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ABSTRACT

In 2014 a catastrophic ice storm occurred in the forests of Borzsony Mts., Hungary. In this study we
analyzed the potential of Synthetic Aperture Radar (SAR) data, complemented, and compared with
optical imagery, in mapping this event. Great emphasis was put on reference data: three types of field-
based reference datasets were used and the damaged patches were delineated manually based on
the visual interpretation of pre- and post-event orthophotos. Four classifications with different set-ups
were carried out by applying the eXtreme Gradient Boosting method. Combinations of radar back-
scatter coefficients, polarimetric descriptors, interferometric coherence, and optical data variables
were tested. All classifications were suitable for identifying uprooted trees properly (1-11% under-
estimation), but none of them could detect crown loss accurately (55-58% overestimation), based on
the validation of the most damaged area. Proper differentiation of healthy forests with various levels of
canopy closure in the reference data seems crucial for accurate canopy loss estimation. In the case of
methods using only Sentinel-1 imagery, interferometric coherence together with polarimetric descrip-
tors provided the best results (OA: 65.7%). This setup can be useful for immediate uproot damage
detection for planning salvage logging if a natural disturbance happens outside the vegetation
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period.

Introduction

In temperate forests around the world wind and ice
storms are among the most important drivers of natural
forest disturbances. Occurrence, intensity, and frequency
are highly variable; however, during the last decades,
there have been increasing trends in the frequency
(Senf & Seidl, 2020) and intensity (Schelhaas et al.,
2003) of these storms. Circa 18.7 million m®> of wood
was damaged as a consequence of storms in Europe
between 1950 and 2000 (Schelhaas et al., 2003). Ice
storms occur occasionally in the northern and eastern
parts of the United States and Canada (Irland 2000;
Lemon 1961), in East Asia (Ding et al, 2008; Zhou
et al, 2011) and in Central-Europe (Kenderes et al.,
2007; Nagel et al., 2016). The largest ice break happened
in North America, in 1998 (ca. 10 million hectares of
woodland affected, Kerry et al., 1999); and in China, in
2008 (ca. 20 million hectares of forests affected, which
was around 10% of the national forest cover, Zhou et al.,
2011). In Hungary, ice breaks occur occasionally as well:
events outstanding at the country level were detected in
1989 (ca. 4,000 ha damage), 1996 (ca. 8,000 ha damage),
1997 (ca. 3,000 ha damage), 2001 (ca. 3,000 ha damage),
2004 (ca. 6,000 ha damage) and 2014 (ca. 15,000 ha total
damage) (Hirka, 2015).

Ice break occurs when the relatively warm rain
reaches the cold surfaces, ice forms, and then the
weight of the accumulated ice breaks the tree. The
type and the degree of damage depends on the extent,
intensity, and severity of the disturbance. Canopy
damage and trunk break are the most common
damage types (Roberts, 2004). When the soil is not
frozen, uproot damage can also occur. Intensity,
amount of precipitation, temperature, location, topo-
graphy, forest stand composition, and structure can all
alter the effects of an ice break event (Irland, 2000;
Kenderes et al., 2007). These disturbances determine
the forest stand dynamics at medium and large spatial
scales (Pickett & White, 1985) and can affect the
canopy-, regeneration- and herb-layers as well as the
soil surface (Roberts, 2004).

In the last days of November 2014, intensive frost
formation started above 400 m a.s.l. in the Borzsony
Mountains, Hungary (Nagy, 2015). Then, from the Ist
of December, a glaze storm caused by a Mediterranean
cyclone resulted in additional ice accumulation. The
storm lasted 2 days with 20-50 mm of precipitation.
The maximum of radial ice thickness was 100 mm
(Nagy, 2015), which exceeded the 80 mm maximum
of the North American ice storm in 1998 (Kerry et al.,
1999) and approached the 160 mm maximum of the
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great Chinese ice storm in 2008 (Zhou et al., 2011).
This was the most intensive and most severe ice break
event of the last 50 years in Hungary (Hirka, 2015).
Approximately 40,000 ha of forests were damaged at
various levels all over the country (Csépéanyi et al.,
2017), ca. 2% of the national forest cover. Intensively
managed, structurally and compositionally homoge-
neous (low DBH diversity and almost pure) stands
dominated by beech (Fagus sylvatica) or hornbeam
(Carpinus  betulus) were particularly affected
(Csépanyi et al., 2017; Zoltan & Standovar, 2018).

Many conventional remote sensing studies apply
data from passive multispectral sensors and calcu-
late the Normalized Difference Vegetation Index
(NDVI) to examine natural disturbances (Barton
et al., 2017; Furtuna et al., 2015; Lee et al., 2008;
Olthof et al., 2004; Osberger et al., 2013; Wu et al,,
2016). During the vegetation period, the effects of
disturbance can be easily shown via canopy loss;
therefore, mapping the damaged areas based on
NDVI difference between pre- and post-event
image pairs seems feasible. In the case of an ice
break event affecting deciduous forests, the earliest
time when the post-event canopy cover can be
examined is after foliation, practically in the follow-
ing spring/summer. However, when catastrophic
disturbance happens over large areas, the earliest
possible mapping of the spatial extent and severity
of damages is essential to start the planning of sal-
vage logging. Waiting for canopy-covered optical
images may cause months of delay in decision-
making. Since storm-caused uproot results in geo-
metrical changes in the forest structure, its effects
could be detected based on Synthetic Aperture
Radar (SAR) data as well, providing the possibility
of estimating potential damage within days after the
event, still in the leafless period.

SAR is an active remote sensing technique, so it
operates independently from cloud cover and solar
illumination. These sensors measure backscattered
polarized electromagnetic pulses at microwave wave-
lengths and are sensitive to the roughness, water con-
tent, and dielectric properties of the Earth’s surface. In
recent years, since Sentinel-1 satellites provide consis-
tent time series of SAR data, the advantages of radar
images have gained more attention. Most SAR-based
mapping methods employ two-date change-detection
techniques based on backscatter coefficients (intensi-
ties) and/or indices derived from them (such as ratios)
for change detection (Antropov et al., 2016; Fransson
et al., 2010; Olesk et al., 2015; Quegan et al., 2000).
Based on multitemporal SAR data, biomass and stem
volume estimation are also used to measure forest
degradation, which has been successfully applied to
estimation of snow damage (Tomppo et al.,, 2019) and
estimation of windstorm damage (Tomppo et al,
2021). Another way of applying SAR data is the

derivation of polarimetric descriptors that aims to
support mapping via separating areas with different
scattering mechanisms. Different polarimetric decom-
position methods of C-band SAR data are effective in
identifying normal forest and deforested areas (Zhang
et al., 2012) and in estimating forest canopy density
(Varghese et al., 2016). Besides radiometric and polari-
metric values, interferometric coherence between two
complex images acquired before and after an event is
also a powerful technique for mapping forested areas
(Martone et al., 2018; Srivastava et al., 2007) and
natural disturbances (Donezar et al, 2019; Nico
et al., 2000; Pepe et al., 2018). Although these studies
mostly focused on detecting and mapping fire, wind-
storm, and clear-cut areas, the underlying data and
methods are worth considering and testing in the
context of ice break events, featuring partly similar
effects on forest structure.

