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Application of Sentinel-1 radar data for mapping ice disturbance in a forested 
area
László Zoltán a, Zoltán Friedl b,c, Vivien Pacskó b, Ildikó Orbán a,d, Eszter Tanács a,d, Bálint Magyar b, 
Dániel Kristóf b and Tibor Standovár a

aDepartment of Plant Systematics, Ecology and Theoretical Biology, ELTE Eötvös Loránd University, Budapest, Hungary; bLechner 
Knowledge Centre Non-profit Ltd, Budapest, Hungary; cDepartment of Geophysics and Space Science, ELTE Eötvös Loránd University, 
Budapest, Hungary; dCentre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary

ABSTRACT
In 2014 a catastrophic ice storm occurred in the forests of Börzsöny Mts., Hungary. In this study we 
analyzed the potential of Synthetic Aperture Radar (SAR) data, complemented, and compared with 
optical imagery, in mapping this event. Great emphasis was put on reference data: three types of field- 
based reference datasets were used and the damaged patches were delineated manually based on 
the visual interpretation of pre- and post-event orthophotos. Four classifications with different set-ups 
were carried out by applying the eXtreme Gradient Boosting method. Combinations of radar back
scatter coefficients, polarimetric descriptors, interferometric coherence, and optical data variables 
were tested. All classifications were suitable for identifying uprooted trees properly (1–11% under
estimation), but none of them could detect crown loss accurately (55–58% overestimation), based on 
the validation of the most damaged area. Proper differentiation of healthy forests with various levels of 
canopy closure in the reference data seems crucial for accurate canopy loss estimation. In the case of 
methods using only Sentinel-1 imagery, interferometric coherence together with polarimetric descrip
tors provided the best results (OA: 65.7%). This setup can be useful for immediate uproot damage 
detection for planning salvage logging if a natural disturbance happens outside the vegetation 
period.
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Introduction

In temperate forests around the world wind and ice 
storms are among the most important drivers of natural 
forest disturbances. Occurrence, intensity, and frequency 
are highly variable; however, during the last decades, 
there have been increasing trends in the frequency 
(Senf & Seidl, 2020) and intensity (Schelhaas et al., 
2003) of these storms. Circa 18.7 million m3 of wood 
was damaged as a consequence of storms in Europe 
between 1950 and 2000 (Schelhaas et al., 2003). Ice 
storms occur occasionally in the northern and eastern 
parts of the United States and Canada (Irland 2000; 
Lemon 1961), in East Asia (Ding et al., 2008; Zhou 
et al., 2011) and in Central-Europe (Kenderes et al., 
2007; Nagel et al., 2016). The largest ice break happened 
in North America, in 1998 (ca. 10 million hectares of 
woodland affected, Kerry et al., 1999); and in China, in 
2008 (ca. 20 million hectares of forests affected, which 
was around 10% of the national forest cover, Zhou et al., 
2011). In Hungary, ice breaks occur occasionally as well: 
events outstanding at the country level were detected in 
1989 (ca. 4,000 ha damage), 1996 (ca. 8,000 ha damage), 
1997 (ca. 3,000 ha damage), 2001 (ca. 3,000 ha damage), 
2004 (ca. 6,000 ha damage) and 2014 (ca. 15,000 ha total 
damage) (Hirka, 2015).

Ice break occurs when the relatively warm rain 
reaches the cold surfaces, ice forms, and then the 
weight of the accumulated ice breaks the tree. The 
type and the degree of damage depends on the extent, 
intensity, and severity of the disturbance. Canopy 
damage and trunk break are the most common 
damage types (Roberts, 2004). When the soil is not 
frozen, uproot damage can also occur. Intensity, 
amount of precipitation, temperature, location, topo
graphy, forest stand composition, and structure can all 
alter the effects of an ice break event (Irland, 2000; 
Kenderes et al., 2007). These disturbances determine 
the forest stand dynamics at medium and large spatial 
scales (Pickett & White, 1985) and can affect the 
canopy-, regeneration- and herb-layers as well as the 
soil surface (Roberts, 2004).

In the last days of November 2014, intensive frost 
formation started above 400 m a.s.l. in the Börzsöny 
Mountains, Hungary (Nagy, 2015). Then, from the 1st 
of December, a glaze storm caused by a Mediterranean 
cyclone resulted in additional ice accumulation. The 
storm lasted 2 days with 20–50 mm of precipitation. 
The maximum of radial ice thickness was 100 mm 
(Nagy, 2015), which exceeded the 80 mm maximum 
of the North American ice storm in 1998 (Kerry et al., 
1999) and approached the 160 mm maximum of the 
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great Chinese ice storm in 2008 (Zhou et al., 2011). 
This was the most intensive and most severe ice break 
event of the last 50 years in Hungary (Hirka, 2015). 
Approximately 40,000 ha of forests were damaged at 
various levels all over the country (Csépányi et al., 
2017), ca. 2% of the national forest cover. Intensively 
managed, structurally and compositionally homoge
neous (low DBH diversity and almost pure) stands 
dominated by beech (Fagus sylvatica) or hornbeam 
(Carpinus betulus) were particularly affected 
(Csépányi et al., 2017; Zoltán & Standovár, 2018).

Many conventional remote sensing studies apply 
data from passive multispectral sensors and calcu
late the Normalized Difference Vegetation Index 
(NDVI) to examine natural disturbances (Barton 
et al., 2017; Furtuna et al., 2015; Lee et al., 2008; 
Olthof et al., 2004; Osberger et al., 2013; Wu et al., 
2016). During the vegetation period, the effects of 
disturbance can be easily shown via canopy loss; 
therefore, mapping the damaged areas based on 
NDVI difference between pre- and post-event 
image pairs seems feasible. In the case of an ice 
break event affecting deciduous forests, the earliest 
time when the post-event canopy cover can be 
examined is after foliation, practically in the follow
ing spring/summer. However, when catastrophic 
disturbance happens over large areas, the earliest 
possible mapping of the spatial extent and severity 
of damages is essential to start the planning of sal
vage logging. Waiting for canopy-covered optical 
images may cause months of delay in decision- 
making. Since storm-caused uproot results in geo
metrical changes in the forest structure, its effects 
could be detected based on Synthetic Aperture 
Radar (SAR) data as well, providing the possibility 
of estimating potential damage within days after the 
event, still in the leafless period.

