 24
n Ry

in LP, for all 1 < p < oo.

Using Theorem 2.7 and Corollary 2.8, we can prove even more. In the queuing model we study,
for instance, the sequence of waiting times (W), ),en is forward coupled with a strictly stationary
sequence (W), cn. This does not require assuming the ergodicity of the service time sequence, and
we obtain a tractable upper bound on the tail probability of the random coupling time. Finally,
we demonstrate a faster convergence rate than that presented in the estimate (23). The following
theorem addresses this result.

Theorem 3.6. Let Assumptions 3.2, 3.3, 3.4, and 3.5 be in force. Then there exists a stationary
process (Sp, W) nez that satisfies the Lindley recursion (20). Moreover, appropriate versions of
the processes (Wy)nen and (W )nen are forward coupled. For the tail probability of the random
coupling time 7, we have the bound

1/2

P(1T > n) < cre” " ! ,

for suitable constants c,cy > 0, depending only on the quantities 3, 7, and €. Furthermore, for
the total variation distance of Law(W,) and Law(W}) we have the following estimate:

| Law(W,) — Law(W?)||rv < 2c1e~™"

with the same constants ¢; and ca.

Proof. The sequence of service times (S, )nen is strictly stationary, so Assumption 2.2 A) simplifies
to the (9) long-term contractivity condition used in our earlier paper [35]. We have already shown
above that this holds under the conditions of the theorem. From the minorization condition (22),
part B) of Assumption 2.2 follows. Thus, we can apply Theorem 2.7, which states that there exists
a stationary process (S, W),z that satisfies the Lindley recursion (20). Moreover, appropriate
versions of the processes (W), )nen and (W) ,en are forward coupled. Considering the specific form
of the Lyapunov function in the drift condition, V(w) = ¢ — 1, and the initial condition Wy = 0,

we obtain
E(V(Wp)) = 0.
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Therefore, for the tail probability of the random coupling time 7, we have

1/2

P(r > n) < c1(1+E(V(Wo)))e ™" = cre=2n'””,

as stated. Finally, the estimate for the total variation distance between Law(W,,) and Law(W})
immediately follows from Corollary 2.8. O

In the remaining part of this section, we relax the assumption that the sequence of service times
(Sn)nez is stationary. We only assume that it is a sequence of weakly dependent variables with
sufficiently favorable mixing properties. Accordingly, our assumptions will be as follows.

Assumption 3.7. We assume that the inter-arrival time sequence (Zy)n>1 1S i.4.d. and indepen-
dent of the service time sequence (Sy)nen. Moreover, we also assume that E(Z3) < oo.

Assumption 3.8. We assume that the service time sequence (Sp)nen takes values in' Y = [0, M].
Fort > 0, we define the function

1
A(t) = limsupsup — logE
n

n—oo jeN

exp (f Z(SkJrj - Zk+j+1)>1 :

k=0
Assume that there exists a parameter t > 0 such that A(t) < 0.

Remark 3.9. In Lemma 4.4 of [35], under Assumption 3.4, we showed that there exists a param-

eter t > 0 such that in Assumption 3.8, A(t) < 0. Although such a condition is quite standard

in both queuing theory and large deviation theory, verifying the differentiability of the function

t — IT'(t) in Assumption 3.4 can be challenging in practice. Moreover, the proof of Lemma 4.4 in

[85] does not generalize to the case of a non-stationary sequence (Sy)nen, Since the definition of

the function A includes a supremum, which prevents the application of convexity-based arguments.
For fired n,j € N, define

1
An,j(t) = - log E

exp (f Z(Sk+j - Zk+j+1)>‘| .

k=0

If limsup,,_, . E(S,) < E(Z1), it can be shown that for sufficiently large n, X;, ;(0) < 0. Addi-
tionally, if the mizing coefficients a®(n) decay sufficiently fast to zero, it can be established that
An.;(0) < oo. However, this alone does not ensure the existence of a parameter t > 0 such that

At) < 0.

The goal of the next proposition is to provide a sufficient condition under which the otherwise
difficult-to-verify requirement on A(¢) in Assumption 3.8 holds. This condition relies on a mixing
property stronger than a-mixing, known as -mixing. In analogy with the dependence measure
a(G,H) introduced in Section 1, we define

P(G N H)

@) =sw{|5EEE

—1HIP’(G)>0, ]P’('H)>0,G€Q7H€’H}. (25)

Furthermore, for an arbitrary sequence of random variables (W;);cz, the sequence of i-mixing
coefficients is defined as

PW(n) =supyp(F¥ , FIY ), neN.

ez —00,j7Y j+n,00

We say that the process (W,,)nez is -mixing if "V (n) — 0 as n — co.

It is straightforward to show that every ¢-mixing process is also a-mixing, but the converse does
not hold. Moreover, -mixing is one of the strongest forms of strong mixing conditions, implying
several others such as a-, 8-, ¢-, and p-mixing. Nevertheless, the class of ¥-mixing processes
remains of considerable interest. For instance, in the case of strictly stationary, finite-state Markov
chains, the notions of a- and t-mixing coincide (See Theorem 3.1 in [8]).
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To formulate the next proposition, we need the notion of stochastic ordering. A real-valued
random variable W7 is said to be stochastically smaller than another random variable Ws, denoted
by W1 j WQ, if

P(W; > 2) <P(Ws >2x), x€R,

or, equivalently,

E[u(W1)] < E[u(W2)],

for every monotonically increasing function u : R — R.

Proposition 3.10. Let the sequence of inter-arrival times (Zp)n>1 be i.i.d. and independent of the
service time sequence (Sp)nen, which is assumed to be Y-mizing and takes values in Y = [0, M].
Suppose furthermore that there exists a random variable S* such that E[S*] < E[Z1], moreover
Sn X 8* for allmn € N.
Then there exists t > 0 such that
A(t) <0,

where A(t) is the rate function defined in Assumption 3.8.

Proof. Let j € N and n > 1 be arbitrary but fixed, and define W), = e!(Ss—1=28) k=1, ....n
Our goal is to estimate E[W,yq ---W;y,]. For integers p, ¢ satisfying pg < n < p(g + 1), which
allows us to write

Wj+1"'Wj+n:771"‘77pAna

where 1y, = [192g Wishtips k= 1,...,p, and Ay, = Wiypgi1 - Wisn.
Using A, < e!MP=1) and Holder inequality, we have

EWii1 - Wjin] < etM(p=1) H ]El/p P, (26)
k=1
For any fixed k, by independence, we have

q—1

E[Wi] [H etP(Sitk—1+1p=Zj+k+1p)
=0

_ E —th1 [H etpSJ+k 1+lp‘| )

Using layer cake representation, and that S, < S*, for n € N, we can write

qg—1
E [H etpSﬁka] — / P(etpsj+k—1+lp >7,1=0,...,q— 1) dro...d7ry—1
[0,00)4

qg—1
i e
1= ,00

qg—1
= (L+ 95 ()7 [T B [erSr ] < (14 45()7 B[]
=0

To sum up, and taking the supremum in j, we obtain the following estimate:

SUE(W 41+ W] < €MD (149 (p) 1 B[ 20)1. (27)
JjE

: d n(S*—2Z
Since 4B [oH(5"-2]|
there exists hg > 0 such that

= E[S* — Z;] < 0, for arbitrary m satisfying E[S* — Z;] < m < 0

E [eh(s*‘zl)} <14mh, 0<h<hy.