SAR techniques have been proven to yield reliable
detection of forest disturbances resulting from com-
plete or partial removal of tree cover (Mitchell et al.,
2017), but recent studies indicated that the combined
use of SAR and optical data can improve deforestation
and forest degradation mapping. Reiche et al. (2013)
demonstrated an increase in both spatial completeness
and thematic detail when applied to feature-level
fusion of ALOS PALSAR and Landsat 7 optical infor-
mation. Using a combination of Sentinel-1 SAR and
Landsat 8 optical data, Shimizu et al. (2019) achieved
higher overall accuracy for detecting disturbances in
tropical forests than that achieved by using them
separately, and Hirschmugl et al. (2020) also con-
firmed that combining Sentinel-1 and Sentinel-2 opti-
cal time series considerably improves the accuracies of
forest disturbance maps.

In many cases, detection of disturbed areas based
on remote sensing can be carried out in a semi-
automatic way, but to achieve high accuracy, precise
field-based reference data are necessary. The general
lack of such data originates from the fact that in most
cases pre-disturbance data are missing. Moreover,
ground-based data collection methods have to be
adjusted to specific needs of remote sensing analysis;
otherwise, important variables are likely to be omitted
(Frolking et al., 2009). Fortunately, field data on forest
composition and structure were collected during the
growing season of the year 2014 over the area that later
was damaged, in the frame of our previous project
(“Multipurpose assessment serving forest biodiversity
conservation in the Carpathian region of Hungary,”
Standovar et al., 2016).

In this work, we analysed the potential of Sentinel-1
SAR data in mapping natural disturbances in forests,
by applying it to the 2014 ice break event in Hungary.
Our primary goal was to test whether SAR data are
sufficiently sensitive to detect structural changes
(uproot and crown loss damages - large and small



canopy gaps) caused by unpredictable meteorological
events. Furthermore, the importance of optical data
was also assessed in a combined SAR-optical
approach. We utilize our unique opportunity to create
genuine classifications based on accurate, pre-
disturbance field-based reference data.

Data and methods
Study site

Our study area was in the Borzsény Mts., the
westernmost member of the North Hungarian
Mountain Range (Figure 1). Most of the Borzsony
Mts. (ca. 65.5% - 53,000 ha) is covered by forests
(Halasz, 2006) and these forests are mostly mana-
ged by a state-owned company, Ipoly Erd6 Zrt. The
bedrock is mainly andesite of volcanic origin. The
highest peak is Csévanyos (938 m). The annual
average temperature is 6.5 ‘C, the average number
of frozen days per year is 120 (Nagy, 2007), while
the average annual rainfall ranges between 600 and
850 mm (Bartholy & Pongréacz, 2011). In the south-
ern part of the Borzsony Mts. Sessile oak (Quercus
petraea) and turkey oak (Quercus cerris) are the
dominant tree species because of the lower altitude
and gentle slopes in this area. On the northern
slopes and at higher elevations, European beech
(Fagus sylvatica) dominates. Most of the forests
(70%) are managed under a uniform shelterwood
system, the rest is partly managed by selection
cutting (20%) or unmanaged (10%), serving as pro-
tection forests (Standovar et al., 2017).
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Our study focuses on the central and western parts
of the Borzsony Mountains (Figure 1). According to
our previous field experiences, areas at higher eleva-
tions (above 400 m a.s.l.) were most intensely affected
by ice damage. The area above 350 m a.s.l. was deli-
neated, complemented with neighbouring areas cover-
ing undisturbed forest stands, resulting in a study area
of 12,000 hectares. The entire area is part of the Natura
2000 network and the Duna-Ipoly National Park. The
study area, a digital elevation model (based on a -
5 m contour map), and a true-colour orthophoto are
shown in Figure 2.

Reference data

During the whole study, great emphasis was placed on
ensuring a proper set of reference datasets. Three types
of field-based datasets have been used, complemented
with data created by visual interpretation of optical
aerial images. All the above-mentioned reference data-
sets were used during the classification of remote sen-
sing imagery.

Field-based Reference Data Type 1 (FRDT1)

Field data collection began in the summer of 2014, as
part of a forest state assessment project (for detailed
methodology, see Standovar et al., 2016), when 500 m*
circular plots on a systematic grid were surveyed exten-
sively. Sampling density of plots was 2 or 4 per hectare.
Data were collected about the composition and struc-
ture of forest stands (tree species composition, age
structure, and canopy closure), woody debris (amount

Slovakia

Austria

Croatia
A 0 50 100 km
| I

Ukraine

Romania

T

Figure 1. Location of the study site (area marked with red) within Europe and Hungary.
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Figure 2. The main characteristics of the study area. Map a: Digital elevation model. Map b: Post-disturbance orthophoto (true-
colour). DEM and orthophoto courtesy of Lechner Non-profit Ltd. and Eurosense Ltd.

and quality), herb layer (herb cover, presence, and
abundance of disturbance indicator herbs), shrub layer
(shrub cover), high and low regeneration layer (regen-
eration cover above and below 0.5 m). The plots and
their surroundings were photo-documented. This forest
state assessment database gives us a unique opportunity
to access fine-scale stand-level pre-event data for some
of the areas affected by the 2014 ice storm. With the
repeated post-event survey of these plots, accurate data
about the effects of the ice damage could be obtained. In
2015 and 2016 altogether 652 plots were re-sampled
(Zoltan & Standovér, 2018), enabling a precise assess-
ment of ice break effects (e.g., extent of the canopy loss).