SAR is an active remote sensing technique, so it 
operates independently from cloud cover and solar 
illumination. These sensors measure backscattered 
polarized electromagnetic pulses at microwave wave
lengths and are sensitive to the roughness, water con
tent, and dielectric properties of the Earth’s surface. In 
recent years, since Sentinel-1 satellites provide consis
tent time series of SAR data, the advantages of radar 
images have gained more attention. Most SAR-based 
mapping methods employ two-date change-detection 
techniques based on backscatter coefficients (intensi
ties) and/or indices derived from them (such as ratios) 
for change detection (Antropov et al., 2016; Fransson 
et al., 2010; Olesk et al., 2015; Quegan et al., 2000). 
Based on multitemporal SAR data, biomass and stem 
volume estimation are also used to measure forest 
degradation, which has been successfully applied to 
estimation of snow damage (Tomppo et al., 2019) and 
estimation of windstorm damage (Tomppo et al., 
2021). Another way of applying SAR data is the 

derivation of polarimetric descriptors that aims to 
support mapping via separating areas with different 
scattering mechanisms. Different polarimetric decom
position methods of C-band SAR data are effective in 
identifying normal forest and deforested areas (Zhang 
et al., 2012) and in estimating forest canopy density 
(Varghese et al., 2016). Besides radiometric and polari
metric values, interferometric coherence between two 
complex images acquired before and after an event is 
also a powerful technique for mapping forested areas 
(Martone et al., 2018; Srivastava et al., 2007) and 
natural disturbances (Donezar et al., 2019; Nico 
et al., 2000; Pepe et al., 2018). Although these studies 
mostly focused on detecting and mapping fire, wind
storm, and clear-cut areas, the underlying data and 
methods are worth considering and testing in the 
context of ice break events, featuring partly similar 
effects on forest structure.

SAR techniques have been proven to yield reliable 
detection of forest disturbances resulting from com
plete or partial removal of tree cover (Mitchell et al., 
2017), but recent studies indicated that the combined 
use of SAR and optical data can improve deforestation 
and forest degradation mapping. Reiche et al. (2013) 
demonstrated an increase in both spatial completeness 
and thematic detail when applied to feature-level 
fusion of ALOS PALSAR and Landsat 7 optical infor
mation. Using a combination of Sentinel-1 SAR and 
Landsat 8 optical data, Shimizu et al. (2019) achieved 
higher overall accuracy for detecting disturbances in 
tropical forests than that achieved by using them 
separately, and Hirschmugl et al. (2020) also con
firmed that combining Sentinel-1 and Sentinel-2 opti
cal time series considerably improves the accuracies of 
forest disturbance maps.

In many cases, detection of disturbed areas based 
on remote sensing can be carried out in a semi- 
automatic way, but to achieve high accuracy, precise 
field-based reference data are necessary. The general 
lack of such data originates from the fact that in most 
cases pre-disturbance data are missing. Moreover, 
ground-based data collection methods have to be 
adjusted to specific needs of remote sensing analysis; 
otherwise, important variables are likely to be omitted 
(Frolking et al., 2009). Fortunately, field data on forest 
composition and structure were collected during the 
growing season of the year 2014 over the area that later 
was damaged, in the frame of our previous project 
(“Multipurpose assessment serving forest biodiversity 
conservation in the Carpathian region of Hungary,” 
Standovár et al., 2016).

In this work, we analysed the potential of Sentinel-1 
SAR data in mapping natural disturbances in forests, 
by applying it to the 2014 ice break event in Hungary. 
Our primary goal was to test whether SAR data are 
sufficiently sensitive to detect structural changes 
(uproot and crown loss damages – large and small 

570 L. ZOLTÁN ET AL.



canopy gaps) caused by unpredictable meteorological 
events. Furthermore, the importance of optical data 
was also assessed in a combined SAR-optical 
approach. We utilize our unique opportunity to create 
genuine classifications based on accurate, pre- 
disturbance field-based reference data.

Data and methods

Study site

Our study area was in the Börzsöny Mts., the 
westernmost member of the North Hungarian 
Mountain Range (Figure 1). Most of the Börzsöny 
Mts. (ca. 65.5% – 53,000 ha) is covered by forests 
(Halász, 2006) and these forests are mostly mana
ged by a state-owned company, Ipoly Erdő Zrt. The 
bedrock is mainly andesite of volcanic origin. The 
highest peak is Csóványos (938 m). The annual 
average temperature is 6.5 ℃, the average number 
of frozen days per year is 120 (Nagy, 2007), while 
the average annual rainfall ranges between 600 and 
850 mm (Bartholy & Pongrácz, 2011). In the south
ern part of the Börzsöny Mts. Sessile oak (Quercus 
petraea) and turkey oak (Quercus cerris) are the 
dominant tree species because of the lower altitude 
and gentle slopes in this area. On the northern 
slopes and at higher elevations, European beech 
(Fagus sylvatica) dominates. Most of the forests 
(70%) are managed under a uniform shelterwood 
system, the rest is partly managed by selection 
cutting (20%) or unmanaged (10%), serving as pro
tection forests (Standovár et al., 2017).

Our study focuses on the central and western parts 
of the Börzsöny Mountains (Figure 1). According to 
our previous field experiences, areas at higher eleva
tions (above 400 m a.s.l.) were most intensely affected 
by ice damage. The area above 350 m a.s.l. was deli
neated, complemented with neighbouring areas cover
ing undisturbed forest stands, resulting in a study area 
of 12,000 hectares. The entire area is part of the Natura 
2000 network and the Duna-Ipoly National Park. The 
study area, a digital elevation model (based on a 
5 m contour map), and a true-colour orthophoto are 
shown in Figure 2.

Reference data

During the whole study, great emphasis was placed on 
ensuring a proper set of reference datasets. Three types 
of field-based datasets have been used, complemented 
with data created by visual interpretation of optical 
aerial images. All the above-mentioned reference data
sets were used during the classification of remote sen
sing imagery.

Field-based Reference Data Type 1 (FRDT1)
Field data collection began in the summer of 2014, as 
part of a forest state assessment project (for detailed 
methodology, see Standovár et al., 2016), when 500 m2 

circular plots on a systematic grid were surveyed exten
sively. Sampling density of plots was 2 or 4 per hectare. 
Data were collected about the composition and struc
ture of forest stands (tree species composition, age 
structure, and canopy closure), woody debris (amount 

Figure 1. Location of the study site (area marked with red) within Europe and Hungary.
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and quality), herb layer (herb cover, presence, and 
abundance of disturbance indicator herbs), shrub layer 
(shrub cover), high and low regeneration layer (regen
eration cover above and below 0.5 m). The plots and 
their surroundings were photo-documented. This forest 
state assessment database gives us a unique opportunity 
to access fine-scale stand-level pre-event data for some 
of the areas affected by the 2014 ice storm. With the 
repeated post-event survey of these plots, accurate data 
about the effects of the ice damage could be obtained. In 
2015 and 2016 altogether 652 plots were re-sampled 
(Zoltán & Standovár, 2018), enabling a precise assess
ment of ice break effects (e.g., extent of the canopy loss).

