

Effect of organic solvents on the kinetics of reversible inclusion of palmatine in cucurbit[7]uril

Mónika Megyesi, Zsombor Miskolczy, László Biczók^{*},

Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, P.O. Box 286, 1519 Budapest, Hungary

^{*} Corresponding author. E-mail: biczok.laszlo@ttk.hu

1 **Abstract**

2 The effects of the organic cosolvents methylformamide (MF), dimethylformamide (DMF),
3 dimethyl sulfoxide (DMSO), and acetonitrile (AN) on the reversible inclusion of the natural
4 alkaloid palmatine (Pal) in cucurbit[7]uril (CB7) were investigated using fluorescence
5 spectroscopy, stopped-flow measurements, and isothermal titration calorimetry. Kinetic studies
6 revealed that cosolvents not only compete with Pal for CB7 binding but also modulate both the
7 formation and dissociation rates of Pal–CB7 complex. Cosolvent confinement in CB7 was
8 exothermic, with dimethylformamide showing the strongest affinity due to the favorable
9 entropic contribution to the driving force. Even small cosolvents fractions reduced the enthalpy
10 gain of Pal–CB7 formation, which was partly compensated by entropy increases in the presence
11 of methylformamide, acetonitrile, and dimethyl sulfoxide. Direct monitoring of the complex
12 dissociation demonstrated cosolvent-promoted acceleration of Pal release, driven by a greater
13 decrease in activation enthalpy than activation entropy. Dimethylformamide addition enhanced
14 the rate of Pal association with CB7, acetonitrile exerted negligible influence, whereas dimethyl
15 sulfoxide and methylformamide slowed the process. These results underscore the essential role
16 of cosolvent-induced perturbations in the hydrogen-bonded water network and solvation shell
17 in modulating both thermodynamics and kinetics of host–guest complexation.

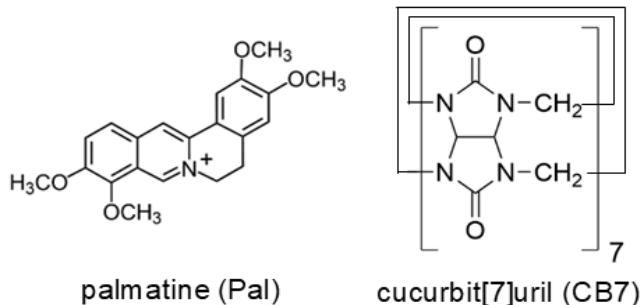
18

19

20 *Keywords:* host-guest complex; activation parameters, solvent effect, water structure, binding
21 constant

22

23 **1. Introduction**


24 Organic cosolvents are widely used as solubilizing excipients in water-based
25 pharmaceutical formulations [1, 2] and for tuning the properties of aqueous polymer solutions
26 [3, 4]. They affect the stability and conformational dynamics of proteins [5], induce
27 morphological transformations in self-assembled polypeptides [6], and regulate the catalytic
28 activities of enzymes [7, 8]. A deoxyribozyme capable of RNA-cleaving only in the presence
29 of DMSO has been developed [9]. Cosolvent-driven chiral inversion has been achieved in self-
30 assembled peptides and one-dimensional coordination polymers [10, 11]. Even trace amounts
31 of organic solvents can direct and mediate dipeptide self-assembly in aqueous media [12].

32 Due to their inclusion complex formation, water-soluble macrocyclic compounds have
33 diverse applications in biomedical field [13], chemical sensing [14], catalysis [15], material
34 science [16], and separation technologies [17]. Their binding affinity and the properties of their
35 host-guest complexes can be effectively modulated by cosolvents. The combined use of
36 cosolvents and cyclodextrins (CDs), a family of cyclic oligosaccharides composed of
37 glucopyranose units, has been investigated to achieve an optimized synergistic effect [18-20].
38 Increasing the concentration of ethanol or dimethyl sulfoxide (DMSO) in aqueous solution
39 reduced the stability of CD complexes by decreasing the exothermicity of their formation [21,
40 22]. Combined molecular dynamics and NMR studies demonstrated the competitive inclusion
41 of propiconazole nitrate and DMSO in β -cyclodextrin, along with a decrease in guest binding
42 affinity with increasing DMSO volume fraction in water [23].

43 Despite the diverse potential applications of the pumpkin-shaped cucurbit[n]uril
44 cavitands [24, 25], little information is available on their inclusion complex formation in water-
45 cosolvent mixtures. NMR spectroscopic experiments with a few organic solvents showed 1:1
46 incorporation into cucurbit[7]uril (CB7) and provided the binding constants of the resulting
47 complexes [26]. The addition of 4 vol% ethanol to an aqueous solution of CB7-encapsulated

48 palmatine or dehydrocorydaline resulted in a less than 10-fold reduction in the binding constant,
49 whereas akali chlorides produced a more pronounced effect [27]. Isothermal calorimetric
50 titrations revealed that the driving force of 2',2'-difluoro-2'-deoxycytidine anticancer drug
51 confinement in CB7 was reduced with increasing ethanol mass fraction in aqueous formate
52 buffer because the decrease in enthalpy release was not compensated for the enhanced entropy
53 gain [28]. The presence of 4 vol% methanol weakened the rhodamine B binding in CB7 and 4-
54 sulfonatocalix[4]arene, but improved the complexation ability of β -cyclodextrin [29]. In
55 contrast, the addition of 20 vol% methanol did not significantly affect the stability of the oxime–
56 CB7 complexes in aqueous solutions, but the same amount of acetonitrile (AN) caused a
57 decrease in the binding constant by almost two orders of magnitude [30]. Masson and coworker
58 demonstrated that the addition of 40 vol% CD₃CN to the solution of the 2:2 cucurbit[8]uril
59 (CB8) complexes of platinum(II) terpyridyl acetylides derivatives in D₂O triggered the release
60 of one CB8 macrocycle and the reorientation of the guests into a stacked head-to-head direction
61 in the remaining 2:1 complexes [31]. The change in solvent from water to dimethyl sulfoxide
62 (DMSO) caused cation-induced trimerization of the CB7 inclusion complexes [32]. A
63 remarkable solvent effect was also observed for the interaction mode between the diheptyl-4,4'-
64 bipyridinium dication and CB7. The aromatic rings of the guest were encapsulated in DMSO,
65 whereas the heptyl chain was included in the host cavity when water was used as a solvent [33].
66 Different moieties of N-substituted 4-benzoylpypyridinium cations were embedded into CB7 in
67 water and DMSO, but the binding constants were less than one order of magnitude smaller in
68 the latter [34]. The one-electron oxidation of the (ferrocenylmethyl)trimethylammonium cation
69 enhanced its affinity for CB7 in AN and DMSO, but the opposite effect was observed in water
70 [35]. Dumbbell-shaped guests formed rotaxane-like complexes with CB7 through
71 thermodynamically more favorable and substantially faster processes in aqueous media than in
72 DMSO [36].

73 Despite the great potential of water–organic solvent binary mixtures in the design of
74 tailor-made functional CB_n -based systems, no systematic studies have been performed to reveal
75 the molecular details of the cosolvent effect on the kinetics and thermodynamics of CB_n
76 complex formation. To fill this knowledge gap, we systematically investigated the complex
77 formation of palmatine (Pal) natural alkaloid with CB7 (Scheme 1) in aqueous solutions

78
79 **Scheme 1** Chemical structures of the host and guest compounds
80

81 containing DMSO, AN, dimethyl formamide (DMF), or methyl formamide (MF). Pal was
82 selected as a model compound owing to its several advantageous properties: (a) it exhibits
83 strong fluorescence inside the nonpolar cavity of CB7 but has a negligible emission in water,
84 enabling the direct monitoring of inclusion complex formation; (b) it binds to CB7 with high
85 affinity, providing a broad range to assess cosolvent-induced reductions in binding constant; (c)
86 it does not undergo in acid–base reactions that could complicate the evaluation of cosolvent
87 effects; (d) the high fluorescence quantum yield of its CB7 complex permits the use of very
88 dilute solutions, thereby slowing down the bimolecular processes; and (e) its ingress into and
89 egress from CB7 take place within a conveniently measurable timescale. The cosolvents were
90 selected based on their distinct effect on water structure. DMF strengthens the hydrogen bond
91 network of water [37]. At concentrations below 1.4 vol%, AN occupies the pre-existing cavities
92 of the water structure and reduces the number of water–water hydrogen bonds [38], while
93 DMSO [39] and MF [40] markedly disrupt the hydrogen-bond network of water. Our aim was
94 to assess whether such cosolvent-induced modifications of water structure play a decisive role

95 in governing the kinetics of reversible formation of Pal-CB7 inclusion complex. We also
96 intended to investigate the effect of guest size. Calculations showed that the volume of the
97 cosolvent molecules gradually increases in the order AN < MF < DMSO < DMF. DMSO was
98 included among the selected cosolvents because of its widespread use in biological research
99 and its role as a cryoprotectant [41, 42].

100

101 **2. Materials and methods**

102 *2.1. Reagents*

103 Palmatine chloride (Pal, ≥98% Sigma-Aldrich) was purified by chromatography using a
104 silica gel (Merck) column and ethanol eluent. High-purity CB7 was provided by Dr. Anthony
105 I. Day (University of New South Wales, Canberra, Australia). 1-Adamantylamine
106 hydrochloride (Sigma-Aldrich), 5-chloro-2-adamantanone (98 %, TCI),
107 bis(cyclopentadienyl)cobalt(III) hexafluorophosphate (96 %, TCI), and organic solvents
108 (Merck) were used as received. Water was distilled twice from the dilute KMnO₄ (VWR
109 International) solution.

110

111 *2.2. Spectroscopic measurements*

112 The absorption and corrected fluorescence spectra were recorded using a Cary60
113 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) and a Fluoromax-4
114 spectrofluorometer (Jobin-Yvon, Longjumeau, France), respectively. The binding constants for
115 1:1 complex formation (*K*) were calculated by analyzing the total CB7 concentration ([CB7]₀)
116 dependence of the fluorescence intensity (*I*) at a specific wavelength using the following
117 equation [43]:

$$118 I = I_0 + \frac{I_\infty - I_0}{2} \left\{ 1 + \frac{[CB7]_0}{[Pal]_0} + \frac{1}{K[Pal]_0} - \left[\left(1 + \frac{[CB7]_0}{[Pal]_0} + \frac{1}{K[Pal]_0} \right)^2 - 4 \frac{[CB7]_0}{[Pal]_0} \right]^{\frac{1}{2}} \right\} \quad (1)$$

119 where [Pal]₀ is the total Pal concentration, *I*_∞ and *I*₀ represent the fluorescence intensities of the
120 fully complexed and free Pal. [Pal]₀ = 1 μM was typically used.