Manual delineation

For this dataset, the differences observed between
two series of aerial photographs were delineated.
The first series of orthophotos (40 cm spatial reso-
lution, 4 spectral bands: RGB, IR) were taken in the
summer of 2013, before the ice damage.
The second series (20 cm spatial resolution, 4 spec-
tral bands: RGB, IR) were taken in the summer of
2015, after the disturbance. The damaged patches
were visually observed and manually delineated

using GIS software. Data from the National
Forestry Database were also taken into account to
separate changes in the photographs caused by
forest management practices from the effects of
the disturbance event. The affected patches were
divided according to their severity into “Uproot”
or “Crown loss” damage categories (Table 1). Only
the most damaged 7500 ha area (which was above
the 350 m a.s.l. boundary) was analyzed with this
method (Figure 3).

During the manual delineation process, we encoun-
tered several difficulties. Delineation was carried out at
the level of individual trees wherever possible. However,
some of the patches contained relatively few damaged
and/or undamaged individuals. The crown loss at these
sites appeared as a very fine-scale mosaic, and it was not
possible to delimit them manually one by one, especially
in regeneration stands. The different resolution and the
different angle of view between the orthophotos taken
before and after the event were the most important
challenges, mostly in the case of identifying the level
of crown loss. Another factor making categorization
difficult was the occasional presence of shadows, mak-
ing certain areas harder or impossible to assess.

Table 1. Damage classification for the manual patch delineation. Due to their fine spatial scale, patches smaller than 400 m? (all the
light uproot damages) were not included in the reference database of the classifications, but all of them were used for validation of

classifications.

Uproot Crown loss
Severe damage 50-100% soil surface and understory clearly observable
patch is larger than 100 m
50-100%
patch is smaller than 100 m incl. canopy gaps
Moderate damage 25-50% soil surface and understory somewhat observable
Light damage 0-25% soil surface and understory undetectable, but crown loss is observable

1 tree uprooted (seed tree)

bent young trees
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Figure 3. Polygons of reference and ground-truth data. The purple frame marks all the areas higher than 350 m a.s.l. This area
includes all types of references. “Healthy forest” reference areas (based on FRDT3) are mostly outside the purple frame. We have
accurate pre- and post-event field data from FRDT1. FRDT2 was specifically tailored for the needs of damage mapping validation.
FRDT3 cannot be shown, because it covers the whole study area with a grid density of 50 and 70 m (same as FRDT1).

Interestingly, both incomplete pre-event canopy closure
and the presence of a second canopy layer made com-
parison of the two orthophoto series more complicated
and potentially less accurate. The comparison of pre-
and post-disturbance field data (FRDT1) enabled man-
ual patch delineation. In some cases, when damage was
more difficult to detect visually in the photos, FRDT1
was used to improve the Manual Delineation.

Field-based Reference Data Type 2 (FRDT2)

Another field survey was carried out in 2016, specifically
tailored for the needs of damage mapping validation.
Additional data were collected from 195 sampling
points in order to support the classification of uncertain
patches into damage categories (Table 1). A new,

specific method was elaborated to collect only the cru-
cial data from the field for validation by simplifying the
data collection method used in aforementioned field
survey campaigns. The applied variables and the attri-
butes are shown in Table 2. Each variable was registered
in a 500 m* circular plot.

With the field observation of the uncertain patches
and points, higher accuracy was achieved for Manual
Delineation. Thus, the results of the Manual
Delineation were the most accurate, coherent, large-
extent reference dataset for further use (Figure 4).
However, we do not suggest this method by itself for
widespread disturbance monitoring because of its
resource-intensity both in terms of time and labour
(the delineation process took several months).
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Table 2. Variables, possible attributes, and applied definitions of FRDT2. This dataset was designed to validate the manual

orthophoto delineation.

Variables Attributes Explanation, justification
Uprooting intensity no uprooting
light maximum 4 canopy trees uprooted within the plot
moderate more than 4 trees, but less than 50% of the trees uprooted within the plot

severe

Crown loss intensity no crown loss

light
moderate
severe
Regeneration layer covers
more than 50%?
Herb cover more than 50%? yes/no

Previous forest management
detectable
Photo documentation

more than 50% of the trees uprooted within the plot

crown loss less than 1/3 within the plot

crown loss more than 1/3, but less than 2/3 within the plot

crown loss more than 2/3 within the plot
the understory presence could confuse the classification

to exclude the effects of previous forest managements

the plot, its surrounding and the exactly horizontal (tuned up with spirit-level) canopy photos

insure the opportunity of revision

FRDT1 Uproot
Manual
delineation
FRDT?2 Crown loss Classifications
Healthy
FRDT3 forest

Figure 4. Construction of the reference database. The Field-based Reference Data Type 1 and 2 (FRDT1 and 2) were used to
validate the Manual Delineation. The “Uproot” and “Crown loss” classes were derived from the Manual Delineation. The FRDT3 was

created for “Healthy forest” class determination.

Field-based Reference Data Type 3 (FRDT3)

The Manual Delineation, the FRDT1 and the FRDT2
collections were carried out in the most damaged parts
of the Borzsony Mts., so there was a lack of healthy,
undisturbed forests in our database. Therefore, the most
damaged area was extended to the south and the west
with neighboring forest stands (Figure 3). In 2015 and
2016, field data collection continued over the study area
as well in the frame of the aforementioned forest state
assessment project, yielding essential post-disturbance
field data. In this case, a grid with a density of 1 plot/ha
was used. Canopy closure was used to identify healthy,
undisturbed forests, with (almost) intact canopies after
the disturbance. If canopy closure was at least 95%, in 3
or 4 corner points of square-shaped grid cell (1-ha), the
area of the cell marked as “Healthy forest” reference
area (Figures 3, 4).

Remote sensing data
Radar satellite imagery

Radar backscatter

The European Sentinel-1A satellite carries a C-band
SAR sensor operating at 5.405 GHz and supports dual
polarization (VV+VH) (“ESA”, 2021). The S1A satel-
lite was launched on 3 April 2014 and has a revisit time
of 12 days. We collected Single Look Complex (SLC)
images from 175 ascending and 51 descending relative

orbits acquired in Interferometric Wide Swath (IW)
mode (“Copernicus”, 2019). However, as operational
data publication started in October 2014, the collec-
tion was not complete in the first 2 months.
Accordingly, only one pair (ascending and descend-
ing) of pre-event, and three pairs of near- and post-
event images were available over the site. In this study,
three types of inputs were derived from Sentinel-1
data: backscatter coeflicients, polarimetric descriptors,
and interferometric coherence.