Manual delineation
For this dataset, the differences observed between 
two series of aerial photographs were delineated. 
The first series of orthophotos (40 cm spatial reso
lution, 4 spectral bands: RGB, IR) were taken in the 
summer of 2013, before the ice damage. 
The second series (20 cm spatial resolution, 4 spec
tral bands: RGB, IR) were taken in the summer of 
2015, after the disturbance. The damaged patches 
were visually observed and manually delineated 

using GIS software. Data from the National 
Forestry Database were also taken into account to 
separate changes in the photographs caused by 
forest management practices from the effects of 
the disturbance event. The affected patches were 
divided according to their severity into “Uproot” 
or “Crown loss” damage categories (Table 1). Only 
the most damaged 7500 ha area (which was above 
the 350 m a.s.l. boundary) was analyzed with this 
method (Figure 3).

During the manual delineation process, we encoun
tered several difficulties. Delineation was carried out at 
the level of individual trees wherever possible. However, 
some of the patches contained relatively few damaged 
and/or undamaged individuals. The crown loss at these 
sites appeared as a very fine-scale mosaic, and it was not 
possible to delimit them manually one by one, especially 
in regeneration stands. The different resolution and the 
different angle of view between the orthophotos taken 
before and after the event were the most important 
challenges, mostly in the case of identifying the level 
of crown loss. Another factor making categorization 
difficult was the occasional presence of shadows, mak
ing certain areas harder or impossible to assess. 

Table 1. Damage classification for the manual patch delineation. Due to their fine spatial scale, patches smaller than 400 m2 (all the 
light uproot damages) were not included in the reference database of the classifications, but all of them were used for validation of 
classifications.

Uproot Crown loss

Severe damage 50–100% 
patch is larger than 100 m

soil surface and understory clearly observable

50–100% 
patch is smaller than 100 m incl. canopy gaps

Moderate damage 25–50% soil surface and understory somewhat observable
Light damage 0–25% soil surface and understory undetectable, but crown loss is observable

1 tree uprooted (seed tree) bent young trees

Figure 2. The main characteristics of the study area. Map a: Digital elevation model. Map b: Post-disturbance orthophoto (true- 
colour). DEM and orthophoto courtesy of Lechner Non-profit Ltd. and Eurosense Ltd.
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Interestingly, both incomplete pre-event canopy closure 
and the presence of a second canopy layer made com
parison of the two orthophoto series more complicated 
and potentially less accurate. The comparison of pre- 
and post-disturbance field data (FRDT1) enabled man
ual patch delineation. In some cases, when damage was 
more difficult to detect visually in the photos, FRDT1 
was used to improve the Manual Delineation.

Field-based Reference Data Type 2 (FRDT2)
Another field survey was carried out in 2016, specifically 
tailored for the needs of damage mapping validation. 
Additional data were collected from 195 sampling 
points in order to support the classification of uncertain 
patches into damage categories (Table 1). A new, 

specific method was elaborated to collect only the cru
cial data from the field for validation by simplifying the 
data collection method used in aforementioned field 
survey campaigns. The applied variables and the attri
butes are shown in Table 2. Each variable was registered 
in a 500 m2 circular plot.

With the field observation of the uncertain patches 
and points, higher accuracy was achieved for Manual 
Delineation. Thus, the results of the Manual 
Delineation were the most accurate, coherent, large- 
extent reference dataset for further use (Figure 4). 
However, we do not suggest this method by itself for 
widespread disturbance monitoring because of its 
resource-intensity both in terms of time and labour 
(the delineation process took several months).

Figure 3. Polygons of reference and ground-truth data. The purple frame marks all the areas higher than 350 m a.s.l. This area 
includes all types of references. “Healthy forest” reference areas (based on FRDT3) are mostly outside the purple frame. We have 
accurate pre- and post-event field data from FRDT1. FRDT2 was specifically tailored for the needs of damage mapping validation. 
FRDT3 cannot be shown, because it covers the whole study area with a grid density of 50 and 70 m (same as FRDT1).
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Field-based Reference Data Type 3 (FRDT3)
The Manual Delineation, the FRDT1 and the FRDT2 
collections were carried out in the most damaged parts 
of the Börzsöny Mts., so there was a lack of healthy, 
undisturbed forests in our database. Therefore, the most 
damaged area was extended to the south and the west 
with neighboring forest stands (Figure 3). In 2015 and 
2016, field data collection continued over the study area 
as well in the frame of the aforementioned forest state 
assessment project, yielding essential post-disturbance 
field data. In this case, a grid with a density of 1 plot/ha 
was used. Canopy closure was used to identify healthy, 
undisturbed forests, with (almost) intact canopies after 
the disturbance. If canopy closure was at least 95%, in 3 
or 4 corner points of square-shaped grid cell (1-ha), the 
area of the cell marked as “Healthy forest” reference 
area (Figures 3, 4).

Remote sensing data

Radar satellite imagery

Radar backscatter
The European Sentinel-1A satellite carries a C-band 
SAR sensor operating at 5.405 GHz and supports dual 
polarization (VV+VH) (“ESA”, 2021). The S1A satel
lite was launched on 3 April 2014 and has a revisit time 
of 12 days. We collected Single Look Complex (SLC) 
images from 175 ascending and 51 descending relative 

orbits acquired in Interferometric Wide Swath (IW) 
mode (“Copernicus”, 2019). However, as operational 
data publication started in October 2014, the collec
tion was not complete in the first 2 months. 
Accordingly, only one pair (ascending and descend
ing) of pre-event, and three pairs of near- and post- 
event images were available over the site. In this study, 
three types of inputs were derived from Sentinel-1 
data: backscatter coefficients, polarimetric descriptors, 
and interferometric coherence.

Conventional SAR-based mapping methods 
employ backscatter coefficients, commonly named 
sigma nought (б0). Sigma nought is the normalized 
ratio of transmitted and reflected polarized signal and 
is derived from the amplitude of the measured signal. 
In this case, two sigma nought layers were derived for 
the two polarizations (VH, VV), expressed in decibels 
(dB) (Equation 1). Their ratio (VV/VH) is also used as 
an input (Equation 2). 

σ0 dBð Þ ¼ 10 � lg
DN2

A2
dnK

sin αð Þ
� �

(1) 

where, α is the incidence angle, DN is the digital 
amplitude value of the channel VV or VH, Adn is the 
product final scaling from internal SLC to final SLC or 
GRD, and K is the calibration constant (Miranda & 
Meadows, 2015). 