121 Fluorescence quantum yields (Φ_f) were determined relative to that of quinine sulfate in a
122 0.5 M H₂SO₄ solution, for which a reference yield of $\Phi_{ref} = 0.546$ was taken [44]. The samples
123 were excited at 360 nm, where the absorbances were A and A_{ref} for the sample and reference
124 solutions, respectively. To avoid inner filter effect, the absorbance of the samples was adjusted
125 to approximately 0.1 at 360 nm. The Φ_f values were calculated based on the following
126 relationship [43]:

$$127 \quad \Phi_f = \Phi_{ref} \frac{I(1-10^{-A_{ref}})}{I_{ref}(1-10^{-A})} \left(\frac{n}{n_{ref}} \right)^2 \quad (2)$$

128 I and I_{ref} are the integrals of the corrected fluorescence spectra, while n and n_{ref} denote the
129 refractive indices of the sample and reference solutions, respectively. Table S1 in the
130 Supplementary data lists the previously published refractive indices [38, 45-47] used for the
131 calculations. To obtain the I value of the fully complexed Pal, the measured fluorescence
132 intensity integrals were extrapolated to complete complexation using the Pal–CB7 binding
133 constants ($K_{1:1}$) obtained from separate experiments (vide infra).

134 Fluorescence lifetimes (τ_f) were measured by the time-correlated single-photon counting
135 method, as described previously [48]. A Picoquant diode laser (pulse duration ca. 70 ps,
136 wavelength 372 nm) excited the samples, and the temporal decay of the fluorescence intensity
137 was fitted using the nonlinear least-squares deconvolution method with the Picoquant FluoFit
138 software.

139

140 *2.3. Stopped-flow kinetics*

141 The formation and dissociation of the Pal–CB7 complex were studied using stopped-flow
142 method with a Fluoromax-4 spectrofluorometer equipped with an Applied Photophysics
143 RX2000 rapid mixing accessory and a pneumatic drive. The temperature control was
144 maintained with a Julabo F25-ED thermostat. The time resolution was set to 20 ms/channel.

145 For each measurement, 10–20 kinetic traces were averaged, and the data were analyzed using
146 homemade programs written in MATLAB 7.9. To slow the rapid bimolecular host-guest
147 association to a timescale accessible to the stopped-flow technique, low concentrations of Pal
148 and CB7 (typically ~0.25 μ M) were used in kinetic studies. Owing to the high sensitivity of the
149 fluorescence detection and the high fluorescence quantum yield of the Pal–CB7 complex,
150 excellent signal-to-noise ratios were achieved under these experimental conditions.

151

152 *2.4 Isothermal titration calorimetry (ITC)*

153 Isothermal calorimetric titrations were performed with a VP-ITC (GE Healthcare,
154 Chicago, IL, USA) instrument at 298 K. All solutions were degassed prior to titration. Proper
155 mixing was ensured by stirring at 307 rpm allowing 300 s intervals between successive
156 additions. Because calorimetry is inherently much less sensitive than fluorescence detection,
157 higher host and guest concentrations were required in the ITC experiments than in the other
158 measurements. The reactant concentrations, injected volumes, and injection durations were
159 adjusted to ensure optimal experimental conditions. First, the enthalpy gain associated with
160 cosolvent–CB7 complexation was determined by stepwise injections of 40 μ L CB7 solution
161 (0.4 mM, injection duration 40 s) from a computer-controlled microsyringe into a 0.2 M
162 aqueous cosolvent solution. The integrated heat released per injection is a directly measured
163 quantity that does not depend on any assumptions regarding the stoichiometry and binding
164 constant of complexation. The measured enthalpy change was corrected for the heat released
165 upon the addition of the same volume of water and for the minor enthalpy change detected upon
166 injecting 40 μ L CB7 solution (0.4 mM) into water. The corrected enthalpy change (ΔH_{CORR})
167 was then extrapolated to the complete cosolvent–CB7 complex formation, taking into account
168 the bound fraction of CB7 (α), assuming 1:1 complexation, as follows:

169
$$\Delta H_{\text{CS}} = \frac{\Delta H_{\text{CORR}}}{\alpha} = \Delta H_{\text{CORR}} \frac{1 + K_{\text{CS}}[\text{cosolvent}]}{K_{\text{CS}}[\text{cosolvent}]} \quad (3)$$

170 where K_{CS} is the binding constant of cosolvent–CB7 complexation obtained from independent
171 ITC experiments described in the next paragraph (K_{CS} values are listed in Table 1). The ΔH_{CS}
172 values were derived from the first six injections, where the contribution of multiple binding is
173 expected to be small. These ΔH_{CS} values were then averaged to obtain the final results.

174 In the second step, the experimental parameters were optimized to ensure accurate
175 determination of the K_{CS} values. Aqueous CB7 solutions (0.55–0.72 mM) were titrated with
176 aqueous solutions of 21.4 mM DMF, 74.7 mM DMSO, 989 mM MF, or 1000 mM AN. The
177 titrant concentrations were changed to account for the differing binding affinities of the
178 cosolvents. The dilution heat, determined by titrating the cosolvents into water under identical
179 conditions, was subtracted from the enthalpograms. The resulting data were then analyzed with
180 a single set of identical sites model, while keeping the corresponding ΔH_{CS} values from the first
181 experimental series fixed. This procedure reduced the number of unknown parameters, yielding
182 more accurate K_{CS} values and binding stoichiometries (N). Here, N denotes the mean number
183 of guest molecules accommodated by the host macrocycle. The Gibbs free energy (ΔG_{CS}), and
184 entropy changes (ΔS_{CS}) upon cosolvent complexation with CB7 were calculated according to
185 the well-established thermodynamic relationships:

186
$$\Delta G_{\text{CS}} = -RT \ln K_{\text{CS}} \quad (4)$$

187
$$\Delta S_{\text{CS}} = \Delta H_{\text{CS}}/T + R \ln K_{\text{CS}} \quad (5)$$

188 where T is the absolute temperature, and R is the universal gas constant.

189 When the thermodynamic parameters of Pal–CB7 complex formation were determined
190 in 0.2 M cosolvent aqueous solutions, the titrand and titrant solutions contained 33.0 - 43 μM
191 CB7 and \sim 420 μM Pal, respectively.

192
193 *2.5 Calculation of molecular volumes and packing coefficients*

194 The energy-minimized structures of the cosolvents were obtained using the RM1
195 semiempirical method implemented in HyperChem 8.0 (Hypercube, Inc.). The molecular

196 volumes of the optimized geometries were subsequently calculated with the QSAR module of
197 the same program. For the inner cavity volume of CB7, a value of 242 Å³ was used, as
198 recommended by Nau and co-workers [49]. The packing coefficients (PC) of the cosolvents
199 were determined as the ratio of the guest molecular volume to the host cavity volume.

200

201 *2.6 Data statistical analysis*

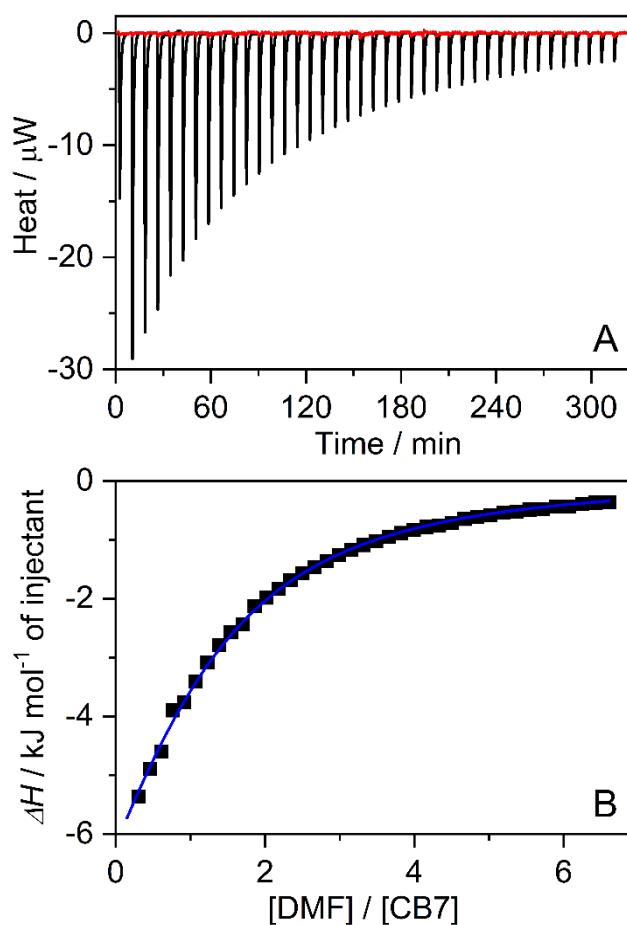
202 Each experiment was repeated at least three times, and the reported errors correspond to
203 the standard deviations of the measured values.

204

205 **3. Results**

206 *3.1. Study of organic cosolvent inclusion in CB7 by isothermal titration calorimetry (ITC)*

207 NMR studies and molecular mechanics calculations have demonstrated the inclusion of organic
208 solvents in CB7 cavity, and 1:1 association has been proposed [26]. To elucidate the enthalpy
209 gain associated with the complexation (ΔH_{CS}), we performed isothermal titration calorimetry


210

211 **Table 1** Molecular volumes and packing coefficients of cosolvents, along with the
212 stoichiometric and thermodynamic parameters of their CB7 complexes in water at 298 K,
213 derived from ITC data analyzed with the single set of identical sites binding model.

	Cosolvent			
	MF	DMSO	AN	DMF
Volume / Å ³	59	69	47	76
PC / %	24	29	19	31
N	0.90 ± 0.10	0.94 ± 0.08	2.08 ± 0.09	1.04 ± 0.05
K_{CS} / M ⁻¹	16 ± 1	166 ± 10	6 ± 2	1070 ± 100
ΔG_{CS} / kJ mol ⁻¹	-6.9 ± 0.3	-12.7 ± 0.2	-4.4 ± 0.9	-17.3 ± 0.3
ΔH_{CS} / kJ mol ⁻¹	-17.8 ± 1.2	-18.5 ± 1.3	-11.8 ± 1.3	-13.6 ± 1.3
ΔS_{CS} / J mol ⁻¹ K ⁻¹	-36 ± 4	-20 ± 4	-24 ± 4	12 ± 4

214 (ITC) measurements, as detailed in the Materials and methods section. The results are presented
215 in Fig. S1 in the Supplementary data, and the mean values of the calculated ΔH_{CS} are reported
216 in Table 1. Dilution of a 0.4 mM CB7 aqueous solution produced negligible heat effect. The
217 enthalpy change observed upon the addition of water to the 0.2 M aqueous cosolvent solution
218 was always smaller than the enthalpy decrease associated with cosolvent–CB7 complexation.