Conventional SAR-based mapping methods
employ backscatter coefficients, commonly named
sigma nought (6,). Sigma nought is the normalized
ratio of transmitted and reflected polarized signal and
is derived from the amplitude of the measured signal.
In this case, two sigma nought layers were derived for
the two polarizations (VH, VV), expressed in decibels
(dB) (Equation 1). Their ratio (VV/VH) is also used as
an input (Equation 2).

0o(dB) =10-1g <%sin(a)> (1)
dn

where, a is the incidence angle, DN is the digital
amplitude value of the channel VV or VH, A, is the
product final scaling from internal SLC to final SLC or
GRD, and K is the calibration constant (Miranda &
Meadows, 2015).
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Radar polarimetry

Another way of exploiting SAR data consists of deriv-
ing so-called polarimetric descriptors that utilize both
amplitude and phase information from the measured
values. Numerous decomposition techniques have been
developed based on covariance and coherence matrices
derived from SAR data and are mainly aimed to sepa-
rate the different scattering mechanisms. However,
most of these techniques were developed for quad-
polarized data (HH, HV, VH, and VV). In the case of
dual-polarisation data such as that of Sentinel-1, the
eigen-based H/A/Alpha polarimetric decomposition is
still available, with restrictions of the original theory
(Cloude & Pottier, 1997; Lee & Pottier, 2009); hence,
this method was applied in this study.

Based on their importance for land cover classifica-
tion in the case of dual-polarimetric radar data, as
demonstrated in Surek et al. (2015), the following
polarimetric descriptors were used: alpha, anisotropy,
Shannon entropy (Morio et al., 2007; Réfrégier &
Morio, 2006) and the first (\;) and second (},) eigen-
value of covariance matrices.

H/A/Alpha polarimetric decomposition was aimed
to differentiate the three scattering mechanisms (sur-
face scattering, dihedral scattering, and volume scat-
tering). The concept is based on the complex 2 x 2
scattering matrix [S], for which the elements are the
complex scattering coeflicients (Equation 3).

| Sun  Smv _ | 0 Svu
[Squad| = |:SVH SVV],[Sduaﬂ = |:SVH va} (3)

The approach of H/A/Alpha decomposition uses the
eigenvalues and eigenvectors of the coherency matrix
(Equation 4) in case of quad polarization data.
A commonly used condition in practice is that the
two cross-polarized channels are considered to be
equal (Sgv = Svy). Thus, in Equation 4, Sy, represents
one of the cross-polarized channels (Sgv or Syy). In
the case of dual polarized Sentinel-1 data, a covariance
matrix is used, which can be given by Equation 5.

|Sun + va\z
[TS] = (SHH - va)(SHH - SVV>*
28xx (Sun + Svv)”

[StE — Svv| 2(Sur — Svv)Six

(Sart + Svv)(Suns ~ Svv)" 2(Sun + SW)S;(X}
28xx(Sun — Svv)” 4[Spnl®

4)

i) = [Swsw

SvvSyn
v 5
SvrShy (5)

SvuSyy

Three eigenvalues (A}, Ay, A;) can be calculated from
the coherency matrix, and two eigenvalues (A;, A;)
from the covariance matrix. From these matrices
three descriptors are used to extract alpha, entropy
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(H), and anisotropy (A). In this study entropy was
not used because anisotropy and entropy are comple-
mentary to each other (Harfenmeister et al., 2021).

For full polarimetric data, the anisotropy indicates
the presence of a second scattering mechanism and is
therefore complementary to entropy. It is particularly
useful to improve the separation of different scattering
mechanisms when the entropy is high. Normally, it is
calculated using the normalized difference of
the second and third eigenvalues (Equation 6), but in
the case of dual-polarimetric data, it is calculated from
the first and second eigenvalues.

Ay —As
A +A50

A=A
Adual = 42 (6)

A p—
quad A+ A,

The alpha angle describes the dominant scattering
mechanism. It is defined by Equation 7, where o
(Equation 8) is the scattering of the eigenvector (v), and
pi is called pseudo-probabilities (Equation 9). Alpha
values close to 0°, refer to surface scattering, alpha values
close to 45°, means volume scattering, and values close
to 90°, refer to dihedral scattering (Lee & Pottier, 2009).

Q= Zl AiPiy Nguad = 35 Nayar = 2 (7)
a; = cos ' (|vii]) (8)
Ai
pi = n (9)
Zj:lAj

Shannon entropy (SE) has been introduced by Morio
(Morio et al., 2007; Réfrégier & Morio, 2006) as a sum of
two contributions related to intensity (SEI) and polari-
metry (SEP). The Shannon Entropy measures the ran-
domness of scattering of pixel and is given by
Equation 10.

SEquaa = SE; + SEp = log(m’€’|T5|)
= SE; + SEp = 10g(7‘[262|C2|),SEdW]
(10)

Interferometric coherence

Interferometric SAR (inSAR) coherence is useful to
detect changes in the scene between the two acquisi-
tions since they cause a decrease in interferometric
coherence (Rosen et al., 2000). Coherence is the nor-
malized correlation coefficient of two complex signals
received in two different passes (Equation 11).

(s1527)
((s151%) {252"))
where sy, s, are the complex pixel values at times t = 1

and t = 2; s* is the complex conjugate of s and () is
the ensemble average (Rosen et al., 2000).

y= (11)
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Generally, it presents high values for features that
are stable in time (e.g., urban areas) and low for
unstable features (e.g., water surfaces). Hence, our
preliminary assumption was that it would be helpful
in separating disturbed and undisturbed forests.

Optical satellite imagery

The Landsat 8 satellite of NASA and USGS was
launched on 11 February 2013 and carries two sensors:
the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (“USGS”, 2019). OLI is a multispectral
sensor that provides visible and infrared images of
Earth’s surface. It measures nine spectral bands, of
which we used those in the red, green, blue, near-
infrared (NIR), and short-wave infrared (SWIR) wave-
lengths. All these bands have a spatial resolution of
about 30 m. Concerning the ice break event, which
occurred in the winter of 2014, pre- and post-event
(clear-sky) summer images have been acquired on
23 June 2014 and 10 June 2015, respectively
(“USGS”, 2019). Top of atmosphere (ToA) reflectance
and then normalized difference vegetation index
(NDVI) (Equation 12) were calculated from the raw
Landsat data.