Table 2. Variables, possible attributes, and applied definitions of FRDT2. This dataset was designed to validate the manual 
orthophoto delineation.

Variables Attributes Explanation, justification

Uprooting intensity no uprooting
light maximum 4 canopy trees uprooted within the plot

moderate more than 4 trees, but less than 50% of the trees uprooted within the plot
severe more than 50% of the trees uprooted within the plot

Crown loss intensity no crown loss
light crown loss less than 1/3 within the plot

moderate crown loss more than 1/3, but less than 2/3 within the plot
severe crown loss more than 2/3 within the plot

Regeneration layer covers 
more than 50%? the understory presence could confuse the classification

Herb cover more than 50%? yes/no
Previous forest management 

detectable
to exclude the effects of previous forest managements

Photo documentation the plot, its surrounding and the exactly horizontal (tuned up with spirit-level) canopy photos 
insure the opportunity of revision

Figure 4. Construction of the reference database. The Field-based Reference Data Type 1 and 2 (FRDT1 and 2) were used to 
validate the Manual Delineation. The “Uproot” and “Crown loss” classes were derived from the Manual Delineation. The FRDT3 was 
created for “Healthy forest” class determination.
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ratio dBð Þ ¼ 10 � lg
σVV

0
σVH

0

� �

(2) 

Radar polarimetry
Another way of exploiting SAR data consists of deriv
ing so-called polarimetric descriptors that utilize both 
amplitude and phase information from the measured 
values. Numerous decomposition techniques have been 
developed based on covariance and coherence matrices 
derived from SAR data and are mainly aimed to sepa
rate the different scattering mechanisms. However, 
most of these techniques were developed for quad- 
polarized data (HH, HV, VH, and VV). In the case of 
dual-polarisation data such as that of Sentinel-1, the 
eigen-based H/A/Alpha polarimetric decomposition is 
still available, with restrictions of the original theory 
(Cloude & Pottier, 1997; Lee & Pottier, 2009); hence, 
this method was applied in this study.

Based on their importance for land cover classifica
tion in the case of dual-polarimetric radar data, as 
demonstrated in Surek et al. (2015), the following 
polarimetric descriptors were used: alpha, anisotropy, 
Shannon entropy (Morio et al., 2007; Réfrégier & 
Morio, 2006) and the first (λ1) and second (λ2) eigen
value of covariance matrices.

H/A/Alpha polarimetric decomposition was aimed 
to differentiate the three scattering mechanisms (sur
face scattering, dihedral scattering, and volume scat
tering). The concept is based on the complex 2 × 2 
scattering matrix [S], for which the elements are the 
complex scattering coefficients (Equation 3). 

Squad
� �

¼
SHH SHV
SVH SVV

� �

; Sdual½ � ¼
0 SVH

SVH SVV

� �

(3) 

The approach of H/A/Alpha decomposition uses the 
eigenvalues and eigenvectors of the coherency matrix 
(Equation 4) in case of quad polarization data. 
A commonly used condition in practice is that the 
two cross-polarized channels are considered to be 
equal (SHV = SVH). Thus, in Equation 4, Sxx represents 
one of the cross-polarized channels (SHV or SVH). In 
the case of dual polarized Sentinel-1 data, a covariance 
matrix is used, which can be given by Equation 5. 

T3½ � ¼
SHH þ SVVj j

2 SHH þ SVVð Þ SHH � SVVð Þ
� 2 SHH þ SVVð ÞS�XX

SHH � SVVð Þ SHH � SVVð Þ
� SHH � SVVj j

2 2 SHH � SVVð ÞS�XX
2SXX SHH þ SVVð Þ

� 2SXX SHH � SVVð Þ
� 4 SHHj j

2

2

4

3

5

(4) 

C2½ � ¼
SVVS�VV SVVS�VH
SVHS�VV SVHS�VH

� �

(5) 

Three eigenvalues (λ1, λ2, λ3) can be calculated from 
the coherency matrix, and two eigenvalues (λ1, λ2) 
from the covariance matrix. From these matrices 
three descriptors are used to extract alpha, entropy 

(H), and anisotropy (A). In this study entropy was 
not used because anisotropy and entropy are comple
mentary to each other (Harfenmeister et al., 2021).

For full polarimetric data, the anisotropy indicates 
the presence of a second scattering mechanism and is 
therefore complementary to entropy. It is particularly 
useful to improve the separation of different scattering 
mechanisms when the entropy is high. Normally, it is 
calculated using the normalized difference of 
the second and third eigenvalues (Equation 6), but in 
the case of dual-polarimetric data, it is calculated from 
the first and second eigenvalues. 

Aquad ¼
λ2 � λ3

λ2 þ λ3
;Adual ¼

λ1 � λ2

λ1 þ λ2
(6) 

The alpha angle describes the dominant scattering 
mechanism. It is defined by Equation 7, where αi 

(Equation 8) is the scattering of the eigenvector (v), and 
pi is called pseudo-probabilities (Equation 9). Alpha 
values close to 0°, refer to surface scattering, alpha values 
close to 45°, means volume scattering, and values close 
to 90°, refer to dihedral scattering (Lee & Pottier, 2009). 

α ¼
Xn

i¼1
αipi; nquad ¼ 3; ndual ¼ 2 (7) 

αi ¼ cos� 1 v1ij jð Þ (8) 

pi ¼
λi

Pn
j¼1λj

(9) 

Shannon entropy (SE) has been introduced by Morio 
(Morio et al., 2007; Réfrégier & Morio, 2006) as a sum of 
two contributions related to intensity (SEI) and polari
metry (SEP). The Shannon Entropy measures the ran
domness of scattering of pixel and is given by 
Equation 10. 

SEquad ¼ SEI þ SEP ¼ log π3e3 T3j j
� �

¼ SEI þ SEP ¼ log π2e2 C2j j
� �

; SEdual

(10) 

Interferometric coherence
Interferometric SAR (inSAR) coherence is useful to 
detect changes in the scene between the two acquisi
tions since they cause a decrease in interferometric 
coherence (Rosen et al., 2000). Coherence is the nor
malized correlation coefficient of two complex signals 
received in two different passes (Equation 11). 

γ ¼
hs1s2

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs1s1�ihs2s2�ið Þ

p (11) 

where s1, s2 are the complex pixel values at times t = 1 
and t = 2; s� is the complex conjugate of s and〈〉is 
the ensemble average (Rosen et al., 2000).
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Generally, it presents high values for features that 
are stable in time (e.g., urban areas) and low for 
unstable features (e.g., water surfaces). Hence, our 
preliminary assumption was that it would be helpful 
in separating disturbed and undisturbed forests.