219 After the accurate determination of ΔH_{CS} values, the reactant concentrations were
220 optimized for the determination of the binding constants (K_{CS}) and the mean number of

221
222 **Fig. 1.** (A) Heat release upon sequential injections of 7 μL of 21.4 mM DMF solution into of
223 0.695 mM CB7 in water at 298 K (injection duration: 14 s). Red line shows the dilution heat
224 obtained by the injection of DMF solution into water. (B) The integrated heat released per
225 injection, after subtraction of the dilution heat of DMF (■), is plotted as a function of the
226 [DMF]/[CB7] molar ratio. The line represents the best fit obtained using the single set of
227 identical sites model.

228 cosolvent molecules in CB7 (N). Fig. 1 displays a representative enthalpogram recorded during
229 the stepwise addition of 21.4 mM DMF aqueous solution to 0.695 mM CB7 in water at 298 K,
230 while the results of analogous ITC experiments with the other cosolvents are presented in Figs.
231 S2–S4. The binding constants (K_{CS}) and stoichiometric parameters (N) for the host-guest
232 complexations were obtained from the nonlinear least-squares fitting of the ITC data. Owing to
233 the strong correlation between ΔH_{CS} and N , the ΔH_{CS} parameter was fixed to the value obtained
234 from the independent experiments described above. For the DMF, DMSO, and MF cosolvents,
235 the data were well described by the 1:1 encapsulation model, as evidenced by N values close to
236 unity (Table 1). In contrast, the confinement of AN in CB7 yielded an N value of 2, consistent
237 with the small size and low packing coefficient (PC) of this cosolvent, indicating that two AN
238 molecules can be included in CB7. The single set of identical sites binding model used here
239 assumes that CB7 accommodates N molecules of AN with the same binding constant (K_{CS}) and
240 binding enthalpy ΔH_{CS} . Alternative models that distinguish between the thermodynamic
241 parameters of 1:1 and 2:1 complexes were not applicable because they introduce too many
242 adjustable parameters for reliable fitting.

243 The results of ITC measurements summarized in Table 1 demonstrate that the weak
244 affinity of AN for CB7 originates primarily from the low exothermicity of their interaction,
245 whereas the effective binding of DMF to CB7 is driven largely by the substantial entropic
246 contribution to the driving force of association. Among the studied cosolvents, only DMF
247 encapsulation in CB7 is accompanied by an entropy gain. The determined K_{CS} values are
248 consistent, within experimental error, with those obtained from ^1H NMR chemical shift
249 titrations for AN ($11 \pm 1 \text{ M}^{-1}$), DMSO ($140 \pm 20 \text{ M}^{-1}$) and DMF ($1000 \pm 80 \text{ M}^{-1}$) [26] and
250 exhibit a parallel increase with the packing coefficients, defined as the ratio of the guest's
251 molecular volume to the inner cavity volume of CB7 [50].

252

253 *3.2. Characterization of the Pal–CB7 complex in equivolume water–cosolvent mixtures*

254 Pal can act as a fluorescent probe for its surroundings [51-53]. Taking advantage of this
 255 ability, the photophysical characteristics of the Pal–CB7 complex were examined in 1:1 (v/v)
 256 water–cosolvent mixtures to assess whether the microenvironment of the CB7-encapsulated Pal
 257 changed upon cosolvent addition. The fluorescence lifetime of Pal–CB7 ($\tau_f = 11.6$ ns in water)
 258 was only negligibly affected by the presence of cosolvents (Table 2). The fluorescence quantum
 259

260 **Table 2** Binding constants and photophysical parameters of Pal–CB7 complex in water and 1:1
 261 (v/v) water–cosolvent mixtures

	H_2O^a	1:1 (v/v) water–cosolvent mixture			
		MF	DMSO	AN	DMF
$K_{1:1} / 10^3 M^{-1}$	26000 ± 3000^b	3.6 ± 0.2	25 ± 2	0.88 ± 0.14	1.6 ± 0.2
τ_f / ns	11.7 ± 0.3	12.1 ± 0.3	12.1 ± 0.3	11.9 ± 0.3	11.5 ± 0.3
Φ_f	0.26 ± 0.02	0.23 ± 0.02	0.31 ± 0.03	0.23 ± 0.02	0.14 ± 0.02
$k_f / 10^7 s^{-1}$	2.2 ± 0.2	1.9 ± 0.2	2.6 ± 0.3	1.9 ± 0.2	1.2 ± 0.2
$k_{nr} / 10^7 s^{-1}$	6.3 ± 0.3	6.4 ± 0.3	5.7 ± 0.3	6.5 ± 0.3	7.5 ± 0.3

262 ^a in the absence of cosolvent, ^b reference [54]

263

264 yields (Φ_f), determined using equation (2), varied slightly, mainly because of changes in the
 265 radiative rate constants (k_f). The rate constants for the radiative and nonradiative energy
 266 dissipation processes were derived using the relationships $k_f = \Phi_f / \tau_f$ and $k_{nr} = (1 - \Phi_f) / \tau_f$,
 267 respectively [43]. According to the Strickler–Berg equation [55], k_f depends on the refractive
 268 index of the medium, the integral over the first absorption band, and the mean fluorescence
 269 frequency. The insignificant changes in τ_f indicate that the cosolvents do not alter the
 270 microenvironment experienced by Pal when encapsulated within the CB7 cavity.

271 The binding constant for Pal incorporation into CB7 was also determined in 1:1 (v/v)
 272 water–cosolvent mixtures. Fig. S5 displays the variation of normalized fluorescence intensity

273 of 1 μ M Pal solutions with CB7 concentration. Fitting equation (1) to the experimental data
274 provided the binding constants summarized in Table 2. Among the tested cosolvents, Pal
275 exhibited the highest binding constant ($K_{1:1}$) in the water–DMSO mixture, with an identical
276 value obtained in neat DMSO (Fig. S6 in the Supplementary data). In contrast, fluorescence
277 titration in neat MF (Fig. S7 in the Supplementary data) yielded a binding constant of $(1.1 \pm$
278 $0.1) \times 10^3 \text{ M}^{-1}$, which is approximately threefold lower than that measured in the 1:1 (v/v) water–
279 MF mixture. The low CB7 solubility thwarted the complexation in neat DMF and AN.

280 No correlation was found between the inclusion propensity of the cosolvents in CB7
281 (K_{CS} , Table 1) and their impact on Pal–CB7 complexation ($K_{1:1}$, Table 2). Pal showed the
282 weakest affinity to CB7 in the water–AN mixture (Table 2), despite the low propensity of AN
283 to be encapsulated by CB7. Furthermore, AN diminished the inclusion ability of Pal more
284 strongly than DMSO, even though DMSO had a larger K_{CS} value. These findings suggest that
285 cosolvents reduce the inclusion efficiency of Pal not only through direct competition for the
286 host cavity, but also via additional contributing factors.

287

288 *3.3. Pal–CB7 complex formation in the presence of 0.2 M cosolvents*

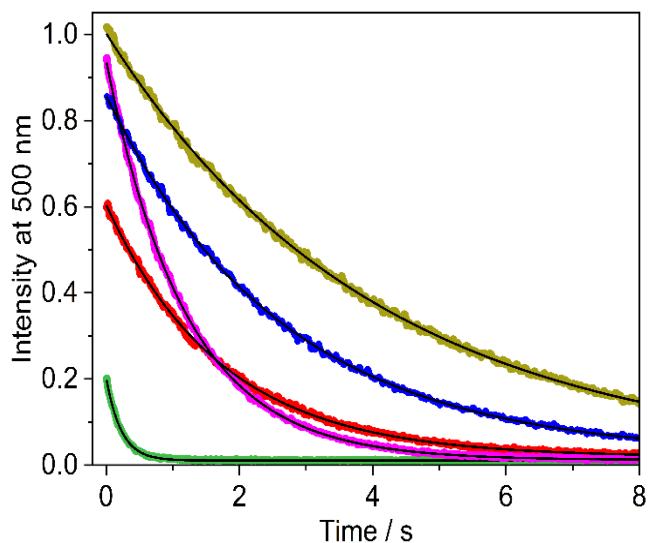
289 To minimize the influence of bulk solvent polarity change, Pal–CB7 complex formation was
290 also studied in dilute (0.2 M) cosolvent solutions, corresponding to ~ 1 – 1.5 vol% concentrations.
291 Under these conditions, the ITC experiments showed a decrease in K in the order AN > MF >
292 DMSO > DMF (Table 3), which contrasts sharply with the trend observed in 1:1 (v/v)
293 water-cosolvent mixtures (Table 2, DMSO > MF > DMF > AN). This discrepancy clearly
294 indicates that the cosolvent-induced modifications of the water structure govern the binding
295 propensity of Pal in CB7, as variations in cosolvent concentration perturb the hydrogen-bonded
296 network of water to different extents and in distinct manners.

297

298 **Table 3** Binding constants and thermodynamic parameters obtained from ITC measurements,
 299 along with the kinetic parameters of the Pal–CB7 complex in water and in 0.2 M cosolvent
 300 aqueous solutions at 298 K.