Let h{ € (0,ho) be fixed. By the t-mixing property of the sequence (S, )nen, there exists
po > 1 such that
¢=(1+9%(po)) (1 +mhg) <1
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Using (27) with ¢t =1 := h{/po and ¢, = L}%J, n > 1, we obtain

I'M ~qn I'M ~—1
SUPE[Wjy1 -+ Wjy,] < ehoM¢tn < ehoM=1en/po
JEN

and thus

1 n - n + 1 1 / _
sup — log £ leXP (tZ(Skﬂ‘ - Zk+j+1))] < log ¢ + - log(eMoM ¢y
k=0

JENT npo
exp <

It is conceivable that the requirement on A(t) in Assumption 3.8 could be verified under mixing
conditions on the sequence (S, )nen that are weaker than ¢-mixing. In particular, [10] addresses
large deviation theorems under strong mixing. The authors showed that for stationary processes
with a hyper-exponential mixing rate—specifically, a(n) < exp(—n(logn)*+?) for some § > 0—the
existence of a limit analogous to the one in the definition of the rate function A is ensured (see
Theorem 1 in [10]). However, they also provided counterexamples based on Doeblin recurrent,
irreducible Markov chains with countable state spaces to demonstrate that this decay condition on
the mixing coefficient cannot be significantly weakened.

which immediately implies that

1
A(t) = limsupsup — logE

n—oo jeN

e 1
tZ(SkJrj - Zk+j+1)>‘| < . log ¢ < 0.
k

=0

O

Lemma 3.11. Under Assumption 3.7, the sequence of waiting times (Wy)nen, defined by the
Lindley recursion (20), forms a Markov chain in the random environment (Sy)nez on the state
space X = Ry with the parametric kernel

Qls,w, A) :=P[(w+s—21), €A], s,weRy, AcB(Ry).

For the Lyapunov function V(w) = e — 1, w € Ry, the drift condition holds for any choice of
t>0:

[Qs)V](w) < y(s)V (w) + K(s)
with v(s) = K(s) =E [e!¢=%V], s > 0.

Proof. The sequence of waiting times (W),)nen, governed by the Lindley recursion (20), consti-
tutes a non-linear autoregressive process of the form (1). In this framework, (S, )nen represents
the sequence of exogenous covariates, while (Z,,),en plays the role of the noise process (g,,)nen-
Furthermore, by Assumption 3.7, (Z,)nen is i.i.d. and independent of (S, )nen, and thus the
identity in the form (2) holds. Consequently, (W, )nen can be interpreted as a Markov chain in a
random environment defined by (S,,)nen, with the corresponding parametric kernel given by

Q(s,w,A) =P((s+w—2Z1) € A)y, s,weR., AeBR;).

Let t > 0 be arbitrary and define V(w) = €' — 1. Using the inequality e(®)+ — 1 < e® for all
r € R, we obtain the drift condition:

[RE)VI(w) =E[V((w+s = Z);)] = [eots=20s 1]
<E [e“wﬂ—zﬂ} =E [e“s—zﬂ} (e —1) +E [e“s—zﬂ]
=(s)V(w) + K(s),
where v(s) = K(s) = E [¢!(*=%1)], s > 0 which completes the proof. O

The following lemma, which ensures the fulfillment of part B) of Assumption 2.2, essentially
coincides with Lemma 4.6 in [35]. We include the proof here solely for the sake of completeness.
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Lemma 3.12. Assume that P(Z; > M +7) > 0 holds for some T > 0. Then, there exists B € (0,1)
such that, for all s € [0, M] and w € [0, 7],

Qs,w, A) > (1 - B)do(4), A € B(Ry),
where &g denotes the Dirac measure concentrated at 0.
Proof. Let s € [0, M], w € [0,7], and A € B(Ry). We can write
Qls,w, A) =P ([w+s— 2], € A) > P([w+s— 2], =0)b(A)

=(1-P(s+w—2;>0))d(A)

>(1-PM+7—-21>0))00(A),
which shows that the desired inequality holds for any choice of 3 satisfying

P(Zi<M+71)<B<1.
O

Let Assumptions 3.7 and 3.8 be in force, and let ¢ > 0 be as specified in Assumption 3.8. Then,
by Lemma 3.11, for the Lyapunov function V(w) = €' — 1, w > 0, the drift condition (7) holds
with v(s) = K(s) = E[e!*=%)], for s € Y = [0, M]. Furthermore, since v(s) = K(s) < e, we
have

< e)?]%(n—i—l)7

E lK(Sj) 11 (Sk+s)
k=1

for all j € N and n > 1, hence the integrability condition in Assumption 2.2 is satisfied. Moreover,
by Assumptions 3.7 and 3.8,

5 = limsup sup E'/™

n—oo j>—1

exp (EZ(SH;‘ - Zk:+j+1)>‘| =t <1,
k=0

which implies that part A) of Assumption 2.2 also holds.
Suppose that for some 0 < r < 1/¥ and 7 := %log (1 + %),

P(212M+T)>O

We now verify part B) of Assumption 2.2. We have R(s) = if((;)) = 2/r since 7(s) = K(s) for all

s € [0, M]. By Lemma 3.12, there exists 3 € (0,1) such that for all s € [0, M] and w € [0, 7],

Q(S,’LU,A) > (1 - ﬁ)(;O(A)’ A€ B(R+)a

where dy denotes the Dirac measure concentrated at 0. Note that w € [0, 7] if and only if V(w) €
[0,2/7] = [0, R(s)], for s € [0, M]. Therefore, the minorization condition (8) holds with kg(s,) =
So(+) for s € [0, M]. Furthermore, the minorization coefficient 3(R(s), s) = 3 € (0, 1) is independent
of s, hence part B) of Assumption 2.2 is also satisfied.

Theorem 3.13. Assume that the sequences (Sp)nen and (Zn)n>1 satisfy Assumptions 3.7 and
3.8, moreover for some 0 < r < 1/7,

1 2
T

where T is as in Assumption 3.8, and 7y = exp(A(%)).
Then for the sequence of waiting times (Wy)nen, defined by the Lindley recursion (20), the
following statements hold.