NIR — Red

NDVI = ———
NIR + Red

(12)

Pre-processing of SAR data

The preprocessing steps can be followed on Figure 5.
For SAR data, Sentinel-1A single-look complex (SLC)
products were used for all indices. The backscatter

(“SNAP”, 2021). First, the “Slant range to Ground
Range” built-in process was applied with the default
settings, resulting in calibrated ground range back-
scatter coefficients. For further spatial filtering of
speckle effect, a Refined Lee Filter with window size
7 was employed besides the commonly used multi-
looking (one sample in azimuth and four samples in
range) process. Range Doppler Terrain Correction was
based on SRTM 3 sec dataset (Jarvis et al., 2008). After
converting sigma nought values from linear to loga-
rithmic scale, the ratio of the two polarization chan-
nels was also calculated.

The H/A/Alpha polarimetric descriptors were cal-
culated using the PolSARpro software (Pottier et al.,
2009). Raw data were extracted with 1:4 multilook. For
Range Doppler Terrain Correction, the SRTM 3 sec
DEM model was applied. Then the elements of the C2
covariance matrix were computed. For spatial filter-
ing, similarly to sigma nought pre-processing,
a Refined Lee Filter (Lee & Pottier, 2009) (window
size 7) was also used. The resulting ground range
pixel spacing for sigma nought and the descriptors is
the same, 13.9 x 14.76 m (azimutxrange).

In mountainous areas, different geometric distor-
tions (foreshortening, layover, and shadow) can
appear in SAR data as a result of side-looking geome-
try. Moreover, as the measured intensity varies with
incidence angle, radiometric differences are also visi-
ble in the SAR images (Topouzelis & Singha, 2016).
The slopes facing the instrument seem bright, the
further ones are darker; consequently, the same slopes
look different from different orbit directions (ascend-
ing, descending) (Figure 6). This can be considered an

coefficients were processed by the ESA SNAP software  additional source of noise during thematic
Backscatterer Coefficients
g N
Range Doppler .
SLCto Refined Lee - Convert Ratio
GRD [ ] fiter [ ] MmN > ineartodB [ ] calculation
Correction
A /
Polarimetric Descriptors
e "
Range
| Sentinel-1 Extract Raw Doppler | | Fements of | | Refined HiA/AIpha 4 d:g:e%ei;?:n?"‘
SLC data Data Terrain A Lee filter decomposition g ;
CoMEction matrices (C2) descending looks
. /
Interferometric Coherence
Coherence Range
Enhanced sl
TOPSAR estimation with TOPSAR < Doppler
Coregistration > SRZ?;;:, > Subtract topographic Deburst [~ Multilook |- Terrain
phase Correction
L 2 J
p
Landsat 8 Top of atmosphere = _—
| oLl reflectance . Claualication
»| NDVI calculation »

Figure 5. Methodology of pre-process.
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Figure 6. Averaging of different orbit directions: the upper row shows the projected local incidence angle from different looks,
with the picture in the middle showing the average of two looks. Averaging decreased the effect of topography. The lower row
shows the effects of averaging on sigma nought computed from the VV polarization channel.

classification since pixel values of the same class show
significant diversity arising from differences in inci-
dence angle.

Radar signals with low incidence angle can pene-
trate deeper into the crop cover or forest canopy, so
the effect of the underneath soil is more relevant, while
signals with high incidence angle are more sensitive to
the characteristics of crop or canopy (Sivasankar et al.,
2018). For forest-covered areas, this dependence on
incidence angle is stronger in clear-cuts, damaged or
regenerated young forests, where the canopy contri-
bution to backscatter is minimal (Rauste, 1990). This
radiometric variability affects vegetation-covered flat
surfaces as well, but the relief strengthens these effects,
since the range of projected local incidence angle
broadens compared to the range of projected local
incidence angle of flat areas. In this study, we aimed
to eliminate the radiometric differences between the
different slopes.

The incidence angle of Sentinel-1 ranges from
29.1 to 46 degrees in IW mode. Sayedaina et al.
(2020) proved that the use of cross-orbit data with
different pass modes (ascending and descending)
can improve classification results. Our study area

was on the IW2 swath of all images from both
covering relative orbits (51 descending and 175
ascending), so the incidence angle ranges were
about the same. On the ascending look the values
varied from 39.54 to 40.37 degrees and 37.36 to
38.18 degrees on the descending one. As the study
area was in north-south oriented mountains with
moderate elevation, the ranges of projected local
incidence angles of the two different looks were
also about the same. Under these circumstances,
we assume that the averaging of images from the
two looks can smooth the differences between
values measured over slopes oriented towards the
east and those oriented towards the west. Hence,
the four relevant ascending-descending pairs of
images (Table 3.) were averaged after pre-

Table 3. Relevant date for averaging of ascending and des-
cending orbit.
Ascending orbit (175)

Descending orbit (51)

17/10/2014 21/10/2014
04/12/2014 08/12/2014
16/12/2014 20/12/2014
28/12/2014 01/01/2015
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processing, and the averaged backscatter coefficient
and polarimetric descriptor values were used in the
classifications.

In addition to polarimetric indices, interferometric
coherence is frequently used in land cover classifica-
tion (Engdahl and Hyyppa, 2003; Jacob et al., 2020;
Mestre-Quereda et al., 2020; Sica et al., 2019). In this
study, we derived coherence from 12-day interfero-
metric pairs by using the ESA SNAP software (SNAP
2021). After TOPSAR co-registration, an enhanced
spectral diversity operator was also used. In the coher-
ence estimation process, the SRTM 3 sec DEM model
was used to subtract the topographic phase. For spatial
filtering, the window size of multilooking was 8:2.
Finally, the SRTM-based Range Doppler Terrain
Correction was carried out, which resulted in a pixel
spacing of 27.8 x 29.5 m (azimuthxrange). Based on
visual inspection, the coherence between 08/12/2014
and 20/12/2014 revealed the damage of the ice break
event; therefore, this layer was integrated in the
classifications.

After pre-processing, all the layers were resampled
to 10 m with the nearest neighbor method. The reso-
lutions of different data and resampled resolutions are
summarized in Table 4. Figure 7 presents some visua-
lizations of the pre-processed data.

Table 4. The resolutions of different data (after pre-processing
and the final resampled resolutions that were used for
classification).