Optical satellite imagery
The Landsat 8 satellite of NASA and USGS was 
launched on 11 February 2013 and carries two sensors: 
the Operational Land Imager (OLI) and the Thermal 
Infrared Sensor (“USGS”, 2019). OLI is a multispectral 
sensor that provides visible and infrared images of 
Earth’s surface. It measures nine spectral bands, of 
which we used those in the red, green, blue, near- 
infrared (NIR), and short-wave infrared (SWIR) wave
lengths. All these bands have a spatial resolution of 
about 30 m. Concerning the ice break event, which 
occurred in the winter of 2014, pre- and post-event 
(clear-sky) summer images have been acquired on 
23 June 2014 and 10 June 2015, respectively 
(“USGS”, 2019). Top of atmosphere (ToA) reflectance 
and then normalized difference vegetation index 
(NDVI) (Equation 12) were calculated from the raw 
Landsat data. 

NDVI ¼
NIR � Red
NIRþ Red

(12) 

Pre-processing of SAR data

The preprocessing steps can be followed on Figure 5. 
For SAR data, Sentinel-1A single-look complex (SLC) 
products were used for all indices. The backscatter 
coefficients were processed by the ESA SNAP software 

(“SNAP”, 2021). First, the “Slant range to Ground 
Range” built-in process was applied with the default 
settings, resulting in calibrated ground range back
scatter coefficients. For further spatial filtering of 
speckle effect, a Refined Lee Filter with window size 
7 was employed besides the commonly used multi
looking (one sample in azimuth and four samples in 
range) process. Range Doppler Terrain Correction was 
based on SRTM 3 sec dataset (Jarvis et al., 2008). After 
converting sigma nought values from linear to loga
rithmic scale, the ratio of the two polarization chan
nels was also calculated.

The H/A/Alpha polarimetric descriptors were cal
culated using the PolSARpro software (Pottier et al., 
2009). Raw data were extracted with 1:4 multilook. For 
Range Doppler Terrain Correction, the SRTM 3 sec 
DEM model was applied. Then the elements of the C2 
covariance matrix were computed. For spatial filter
ing, similarly to sigma nought pre-processing, 
a Refined Lee Filter (Lee & Pottier, 2009) (window 
size 7) was also used. The resulting ground range 
pixel spacing for sigma nought and the descriptors is 
the same, 13.9 × 14.76 m (azimut×range).

In mountainous areas, different geometric distor
tions (foreshortening, layover, and shadow) can 
appear in SAR data as a result of side-looking geome
try. Moreover, as the measured intensity varies with 
incidence angle, radiometric differences are also visi
ble in the SAR images (Topouzelis & Singha, 2016). 
The slopes facing the instrument seem bright, the 
further ones are darker; consequently, the same slopes 
look different from different orbit directions (ascend
ing, descending) (Figure 6). This can be considered an 
additional source of noise during thematic 

Figure 5. Methodology of pre-process.
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classification since pixel values of the same class show 
significant diversity arising from differences in inci
dence angle.

Radar signals with low incidence angle can pene
trate deeper into the crop cover or forest canopy, so 
the effect of the underneath soil is more relevant, while 
signals with high incidence angle are more sensitive to 
the characteristics of crop or canopy (Sivasankar et al., 
2018). For forest-covered areas, this dependence on 
incidence angle is stronger in clear-cuts, damaged or 
regenerated young forests, where the canopy contri
bution to backscatter is minimal (Rauste, 1990). This 
radiometric variability affects vegetation-covered flat 
surfaces as well, but the relief strengthens these effects, 
since the range of projected local incidence angle 
broadens compared to the range of projected local 
incidence angle of flat areas. In this study, we aimed 
to eliminate the radiometric differences between the 
different slopes.

The incidence angle of Sentinel-1 ranges from 
29.1 to 46 degrees in IW mode. Sayedaina et al. 
(2020) proved that the use of cross-orbit data with 
different pass modes (ascending and descending) 
can improve classification results. Our study area 

was on the IW2 swath of all images from both 
covering relative orbits (51 descending and 175 
ascending), so the incidence angle ranges were 
about the same. On the ascending look the values 
varied from 39.54 to 40.37 degrees and 37.36 to 
38.18 degrees on the descending one. As the study 
area was in north-south oriented mountains with 
moderate elevation, the ranges of projected local 
incidence angles of the two different looks were 
also about the same. Under these circumstances, 
we assume that the averaging of images from the 
two looks can smooth the differences between 
values measured over slopes oriented towards the 
east and those oriented towards the west. Hence, 
the four relevant ascending-descending pairs of 
images (Table 3.) were averaged after pre- 

Figure 6. Averaging of different orbit directions: the upper row shows the projected local incidence angle from different looks, 
with the picture in the middle showing the average of two looks. Averaging decreased the effect of topography. The lower row 
shows the effects of averaging on sigma nought computed from the VV polarization channel.

Table 3. Relevant date for averaging of ascending and des
cending orbit.

Ascending orbit (175) Descending orbit (51)

17/10/2014 21/10/2014
04/12/2014 08/12/2014
16/12/2014 20/12/2014
28/12/2014 01/01/2015
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processing, and the averaged backscatter coefficient 
and polarimetric descriptor values were used in the 
classifications.

In addition to polarimetric indices, interferometric 
coherence is frequently used in land cover classifica
tion (Engdahl and Hyyppa, 2003; Jacob et al., 2020; 
Mestre-Quereda et al., 2020; Sica et al., 2019). In this 
study, we derived coherence from 12-day interfero
metric pairs by using the ESA SNAP software (SNAP 
2021). After TOPSAR co-registration, an enhanced 
spectral diversity operator was also used. In the coher
ence estimation process, the SRTM 3 sec DEM model 
was used to subtract the topographic phase. For spatial 
filtering, the window size of multilooking was 8:2. 
Finally, the SRTM-based Range Doppler Terrain 
Correction was carried out, which resulted in a pixel 
spacing of 27.8 × 29.5 m (azimuth×range). Based on 
visual inspection, the coherence between 08/12/2014 
and 20/12/2014 revealed the damage of the ice break 
event; therefore, this layer was integrated in the 
classifications.

After pre-processing, all the layers were resampled 
to 10 m with the nearest neighbor method. The reso
lutions of different data and resampled resolutions are 
summarized in Table 4. Figure 7 presents some visua
lizations of the pre-processed data.

Thematic classification

In this study, we have chosen the eXtreme Gradient 
Boosting (XGB) classifier (Chen & Guestrin, 2016) for 
carrying out thematic classifications. The XGB was 
selected because it is one of the boosting type ensem
ble methods (Friedman, 2001) that is optimized, effec
tive, flexible, and fast. The most important advantage 
of this type of classification is avoiding overfitting by 
regularization. As for the implementation, the 
XGBoost Python package was used (“XGBoost”, 
2021).