A) If the sequence of service times (Sp)nen is strongly mizing, then the L' weak law of large
numbers holds:

n
1
Z (Wi, — E(Wy)] 50, as n— oo
k=1

3=
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B) If there exists ¢ > 0 and k > 1 such that o®(n) < cn™", n > 1, then

%Z Wi —E(Wy)] %30, as n— .
k=1

C) If the sequence of mizing coefficients (a”(n))nen satisfies the condition
Z(n +1)2a%(n)? < 00
neN
for some exponent § € (0,1), then there exists a constant o > 0 such that

n

> (Wi —E(Wi))

k=1

1 2
> a) < / L(_g,q)c(0t) e zdt, a>0.
R

1
limsupP | —
P ( V2T

n— oo \/ﬁ

Proof. From Lemma 3.11, it follows that the sequence of waiting times (W}, ),en is a Markov chain
in a random environment (S, )nen, which satisfies the drift condition (7) with V(w) = €' — 1 and
v(s) = K(s) = E [ets=Z0)],

Given that S, € [0, M] for all n € N, it holds that E [K(S;) [Tj_, 7(Sk+;)] < M+ which
implies that the integrability condition in Assumption 2.2 is trivially satisfied, i.e.,

E <oo forall jeNandn >1.

K(S;) [T 7(Sk+s)
k=1

Moreover, by Assumption 3.8, the parameter ¢ > 0 can be chosen such that

11 W(Skﬂ‘)} <1

k=0

4 = lim sup sup E'/™

n—oo jEN

which ensures that part A) of Assumption 2.2 is satisfied.

Notice that, since v = K, hence by Lemma 3.12, the parametric kernel @) satisfies the minoriza-
tion condition (8) with

2K (s 2 =
= 2R =2 ARG 8) = 5 < 1, and g (s, 4) = Go(A),
We can conclude that part B) of Assumption 2.2 also holds.

In Theorem 2.5, the inequality (11) is satisfied with ® = idjg ) for any p > 1, while the
deterministic initial condition Wy = 0 obviously ensures EV (Wj) < oo.

We have thus shown that all conditions of Theorem 2.5 are met, from which the assertions of
the present theorem follow. O

R(s)

In what follows, we will demonstrate that the seemingly complex and technical conditions of
Lemma 2.10 and Theorem 2.14 boil down to easily verifiable and natural conditions concerning the
sequence (Sy, )nen and the inter-arrival time distribution Z;. Utilizing this framework, we establish
the functional central limit theorem for the sequence of waiting times (W, )nen.

Assume that the law of Z; is absolutely continuous with respect to the Lebesgue measure, i.e.,
Law(Z1)(dz) = fz,(z)dz, where fz,(z) = 0 for z < 0. For any Borel set A € B(R;), we can
express Q(s,w, A) as follows:

Q(s,w, A) = / La((w+s—2)4)fz(2)dz

(0,00)

w—+s
:]IA(O)IF’(Z1>w+s)—|—/O Ta(w+s—2)fz,(2)dz
:]IA(O)IP’(Zl>w+S)+/ 1a(2)fz,(w+s—2)dz

[0,00)

= /X:]R L1a(z) (]P’(Zl >w+ 8)1oy(2) + fz, (w+ s — Z)]l(o,oo)(z)) dv(z),
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where v(dz) = §p(dz) + dz.
To sum up, we obtained that there exists a Borel measure v on B(X), such that Q(s,w, ) < v
for all (s,w) € ¥ x X, where X =R and Y = [0, M]. Moreover, the transition densities are given

by
dQ(s,w, -
ps(z |w) = %(2) =P(Z1 >w+ s)]l{o}(z) + fz, (w45 — 2)1(0,00)(2). (28)
For a fixed n > 1, let w = [wy,...,wy] and s = [so,. .., Sn—1], and define the likelihood function
as
plw|s) = Hpsklwﬂwk 1)- (29)

If the density function fz, : R — [0, 00) is contmuously differentiable everywhere, then at every
point w € [0,00)™ where p(w | s) > 0, the derivative 05, logp(w | s) = 0, ps, (wiy1 | w;) for

1=0,...,n — 1 exists and is finite. Furthermore, we have
0
g [t upw | gde= [ e o] Dde  (30)
i Jaxn n

hence the regularity conditions required for the Cramér-Rao inequality are satisfied.
Lemma 3.14. Assume that fz, : [0,00) — [0,00) is continuously differentiable everywhere, and
/ 2 2
/ /2,(%) dz < 0.
0,00) f2:(2)

Then there exists a constant r* > 0 such that for anyn > 1, and ,, = >_._, Wy, the following
inequality holds:

1
Var (X, 272P5k>Z1).
k=0
Proof. Fix n > 1 and let s = [so,...,8n—1] € [0, M]™. Since (Sp)nen is a scalar-valued process,
the Fisher information matrix is diagonal. Therefore, using (28), for k =0,...,n — 1, we have

r(I(s)) = 1))k = E (95, 108 poy (Wi | Wi))?|S = 3]
_E [ fz, (Wi + si,)? Io (Wi + s, — 2)?
B r P(Z1 > Wi, + s) fz, Wy + s, — 2)
fz. (Wi + si)? / fo (Wi + s — 2)?
P(Zy > Wi+ sk)  Jjo,00) fz,(Wh + 81— 2)
< sup fz,(2)? f7,(2)?

T zel0,00) P(Z1 > 2) /[O,oo) fz,(2)

L(0,00) (%) (60(dz) + d2)

s

-

dz

dz.

By I'Hépital’s rule, we have lim, _, o ]P{C(Zzll(i)j) = lim, o —f7%, (2) = 0, which implies that
fz,(2)?

sup —o—— < oo
2el0,00) P(Z1 > 2)

Therefore, there exists an upper bound for r(I(sg)) that is independent of both k and n; let this
bound be denoted by r*.