Resolution after Resampling

Sensor Data type pre-processing (m) (m)
Sentinel- Radar 13.9 X 14.76 (az X rg) 10

1A backscatter
Sentinel- Polarimetry 13.9 X 14.76 (az X rg) 10

1A
Sentinel- Coherence 27.8 X 29.5 (az x rg) 10

1A
Landsat8 Spectral bands 30 10
Landsat8 NDVI 30 10

Thematic classification

In this study, we have chosen the eXtreme Gradient
Boosting (XGB) classifier (Chen & Guestrin, 2016) for
carrying out thematic classifications. The XGB was
selected because it is one of the boosting type ensem-
ble methods (Friedman, 2001) that is optimized, effec-
tive, flexible, and fast. The most important advantage
of this type of classification is avoiding overfitting by
regularization. As for the implementation, the
XGBoost Python package was used (“XGBoost”,
2021).

After initial parameter tuning, the classifier was run
with the following parameters, and they were fixed for
all the classifications described later:

Number of trees: 100
Depth of trees: 5
Gamma: 0.1

Reg. alpha: 0.05
Minimum child weight: 5

Classifications were carried out in a three-class
setup. Training and test data came from the reference
data detailed above. References for two of the classes
were derived from the Manual Delineation (comple-
mented with FRDT1 and FRDT?2): (i) severe and mod-
erate damage categories from “Uproot” and (ii) all of
“Crown loss” (Table 1). This was complemented by
the class “Healthy forest” derived from FRDT3
(Figures 3, 4). The resolution of the reference data
was higher compared to that of the satellite images,
so damaged areas with an extent of less than 400 m?
were excluded. From the integrated dataset, 20% of the
polygons were selected randomly for training and the
remaining 80% for testing. Although the number of
“Healthy forest” polygons was significantly less com-
pared to other categories, this extent was larger to
ensure a sufficient number of samples. The

Figure 7. Map a: Optical composite of 10/06/2015 (R: NIR, G: SWIR, B: Red). Map b: Temporal radar composite (R: First eigenvalue of
04-08/12/2014, G: Anisotropy of 16-20/12/2014, B: First eigenvalue of 16-20/12/2014). Map c: Interferometric coherence between

08/12/2014 and 20/12/2014.



classifications are pixel-based, and the set of training
and testing data is shown in Table 5. Although the
training set was imbalanced, the ratio of training sam-
ple categories did not change significantly during the
process of polygon-based selection and pixel-based
training. It was 22.9% for “Uproot,” 23.9% for
“Crown loss”, and 27.4% for “Healthy forest.” The
training sets of different classes compared to each
other show bigger differences, but the proportions
are not so high. The “Crown loss” category has the
most samples, but normally it is hard to identify this
category, so this justifies the use of larger training
dataset. All things considered; the original training
sets were kept.

To study the effects of different types of satellite
data on classification accuracies, four different classi-
fication setups were created (Table 6). The first two
classifications were set up to assess the importance of
different radar indices, while the others were aimed at
examining the effects of the combined use of radar and
optical data. XGBoost, as many machine learning
methods, neither considers the relation between the
input layers, nor their temporal order; the importance
of the different bands was measured by the built-in
ranking method of the XGB classifier (“XGBoost”,
2021). Results of the classifications were compared
by using common statistical indicators: Overall accu-
racy (OA), Producer’s (PA), User’s accuracy (UA)
(Congalton & Green, 2008) and Kappa accuracy
(KA) (Congalton & Oderwald, 1983).
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Results
Classification

Table 7 and Figure 8 show the results of the four
classifications. The first case focused on radar polari-
metry indices, namely backscatter coefficients and
polarimetric descriptors of the four averaged images.
It can be seen that polarimetric radar data in itself did
not yield very high accuracies in mapping ice-damaged
areas. The OA was 61.9%, but the KA was extremely
low, 38.8%. The different classes had nearly the same
accuracies. The feature importances plot of XGB classi-
fication shows that the Shannon entropy and the first
eigenvalue of the covariance matrices of different dates
were the most useful radar indices (Figure 9).

For the second classification, interferometric coher-
ence was also involved besides the polarimetric radar
data. The accuracies have increased, the OA was 65.7%
and the KA was 45.1%. The “Uproot” category reached
the highest per-class accuracies, the UA was 73.6% and
the PA, increasing by 10.8%, was 63.6%. Mapping the
two other classes still encountered difficulties. The
accuracy of the “Crown loss” class also increased, but
the separability from the “Healthy forest” category was
still weak. The feature importance plot (Figure 9)
shows that interferometric coherence had a high effect
on the results. This is consistent with the fact that with
its inclusion, the “Uproot” damaged area became
detectable with an OA of more than 70%. We have
to underline that the applied radar satellite images

Table 5. Characteristics of the reference data show the used number of polygons and number of samples for each type of classes.
The percentage of samples shows the training and testing set ratio of all samples.

Training set Test data Total Percentage of Samples (%)
Class type Polygons Samples Polygons Samples Polygons Samples Train Test
Healthy forest 22 23,226 91 61,416 113 84,642 274 726
Crown loss 234 32,056 938 101,645 1172 133,701 239 76.1
Uproot 308 13,989 1232 47,010 1540 60,999 229 771
Table 6. Input data of the different classifications.
Classification number

Input data #1 #2 #3 #4
Polarimetric radar data Radar backscatter coefficients X X X X

Polarimetric descriptors X X X X
Interferometric coherence X X X
Post-event optical Landsat data from the summer of 2015 X X
Pre-event optical Landsat data from the summer of 2014 X

Table 7. Comparative accuracy values of the four different classifications for damaged areas.
Uproot Crown loss Healthy forest
Overall Accuracy (%) Kappa Accuracy (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Classification 1 61.9 38.8 67.3 52.8 64.4 67.7 549 59.2
Classification 2 65.7 45.1 73.6 63.6 67.9 71.0 57.0 58.9
Classification 3 785 65.7 80.8 789 78.1 80.1 77.1 755
Classification 4 79.1 66.8 80.8 81.1 79.6 78.9 76.9 77.8
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Figure 8. Visualization of classification results in a smaller area. Map a: post-event orthophoto; Map b: reference polygons; Map c:
results of Classification 1; Map d: results of Classification 2; Map e: results of Classification 4; Map f: results of Classification 4.

were taken only 12 days after the event, which is
encouraging regarding early response in similar
situations.