After initial parameter tuning, the classifier was run 
with the following parameters, and they were fixed for 
all the classifications described later:

● Number of trees: 100
● Depth of trees: 5
● Gamma: 0.1
● Reg. alpha: 0.05
● Minimum child weight: 5

Classifications were carried out in a three-class 
setup. Training and test data came from the reference 
data detailed above. References for two of the classes 
were derived from the Manual Delineation (comple
mented with FRDT1 and FRDT2): (i) severe and mod
erate damage categories from “Uproot” and (ii) all of 
“Crown loss” (Table 1). This was complemented by 
the class “Healthy forest” derived from FRDT3 
(Figures 3, 4). The resolution of the reference data 
was higher compared to that of the satellite images, 
so damaged areas with an extent of less than 400 m2 

were excluded. From the integrated dataset, 20% of the 
polygons were selected randomly for training and the 
remaining 80% for testing. Although the number of 
“Healthy forest” polygons was significantly less com
pared to other categories, this extent was larger to 
ensure a sufficient number of samples. The 

Table 4. The resolutions of different data (after pre-processing 
and the final resampled resolutions that were used for 
classification).

Sensor Data type
Resolution after 

pre-processing (m)
Resampling 

(m)

Sentinel- 
1A

Radar 
backscatter

13.9 × 14.76 (az × rg) 10

Sentinel- 
1A

Polarimetry 13.9 × 14.76 (az × rg) 10

Sentinel- 
1A

Coherence 27.8 × 29.5 (az × rg) 10

Landsat8 Spectral bands 30 10
Landsat8 NDVI 30 10

Figure 7. Map a: Optical composite of 10/06/2015 (R: NIR, G: SWIR, B: Red). Map b: Temporal radar composite (R: First eigenvalue of 
04–08/12/2014, G: Anisotropy of 16–20/12/2014, B: First eigenvalue of 16–20/12/2014). Map c: Interferometric coherence between 
08/12/2014 and 20/12/2014.
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classifications are pixel-based, and the set of training 
and testing data is shown in Table 5. Although the 
training set was imbalanced, the ratio of training sam
ple categories did not change significantly during the 
process of polygon-based selection and pixel-based 
training. It was 22.9% for “Uproot,” 23.9% for 
“Crown loss”, and 27.4% for “Healthy forest.” The 
training sets of different classes compared to each 
other show bigger differences, but the proportions 
are not so high. The “Crown loss” category has the 
most samples, but normally it is hard to identify this 
category, so this justifies the use of larger training 
dataset. All things considered; the original training 
sets were kept.

To study the effects of different types of satellite 
data on classification accuracies, four different classi
fication setups were created (Table 6). The first two 
classifications were set up to assess the importance of 
different radar indices, while the others were aimed at 
examining the effects of the combined use of radar and 
optical data. XGBoost, as many machine learning 
methods, neither considers the relation between the 
input layers, nor their temporal order; the importance 
of the different bands was measured by the built-in 
ranking method of the XGB classifier (“XGBoost”, 
2021). Results of the classifications were compared 
by using common statistical indicators: Overall accu
racy (OA), Producer’s (PA), User’s accuracy (UA) 
(Congalton & Green, 2008) and Kappa accuracy 
(KA) (Congalton & Oderwald, 1983).

Results

Classification

Table 7 and Figure 8 show the results of the four 
classifications. The first case focused on radar polari
metry indices, namely backscatter coefficients and 
polarimetric descriptors of the four averaged images. 
It can be seen that polarimetric radar data in itself did 
not yield very high accuracies in mapping ice-damaged 
areas. The OA was 61.9%, but the KA was extremely 
low, 38.8%. The different classes had nearly the same 
accuracies. The feature importances plot of XGB classi
fication shows that the Shannon entropy and the first 
eigenvalue of the covariance matrices of different dates 
were the most useful radar indices (Figure 9).

For the second classification, interferometric coher
ence was also involved besides the polarimetric radar 
data. The accuracies have increased, the OA was 65.7% 
and the KA was 45.1%. The “Uproot” category reached 
the highest per-class accuracies, the UA was 73.6% and 
the PA, increasing by 10.8%, was 63.6%. Mapping the 
two other classes still encountered difficulties. The 
accuracy of the “Crown loss” class also increased, but 
the separability from the “Healthy forest” category was 
still weak. The feature importance plot (Figure 9) 
shows that interferometric coherence had a high effect 
on the results. This is consistent with the fact that with 
its inclusion, the “Uproot” damaged area became 
detectable with an OA of more than 70%. We have 
to underline that the applied radar satellite images 

Table 5. Characteristics of the reference data show the used number of polygons and number of samples for each type of classes. 
The percentage of samples shows the training and testing set ratio of all samples.

Class type

Training set Test data Total Percentage of Samples (%)

Polygons Samples Polygons Samples Polygons Samples Train Test

Healthy forest 22 23,226 91 61,416 113 84,642 27.4 72.6
Crown loss 234 32,056 938 101,645 1172 133,701 23.9 76.1
Uproot 308 13,989 1232 47,010 1540 60,999 22.9 77.1

Table 6. Input data of the different classifications.

Input data

Classification number

#1 #2 #3 #4

Polarimetric radar data Radar backscatter coefficients X X X X
Polarimetric descriptors X X X X

Interferometric coherence X X X
Post-event optical Landsat data from the summer of 2015 X X
Pre-event optical Landsat data from the summer of 2014 X

Table 7. Comparative accuracy values of the four different classifications for damaged areas.

Overall Accuracy (%) Kappa Accuracy (%)

Uproot Crown loss Healthy forest

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Classification 1 61.9 38.8 67.3 52.8 64.4 67.7 54.9 59.2
Classification 2 65.7 45.1 73.6 63.6 67.9 71.0 57.0 58.9
Classification 3 78.5 65.7 80.8 78.9 78.1 80.1 77.1 75.5
Classification 4 79.1 66.8 80.8 81.1 79.6 78.9 76.9 77.8
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were taken only 12 days after the event, which is 
encouraging regarding early response in similar 
situations.