Since the mapping (s, w, z) — (s+w — z) 4, defining the Lindley recursion (20), is monotonic in
both s and w, we observe that for each 1 < j <n and 0 < k < n—1, the derivative 05, E [W; | S| >
0. Therefore,

105, E [Sn | S]II* = Z EW;|S]| = (04 Wi | S)* =P(Wi + Sk — Zisa > 0] S)°

ZP(Sk—Z1>0|§).
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By Lemma 2.10 and the Cauchy-Schwartz inequality, using the bounds obtained above, we get

Var(s ZE [ 0B (= | 511

,r-*

n—1
1

>E Sk—Z1>0|S *E]P)Sk>Zl s
k=0

which completes the proof. O

Theorem 3.15. Beyond the conditions established in Theorem 3.13, suppose that the function
fz, :[0,00) = [0,00) is continuously differentiable everywhere, and that

14 (2)2
L d .
/[o,oo) fa() T

Additionally, assume that

n—1

| 2
lim inf — kZ_OIP’(Sk > 71)? >0, (31)

and that for some exponent § > 0, the series of mizing coefficients (o (n))nen satisfies

E n°a®

n>1
Let 3, = Wi + ...+ W,, v,(t) = min{l < k < n | Var(Zg) > tVar(X,)}, and for 1 <k <n,
define
Wi, — E[Wg]
Var(3,)1/2 "

Then the sequence of functions B, (t) = Zv"(t &k, for t € (0,1] and n > 1, converges in
distribution in D([0,1]) (equipped with the uniform topology) to a standard Brownian motion B.

fk,n =

Proof. In the proof of Theorem 3.13, we showed that under these conditions, the sequence (W, ),en
forms a Markov chain in a random environment, which satisfies the conditions of Theorem 2.5.
Additionally, Lemma 3.14, in conjunction with the condition (31), guarantees that

n—1

1ZE[ —710uElSy | S)E| > 0.

liminf —
n—oo N
With the Lyapunov function V(w) = e!*~1, the inequality (11) that appears in the conditions
of Theorem 2.5 holds for ® = idg+ and any p > 1. Consequently, the sequence (a®(n)),ecy satisfies
the condition regarding the mixing coeflicients in Theorem 2.14.
Overall, we conclude that the conditions of Theorem 2.14 are met, which leads to the desired
result. O

The conditions in Assumptions 3.7 and 3.8 can most likely be significantly weakened. We
conjecture that the boundedness condition on the service times (S, )nen and the assumption on
the tail probabilities of Z; are of a purely technical nature and may be removed in future work.
Theorem 1.8 in [34], for instance, addresses the case when both S and Z are unbounded, (S, )nen
is i.i.d., and so is (Z,)p>1. In that setting, the main challenge is that the condition on the
minorization coefficient in part B) of Assumption 2.2 is no longer satisfied. However, the results of
our paper [35] can still be applied under appropriate assumptions on the environment. One such
condition, as formulated in Theorem 1.8 of [34], is that Z; has a Gumbel-like tail:

P(Z, > z) < Cy exp(—C2e¢%%*),  for some Cy, Cy, C3 > 0.

Answering such questions, as well as investigating the case when the service times (S, )nen are
iid. and the inter-arrival times (Z,,)n>1 are weakly dependent, will be the subject of our future
research.
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A Brief survey of key results on a-mixing sequences

In this section, we present a selection of theorems from the literature on a-mixing sequences.
These results encompass fundamental topics such as the law of large numbers, and the central
limit theorem. However, we do not address all relevant topics—for instance, the distribution of
extreme values in a-mixing sequences or concentration inequalities. For a detailed treatment of
these subjects, we refer the interested reader to [51] and [40].

By integrating the theorems presented here with the transition of mixing results from Sections
1 and 2, we establish a robust theoretical framework. This framework enables the statistical
analysis of non-linear autoregressive processes with exogenous covariates and Markov chains in
random environments. Given the vast literature on a-mixing processes, a comprehensive review is
beyond the scope of this paper. Instead, we focus on key results that are particularly useful for the
statistical analysis of weakly dependent sequences. For readers seeking a more in-depth overview,
we recommend Doukhan [15], which, with its detailed references and literature survey, provides an
excellent starting point.

In theorems concerning a-mixing sequences, the key condition is typically about how rapidly
the mixing coefficient sequence (&' (n)),en decays to zero. In the econometric literature, the term
size is frequently used to characterize this behavior (cf. Definition 3.45 in [52]). However, since
the definition is not uniform, despite its ability to make theorems more concise and elegant, we
avoid using size to prevent misunderstandings.

In the context of stationary processes, it is well-known that strong mixing implies ergodicity
ensuring the applicability of the strong law of large numbers. For non-stationary, heterogeneously
distributed a-mixing sequences, McLeish [38] established the following version of the strong law of
large numbers.

Theorem A.1 (McLeish, 1975). Consider a sequence of R-valued random variables (W, )nen with
EW,, =0, n € N and with a-mizing coefficients satisfying o' (n) < en” 72, n €N, for ¢ >0 and
r > 2. Suppose that for some p such that r/2 <p <r < oo,

i ]EQ/T|Wn‘p

2p]T < 00.

n=1
Under these conditions,

Ly as
— Z W, =0, n— oo.
"=
Remark A.2. The condition related to the decay of the moments in Theorem A.1

< 2/ |1, |P
LA

0
n2p/r <

n=1
is automatically satisfied if sup,, oy E|W,|P < oco.

In the context of ergodic theory, we distinguish between ergodic, weakly mixing, and strongly
mixing processes. We classify a collection of random variables of the form {&,,; | 1 < i < n} as
weakly mixing if

1 n
— Zaf"" (k) =0, n— oo,
n

k=1

where af"(-) denotes the a-mixing coefficient corresponding to the nth row of the array.

Hansen established the weak law of large numbers, more precisely L'-law of large numbers,
for heterogenous weak mixing processes and arrays [28]. A notable and valuable characteristic of
this result is the absence of a stationarity assumption, thereby broadening the applicability of the
result. The elegance of Hansen’s proof lies in its simplicity, leveraging the standard representation
of the variance of the truncated mean as the weighted Cesaro sum of covariances, and bounds the
latter using the mixing inequality for bounded random variables.

As noted by Hansen [28], strong mixing implies weak mixing, and weak mixing, in turn, im-
plies ergodicity, moreover this nesting is strict. However, for any process (W,,)nen, the sequence
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of mixing coefficients ("' (n)),en is monotonically decreasing. Consequently, their Cesaro sum
converges to zero if and only if o' (n) — 0 as n — oco. As a result, the classes of weakly mixing
and strongly mixing random sequences coincide. Thus, for weakly dependent sequences, Hansen’s
theorem can be stated as follows:

Theorem A.3 (Hansen, 2019). Consider a strongly mizing R-valued process (W )nen, and define
the sequence of partial sums S, := 22:1 Wi, n > 1. Additionally, suppose that the condition

i >
Jim sup > ZE (Wil L(|Wi| > B)) =0 (32)
holds. Then, we have
Sn E(Sn) 1t
— — ——= =0, n— oo.
n n

Proof. Hansen stated and proved this theorem, in a bit more general setting, for triangular arrays
of weakly mixing variables (See Theorem 1 on page 4 in [28]). For making the explanation self-
contained, we present the proof of this simpler version here.

