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Abstract- This paper presents the design and
implementation of an audio compressor effect based on the
Automatic Gain Control method using a microcontroller
platform. The proposed system continuously monitors the input
signal amplitude and dynamically adjusts the gain to maintain
a consistent output level, thereby reducing distortion and
enhancing audio clarity. The architecture combines analog
front-end circuitry with digital signal processing executed on
the microcontroller, ensuring low latency and efficient resource
utilization. Experimental results demonstrate that the
developed prototype effectively suppresses sudden volume
fluctuations while preserving the natural quality of the audio
signal. The solution provides a cost-effective and compact
alternative to traditional compressor units, making it suitable
for portable audio devices, embedded systems, and educational
applications.

Keywords - Audio Compressor, Automatic Gain Control,
Microcontroller, Embedded Systems, Audio Signal Processing,
Real-Time Processing, Low-Cost Implementation

l. INTRODUCTION

The conversion of raw audio signals from electric
instruments is an essential step in producing a usable output
[1]. With the advent of digital audio effects [2], several
methods have been developed to digitally model and
manipulate analog audio signals [3]. The compressor effect
controls the volume fluctuations of the input audio signal
using various parameters [4, 5]. In the proposed
implementation, the base signal is duplicated: one copy
remains in analog form, while the other is fed into a
microcontroller. After evaluation, the microcontroller
generates a corresponding control signal that regulates the
duplicated analog signal path [6].

Il. THEORETICAL BACKGROUND

When using the compressor effect, amplitude regulation
is performed. This process is known as Automatic Gain
Control (AGC) [7]. A threshold voltage level is set with a
potentiometer. If the input signal exceeds this threshold, the
Arduino initiates amplitude regulation, adjusting the signal
strength back to the threshold level. The ramp-up and ramp-
down characteristics of the control can be manually adjusted
using the potentiometer corresponding to the attack
parameter. The input signal is fed to a potentiometer, and by
applying a sine wave as the input, the amplitude can be easily
varied, allowing direct observation of the control circuit’s
behavior [8].
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A. Analog circuitry

The unity-gain preamplifier stage (see at Fig. 1.) ensures
impedance matching. A low-impedance input signal must be
applied to the Arduino Uno analog input to ensure that the
sampling capacitor charges correctly and provides accurate
sampling. This circuit reduces the high input impedance to
approximately 100 €, ensuring proper operation of the
Arduino sampling capacitor. The DC component of the input
sine signal is removed with a coupling capacitor, yielding a
pure AC waveform. This signal is then shifted to 2.5 V DC
using a KF-25 DC-DC converter IC, aligning the average
signal level with the midpoint of the microcontrollers 0-5 V
input range — follow at Fig. 2.

The microcontroller used is an Arduino Uno, employed
exclusively for control. Regulation is carried out by an
MCP41100 digital potentiometer. The control signal from the
Arduino is applied to the digital potentiometer, which adjusts
the amplitude of the analog signal using the principle of
voltage division (follow at Fig. 3.). The output signal of the
potentiometer is then fed into the output amplifier circuit,
which is based on a bipolar junction transistor. This stage is
identical to the Electro-Harmonix LPB-1 booster circuit [9].
Unlike the emitter-follower configuration used for
preamplification, the common-emitter amplifier employed
here provides high voltage amplification [10]. The amplitude
of the final output signal can be adjusted using a
potentiometer, which functions as the volume control [11,
12].
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Figure 1: Unity gain schematic
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Figure 3: Integration of Arduino Uno into the analog circuit

B. Software realisation

SPI communication is used for data transfer. SPI is a master—
slave serial communication protocol that allows for high-
speed communication [13]. In this implementation, SPI is
employed to control the outputs. Pin 10 is configured as an
output; its initial state is set high to disable the SPI command,
since the protocol is active low. The SPI bus is then started
and the serial port initialized [14].

The control pin for the MCP41100 digital potentiometer is
declared. The potentiometer is connected through output pin
10, which delivers the control signal. An indicator LED is
also defined, connected to output pin 9. The LED provides
visual feedback of the regulation process: its brightness is
directly proportional to the control signal. The LED is
connected to ground through a 220 Q resistor, ensuring a
current of approximately 9 mA, which is within the safe
operating range of the component.

The analog inputs are defined as follows: the base signal is
fed to port AO, the threshold potentiometer to port A1, and the
attack potentiometer to port A2. An Exponential Moving
Average (EMA) algorithm is implemented to determine the
ramp-up and ramp-down characteristics of the control [15].
The resulting envelope signal is compared against the
threshold to specify the required degree of regulation. Instead
of a true moving average, the algorithm computes a decaying
envelope that follows the signal peaks [16]. Ramp-up and
ramp-down are handled separately, improving robustness
against sudden dynamic changes [17].

The variable “emaPeak” is computed as the sum of two
weighted terms: the current sample multiplied by a weighting
factor, and the previous average multiplied by the
complementary factor [18-20]. The weighting factor,
adjustable with the A2 potentiometer, controls how strongly
the most recent sample influences the peak value. When the
algorithm detects a decreasing voltage, its sensitivity is
reduced by a precalculated factor, based on empirical data, by
applying a scaled version of the attack parameter, thereby
smoothing the release phase [20-23].