H ₂ O ^a	0.2 M Cosolvent				
	MF	DMSO	AN	DMF	
<i>N</i>	0.92 ± 0.08	0.96 ± 0.08	0.98 ± 0.08	0.92 ± 0.08	
<i>K/ 10⁵ M⁻¹</i>	260 ± 30	13 ± 1	7.5 ± 1.3	22 ± 2	0.91 ± 0.10
<i>k_{in}/k_{out} /10⁵ M⁻¹</i>	270 ± 30	14.2 ± 0.9	8.1 ± 0.8	22.6 ± 0.9	^b
$\Delta G / \text{kJ mol}^{-1}$	-42.3 ± 0.3	-34.9 ± 0.2	-33.5 ± 0.4	-36.2 ± 0.2	-28.3 ± 0.3
$\Delta H / \text{kJ mol}^{-1}$	-37 ± 2	-28.0 ± 0.7	-23.7 ± 0.5	-22.8 ± 1.0	-31.6 ± 0.9
$\Delta S / \text{J mol}^{-1} \text{K}^{-1}$	9 ± 4	23 ± 3	33 ± 2	45 ± 4	-11 ± 3
<i>k_{out}(slope) / M⁻¹ s⁻¹</i>		1.8 ± 0.1	4.1 ± 0.2	9.0 ± 0.4	55 ± 1
$\Delta H_{\text{out}}^{\ddagger} / \text{kJ mol}^{-1}$	76.8 ± 2.0	65.3 ± 2.0	62.4 ± 2.0	59.2 ± 2.0	52.1 ± 2.0
$\Delta S_{\text{out}}^{\ddagger} / \text{J mol}^{-1} \text{K}^{-1}$	2 ± 1	-30 ± 4	-35 ± 4	-40 ± 4	-50 ± 4
$\Delta G_{\text{out}}^{\ddagger} / \text{kJ mol}^{-1}$	76.2 ± 2.0	74.2 ± 2.3	72.8 ± 2.3	71.1 ± 2.3	67.0 ± 2.3

301 ^a in the absence of cosolvent [54], ^b cannot be measured at 0.2 M concentration

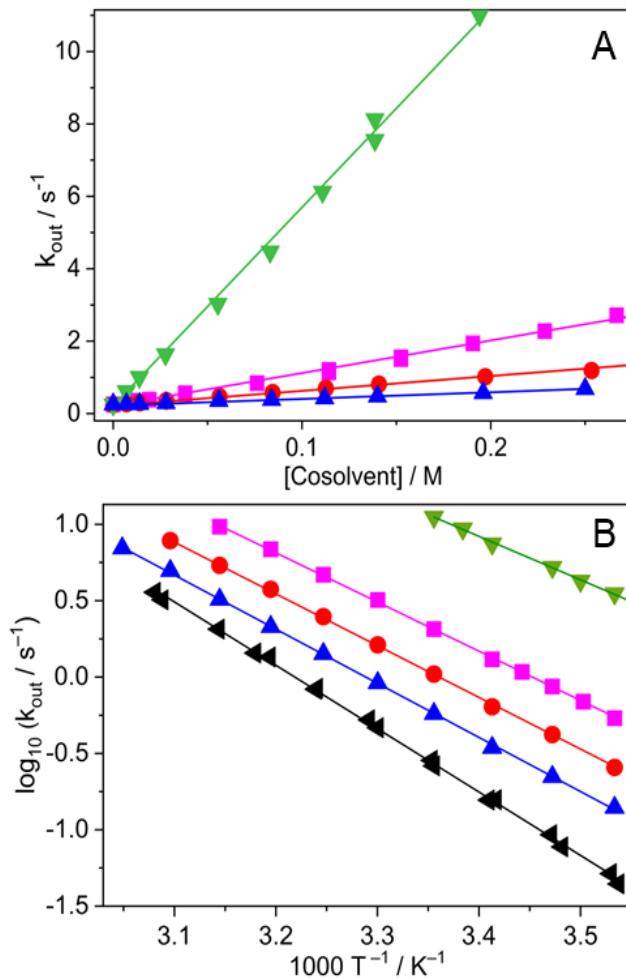

302

303 To reveal how cosolvents alter the thermodynamics of Pal–CB7 complex formation,
 304 isothermal titration calorimetry measurements were performed at 298 K. Both reactants were
 305 dissolved in 0.2 M cosolvents aqueous solution. The amount of heat evolved after each addition
 306 of Pal to the CB7 solution was corrected with the dilution heat obtained by Pal injection into
 307 the solvent. Figs. S8-S11 in the Supplementary data present representative enthalpograms, and
 308 the results of the nonlinear least-squares fits using the single set of identical sites model are
 309 summarized in Table 3. The exothermicity of the complexation (ΔH) was markedly reduced by
 310 the presence of each cosolvent. However, ΔH considerably varied among cosolvents, reflecting
 311 their distinct effect on the solvent structure change. Interestingly, entropy loss upon Pal–CB7
 312 formation was found only in the presence of DMF, which is known to strengthen the hydrogen
 313 bond network of water [37]. In contrast, the other cosolvents used in the present studies
 314 enhanced the entropy gain relative to that observed in neat water.

315 *3.4. Kinetics of Pal exit from CB7 in cosolvent–water mixtures*

316 To elucidate the origin of the cosolvent effects on host–guest association, the dissociation
 317 kinetics of the Pal–CB7 complex was investigated using stopped-flow fluorescence
 318 measurements. Because only encapsulated Pal fluoresced intensely, changes in emission
 319 directly tracked the Pal–CB7 concentration. The Pal egression rate constant was determined
 320 separately, as described previously [56]. Rapid 1:1 mixing of an equimolar ($\sim 0.5 \mu\text{M}$) Pal and
 321 CB7 solution with 1-adamantylammonium (AH^+ , $10 \mu\text{M}$) induced Pal release, with AH^+ swiftly
 322 occupying the vacated CB7 cavity. Negligible AH^+ –CB7 dissociation on the experimental
 323 timescale prevented the reformation of Pal–CB7. Thus, the observed fluorescence decay
 324 exclusively reflected Pal–CB7 dissociation. The Supplementary data (Figs. S12–S15) provide
 325 evidence for the high binding constant of AH^+ –CB7, even in the presence of a cosolvent,
 326 resulting in negligible dissociation under our experimental conditions.

327 Fig. 2 shows that even a small amount of cosolvent substantially altered the rate of Pal
 328 release from CB7. The fluorescence decays were recorded after rapid mixing of equimolar Pal


329 **Fig. 2** Temporal decay of the fluorescence intensity in water (—), in the presence of 76 mM
 330 AN (—), 84 mM MF (—), 84 mM DMSO (—), and 83 mM DMF (—) after mixing equimolar
 331 Pal and CB7 solutions with AH^+ solution. Excitation occurred at 340 nm, $[\text{Pal}] = [\text{CB7}] = 0.25$
 332 μM , and $[\text{AH}^+] = 5 \mu\text{M}$ at $t = 0 \text{ s}$.

333 and CB7 solutions with AH^+ solution in the presence of various cosolvents. The initial
334 intensities (I_0) decreased because a smaller fraction of Pal was complexed in that
335 cosolvent-containing solutions than in neat water owing to competitive binding. The addition
336 of the cosolvent also modified the exponential decay rates, indicating effects beyond simple
337 competition. Fitting the decays to a single-exponential function ($I = I_\infty + I_0 \exp(-k_{\text{out}}t)$) yielded
338 the rate constant for the Pal egression (k_{out}) from the CB7 cavity. Similar experiments were
339 conducted in the presence of varying amounts of cosolvents (Figs. S16-S19 in the
340 Supplementary data). The rate constant k_{out} increased linearly with the cosolvent concentration
341 (Fig. 3A), as described by the following equation:

$$342 \quad k_{\text{out}} = k_{\text{out}}^{\text{HD}} + k_{\text{out}}(\text{slope})[\text{cosolvent}] \quad (6)$$

343 The intercept corresponds to the rate constant of Pal–CB7 dissociation in water ($k_{\text{out}}^{\text{HD}}$), which
344 agrees well with the previously reported value of $k_{\text{out}}^{\text{HD}} = 0.20 \pm 0.04 \text{ s}^{-1}$ [54, 57]. The slopes
345 ($k_{\text{out}}(\text{slopes})$) increased markedly in the order of MF < DMSO < AN < DMF (Table 3). This is
346 an unexpected finding, as k_{out} should remain independent of cosolvent concentration if only
347 competitive binding to CB7 takes place. The parallel cosolvent–CB7 complex formation
348 equilibrium does not affect the spontaneous unimolecular Pal release from CB7. Enhancement
349 of k_{out} may arise from cosolvent-induced changes in the water structure, from a bimolecular
350 reaction of the cosolvent with Pal–CB7, or from the formation of a ternary Pal–CB7–cosolvent
351 complex.

352 To obtain a deeper understanding of the substantial increase in k_{out} ,
353 temperature-dependent measurements were performed at a 0.2 M cosolvent concentration,
354 where Pal egression remained within the measurable range even for DMF at 298 K. The
355 aforementioned k_{out} measurements were repeated at various temperatures (T) in the presence of
356 different cosolvents and, for comparison, in pure water. The Arrhenius plots of these results are
357 presented in Figure 3B. The pre-exponential factor (A_{out}) and activation energy (E_{out}) of the

358 **Fig. 3** (A) Rate constants for the Pal exit from CB7 as a function of cosolvent concentration in
 359 water at 298 K. (B) Arrhenius plots of the egression rate constants in water (\blacktriangleleft) and in 0.2 M
 360 cosolvent aqueous solution; DMF (\blacktriangledown), AN (\blacksquare), DMSO (\bullet), and MF (\blacktriangle).

361
 362 cosolvent-promoted Pal exit from CB7 were obtained by nonlinear least-squares fitting of the
 363 temperature dependence of k_{out} with the Arrhenius equation

364
$$k_{\text{out}} = A_{\text{out}} \exp(-E_{\text{out}}/RT) \quad (7)$$

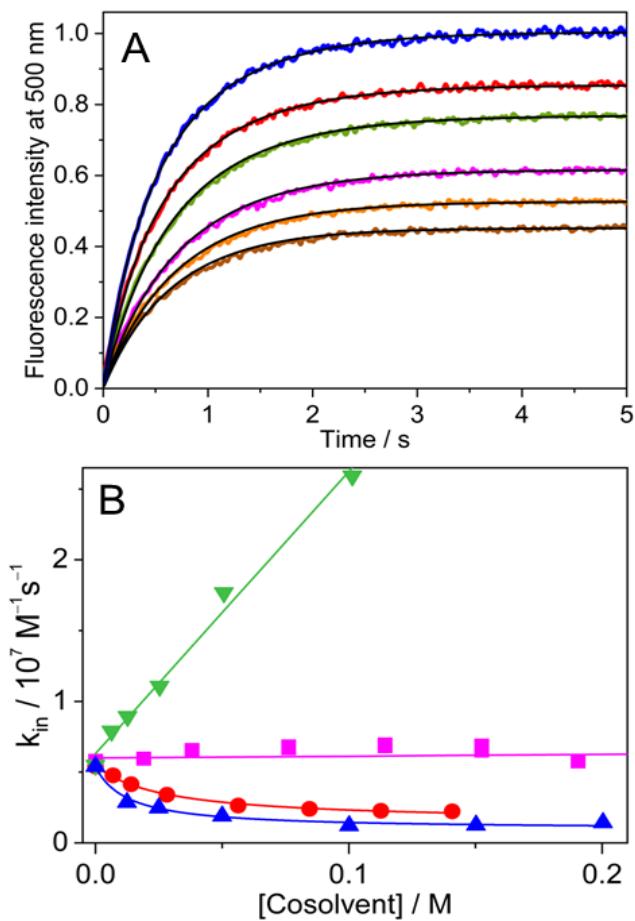
365 where R is the universal gas constant. According to transition-state theory, the standard
 366 enthalpy ($\Delta H_{\text{out}}^\ddagger$), entropy ($\Delta S_{\text{out}}^\ddagger$), and Gibb's free energy ($\Delta G_{\text{out}}^\ddagger$) of activation were derived
 367 as follows [54]:

368
$$\Delta H_{\text{out}}^\ddagger = E_{\text{out}} - RT \quad (8)$$

369
$$\Delta S_{\text{out}}^{\ddagger} = R \ln \left(A_{\text{out}} \frac{h}{\kappa e k_B T} \right) \quad (9)$$

370
$$\Delta G_{\text{out}}^{\ddagger} = \Delta H_{\text{out}}^{\ddagger} - T \Delta S_{\text{out}}^{\ddagger} \quad (10)$$

371 where e is the base of the natural logarithm, k_B represents the Boltzmann constant, h stands for
 372 the Planck constant, and the transmission coefficient (κ) was assumed to be unity. The
 373 calculated activation parameters are summarized in Table 3. Both $\Delta H_{\text{out}}^{\ddagger}$ and $\Delta S_{\text{out}}^{\ddagger}$ decreased
 374 considerably upon the addition of 0.2 M cosolvent, following the order MF > DMSO > AN >
 375 DMF.


376

377 *3.5. Kinetics of Pal entry into CB7 in cosolvent–water mixtures*

378 The fluorescence intensity (I) growth was monitored upon 1:1 mixing of equimolar Pal and
 379 CB7 solutions containing identical cosolvent concentrations to follow the association kinetics.
 380 As a representative example, Fig. 4A depicts the kinetic traces at different DMSO
 381 concentrations. The corresponding results for the other cosolvents are presented in Figs. S20-
 382 S22 in the Supplementary data). The initial growth in intensity decelerated upon gradual
 383 addition of DMSO or MF, and the reduced plateau signals indicated that competitive binding
 384 of the cosolvent to CB7 lowered the amount of Pal–CB7 in the equilibrium. To obtain the
 385 apparent rate constants (k_{in}), the numerical solutions of the differential equation describing the
 386 reversible binding equilibrium were fitted to the experimental signals while keeping the
 387 previously determined k_{out} values constant:

388
$$\frac{dI}{dt} = \alpha \frac{d[\text{Pal} - \text{CB7}]}{dt} = \alpha (k_{\text{in}} [\text{Pal}] [\text{CB7}] - k_{\text{out}} [\text{Pal} - \text{CB7}]) \quad (11)$$

389 where t denotes time, and α is a proportionality constant. The calculated k_{in} values decreased
 390 with increasing DMSO or MF concentration (Fig. 4B), indicating that both the acceleration of
 391 Pal–CB7 dissociation and the slowdown of its formation contribute to the reduced binding
 392 affinity in the presence of these cosolvents. The results of analogous experiments showed that
 393 DMF markedly enhanced k_{in} , whereas AN had little effect.

394 **Figure 4** (A) Time-dependent increase in fluorescence intensity in the presence of 0, 7, 28, 56,
 395 84, and 110 mM DMSO (from top to bottom) after mixing equimolar Pal and CB7 solutions.
 396 Excitation occurred at 340 nm, $[\text{Pal}] = [\text{CB7}] = 0.25 \mu\text{M}$ at $t = 0 \text{ s}$. (B) Rate constants for Pal
 397 entry into CB7 as a function of cosolvent concentration in water at 298 K. DMF (\blacktriangledown), AN (\blacksquare),
 398 DMSO (\bullet), and MF (\blacktriangle).

399

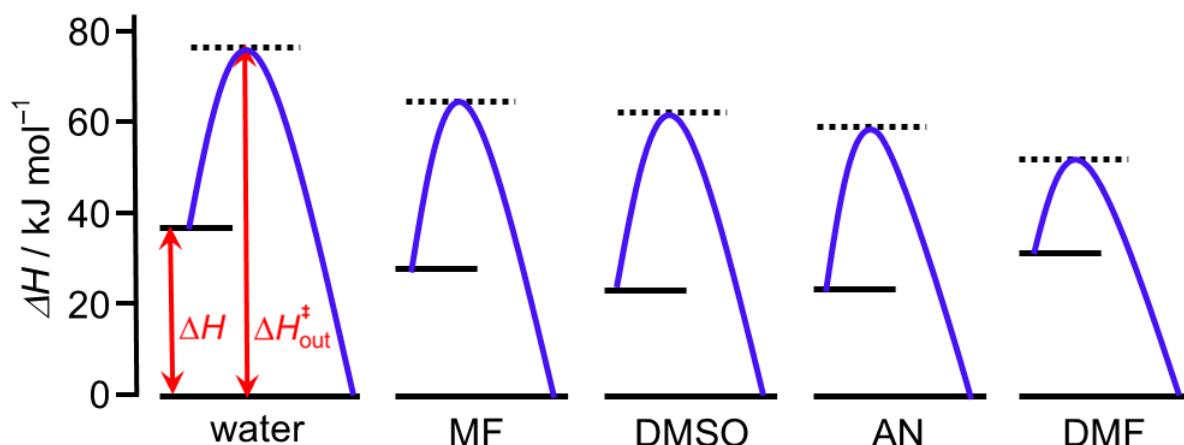
400 **4. Discussion**

401 Our results demonstrates that even $\sim 1 \text{ vol\%}$ organic cosolvents can strongly modulate the
 402 thermodynamics and kinetics of reversible host-guest binding. The correlation between the
 403 enthalpy and entropy values of complexation was very poor. Although all cosolvents studied
 404 showed enthalpy-driven interactions with CB7, the strongest driving force was observed for
 405 DMF, which is attributed to the substantial entropy gain associated with its complexation (Table
 406 1). At concentrations below 40 vol%, DMF is incorporated into the hydrogen bond network of

407 water by forming hydrogen bonds stronger than those between water molecules themselves [37,
408 58]. A previous study revealed that, on average, 1.9 water molecules remain in CB7 after the
409 confinement of DMF [59]. The DMF packing coefficient of 31% (Table 1) also indicates that
410 DMF fits only loosely within the CB7 cavity. Consequently, its transfer from the hydrogen-
411 bonded solvent network to the macrocycle interior leads to enhanced configurational freedom.
412 Furthermore, the partial expulsion of the high-energy water molecules from the hydrophobic
413 core of the host also contributes to the substantial entropy gain in the formation of the DMF–
414 CB7 complex. In contrast, the other cosolvents do not reinforce the water structure. Therefore,
415 their transfer from the bulk solution into CB7 leads to an entropy loss that diminishes their
416 binding affinity. The K_{CS} values listed in Table 1 should be considered as apparent binding
417 constants, as they were determined under varying cosolvent concentrations, where the observed
418 equilibria reflect not only incorporation into CB7 but also concomitant alterations in the solvent
419 structure. A parallel increase was observed (Table 1) between the K_{CS} values and the packing
420 coefficients (PC) introduced by Rebek and Mecozzi for molecular capsules [50]. The low
421 affinity of the cosolvent to CB7 is consistent with previous findings indicating that optimal
422 immersion occurs when the PC is within the range of 0.55 ± 0.09 [50], whereas substantially
423 smaller values are associated with weakened encapsulation propensity [49, 60]. Although steric
424 compatibility is not the sole factor influencing the strength of guest-CB7 association [61, 62],
425 the PC values suggest that two AN molecules can be accommodated within the CB7, while the
426 inclusion of only a single DMF, DMSO or MF is likely, in agreement with the calorimetric
427 titration results. Molecular dynamics calculations confirmed the 1:1 binding of DMF and
428 DMSO at the equatorial region of CB7 and the retention of residual water within the cavity
429 [63]. NMR spectra verified the deep insertion of the cosolvents into this cavitand; however, 1:1
430 complexation was assumed for all guests [26], in contrast to our ITC results demonstrating the
431 incorporation of two AN molecules into CB7.

432 Previous density functional theory (DFT) calculations showed that Pal is only partially
433 included within the CB7 cavity, as the alkaloid is considerably longer than the height of the
434 host. The isoquinoline moiety is encapsulated, with its heterocyclic nitrogen positioned near
435 one of the carbonyl-laced portals of the macrocycle [54]. In 0.2 M DMF aqueous solution, Pal–
436 CB7 complex formation was accompanied by an unfavorable entropy change (ΔS , Table 3).
437 This behavior arises because the configurational restriction imposed by the host–guest
438 association cannot be overbalanced by the entropy benefit stemming from solvent removal from
439 CB7 and the solvate shells of the reactants, as the released molecules readily integrate into the
440 bulk hydrogen bond network. In contrast, the other cosolvents promoted entropy gain. In the
441 presence of DMSO or MF, which disrupts the hydrogen-bonded structure of water [39, 40], the
442 liberated solvent molecules cannot be incorporated into an extended hydrogen bond network.
443 As a result, Pal–CB7 complex formation in these cosolvent-containing solutions was
444 accompanied by a significant entropy increase. In the dilute AN solution used here, the water
445 structure was only slightly perturbed [38]. Consequently, the substantial increase in ΔS (Table
446 3) is primarily due to the release of solvent molecules from both the CB7 cavity and the
447 solvation sphere of Pal. Density functional theory (DFT) calculations have revealed that
448 quinolinium cations interact more strongly with AN than with water [64]. A similar preferential
449 solvation effect is likely operative for Pal, a structurally related isoquinolinium alkaloid.
450 Consequently, the liberation of AN molecules from the solvation shell of Pal contributes
451 significantly to the observed entropy gain (ΔS).

452 The inclusion of Pal in CB7 is less exothermic in cosolvent-containing solutions than in
453 water (Table 3), where the pronounced enthalpy gain mainly stems from the displacement of
454 high-energy water molecules from the hydrophobic core of CB7 [59, 65, 66]. Cosolvents
455 diminish the number of water molecules bound to the cavity, thereby lowering the enthalpy gain
456 upon Pal encapsulation. For example, after the inclusion of DMSO or DMF, on average, only


457 two water molecules remain in CB7 [59]. In addition, the energy required to release cosolvents
458 from CB7 ($-\Delta H_{CS}$ in Table 1) further decreases the overall enthalpy benefit related to Pal–CB7
459 formation (ΔH). The most negative ΔH was observed in the presence of DMF, as these cosolvent
460 molecules are incorporated into the extended hydrogen-bonded network of bulk solvent after
461 its release from CB7. This energetically favorable process makes ΔH more negative compared
462 to cosolvents that cannot be integrated into the water-structure.