Without the loss of generality we can assume that E(W,,) = 0, n € N. Let € > 0 be arbitrary
and choose B > 0 such that

sup - ZE (Wil L(IWk| > B)) < (33)
"=
Let us introduce
Wy, = Wo1(|Wy| < B) — E(W,1(|W,| < B))
W =W, 1(|W,| > B) — E(W,,1(|W,,| > B)).

Obviously, W,, = W,, + W,/, n € N hence by the triangle inequality and (33), we have

ZWk ZWk ZWk

k=1
Furthermore, W/, satisfies the bound |[W/| < 2B, and for its mixing coefficient o'V’ (n) < oV (n),
n € N holds, consequently by the mixing inequality for bounded variables (cf. Theorem A.5 in [27]
or the proof of Lemma A.1. in [36]),

3

—E <IE

2
— 2 34
- + 2¢. (34)

> E(WilL([Wk| > B)) < ]E
k=1

[E(WW7)| = |Cov(Wi, Wy)| < 16B2a™ (|k —1]).

By Jensen’s inequality, we can estimate

< Y E(W;W;) < 16B* Z (|k —1|) = 16Bn (JV(O) + ZZaW(k)> .
k,l=1 =1

k=1

n

> Wi

]E2

Substituting this into (34) yields

lg anwk

k=1

0 2& 1/2

oW W

4B + — E k +2
< < n n o )> &

k=1

where the upper bound tends to 2¢ as n — oo since (W, )nen is strongly mixing, and thus
lim sup,, %E I>r_; Wi| < 2e holds for arbitrary € > 0 which completes the proof. O

Remark A.4. The average uniform integrability condition (32) is automatically satisfied if the
process (Wy)nen has a uniformly bounded moment sup,,cny E(|W,|") < co for some r > 1.

29



Our objective is to establish the (functional) central limit theorem for certain functionals of the
sequence of iterates (X, )nen when (Y, )nen is merely a-mixing and stationarity is not assumed.
While we studied this problem in the context of stochastic gradient Langevin dynamics [36], our
focus was limited to stationary data streams. Our approach relied significantly on Corollary 2 in
[29], which offers broad applicability, extending even to non-stationary processes. However, the
condition lim,, o, n~'E(S2) = o2 required by this corollary is not generally met in cases when the
exogenous regressor (Y;,)nen is non-stationary.

Very recently there was major progress on the functional CLT for non-stationary mixing se-
quences. In [41] Merlevede, Peligrad and Utev answered the question raised by Ibragimov con-
cerning the CLT for triangular arrays of non-stationary weakly dependent variables under the
Lindeberg condition (cf. page 1 in [26]). Subsequently, Merlevede and Peligrad proved the func-
tional CLT for triangular arrays satisfying a dependence condition weaker than the standard strong
mixing condition, termed the weak strong mixing condition [39]. Both of these results require the
condition:

> Var(Wy) = O(Var(S,)) (35)
k=1

which is difficult to verify in general. A key contribution of our paper is the derivation of a
Cramér-Rao lower bound for the variance of partial sums in (35), facilitating a functional CLT
when (X, )nen forms a Markov chain in a random environment (See Section 2).

Essentially, aside from certain moment conditions, Theorem 1 in Ekstrom’s paper [16] mandates
only the verification that the a-mixing coefficients exhibit a sufficiently rapid decrease:
Theorem A.5 (Ekstrom, 2014). Let {&, | 1 < i < d,, n € N} be an array of R-valued random
variables with E&, ; =0, 1 <i < dy,, n € N, and define S, = ZZL &nk, 1 € N. Assume that for
somer > 0,

i. sup max E|&, *T" < oo, and
neN 1<i<d,,
i Suppen Yz (k + 1) (o (k) 77 < oo,
where o (-) denotes the strong mizing coefficient corresponding to the nth row in the array.

Then the distributions Law(dgl/QSn) and N (0, Var(dﬁl/zSn)) are weakly approaching, that is
for any bounded continuous function g : R — R,

E [g (d;l/QSn)} - / g (Var(d;1/25n)1/2t) V%e_g dt = 0 as n — oo.
R

Proof. For the proof, we refer the reader to [16]. O

Corollary A.6. Let (W,,)nen be a sequence of R-valued zero mean random variables. Suppose there
exists 1 > 0 such that sup,,cy E|W,[*T" < co and Y o, (k + 1) (OzW(k))ﬁ < oo holds. Under
these conditions, the distributions of n='/2S,, and N'(0,Var(n='/2S,)) are weakly approaching.

Moreover, if the sequence (n/o2),>1 is bounded, where o2 = ES2, n € N, then Law(S,/0y)
converges weakly to the standard normal distribution.

Proof. The first part of the statement is immediately follows from Theorem A.5 with &, ; = @Wi,

On
1<i<d, =n,n>1,since &, . and W have the same a-mixing coefficient for every n.
n

As for the second part, let &, ; = ¥=2W;, 1 < i <n,n > 1. Easily seen that max;<;<pn E|&,

On

(n/o2)+7/2E|W;|?*" hence by Theorem A.5, for any bounded continuous function g : R — R,

n 1 2
S ST | B R

which completes the proof. O

247 <

The next important remark in its original form can be found in Ekstrém’s paper (c.f. Remark
1 on page 1 in [16]).

_2
Remark A.7. Assume that for r > 2, sup,cy E|W,|" < oo and Y-, (aW(k))l " < oo. Then

the variance of n=/2S, is bounded.

30



B Counterexample to long-term contractivity condition

In this point we present an example for a stationary stochastic process (¥;,)nen and a function
v:Y — (0,00), outlined in Baldzs Felsmann’s Master’s thesis, where E(y(Yp)) < 1, and despite
the favorable mixing properties of (Y;,)nen, the long-term contractivity condition (9) fails to hold.
Let (Z,)nez be a sequence of i.i.d. Bernoulli variables with P(Zy = 0) = P(Zy, = 1) = 1/2, and
define the process
Yn = Zn +Zn_1, n e Z,

which takes its values in ) = {0, 1,2}. Clearly, (Y, )nen is a stationary process such that Y,, and Yy,
are independent for |m —n| > 1 hence a¥ (n) = 0 for n > 2. We consider a function v : ) — (0, 1),
where v(i) = v;, i = 0,1, 2 will be specified later. Let us introduce the following sequences.