The main program acquires the signals connected to the
analog input pins and scales them into voltage values. The
Arduino performs analog-to-digital conversion with 10-bit
resolution, corresponding to a scale of 1024 discrete units. A
voltage of 0 V is represented as 0, while 5 V corresponds to
1023. To convert the digital values back to voltage, each
signal is divided by 1023 and multiplied by the upper limit of
the desired scale. In this implementation, the input signal is
scaled to 5 V, while the potentiometer values are scaled to 2.5
V. Scaling to 2.5 V is appropriate for the threshold parameter
because the input signal is offset to 2.5 V, giving it a
theoretical AC range of £2.5 V. Considering that a highly
dynamic guitar signal typically has an amplitude of about 0.5
V, this range provides a suitable reference.

The attack parameter is scaled independently, and its absolute
voltage range is less relevant. For consistency in graphical
representation, both control potentiometers are scaled to a
maximum of 2.5 V, which facilitates direct comparison of
their positions. In addition, the attack potentiometer is
normalized to a range between 0.01 and 1, enabling its direct
use as a weighting factor in the EMA algorithm. The
previously mentioned attack/release ratio is also evident in
this part of the program.

In the subsequent stage, the amplitude of the input is
calculated by removing the nominal 2.5 V offset, effectively
centering the waveform around O V. This adjusted signal is
used to determine the voltage of the envelope curve, which is
compared against the threshold to evaluate whether
regulation is required. If the EMA voltage exceeds the
threshold, a control signal is generated with a magnitude
proportional to the difference between the two values. The
control output is then converted to 8-bit resolution, yielding a
scale of 0-255 for driving the potentiometer and the LED. At
this stage, the scaling of the output signals is also performed.
The LED is controlled via a PWM signal, while the digital
potentiometer operates through a resistance ratio applied
between pins 5 and 6, thereby realizing voltage division of the
base signal.

Finally, the relevant signals — including the input signal,
threshold level, envelope average, and attack level — are
displayed graphically. The flowchart of the software can be
followed at Fig. 4.

I1l. PRACTICAL REALISATION

During testing, the threshold was set to 0.5 V, monitored via
the Arduino IDE graphical interface. The objective was to
observe and document the signal waveforms at various
measurement points as the input amplitude varied. The
expectation was that once the input exceeded the threshold,
both the regulated base signal and the amplified signal from
the LPB-1 would remain at a constant level.

Measurements were performed using an XR2206 function
generator and a Siglent SDS 1104X-E oscilloscope. Three
probes monitored the input, regulated, and amplified signals,
each at a resolution of 500 mV per division. In addition to the
oscilloscope readings, changes in the LED brightness
provided a qualitative indicator of regulation. The results
confirmed expectations: as the input amplitude increased
beyond the threshold, the regulated and amplified signals
stabilized at a fixed level, while their waveform shape
remained unchanged. The experimental environment and the



measurements of the developed system can be followed in

Fig. 5. to Fig. 8.
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IV. EDUCATIONAL RELEVANCE

The implementation of an audio compressor effect with
Automatic Gain Control on a microcontroller not only
demonstrates a practical engineering solution but also
provides substantial educational value in the training of
electrical engineers. Embedded systems and digital signal
processing are key areas of modern engineering curricula, and
project-based assignments such as the presented system foster
both theoretical understanding and practical skills.

By working on such projects, students gain hands-on
experience with microcontroller programming, analog and
digital circuit design, and real-time signal processing. The
task integrates knowledge from multiple subjects, including
electronics, systems theory, programming, and measurement
techniques, thereby reinforcing an interdisciplinary
engineering perspective. Moreover, troubleshooting during
hardware implementation and software debugging develops
essential problem-solving abilities and critical thinking,
which are indispensable for professional engineering
practice.

The project also supports the development of soft skills,
such as project planning, documentation, and technical
communication, since students are required to present results,
interpret measurement data, and justify design decisions.
These competencies are directly transferable to industrial
applications, where embedded systems are widely employed
in audio technology, telecommunications, and control
engineering.

Consequently, the described implementation serves not
only as a low-cost and effective solution for audio processing
but also as a valuable educational tool. It enhances the
engineering capabilities of students by combining theoretical
knowledge with practical experimentation, preparing them
for the challenges of modern embedded and signal processing
systems.

CONCLUSION

The study demonstrated the successful implementation of
an audio compressor effect using the Automatic Gain Control
method on a microcontroller platform. The proposed system
effectively stabilized output levels, reduced sudden volume
fluctuations, and preserved the natural quality of the audio
signal. By combining simple analog circuitry with efficient
digital signal processing, the solution achieved low latency
and reliable performance while maintaining low hardware
costs. These results highlight the potential of microcontroller-
based designs as practical and compact alternatives to
conventional audio compressor units.
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