463 Cosolvents reduce the temperature dependence of the Pal–CB7 binding constant
464 compared to that in pure water as can be inferred from the ΔH and ΔS values summarized in
465 Table 3. For example, increasing the temperature from 298 K to 303 K results in a 14.1, 14.6,
466 17.0, 19.0, and 21.8 % decrease in the Pal–CB7 binding constant in 0.2 M AN, DMSO, MF,
467 DMF aqueous solutions, and in pure water, respectively

468 The cosolvent effects observed for Pal–CB7 complexation differ fundamentally from
469 those reported for other host–guest systems. Alcohols influenced fluasterone encapsulation in
470 2-hydroxypropyl- β -cyclodextrin (HP β CD) through competitive binding to both the host and
471 the fluasterone–HP β CD complex [67]. In triglycine–18-crown-6 binding, DMSO enhanced
472 both the binding constant and the exothermicity of complexation, while simultaneously
473 inducing a strongly endothermic change in host solvation [68]. When the more weakly solvated
474 [2.2.2]cryptand was employed as the host, DMSO below 0.2 mole fraction (10.98 M) produced
475 a smaller increase in binding constant while leaving the enthalpy gain of the complexation
476 essentially unchanged [69]. The binding affinity of benzoate anion to HP β CD was only slightly
477 reduced at 0.1 mole fraction (5.49 M) DMSO, owing to the minor enthalpy change of
478 complexation [21]. The addition of 5 vol% (0.70 M) DMSO resulted in a marked entropy loss
479 for tetraethylammonium cation inclusion in the tetrahedral [M₄L₆]¹²⁻ metal–ligand nanocages
480 [70]. These diverse differences demonstrate that cosolvent effects on the enthalpy–entropy

481 balance of host–guest association are highly system-specific, with Pal–CB7 complexation being
482 perturbed by far lower cosolvent concentrations than in previously reported systems.

483 Fig. 5 illustrates the contribution of the enthalpy change of Pal–CB7 dissociation to the
484 activation enthalpy of this process ($\Delta H_{\text{out}}^{\ddagger}$) in water and in 0.2 M aqueous cosolvent solutions.

485
486 **Fig. 5** Energy level diagrams for Pal complexation with CB7 in water and in 0.2 M cosolvent
487 aqueous solution. Dotted lines represent the energy levels of the transition states.

488
489 There was no correlation between these two quantities. All cosolvents reduced $\Delta H_{\text{out}}^{\ddagger}$ compared
490 to water, irrespective of their influence on ΔH . The partial release of Pal from CB7 along the
491 pathway to the transition state increases the hydrophobic surface exposed to the solvent, around
492 which the hydrogen bond network becomes energetically suboptimal. This hydrophobic
493 hydration is strongly endothermic in neat water, but organic cosolvents mitigate the energetic
494 frustration of the water molecules surrounding the hydrophobic part of the activated complex,
495 leading to lower $\Delta H_{\text{out}}^{\ddagger}$. As shown in Table 3, the marked decline in $\Delta H_{\text{out}}^{\ddagger}$ is responsible for the
496 accelerated dissociation of the Pal–CB7 complex in cosolvent-containing media. However, this
497 effect is partially offset by the concomitant decrease in activation entropy ($\Delta S_{\text{out}}^{\ddagger}$). In neat water,
498 Pal egression exhibits a negligible $\Delta S_{\text{out}}^{\ddagger}$ (Table 3), as the growing configurational freedom on
499 approaching the transition state counterbalances the entropy loss caused by the simultaneous

500 ordering of water in the hydrate shell. In contrast, the addition of cosolvent results in strongly
501 negative $\Delta S_{\text{out}}^{\ddagger}$ values, indicating a more ordered transition state than in neat water. The strongest
502 effect was found in the presence of DMF, which readily binds to the hydrogen bond network
503 surrounding the activated complex. In contrast, the other cosolvents show looser coordination
504 in the transition state, yielding less unfavorable $\Delta S_{\text{out}}^{\ddagger}$ values.

505 The determined kinetic parameter for Pal ingressation into CB7, k_{in} , is an apparent rate
506 constant, as it is influenced by the decrease in the free CB7 concentration resulting from
507 cosolvent–CB7 interaction. This effect cannot be separated because the measurable binding
508 constant of this complexation (K_{CS}) is an overall quantity. The cosolvent concentration
509 dependent intrinsic binding constant cannot be determined. Nevertheless, k_{in} is useful for
510 assessing the influence of the cosolvents on the overall rate of Pal–CB7 complex formation. At
511 298 K, the $k_{\text{in}}/k_{\text{out}}$ values agreed with the binding constants (K) obtained from independent
512 experiments (Table 3). The considerable increase in k_{in} upon addition of DMF (Fig. 4B) is in
513 accordance with the smallest enthalpy barrier ($\Delta H_{\text{out}}^{\ddagger} + \Delta H$) observed for the Pal association with
514 CB7 in this solvent mixture (Fig. 5). In the presence of the other cosolvents, this enthalpy barrier
515 is similar to that in neat water. The minor changes in k_{in} stem from the combined influences of
516 the enthalpic variation and the structural ordering of the activated complex.

517 The influence of cosolvents on the egression rate constant of the CB7-bound Pal (k_{out}) is
518 similar to that reported for guest release triggered by metal cations [71, 72]. Nevertheless, the
519 linear increase in k_{out} with cosolvent concentration argues against ternary Pal–CB7–cosolvent
520 complex formation, as involvement of such a complex would cause k_{out} to approach a plateau
521 [71]. The bimolecular expulsion of Pal from the CB7 cavity by cosolvent would be consistent
522 with the linear rise of k_{out} with cosolvent concentration, but the stopped-flow data collected
523 under different initial conditions could not be adequately rationalized when this reaction step
524 was incorporated into the kinetic model. Only the combined effects of cosolvent-induced

525 variation of the solvent structure and cosolvent–CB7 complex formation can account for all
526 experimental observations.

527

528 **5. Conclusions**

529 Our results highlight the pivotal role of cosolvent-induced changes in water-structure and
530 solvation shell in governing both the binding affinity and the kinetics of reversible guest
531 inclusion within the CB7 cavity. Dissociation rate measurements revealed that cosolvents not
532 only compete for CB7 binding but also accelerate guest release by reducing the activation
533 parameters of complex dissociation. The water-structure-enhancing DMF substantially
534 enhanced the rate of Pal–CB7 complex formation, whereas water-structure-disrupting
535 cosolvents decelerated the process. Cosolvent addition weakened the Pal–CB7 binding affinity
536 by diminishing the enthalpy gain of complexation, with DMF additionally causing unfavorable
537 entropic contribution. Cosolvent confinement in CB7 was consistently exothermic, but only
538 DMF encapsulation was coupled with an entropy increase, resulting in the highest binding
539 constant among the produced cosolvent–CB7 complexes. The elucidated distinct effects
540 provide deeper mechanistic insight into the relationship between cosolvent properties and their
541 influence on host–guest complexation, enabling the prediction of cosolvent-mediated changes
542 in kinetic and thermodynamic behavior. This knowledge is crucial for the rational design of
543 macrocycle-based self-assembled systems and for tailoring supramolecular interactions in
544 applications such as drug delivery, molecular sensing, and functional molecular devices.

545

546 **Acknowledgement**

547 This work was supported by National Research, Development and Innovation Office – NKFIH,
548 grant number K142139.

549

550 **Appendix A. Supplementary data**

551 Supplementary data to this article can be found online at

552

553 **References**

554 [1] J.S. Trivedi, Z. Yue, Solubilization using cosolvent approach, Water-insoluble drug
555 formulation, CRC Press, Boca Raton, 2018, pp. 177–209,

556 <https://doi.org/10.1201/9781315120492>.

557 [2] R.G. Strickley, Solubilizing excipients in oral and injectable formulations, *Pharm. Res.* 21
558 (2004) 201–230, <https://doi.org/10.1023/B:PHAM.0000016235.32639.23>.

559 [3] G. Chen, E.E. Dormidontova, Cosolvent-induced gating and structural changes in
560 poly(ethylene oxide)-grafted gold nanopores, *Macromolecules* 57 (2024) 434–444,
561 <https://doi.org/10.1021/acs.macromol.3c02053>.

562 [4] D.Y. Zhang, A.J. Schwendinger, M.A. Calabrese, Dimethylformamide-mediated polymer
563 microstructure dictates the extensional rheology of aqueous PNIPAM solutions,
564 *Macromolecules* 57 (2024) 9109–9120, <https://doi.org/10.1021/acs.macromol.4c01658>.

565 [5] G. Reddy, A.N. Muttathukattil, B. Mondal, Cosolvent effects on the growth of amyloid
566 fibrils, *Curr. Opin. Struct. Biol.* 60 (2020) 101–109, <https://doi.org/10.1016/j.sbi.2019.12.011>.

567 [6] A. Nandakumar, Y. Ito, M. Ueda, Solvent effects on the self-assembly of an amphiphilic
568 polypeptide incorporating α -helical hydrophobic blocks, *J. Am. Chem. Soc.* 142 (2020) 20994–
569 21003, <https://doi.org/10.1021/jacs.0c03425>.

570 [7] L. Ostermeier, R. Oliva, R. Winter, The multifaceted effects of DMSO and high hydrostatic
571 pressure on the kinetic constants of hydrolysis reactions catalyzed by α -chymotrypsin, *Phys.*
572 *Chem. Chem. Phys.* 22 (2020) 16325–16333, <https://doi.org/10.1039/D0CP03062G>.

573 [8] C. Held, T. Stoltzke, M. Knierbein, M.W. Jaworek, T.Q. Luong, R. Winter, G. Sadowski,
574 Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions, *Biophys. Chem.* 252
575 (2019) 106209, <https://doi.org/10.1016/j.bpc.2019.106209>.

576 [9] T. Chang, G. Li, D. Chang, R. Amini, X. Zhu, T. Zhao, J. Gu, Z. Li, Y. Li, An RNA-cleaving
577 DNAzyme that requires an organic solvent to function, *Angew. Chem. Int. Ed.* 62 (2023)
578 e202310941, <https://doi.org/10.1002/anie.202310941>.