an =E (H »y(Yk)> , by =FE (n{zn_o} 11 W(Yk)> , cn=FE (n{zn_l} 11 m@) , neN. (36)
k=1

k=1 k=1

Clearly, we have a,, = b, + ¢,, n € N, moreover we can write

n+1 n+1
bpy1 =E (1{Z,,L+1—0}]1{Zn—0} H ’Y(Yk)> +E (ﬂ{znﬂ—o}ﬂ{zn—l} H ’Y(Yk)>

k=1 k=1
1
= 5(701)71 +vicn),

and similarly

n+1 n+1
Cny1 = E (1{Zn+1_1}1{zn_0} II 'Y(ch)> +E (ﬂ{znﬂ_uﬂ{zn_u 11 'Y(Yk)>

k=1 k=1
1
= 5(71bn + ”YQCn)a

hence the linear recursion

)52

Cn+1 2 Cn
holds, where I' = [ 10 Zl ], and by = ¢p = 1/2. Thus for (a,)nen, we have
1 e
1 L1
By setting 79 = 3, 71 = 72 = 0, we obtain ag = 1 and a,, = %(3/2)”7 for n > 1, thus a,, — oo, as

n — oo. For € € (0,1/4), let us define 7. : ¥ — (0,00), 7-(y) = v(y) + ¢, y = 0,1,2. So, we have
E(v:(Yo)) = 3/4+ € < 1, on the other hand

n n 3
E'/" (H %<Yk>> >EY" (H v(i@)) =527 >,

k=1 k=1
and thus
minfE/ (T vy >3
lhn nf & (H il k>) =
which means that the long-term contractivity condition fails to hold in this situation.

C Coupling condition for MCREs

In this section, our primary objective is to establish an upper bound for the non-coupling prob-
abilities as in Definition 1.1. Our approach refines the proof of Lemma 3.10 in [36]. To achieve
this, we introduce the following lemma, which is identical to Lemma 7.4 in [35]. It describes the
consequences of the drift condition satisfied by Q(yx_1)...Q(y;), wherey € YN and k,l € N, [ < k
are arbitrary and fixed.
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Lemma C.1. Forz € X,y € YN and k,1 €N, | < k, we have

k—1 k—1 k—1
Qyk-1) .- Qu)V] () < V(@) [[ 1w + D Kw) [ )
r=I r=l Jj=r+1

Proof. We proceed by induction. Let z € & and [ € N be arbitrary but fixed. For the base case
k =1+ 1, we have
[Qy)V](z) < v(y)V(z) + K(w), (38)

which follows directly from the drift condition (7).

Induction hypothesis: Assume that the inequality holds for some k > [, with fixed x € X and
leN:

k—1 k—1 k—1
Qyk-1) ... Qu)V] () < V(@) [[ 1w + D K [ ) (39)
r=I r=l1 Jj=r+1

Induction step: We verify that inequality (39) holds for k + 1. By the drift property for Q(yx) we
have

Qyr)VI(x) < v(yr)V (2) + K (yx)-

Operators V — [Q(y)V], y € Y are linear, monotone and for V=1 [Q(y)V] = 1, y € ).
Therefore, taking into account that successive applications of kernels are evaluated in reverse order
(see the remark following Definition 2.1), we can write

[Qyk) - Qu)V](2) = [Q(yk-1) - - - Q(y1) [Qy )
< (ye) [Q(Yk—1) - - Qy) V] () + K (yr),

thus by applying the induction hypothesis (39), we obtain

=
~—
=
=
8

k-1 k—1 k—1
Qi) - QUuV] (@) < 2(we) | V(@) [T+ S K T 2| + K
r=lI r=Il j=r+1
k k k
=V(@) [[rw) + D> K@) [ vws)
r=I r=I Jj=r+1
which completes the proof. O

In our earlier papers (See Lemma 7.1 in [35] and Lemma 3.9 in [36]), we relied on special
cases of the following lemma. It is also a variant of Lemma 6.1 in [22], albeit in a somewhat
broader context. Such representations of parametric kernels satisfying the minorization condition
(8) can be deemed standard. For the sake of completeness and to ensure self-containment of our
explanation, we present and prove it in its most general form.

Lemma C.2. Let R > 0 be arbitrary and suppose the parametric kernel Q : Y x X x B(X) — [0, 1]
satisfies the minorization condition given by (8). Then there exists a measurable mapping T :
X x Y x10,1] = X such that

Q(y, Z, A) = /[ | ]]-TR(x,y,u)GA du,
0,1

forallz € X, A€ B(X) and y € Y. Furthermore, for any fixed y € ), there exists a Borel set
U="U(y) € B([0,1]) with Lebesgue measure Leby(U) > 1 — B(R,y) such that for u € U,

—1
TH(z1,y,u) = T (x2,y,u), z1,22 €V ([0, R]). (40)
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Proof. We proceed as in Lemma 7.1 in [35], following the proof of Lemma 6.1 in [22]. The case
of countable X is straightforward and thus omitted. For the uncountable case, we can assume, by
the Borel isomorphism theorem, that X = R and B(X) = B(R) is the standard Borel o-algebra of
R.

It is easy to see that if S(R,y) = 0 for some y € ) in the minorization condition (8), then for

-1
any A € B(X) and = €V ([0, R]), both Q(y,z,A) > kr(y,A) and Q(y,z, X \ A) > kr(y, X \ A)
hold simultaneously. Consequently, we have

Q(:%,A)l :KR(:UJA)7 AEB(X)

V'(0.R))
For z €V (0, R]), A € B(X) = B(R), and y € Y let
sy Qs 7, A) — (1= B(Ry)kr(y, A)]  if B(R,y) # 0
QR(%%A) =
0 if B(R,y) =0

Additionally, introduce the pseudoinverses of the corresponding cumulative distribution functions
as follows:

Q
L
s
8
N
\

= inf{r S Q | Q(yax7 (—OO,?“D > Z}
inf{r € Q | kr(y, (—oo,r]) > 2}

x
=
<
X
Il

There exists a measurable mapping x : [0,1] — [0,1]? such that the pushforward measure

-1
X«(dz) equals dzdy. In other words, for every Borel set B € B([0,1]?), Leba(B) = Leb (X (B)),
where Leby, refers to the Lebesgue measure on [0, 1]*, k = 1,2. Finally, we define

TRz, y,u) = Lyizpray i U X(W2) + Ly <pradn @@, x(w)2) i V(e) <R
e Q (v, x, x(u)2) if V(z) > R.

—1
It is evident that x — T (z,y,u) is constant on V ([0, R]) whenever x(u); > B(R,y), implying
—1
(40) with U =X ([6(R,y),1] x [0,1]).