As the above-mentioned previous studies con-
cluded, complementing radar data with post-event
optical images acquired during the vegetation period
may increase the accuracy of the classification
(Hirschmugl et al., 2020; Reiche et al., 2013; Shimizu
et al., 2019). The first post-event, cloudless optical

image of our study site in the full canopy was acquired
on 02/06/2015. The reflectance and NDVI values of
this Landsat image were added to the dataset of
Classification 2. The accuracy increased significantly,
with the OA reaching 78.5% and the KA 65.7%. The
per-class accuracies of the “Uproot” class increased to
80.8% (UA) and 78.9% (PA), and the “Crown loss”
category reached nearly the same accuracies, 78.1%
(UA) and 80.1% (PA). The accuracies of the
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Figure 9. Comparison of the feature importances of the classifications. a: Classification 1;

-event optical image may exceed

showed that a post

“Healthy forest” class were a bit lower; the UA was

the importance of polarimetric radar data, but the
interferometric coherence can undoubtedly compete

with the optical data and contributes efficiently to the

classification.

77.1% and the PA was 77.8%. The feature importance

of optical layers was quite high compared to the radar

indices (Figure 9). According to the ranking,

the most

relevant feature was still the interferometric coher-
ence, with NDVI being the second reaching almost

pre-event optical data were added

In the last case,
to the input datasets. As a result

the OA and the KA

>

increased with less than 1%, so we can state that the

the same level of contribution. These were followed by
the other optical bands, and the radar polarimetry
indices with lower importance. This classification

results were not improved significantly. We present
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Figure 10. Thematic map of damaged areas from Classification 4 (Map A) and the reference polygons (Map B).

Table 8. Confusion matrix of best classification (Classification 4) for damaged areas where optical, radar polarimetry and
interferometric coherence data were used. The confusion matrix is supplemented with PA and UA for different classes.

Classified data

Healthy forest Crown loss Uproot All Producer’s Accuracy (%)
Reference data Healthy forest 47,789 12,560 1,067 61,416 77.81
Crown loss 13,477 80,212 7,956 101,645 78.91
Uproot 903 7,997 38,110 47,010 81.07
All 62,169 100,769 47,133 210,071
User’s Accuracy (%) 76.87 79.60 80.86

the classified damage map (Figure 10) and the con-
fusion matrix of Classification 4 (Table 8), since this
one reached the highest accuracies: 79.1% (OA) and
66.8% (KA). The non-forested area was masked out
from the classified damage map by the Ecosystem
Map of Hungary (“AM”, 2019). According to the

ranking, the interferometric —coherence was
the second most important layer even in this classi-
fication, behind the NDVI from 10/06/2015

(Figure 9). Obviously, the layers of the post-event
optical data had higher importance than layers of
the pre-event one. Most of the radar polarimetry
layers were ranked lower than the pre-event optical
ones.

Validation

To compare the classifications to reality in the most
accurate way, all damage categories of the Manual
Delineation (Table 1) were used for validation. Based
on these data we could show the forest damage

severity with accurate areas measured in the most
damaged area. Altogether, almost 2,700 ha of damaged
forests were detected, which accounts for 36% of the
total area of the most damaged part. Besides this, our
manually delineated reference data show 1,133 ha
(15%) of uprooted and 1,579 ha (21%) of crown-
damaged areas.

The first SAR-based model (Classification 1) under-
estimated uproot damage by 9% (1,027 ha), but over-
estimated crown loss by 56% (3,581 ha). The
Classification 2 model underestimated uprooted area
by 11% (1,012 ha), but the crown loss overestimation
was 58% (3,724 ha). In Classification 3 the uproot
damage had 8% (1,034 ha) underestimation and 57%
(3,631 ha) crown loss overestimation. The Classification
4 model seems to be the most reliable: uproot under-
estimation was only 1% (1,127 ha), crown loss over-
estimation was 55% (3,472 ha). All the models were able
to find the uproot damages within a 6-121 hectares
difference range, but the crown loss overestimation
was a few thousand hectares (Figure 11).
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Figure 11. “Uproot” and “Crown loss” damage areas shared in each classification (Classification 1-4) and in the reference data
(Manual Delineation). All categories of Manual Delineation were used for validation.

Discussion
Reference data

One of the unique characteristics of our work lies
in the collection and use of accurate pre-event and
post-event field-based datasets, seldom available in
similar studies. Both field-collected and manually
delineated data sets were used as reference.
References based on aerial imagery were corrobo-
rated by field work, similarly to Riietschi et al.
(2019), who delineated patches affected by wind-
throw, then visited some of them on the ground. In
similar SAR-related studies, ground-based valida-
tion is infrequent. In tropical forests there is
a complete lack of field-based references, mostly
because of the hard accessibility of these sites
(Reiche et al., 2018). In these cases, optical data
are widely used as reference. When forest inventory
data are available, it can be used to validate results
based on both optical and SAR images (Tomppo
et al., 2019).

Ice break detection

Another novelty of our research is the investigation of
the ice break phenomenon with SAR data. Although
several combinations of different damage phenomena
and applied source data are available in the literature
(e.g., ice break investigations with optical imagery and
fire/windthrow event investigations with SAR data),
we hardly found any other research using similar
approach for studying ice breaks.

SAR data and natural disturbances

In our relevant classification setup (Classification 1),
polarimetric radar data (backscatter coeflicients and
polarimetric descriptors from H/A/Alpha decomposi-
tion) in itself did not yield satisfactory results in detect-
ing ice break damage, although Tanese et al. (2018)

suggested that forest disturbance events can be deli-
neated using relatively simple thresholding approaches
on backscatter data. One of the underlying reasons
could be that they studied L-band instead of C-band
radar backscatter coefficients, hence not applicable to
Sentinel-1 data. Based on our results, we can state that
polarimetric descriptors derived from Sentinel-
1 C-band radar data may indeed deserve consideration.
In particular, feature importance rankings of XGB clas-
sifications demonstrated that the most useful radar
indices were Shannon entropy and the first eigenvalue
of the covariance matrices of different dates, while back-
scatter coeflicients did not perform well (Figure 9).