579 [10] A. Ramesh, T.N. Das, T.K. Maji, G. Ghosh, Unravelling denaturation, temperature and
580 cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric
581 responses, *Chem. Sci.* 15 (2024) 16355–16366, <https://doi.org/10.1039/D4SC05016A>.

582 [11] J.-G. Jia, C.-C. Zhao, Y.-F. Wei, Z.-M. Zhai, S.-S. Bao, A.J. Jacobson, J. Ma, L.-M. Zheng,
583 Macroscopic helical assembly of one-dimensional coordination polymers: helicity inversion
584 triggered by solvent isomerism, *J. Am. Chem. Soc.* 145 (2023) 23948–23962,
585 <https://doi.org/10.1021/jacs.3c05552>.

586 [12] J. Wang, K. Liu, L. Yan, A. Wang, S. Bai, X. Yan, Trace solvent as a predominant factor to
587 tune dipeptide self-assembly, *ACS Nano* 10 (2016) 2138–2143,
588 <https://doi.org/10.1021/acsnano.5b06567>.

589 [13] F.-Y. Chen, R. Fu, Z. Gong, C. Li, D.-S. Guo, K. Cai, Ultrahigh-affinity molecular
590 recognition in water and biomedical applications, *Angew. Chem. Int. Ed.* 64 (2025)
591 e202500916, <https://doi.org/10.1002/anie.202500916>.

592 [14] J. Krämer, R. Kang, L.M. Grimm, L. De Cola, P. Picchetti, F. Biedermann, Molecular
593 probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions
594 in aqueous media and biofluids, *Chem. Rev.* 122 (2022) 3459–3636,
595 <https://doi.org/10.1021/acs.chemrev.1c00746>.

596 [15] C. Wang, L. Xu, Z. Jia, T.-P. Loh, Recent applications of macrocycles in supramolecular
597 catalysis, *Chin. Chem. Lett.* 35 (2024) 109075, <https://doi.org/10.1016/j.cclet.2023.109075>.

598 [16] Y.C. Yu Liu, Heng-Yi Zhang, Handbook of macrocyclic supramolecular assembly,
599 Springer, Singapore, 2020, <https://doi.org/10.1007/978-981-13-1744-6>.

600 [17] Z. Li, Y.-W. Yang, Macrocyclic-based porous organic polymers for separation, sensing, and
601 catalysis, *Adv. Mater.* 34 (2022) 2107401, <https://doi.org/10.1002/adma.202107401>.

602 [18] M. Kfoury, C. Geagea, S. Ruellan, H. Greige-Gerges, S. Fourmentin, Effect of cyclodextrin
603 and cosolvent on the solubility and antioxidant activity of caffeic acid, *Food Chem.* 278 (2019)
604 163–169, <https://doi.org/10.1016/j.foodchem.2018.11.055>.

605 [19] L. Nakhle, M. Kfoury, H. Greige-Gerges, S. Fourmentin, Effect of dimethylsulfoxide,
606 ethanol, α - and β -cyclodextrins and their association on the solubility of natural bioactive
607 compounds, *J. Mol. Liq.* 310 (2020) 113156, <https://doi.org/10.1016/j.molliq.2020.113156>.

608 [20] C. Cai, M. Liu, H. Yan, Y. Zhao, Y. Shi, Q. Guo, W. Pei, J. Han, Z. Wang, A combined
609 calorimetric, spectroscopic and molecular dynamic simulation study on the inclusion
610 complexation of (E)-piceatannol with hydroxypropyl- β -cyclodextrin in various alcohol + water
611 cosolvents, *J. Chem. Thermodyn.* 132 (2019) 341–351,
612 <https://doi.org/10.1016/j.jct.2019.01.009>.

613 [21] T.R. Usacheva, D.A. Alister, N.N. Kuranova, V.A. Volynkin, D.A. Lindt, L.T. Pham, F.
614 D’Aria, C. Giancola, Effect of water-dimethyl sulfoxide solvents on thermodynamic parameters
615 of complex formation between benzoic acid and 2-hydroxypropyl- β -cyclodextrin, *J. Therm.
616 Anal. Calorim.* 149 (2024) 12325–12333, <https://doi.org/10.1007/s10973-024-13534-5>.

617 [22] T. Lan Pham, T.R. Usacheva, D.A. Alister, T. Thu Ha Nguyen, N.V. Tukumova, N.N.
618 Kuranova, X. Minh Vu, T. My Hanh Le, Q. Tung Nguyen, D. Lam Tran, Thermodynamic
619 parameters and quantum chemical calculations of complex formation between rutin and 2-
620 hydroxypropyl- β -cyclodextrin in water-ethanol solvents, *J. Mol. Liq.* 366 (2022) 120324,
621 <https://doi.org/10.1016/j.molliq.2022.120324>.

622 [23] D.L. Isac, P. Tîrnovan, A. Nicolescu, A. Fifere, A. Neamtu, M. Pinteala, Cosolvent effects
623 on the complexation of the antifungal propiconazole nitrate with β -cyclodextrin: A combined
624 molecular dynamics and NMR study, *Eur. J. Pharm. Sci.* 213 (2025) 107248,
625 <https://doi.org/10.1016/j.ejps.2025.107248>.

626 [24] K. Kim, J. Murray, S. Narayanan, Y.H. Ko, I. Hwang, Cucurbiturils: Chemistry,
627 Supramolecular Chemistry And Applications, World Scientific Publishing Company2018,
628 <https://books.google.hu/books?id=5CljDwAAQBAJ>.

629 [25] D. Das, K.I. Assaf, W.M. Nau, Applications of cucurbiturils in medicinal chemistry and
630 chemical biology, *Front. Chem.* 7 (2019) 619, <https://doi.org/10.3389/fchem.2019.00619>.

631 [26] I.W. Wyman, D.H. Macartney, Cucurbit[7]uril host-guest complexes with small polar
632 organic guests in aqueous solution, *Org. Biomol. Chem.* 6 (2008) 1796–1801,
633 <https://doi.org/10.1039/B801650J>.

634 [27] C. Li, J. Li, X. Jia, Selective binding and highly sensitive fluorescent sensor of palmatine
635 and dehydrocorydaline alkaloids by cucurbit[7]uril, *Org. Biomol. Chem.* 7 (2009) 2699–2703,
636 <https://doi.org/10.1039/B820852B>.

637 [28] A. Buczkowski, P. Tokarz, B. Palecz, Thermodynamic study of ethanol impact on
638 gemcitabine binding to cucurbit[7]uril in aqueous solutions, *J. Chem. Thermodyn.* 153 (2021)
639 106317, <https://doi.org/10.1016/j.jct.2020.106317>.

640 [29] Y. Liu, C.-J. Li, D.-S. Guo, Z.-H. Pan, Z. Li, A comparative study of complexation of β -
641 cyclodextrin, calix[4]arenenesulfonate and cucurbit[7]uril with dye guests: fluorescence behavior
642 and binding ability, *Supramol. Chem.* 19 (2007) 517–523,
643 <https://doi.org/10.1080/10610270601145444>.

644 [30] R. Andrýs, A. Klusoňová, M. Lísa, J. Žďárová Karasová, Encapsulation of oxime
645 acetylcholinesterase reactivators: influence of physiological conditions on the stability of

646 oxime-cucurbit[7]uril complexes, New J. Chem. 44 (2020) 14367–14372,
647 <https://doi.org/10.1039/D0NJ03102J>.

648 [31] K. Kotturi, E. Masson, Directional self-sorting with cucurbit[8]uril controlled by allosteric
649 π – π and metal–metal interactions, Chem. Eur. J. 24 (2018) 8670–8678,
650 <https://doi.org/10.1002/chem.201800856>.

651 [32] D. Lončarić, F. Movahedifar, J.R. Štoček, M. Dračínský, J. Cvačka, S. Guan, B.J. Bythell,
652 I. Císařová, E. Masson, J. Kaleta, Solvent-controlled formation of alkali and alkali-earth-
653 secured cucurbituril/guest trimers, Chem. Sci. 14 (2023) 9258–9266,
654 <https://doi.org/10.1039/D3SC02032K>.

655 [33] K. Moon, A.E. Kaifer, Modes of binding interaction between viologen guests and the
656 cucurbit[7]uril host, Org. Lett. 6 (2004) 185–188, <https://doi.org/10.1021/ol035967x>.

657 [34] A. Thangavel, A.M.M. Rawashdeh, C. Sotiriou-Leventis, N. Leventis, Simultaneous
658 electron transfer from free and intercalated 4-benzoylpyridinium cations in cucurbit[7]uril, Org.
659 Lett. 11 (2009) 1595–1598, <https://doi.org/10.1021/ol9002459>.

660 [35] W. Wang, A.E. Kaifer, Transfer of cationic cucurbit[7]uril inclusion complexes from water
661 to non-aqueous solvents, Supramol. Chem. 22 (2010) 710–716,
662 <https://doi.org/10.1080/10610278.2010.500729>.

663 [36] S. Senler, B. Cheng, A.E. Kaifer, Rotaxane formation by cucurbit[7]uril in water and
664 DMSO solutions, Org. Lett. 16 (2014) 5834–5837, <https://doi.org/10.1021/ol502479k>.

665 [37] B. Yang, H. Lang, Z. Liu, S. Wang, Z. Men, C. Sun, Three stages of hydrogen bonding
666 network in DMF-water binary solution, J. Mol. Liq. 324 (2021) 114996,
667 <https://doi.org/10.1016/j.molliq.2020.114996>.

668 [38] J.E. Bertie, Z. Lan, Liquid water–acetonitrile mixtures at 25 °C: The hydrogen-bonded
669 structure studied through infrared absolute integrated absorption intensities, J. Phys. Chem. B
670 101 (1997) 4111–4119, <https://doi.org/10.1021/jp9639511>.

671 [39] K.-I. Oh, K. Rajesh, J.F. Stanton, C.R. Baiz, Quantifying hydrogen-bond populations in
672 dimethyl sulfoxide/water mixtures, *Angew. Chem. Int. Ed.* 56 (2017) 11375–11379,
673 <https://doi.org/10.1002/anie.201704162>.

674 [40] F. Hammami, A. Chebaane, M. Bahri, S. Nasr, Structural investigations of N-
675 methylformamide-water mixtures at various concentrations, *Eur. Phys. J. E* 36 (2013) 129,
676 <https://doi.org/10.1140/epje/i2013-13129-5>.

677 [41] M. Kaczor-Kamińska, K. Kaszuba, A. Bilska-Wilkosz, M. Iciek, M. Wróbel, K. Kamiński,
678 Dimethyl sulfoxide (DMSO) as a potential source of interference in research related to sulfur
679 metabolism—a preliminary study, *Antioxidants* 13 (2024) 582, <https://www.mdpi.com/2076-3921/13/5/582>.