-1
Furthermore, for any fixed r € R, y € Y and z €V ([0, R]) by the change of variable formula
and the definitions of T% and gg, we can write

1 1
/[0 l]ﬂ{TR(z,ym)Sr} du:/O /0 1{]1525(&”/{1;1(y,t)+]ls<B(R1y)qE1(y,z,t)gr}det

1 1
= (1- B(R, y))/o ]]'m};l(y,t)grdt+ﬁ(R7 y)/o ]lql—%l(y@,t)gTdt

= (1= B(R,y))kr(y, (=00, 7]) + B(R,y)qr(y, z, (—00,7])
= Q(ya z, (—OO, TD

-1
Similarly, for ¢V ([0, R]), we have

1 1 1
/[ ]]lTR(z,w)grdu = / / Lo-1(y,z,5)<rdsdt = / Lo-1(yz9)<rds = Qy, z, (=00, 7]).
0,1 o Jo 0

thus the claimed identity holds.
It remains only to show that T is measurable with respect to sigma algebras B(R) ® B()) ®
B([0,1]) and B(R). Indeed, T# is a composition of measurable functions. O
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By Assumption 2.2 B), there exists 0 < r < 1/ —1 such that 3 := sup, ey S(R(y),y) < 1 holds

with R(y) := 275((5)). We define the measurable mapping

(z,y,u) = f(z,y,u) = TE (z,y,u), € X,y € Y, ue[0,1]. (41)

Let (et)teny be a sequence of i.i.d. variables uniformly distributed on [0,1] such that sigma
algebras F§ ., and o(Y;, Xy, t € N) are independent. Furthermore, for s € N and z € X, let us
introduce the family of auxiliary processes

7Y T ift<s (42)
o f(Z:,’tyflvytflagt) ift>s,

where y = (0,%1,...) € YV can be any fixed trajectory. Clearly, for Y = (Y, )nen, the process
ZS),(;’Y, t > s is a version of (X;);>s. In the forthcoming part of the section, we will prove that
this process satisfies the coupling condition. First, we will show that for any fixed z € N and
y € VN, the process Z;Y, t > s is a Harris recurrent time-inhomogeneous Markov chain. The
next lemma provides a quenched version of the coupling condition, controlling the coupling time
between iterations starting from different initial values.

Lemma C.3. Let x1,20 € X andy € YV be arbitrary but fized. Then for 0 < m < n, we have

52 wok2] |
Pz 2 Zen¥) < ()] YO V) S0 0 SN OS  wey T vtes)
j=0 j=1

2
k=0 =k

Proof. For the sake of brevity, we employ a more concise notation: Z% = Z;¥, i = 1,2, and n € N,
moreover we introduce

Zn =2y, Z3) , 1Z0]| := max (V(Z,,), V(Z7))
and the sequence of successive visiting times
00:=0, opp1 =inf {n > op||Za]| < R(yn)}, k€N
that are obviously Fj . -stopping times. Note that on {||Z,|| > R(yn)} we have
Vyn)(V(Zy) +V(Z7)) + 2K (yn) < (14 1)7(yn) (V(Z3) + V(Z7)) (43)

and thus for £ > 1 and s > 1, by the Markov inequality, we obtain

s—1
]P(Uk-‘rl — 0k > S | Fls,ok) <E P(Cgk"rs ‘ 70194-5—1) H ]]‘C(rk+j 16,0;c
j=1
s—2
(L4 r)v(Yor+s—1) 1 2 <
S R(y +k ) E (V(Zok-&-s—l) =+ V(Zok-&-s—l)) H ]]'cak+j "T-.l,rr;C )
OkT8 j:l
where C), is the shorthand notation for the event {||Z,| > R(y.)}, n € N.
By the tower rule, we can write
s—2
]E (V(Z;'k+571) + V(ngJrS*l)) H ]]'Cak-#j figk =
j=1
s—2
E|E [V(Zi;ﬁ»sfl) + V(ng%»sfl)}fls,akJrsz] H ]]'Co'k.+j 16,17;C
j=1
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Using the Markov property of (Z,),en and the drift property of the parametric kernel (7), we
have

E [V(Z;'k-i-s—l) + V(Z3k+s—1)|f1€,ok+s—2} = E I:V(Z;k-‘rs—l) + V(Z2k+s—1)|20'k+3_2:|
= [QWorts-2)V1(Zg, 15-2) + [QWor+5—2)VI(Z3, 4o—2)
< 'Y(yak+sf2) (V(Z;k-s-s—Q) + (ng—i-s—Q)) + 2K(y0'k+5*2)‘

Now, inequality (43) yields
E [V<Z(}'k+571> + V<ng+sfl)‘]:iok+sf2} ]lcokJrs—z S (1+r)7(y0k+5*2) (V(Z;k+572) + (Z3k+572)) .

Finally, we arrive at

s—2
E (V(Z;k—i-s—l) + V(ng—i-s—l)) H ]lcdk+j iok S
j=1
s—3
(1 =+ T)’V(yak-i-s—?)]E (V(Z;k—i-s—Z) + V(ng—i-s—Q)) H ]lco‘k+j fls,ok
j=1

Iteration of this argument in s — 2 steps leads to the following estimation:

(1 + r)s_l Hb:i 'Y(yak-i'j)
P(ogt1 — ok > s | Fiy ) < »
( k+1 k | 1, k) R(ygk+s)
_ r(14 7)1 Hj‘:l V(Yor+s)
- QK(ycrk-‘rS)

(]- + T)SKQJUJ«) H ’Y(ygk+j)7
j=1

E(V(ZL 1)+ V(Z2, )| Zs,)

h(ym) (V(Z;k) + V(ng)) + 2K(yak)]

IN

where we used that V(Z}, )+ V(Z2,) < 2R(yo,), and K(-) > 1.
Along similar lines, we can show that

L+ 520 v(ys)
P(O’l > S) < R(ys)

< e Tt | 292 (@) + Vi) + Ko

[Y(vo) (V(z1) + V(z2)) + 2K (y0)]

Clearly, for any 0 < m < n, on the event {o,, > n} we have {ox11 —or > [n/m|} N {0} <
k|n/m]} for some k = 0,1,...m — 1 hence by the union bound and the estimates we obtain for

35



the time elapsed between consecutive visits, we can write

Ploy, >n) < ( U {ok+1 — o > [n/m]} N {ox < k|[n/m] })

k=0

2 B({oke1 — 0% > [n/m]} 1 {or < k [n/m]})

IN
B
I
,_. =)

3

ln/m
Z (Ory1—ox > |n/m| | o =) Plog = 1)
=k

Il
I M

m—1kln/m]
<Plor > [n/m)) + B (ka1 — o > |n/m] | o = )
k=1 I=k
(40) Ln/m]
< |2 )+ V) + K )| 1+ 0 T 200
m—1kln/m] [n/m]

1+7’Ln/mJZ Z K(y1) H Y(Yi45)-

Next, we estimate the probability of no-coupling on events when small sets are visited at least
m-times. By Lemma C.2 and the choice of R(y) in the definition of f in (41) and (42), for each

-1
j=1...,m, x— f(z,y;,65,+1) is constant on the level set V' ([0, R(yo,;)]) with probability at
least 1 — (8 independently of fgm thus no-coupling happens with probability at most 8. Therefore,
we can estimate:

On »

P(Z3Y # 2527 om <n) < ™.