Olen and Bookhagen (2018), Tomppo et al. (2019),
and Tomppo et al. (2021) suggested the use of inter-
ferometric coherence to estimate natural disturbance
damage. In our case, the interferometric coherence has
significantly increased the accuracy of the classifica-
tion, and the OA reached 65.7% using only radar data.
Depending on the feature importance (Figure 9), the
interferometric coherence had an extremely high
effect on the results. Consequently, we conclude that
the interferometric coherence promotes the mapping
of the “Uproot” category, but it hardly improves the
separation of “Crown loss” and “Healthy forest” cate-
gories. In the temperate region, estimating the coher-
ence variability would require a longer time series
(Olen & Bookhagen, 2018), but due to the fact that
the disturbance happened right at the beginning of
Sentinel-1 operational service, we could only obtain
one pair of pre-event images. However, one can most
likely rely on the continuous availability of Sentinel-1
imagery for similar future events.

Detection of crown-damaged areas was a more dif-
ficult task; thus, the use of optical images from the
vegetation period after the event was necessary. These
data were more useful than most of the radar indices
and are essential for more accurate mapping of this
category, proven by the fact that their inclusion
increased the OA to 78.5%. This result is in accordance
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with Hirschmugl et al. (2020), who concluded that the
optical and SAR-based data are highly complemen-
tary, and their simultaneous use could improve the
accuracy of damage assessments.

The high overestimation of the crown loss was
probably due to the “Healthy forest” reference. For
this category, forest stands with (almost) complete
canopy closure were used (FRDT3). However, the
canopy closure can be incomplete for several reasons
(habitat type, forest management, age-related mortal-
ity, etc.) beyond external natural disturbances. Based
on our results, the proper differentiation of healthy
forests with various levels of canopy closure seems
crucial for accurate canopy loss estimation. The
separation of the reasons for canopy incompleteness
is a challenge, which requires further investigations.

The best classification based solely on SAR data
(Classification 2) had Producer’s accuracies of 58-63%,
and User’s accuracies of 57-73%. This seems similar to
the results of other SAR-based research investigating nat-
ural disasters. Riletschi et al. (2019) studied the windthrow
effects with the results of 88% PA and 85% UA. Tanase
et al. (2018) also showed windthrow damage results with
67-81% PAs and 54-75% UAs. The study of Tomppo et al.
(2019) presented a very high, 90% OA, but their reference
data were of lower quality than ground measurements
would have been. Tomppo et al. (2021) used C-band
SAR data for wind damage estimation: their UAs were
62% for severe damages and 75% for slight damages. The
75% UA was reached with one Sentinel-1 scene, only
2 days after the event, without specific training data.

Beyond these, our results are not comparable with
the commonly used deforestation detection studies. In
these areas mostly clear-cuts were carried out, which
means no trees were left in the field. In the case of
natural disturbances, different amounts of broken,
fallen, uprooted, and bent trees remain, which have
a strong influence on the SAR signal.

Optical data and ice break

King et al. (2005) used Landsat red and IR bands after
the great ice storm of 1998, North America. They
achieved more than 75% average accuracy with multi-
ple neural networks. Our best result, which includes
optical data as well (Classification 4) surpassed that
with a 79.1% OA. Olthof et al. (2004) investigated an
ice break event with a neural classifier based on optical
and environmental data. They separated three damage
classes in their study. Their results indicated that the
detection of severe damage was more accurate, while
the classifier had difficulties with moderate and low
(incl. unharmed) damage categories. Our study
yielded the same conclusion, however, based on
a combination of optical and radar data. Simi¢ Milas
et al. (2015) have found that the ice break and other

natural disturbances (which happened in Croatia,
2014) are demonstrable with high accuracy (19.2%
difference) compared to the results of another field-
and forest management data-based study (Vuleti¢
et al., 2014). The validation of Classification 4 of this
study showed 1% difference to “Uproot” and 55%
difference to “Crown loss.” By refining our crown
loss damage estimation methods, we may be able to
reach similar accuracy.

Conclusions

Today, the Sentinel-1 constellation provides freely
accessible SAR data with 6-day revisit, enabling huge
potential for fast detection of damage over large areas.
Certainly, processing and analysis of SAR data
requires specific knowledge and it has its limitations,
but its benefits are clearly demonstrated in our study
and in numerous references likewise.

In this work, we assessed the relative importance
of different input features derived from pre- and
post-event radar and optical imagery and presented
the potential of Sentinel-1 data in the study of ice
break event effects through four different classifica-
tion setups, corroborated by reference data of
exceptionally high quality. All four setups were
suitable for identifying uprooted fallen trees prop-
erly, but none of them was capable of accurately
detecting different levels of crown loss. The proper
differentiation of healthy forests with various levels
of canopy closure seems crucial for accurate canopy
loss estimation.

The analysis of results yielded by purely SAR-based
classification setups highlighted the fact that interfero-
metric coherence is very useful for uproot and crown
loss damage classification. Even in setups with pre-
and post-event optical data included, interferometric
coherence outperformed most inputs in terms of fea-
ture importance, with the only exception of post-event
NDVI. Therefore, since the availability of post-event
NDVI requires valid optical data from the following
vegetation period, we strongly suggest utilizing the
SAR input data configuration as described in
Classification 2 for immediate damage analysis for
salvage logging planning in cases where the natural
disturbance happens outside the vegetation period. By
this, uproot damages can be shown with high accuracy
and fast response times, depending on the availability
of radar imagery. Hence, we suggest its inclusion in
forestry and conservation practice for quick damage
assessment after catastrophic, large-extent natural dis-
turbances, especially if salvage logging has to be com-
pleted before the vegetation period starts, like in
protected areas with high conservation values. If
necessary, the accuracy of mapping can be increased



later by adding optical data taken during the following
vegetation period, as described for classification setups
3 and 4.

Our research demonstrates the usefulness of inter-
ferometric coherence for forest damage detection, cor-
roborating a number of independent studies in similar
applications. Possible future developments may there-
fore be focused on constructing a continuously
updated series of coherence values, as described in
Olen and Bookhagen (2018), to rapidly estimate the
damage after possible natural disasters. However,
other information (e.g., forest management data and
disturbance type) is also needed for the estimation due
to the limited separability of natural and management-
related disturbances based only on SAR data (Tanase
et al., 2018).

Another potential direction for further develop-
ments is the inclusion of polarimetric radar data
acquired in the post-event summer period when the
canopy is well-developed. Polarimetric radar data are
sensitive to structure; consequently, in the summer
period it may be more suitable to detect the changes
in the canopy structure, thus possibly increasing the
detection accuracy of crown damage by comparing
pre- and post-event polarimetric radar data. In this
concrete case, pre-event data for the summer period
were not available as Sentinel-1A was not in opera-
tional phase at that time.
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