As the above-mentioned previous studies con
cluded, complementing radar data with post-event 
optical images acquired during the vegetation period 
may increase the accuracy of the classification 
(Hirschmugl et al., 2020; Reiche et al., 2013; Shimizu 
et al., 2019). The first post-event, cloudless optical 

image of our study site in the full canopy was acquired 
on 02/06/2015. The reflectance and NDVI values of 
this Landsat image were added to the dataset of 
Classification 2. The accuracy increased significantly, 
with the OA reaching 78.5% and the KA 65.7%. The 
per-class accuracies of the “Uproot” class increased to 
80.8% (UA) and 78.9% (PA), and the “Crown loss” 
category reached nearly the same accuracies, 78.1% 
(UA) and 80.1% (PA). The accuracies of the 

Figure 8. Visualization of classification results in a smaller area. Map a: post-event orthophoto; Map b: reference polygons; Map c: 
results of Classification 1; Map d: results of Classification 2; Map e: results of Classification 4; Map f: results of Classification 4.
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“Healthy forest” class were a bit lower; the UA was 
77.1% and the PA was 77.8%. The feature importance 
of optical layers was quite high compared to the radar 
indices (Figure 9). According to the ranking, the most 
relevant feature was still the interferometric coher
ence, with NDVI being the second reaching almost 
the same level of contribution. These were followed by 
the other optical bands, and the radar polarimetry 
indices with lower importance. This classification 

showed that a post-event optical image may exceed 
the importance of polarimetric radar data, but the 
interferometric coherence can undoubtedly compete 
with the optical data and contributes efficiently to the 
classification.

In the last case, pre-event optical data were added 
to the input datasets. As a result, the OA and the KA 
increased with less than 1%, so we can state that the 
results were not improved significantly. We present 

Figure 9. Comparison of the feature importances of the classifications. a: Classification 1; b: Classification 2; c: Classification 3; d: 
Classification 4. Columns: dark blue: polarimetric descriptor bands; light blue: sigma0 bands; red: coherence; green: post-event 
optical bands; pink: pre-event optical bands.
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the classified damage map (Figure 10) and the con
fusion matrix of Classification 4 (Table 8), since this 
one reached the highest accuracies: 79.1% (OA) and 
66.8% (KA). The non-forested area was masked out 
from the classified damage map by the Ecosystem 
Map of Hungary (“AM”, 2019). According to the 
ranking, the interferometric coherence was 
the second most important layer even in this classi
fication, behind the NDVI from 10/06/2015 
(Figure 9). Obviously, the layers of the post-event 
optical data had higher importance than layers of 
the pre-event one. Most of the radar polarimetry 
layers were ranked lower than the pre-event optical 
ones.

Validation

To compare the classifications to reality in the most 
accurate way, all damage categories of the Manual 
Delineation (Table 1) were used for validation. Based 
on these data we could show the forest damage 

severity with accurate areas measured in the most 
damaged area. Altogether, almost 2,700 ha of damaged 
forests were detected, which accounts for 36% of the 
total area of the most damaged part. Besides this, our 
manually delineated reference data show 1,133 ha 
(15%) of uprooted and 1,579 ha (21%) of crown- 
damaged areas.

The first SAR-based model (Classification 1) under
estimated uproot damage by 9% (1,027 ha), but over
estimated crown loss by 56% (3,581 ha). The 
Classification 2 model underestimated uprooted area 
by 11% (1,012 ha), but the crown loss overestimation 
was 58% (3,724 ha). In Classification 3 the uproot 
damage had 8% (1,034 ha) underestimation and 57% 
(3,631 ha) crown loss overestimation. The Classification 
4 model seems to be the most reliable: uproot under
estimation was only 1% (1,127 ha), crown loss over
estimation was 55% (3,472 ha). All the models were able 
to find the uproot damages within a 6–121 hectares 
difference range, but the crown loss overestimation 
was a few thousand hectares (Figure 11).

Figure 10. Thematic map of damaged areas from Classification 4 (Map A) and the reference polygons (Map B).

Table 8. Confusion matrix of best classification (Classification 4) for damaged areas where optical, radar polarimetry and 
interferometric coherence data were used. The confusion matrix is supplemented with PA and UA for different classes.

Classified data

Producer’s Accuracy (%)Healthy forest Crown loss Uproot All

Reference data Healthy forest 47,789 12,560 1,067 61,416 77.81
Crown loss 13,477 80,212 7,956 101,645 78.91

Uproot 903 7,997 38,110 47,010 81.07
All 62,169 100,769 47,133 210,071

User’s Accuracy (%) 76.87 79.60 80.86
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Discussion

Reference data

One of the unique characteristics of our work lies 
in the collection and use of accurate pre-event and 
post-event field-based datasets, seldom available in 
similar studies. Both field-collected and manually 
delineated data sets were used as reference. 
References based on aerial imagery were corrobo
rated by field work, similarly to Rüetschi et al. 
(2019), who delineated patches affected by wind
throw, then visited some of them on the ground. In 
similar SAR-related studies, ground-based valida
tion is infrequent. In tropical forests there is 
a complete lack of field-based references, mostly 
because of the hard accessibility of these sites 
(Reiche et al., 2018). In these cases, optical data 
are widely used as reference. When forest inventory 
data are available, it can be used to validate results 
based on both optical and SAR images (Tomppo 
et al., 2019).

Ice break detection

Another novelty of our research is the investigation of 
the ice break phenomenon with SAR data. Although 
several combinations of different damage phenomena 
and applied source data are available in the literature 
(e.g., ice break investigations with optical imagery and 
fire/windthrow event investigations with SAR data), 
we hardly found any other research using similar 
approach for studying ice breaks.

SAR data and natural disturbances

In our relevant classification setup (Classification 1), 
polarimetric radar data (backscatter coefficients and 
polarimetric descriptors from H/A/Alpha decomposi
tion) in itself did not yield satisfactory results in detect
ing ice break damage, although Tanese et al. (2018) 

suggested that forest disturbance events can be deli
neated using relatively simple thresholding approaches 
on backscatter data. One of the underlying reasons 
could be that they studied L-band instead of C-band 
radar backscatter coefficients, hence not applicable to 
Sentinel-1 data. Based on our results, we can state that 
polarimetric descriptors derived from Sentinel- 
1 C-band radar data may indeed deserve consideration. 
In particular, feature importance rankings of XGB clas
sifications demonstrated that the most useful radar 
indices were Shannon entropy and the first eigenvalue 
of the covariance matrices of different dates, while back
scatter coefficients did not perform well (Figure 9).

Olen and Bookhagen (2018), Tomppo et al. (2019), 
and Tomppo et al. (2021) suggested the use of inter
ferometric coherence to estimate natural disturbance 
damage. In our case, the interferometric coherence has 
significantly increased the accuracy of the classifica
tion, and the OA reached 65.7% using only radar data. 
Depending on the feature importance (Figure 9), the 
interferometric coherence had an extremely high 
effect on the results. Consequently, we conclude that 
the interferometric coherence promotes the mapping 
of the “Uproot” category, but it hardly improves the 
separation of “Crown loss” and “Healthy forest” cate
gories. In the temperate region, estimating the coher
ence variability would require a longer time series 
(Olen & Bookhagen, 2018), but due to the fact that 
the disturbance happened right at the beginning of 
Sentinel-1 operational service, we could only obtain 
one pair of pre-event images. However, one can most 
likely rely on the continuous availability of Sentinel-1 
imagery for similar future events.