Finally, we combine this upper bound with that one what we got for the tail probability of the
visiting times, and obtain
P(Zglrgy #* Z“’y) < ]P’(Zg;l’y #* Zan’y, Om < n)+Plo, >n—1)
am | 7o) | 2=t | =
<A™+ |5 (Vi) + Viae) + Kwo) [ L+ T ()

Jj=1

which completes the proof.

Proof of Lemma 2.4. The process Z(ffl’y, n € N is a version of (Xn)neN thus to simplify the
notation in this proof, we may and will redefine (X, )nen as X, := ZX0 Y, Furthermore, we
indicate the dependence of Z on the driving noise by writing Z7 7 1nstead of 7Y, where e refers
to € = (e1,€2,...). We also introduce the usual left shift operation: (Sy); = y;4+1 and similarly

(S€)j =¢gjy1,J €N

For arbitrary but fixed j € N and € X, we can write

X Y T, X ,89Y 8¢ z,57Y 57 ¢
( J]+ns7éij¥Hf):]P>(ZO #ZO Y )
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thus by the tower rule and Lemma C.3, for 0 < m < n, we have

P(Zos ™0 # 25 =B [P (Zon ™ # 2570 | B o<Xj>)} < Fm
[ =] m—1k[ %] =
v | EVX) | FYL] + Vi)
(1+nl=IE ke 20’ } II e+ > K(Yi45) H (Yitrtg)
r=0 k=0 I=k r=1
(44)
As for E [V(X;) | F§ o], by Lemma C.1, we obtain
E V(X)) | Foioo) = E[[QYj1 )7...,Q(YO) ](Xo> | Fo.oc]
| (45)

V(X)) H’Y +ZK )1:[ 1Yy

1=r4+1
where we used that the initial state Xy is independent of o(YV;,,en41 | n € N).
For n > 1, we choose m,, = Ln?/i;JIA It is easy to check that m, > Lnl/QJ for n > 1 hence
fmn < BL"I/ZJ. Furthermore, let us fix 4’ > 4 such that 4 := (1 + )y’ < 1. Then by Assumption
2.2 A), there exists N € N such that

sup E
Jj=-1

/)YL, nzN

)

H (Yets)

where for our convenience, we employ the convention K (Y_;) := 1. Using (45), for [n/?| > N
we obtain

[tz |2 451 j [ 451
EEV(X)|F] T V)| SEVE)E| [ )|+ E|KY) ][]
r=0 =0 r=0 i=r+1

Similarly, for [n/2| —1 > N, we get

|_7L1/2J—1
n1/2
E\V) J] v®mi)| <) v,

r=0
moreover
1 k(122 1) /2] -1 1 K([n/2] 1) /

1/2

> Z E | K(Yiy)) YViri) | <Y Z (vl
k=0 r=1 k=0

1| ol

. anmqmﬂjm
" 2

To sum up, and taking into account that m, = O(n'/?), we obtain
1/2_4 (1+T)|-7L1/2J_1
+ J A —
2
+cn3/2(1 +r)L”l/2J_1(7’)L"1/2J—1
(V(z) +E(V(X0)) + 1=
2

X;,Y, z,Y, o
P(Z],]+n : 7é Z] j+'ri) < ﬁn

()l (vm +E(V(X0) + 12

1/2_1

< p"

S R

37



for some ¢ > 0, whenever n > (N + 2)? which implies the desired estimate. O

The proof of Theorem 2.7 follows a similar approach to that of Lemma 2.4, with a few key
differences. The most significant distinction to keep in mind is that the distribution of X heavily
depends on the whole trajectory (Y, )nez.

Lemma C.4. Under the conditions of Theorem 2.7, we have

n—1
limsup BV |V (X5) [ v(¥) | <7

Proof. Without the loss of generality, for our convenience, we can assume that the i.i.d. driving
noise is a double-sided infinite process (€, )nez, as well. Let € X’ be arbitrary and deterministic.
Then by Corollary 1 and the subsequent Note in [49], Law(Zgy’;{) Law(Zf;{O) — Law(X(), as
m — oo in total variation hence

n—1 n—1
E|\V(X5) [[2(Y)| = lim lim E fmin (M vizir o) 11 V(Yk)> (46)
k=0 k=0
By Lemma C.1, we can write
n—1
v(zT, H V(%) | 2o 001 = [QO-1) .. QV=m)V](@) [T 1(¥i)
k=0
n—1 -1 n—1
1 v+ S kv I «v)
r=—m r=—m Jj=r+1
thus by the tower rule, we have
n—1 —1 n—1
Elmin(MVZxY Hka> E[H YY)+ D E K ] (%)
r=—m r=—m j=r+1
(47)
By Assumtion 2.2, for any fixed ¥ < 4" < 1, exists N € N such that
n
E(KX) [[v) ] <) n>N,
j=1
and thus we can further estimate the right-hand side in (47) as follows:
n—1
E [min <M, vzero 1 W(Yk)> <Vi(z)(y)"™ + Z ynter
k=0 r=—m
n\n
< V "\n+m (’Y) .
V@)
Substituting this estimate back into (46) yields
n—1
limsup EY/™ [ V(X() H v(Yz)
Now, taking the limit 4" | 7 gives the desired inequality. O
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Proof of Theorem 2.7. We consider the processes ngfl’y and Zéfg’Y, n € N, where the latter is a
version of (X),en. For the coupling time, along similar lines as in the proof of Lemma 2.4, by
using Lemma C.3, we obtain

B(r>n) <P (259 # 2557)

1+l L2
<F B (E[V(X) | Fla ] +E(V(X0) ] 2(%)
r=0
L omerkl [== ]
+ 1+l E|[K(Y) [ 7(Yier)
k=0 =k r=1
where 0 < m < n. Again, as in the proof of Lemma 2.4, let us fix m, = #, n > 1, and

~" > 7 such that 4 := (1 +r)y’ < 1. By Assumption 2.2 and Lemma C.4, we can choose N € N be
so large that such that

n—1

v [T
k=0

< ()" and E

< ()", n>N.

n
Yo) [[20)

For Lnl/ﬂ > N, we have

_ 1/2 r I_n1/2J—1 1/2
pir > m) < ) 4 LI (1w (o)) () 1)
m,—1 k(| n'?]-1)
+(1

)Ln1/2J_1 Z Z (’}/) I_n1/2J_1
k=0 =k

< BL”UQJ i #‘/(AX{)))&L”U” 1/2J -1 Z \; 1/2J ) + 1)7

where Z;n:”o_l(k( |n'/2] —2) + 1) = O(n*?) which completes the proof. O
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