Detection of crown-damaged areas was a more dif
ficult task; thus, the use of optical images from the 
vegetation period after the event was necessary. These 
data were more useful than most of the radar indices 
and are essential for more accurate mapping of this 
category, proven by the fact that their inclusion 
increased the OA to 78.5%. This result is in accordance 

Figure 11. “Uproot” and “Crown loss” damage areas shared in each classification (Classification 1–4) and in the reference data 
(Manual Delineation). All categories of Manual Delineation were used for validation.
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with Hirschmugl et al. (2020), who concluded that the 
optical and SAR-based data are highly complemen
tary, and their simultaneous use could improve the 
accuracy of damage assessments.

The high overestimation of the crown loss was 
probably due to the “Healthy forest” reference. For 
this category, forest stands with (almost) complete 
canopy closure were used (FRDT3). However, the 
canopy closure can be incomplete for several reasons 
(habitat type, forest management, age-related mortal
ity, etc.) beyond external natural disturbances. Based 
on our results, the proper differentiation of healthy 
forests with various levels of canopy closure seems 
crucial for accurate canopy loss estimation. The 
separation of the reasons for canopy incompleteness 
is a challenge, which requires further investigations.

The best classification based solely on SAR data 
(Classification 2) had Producer’s accuracies of 58–63%, 
and User’s accuracies of 57–73%. This seems similar to 
the results of other SAR-based research investigating nat
ural disasters. Rüetschi et al. (2019) studied the windthrow 
effects with the results of 88% PA and 85% UA. Tanase 
et al. (2018) also showed windthrow damage results with 
67–81% PAs and 54–75% UAs. The study of Tomppo et al. 
(2019) presented a very high, 90% OA, but their reference 
data were of lower quality than ground measurements 
would have been. Tomppo et al. (2021) used C-band 
SAR data for wind damage estimation: their UAs were 
62% for severe damages and 75% for slight damages. The 
75% UA was reached with one Sentinel-1 scene, only 
2 days after the event, without specific training data.

Beyond these, our results are not comparable with 
the commonly used deforestation detection studies. In 
these areas mostly clear-cuts were carried out, which 
means no trees were left in the field. In the case of 
natural disturbances, different amounts of broken, 
fallen, uprooted, and bent trees remain, which have 
a strong influence on the SAR signal.

Optical data and ice break
King et al. (2005) used Landsat red and IR bands after 
the great ice storm of 1998, North America. They 
achieved more than 75% average accuracy with multi
ple neural networks. Our best result, which includes 
optical data as well (Classification 4) surpassed that 
with a 79.1% OA. Olthof et al. (2004) investigated an 
ice break event with a neural classifier based on optical 
and environmental data. They separated three damage 
classes in their study. Their results indicated that the 
detection of severe damage was more accurate, while 
the classifier had difficulties with moderate and low 
(incl. unharmed) damage categories. Our study 
yielded the same conclusion, however, based on 
a combination of optical and radar data. Šimić Milas 
et al. (2015) have found that the ice break and other 

natural disturbances (which happened in Croatia, 
2014) are demonstrable with high accuracy (19.2% 
difference) compared to the results of another field- 
and forest management data-based study (Vuletić 
et al., 2014). The validation of Classification 4 of this 
study showed 1% difference to “Uproot” and 55% 
difference to “Crown loss.” By refining our crown 
loss damage estimation methods, we may be able to 
reach similar accuracy.

Conclusions

Today, the Sentinel-1 constellation provides freely 
accessible SAR data with 6-day revisit, enabling huge 
potential for fast detection of damage over large areas. 
Certainly, processing and analysis of SAR data 
requires specific knowledge and it has its limitations, 
but its benefits are clearly demonstrated in our study 
and in numerous references likewise.

In this work, we assessed the relative importance 
of different input features derived from pre- and 
post-event radar and optical imagery and presented 
the potential of Sentinel-1 data in the study of ice 
break event effects through four different classifica
tion setups, corroborated by reference data of 
exceptionally high quality. All four setups were 
suitable for identifying uprooted fallen trees prop
erly, but none of them was capable of accurately 
detecting different levels of crown loss. The proper 
differentiation of healthy forests with various levels 
of canopy closure seems crucial for accurate canopy 
loss estimation.

The analysis of results yielded by purely SAR-based 
classification setups highlighted the fact that interfero
metric coherence is very useful for uproot and crown 
loss damage classification. Even in setups with pre- 
and post-event optical data included, interferometric 
coherence outperformed most inputs in terms of fea
ture importance, with the only exception of post-event 
NDVI. Therefore, since the availability of post-event 
NDVI requires valid optical data from the following 
vegetation period, we strongly suggest utilizing the 
SAR input data configuration as described in 
Classification 2 for immediate damage analysis for 
salvage logging planning in cases where the natural 
disturbance happens outside the vegetation period. By 
this, uproot damages can be shown with high accuracy 
and fast response times, depending on the availability 
of radar imagery. Hence, we suggest its inclusion in 
forestry and conservation practice for quick damage 
assessment after catastrophic, large-extent natural dis
turbances, especially if salvage logging has to be com
pleted before the vegetation period starts, like in 
protected areas with high conservation values. If 
necessary, the accuracy of mapping can be increased 
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later by adding optical data taken during the following 
vegetation period, as described for classification setups 
3 and 4.

Our research demonstrates the usefulness of inter
ferometric coherence for forest damage detection, cor
roborating a number of independent studies in similar 
applications. Possible future developments may there
fore be focused on constructing a continuously 
updated series of coherence values, as described in 
Olen and Bookhagen (2018), to rapidly estimate the 
damage after possible natural disasters. However, 
other information (e.g., forest management data and 
disturbance type) is also needed for the estimation due 
to the limited separability of natural and management- 
related disturbances based only on SAR data (Tanase 
et al., 2018).

Another potential direction for further develop
ments is the inclusion of polarimetric radar data 
acquired in the post-event summer period when the 
canopy is well-developed. Polarimetric radar data are 
sensitive to structure; consequently, in the summer 
period it may be more suitable to detect the changes 
in the canopy structure, thus possibly increasing the 
detection accuracy of crown damage by comparing 
pre- and post-event polarimetric radar data. In this 
concrete case, pre-event data for the summer period 
were not available as Sentinel-1A was not in opera
tional phase at that time.
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