680 [42] M. Awan, I. Buriak, R. Fleck, B. Fuller, A. Goltsev, J. Kerby, M. Lowdell, P. Mericka, A.
681 Petrenko, Y. Petrenko, O. Rogulska, A. Stolzing, G.N. Stacey, Dimethyl sulfoxide: a central
682 player since the dawn of cryobiology, is efficacy balanced by toxicity?, *Regen. Med.* 15 (2020)
683 1463–1491, <https://doi.org/10.2217/rme-2019-0145>.

684 [43] B. Valeur, *Molecular fluorescence, principles and applications*, Wiley-VCH, Weinheim,
685 2002, <https://doi.org/10.1002/3527600248>.

686 [44] W.H. Melhuish, Quantum efficiencies of fluorescence of organic substances: effect of
687 solvent and concentration of the fluorescent solute, *J. Phys. Chem.* 65 (1961) 229–235,
688 <https://doi.org/10.1021/j100820a009>.

689 [45] D. Qiu, J. Tang, S. Li, Q. Zhai, Y. Jiang, M. Hu, Solubility, density and refractive index of
690 formamide/N-methylformamide/N, N-dimethylformamide + Rb₂SO₄ + H₂O ternary systems
691 at 283.2, 298.2 and 313.2 K, *J. Chem. Thermodyn.* 175 (2022) 106907,
692 <https://doi.org/10.1016/j.jct.2022.106907>.

694 [46] R.G. LeBel, D.A.I. Goring, Density, viscosity, refractive index, and hygroscopicity of
695 mixtures of water and dimethyl sulfoxide, *J. Chem. Eng. Data* 7 (1962) 100–101,
696 <https://doi.org/10.1021/je60012a032>.

697 [47] V. Campos, A.C. Gómez Marigliano, H.N. Sólomo, Density, viscosity, refractive index,
698 excess molar volume, viscosity, and refractive index deviations and their correlations for the
699 (formamide + water) system. isobaric (vapor + liquid) equilibrium at 2.5 kPa, *J. Chem. Eng.*
700 *Data* 53 (2008) 211–216, <https://doi.org/10.1021/je700517f>.

701 [48] L. Mandić, I. Džeba, D. Jadreško, B. Mihaljević, L. Biczók, N. Basarić, Photophysical
702 properties and electron transfer photochemical reactivity of substituted phthalimides, *New J.*
703 *Chem.* 44 (2020) 17252–17266, <https://doi.org/10.1039/D0NJ03465G>.

704 [49] W.M. Nau, M. Florea, K.I. Assaf, Deep inside cucurbiturils: Physical properties and
705 volumes of their inner cavity determine the hydrophobic driving force for host–guest
706 complexation, *Isr. J. Chem.* 51 (2011) 559–577, <http://dx.doi.org/10.1002/ijch.201100044>.

707 [50] S. Mecozzi, J. Rebek, Julius, The 55 % solution: A formula for molecular recognition in
708 the liquid state, *Chem. Eur. J.* 4 (1998) 1016–1022, [https://doi.org/10.1002/\(SICI\)1521-3765\(19980615\)4:6<1016::AID-CHEM1016>3.0.CO;2-B](https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1016::AID-CHEM1016>3.0.CO;2-B).

710 [51] Y.-q. Wang, Q.-y. Li, M. Jiang, X. Yang, X. Wu, X. Yu, L. Xu, A palmatine-based
711 fluorescent sensor for sensitive fluorometric and smartphone-assisted on-site fluorescent
712 colorimetric detection of water in organic solvents, *Microchem. J.* 179 (2022) 107598,
713 <https://doi.org/10.1016/j.microc.2022.107598>.

714 [52] L. Li, W.-C. Luo, M. Jiang, X. Yu, L. Xu, Turn-on fluorescence probing of amyloid fibrils
715 by the proto-berberine alkaloids and the study of their interactions, *Int. J. Biol. Macromol.* 231
716 (2023) 123319, <https://doi.org/10.1016/j.ijbiomac.2023.123319>.

717 [53] P.-H. Shan, J. Zhao, X.-Y. Deng, R.-L. Lin, B. Bian, Z. Tao, X. Xiao, J.-X. Liu, Selective
718 recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]juril

719 and palmatine, Anal. Chim. Acta 1104 (2020) 164–171,
720 <https://doi.org/10.1016/j.aca.2020.01.007>.

721 [54] Z. Miskolczy, L. Biczók, G. Lendvay, Substituent effect on the dynamics of the inclusion
722 complex formation between protoberberine alkaloids and cucurbit[7]uril, Phys. Chem. Chem.
723 Phys. 20 (2018) 15986–15994, <https://doi.org/10.1039/C8CP01845F>.

724 [55] S.J. Strickler, R.A. Berg, Relationship between absorption intensity and fluorescence
725 lifetime of molecules, J. Chem. Phys. 37 (1962) 814–822, <https://doi.org/10.1063/1.1733166>.

726 [56] Z. Miskolczy, L. Biczók, I. Jablonkai, Kinetics of the reversible inclusion of flavopereirine
727 in cucurbit[7]uril, Phys. Chem. Chem. Phys. 19 (2017) 766–773,
728 <http://doi.org/10.1039/C6CP07553C>.

729 [57] Z. Miskolczy, M. Megyesi, O. Toke, L. Biczók, Change of the kinetics of inclusion in
730 cucurbit[7]uril upon hydrogenation and methylation of palmatine, Phys. Chem. Chem. Phys.
731 21 (2019) 4912–4919, <https://doi.org/10.1039/C8CP07231K>.

732 [58] X. Liu, S. Wang, X. Xu, H. Khair, Z. Dong, H. Wang, W. Zhang, T. Yu, Z. Men, C. Sun, S.
733 Wang, Exploring the dynamic changes in hydrogen bond structure of water and heavy water
734 under external perturbation of DMF, Spectrochim Acta A Mol. Biomol. Spectrosc. 305 (2024)
735 123493, <https://doi.org/10.1016/j.saa.2023.123493>.

736 [59] F. Biedermann, V.D. Uzunova, O.A. Scherman, W.M. Nau, A. De Simone, Release of high-
737 energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils, J.
738 Am. Chem. Soc. 134 (2012) 15318–15323, <https://doi.org/10.1021/ja303309e>.

739 [60] K.I. Assaf, W.M. Nau, Cucurbiturils: from synthesis to high-affinity binding and catalysis,
740 Chem. Soc. Rev. 44 (2015) 394–418, <http://dx.doi.org/10.1039/C4CS00273C>.

741 [61] K.I. Assaf, W.M. Nau, Dispersion interactions in condensed phases and inside molecular
742 containers, Acc. Chem. Res. 56 (2023) 3451–3461,
743 <https://doi.org/10.1021/acs.accounts.3c00523>.

744 [62] L.M. Grimm, S. Spicher, B. Tkachenko, P.R. Schreiner, S. Grimme, F. Biedermann, The
745 role of packing, dispersion, electrostatics, and solvation in high-affinity complexes of
746 cucurbit[n]urils with uncharged polar guests, *Chem. Eur. J.* 28 (2022) e202200529,
747 <https://doi.org/10.1002/chem.202200529>.

748 [63] N. Chiangraeng, H. Nakano, P. Nimmanpipug, N. Yoshida, Theoretical analysis of the role
749 of water in ligand binding to cucurbit[n]uril of different sizes, *J. Phys. Chem. B* 127 (2023)
750 3651–3662, <https://doi.org/10.1021/acs.jpcb.3c00343>.

751 [64] N.J.A. Coughlan, C. Liu, M.J. Lecours, J.L. Campbell, W.S. Hopkins, Preferential ion
752 microsolvation in mixed-modifier environments observed using differential mobility
753 spectrometry, *J. Am. Soc. Mass. Spectrom.* 30 (2019) 2222–2227,
754 <https://doi.org/10.1007/s13361-019-02332-1>.

755 [65] J. Setiadi, F. Biedermann, W.M. Nau, M.K. Gilson, Thermodynamics of water
756 displacement from binding sites and its contributions to supramolecular and biomolecular
757 affinity, *Angew. Chem. Int. Ed.* 64 (2025) e202505713,
758 <https://doi.org/10.1002/anie.202505713>.

759 [66] F. Biedermann, W.M. Nau, H.-J. Schneider, The hydrophobic effect revisited—studies with
760 supramolecular complexes imply high-energy water as a noncovalent driving force, *Angew.*
761 *Chem. Int. Ed.* 53 (2014) 11158–11171, <http://doi.org/10.1002/anie.201310958>.

762 [67] Y. He, P. Li, S.H. Yalkowsky, Solubilization of Fluasterone in cosolvent/cyclodextrin
763 combinations, *Int. J. Pharm.* 264 (2003) 25–34, [https://doi.org/10.1016/S0378-5173\(03\)00389-2](https://doi.org/10.1016/S0378-5173(03)00389-2).

765 [68] T.R. Usacheva, L. Pham Thi, I.V. Terekhova, R.S. Kumeev, V.A. Sharnin, Application of
766 isothermal titration calorimetry for evaluation of water–acetone and water–dimethylsulfoxide
767 solvent influence on the molecular complex formation between 18-crown-6 and triglycine at

768 298.15 K, *J. Therm. Anal. Calorim.* 121 (2015) 975–981, <https://doi.org/10.1007/s10973-015-4630-0>.

770 [69] T.R. Usacheva, L. Pham Thi, I.V. Terekhova, R.S. Kumeev, V.A. Sharnin,
771 Thermodynamics of molecular complexation of glycyl–glycyl–glycine with cryptand [2.2.2] in
772 water–dimethylsulfoxide solvent at 298.15 K, *J. Therm. Anal. Calorim.* 126 (2016) 307–314,
773 <https://doi.org/10.1007/s10973-016-5383-0>.

774 [70] M. Nolten, K.T. Xia, S. Pezzotti, G. Schwaab, R.G. Bergman, K.N. Raymond, F. Dean
775 Toste, T. Head-Gordon, W.-L. Li, M. Havenith, Tuning the free energy of host–guest
776 encapsulation by cosolvent, *Phys. Chem. Chem. Phys.* 27 (2025) 10120–10128,
777 <http://doi.org/10.1039/D5CP00661A>.

778 [71] Z. Miskolczy, M. Megyesi, L. Biczók, A. Prabodh, F. Biedermann, Kinetics and
779 mechanism of cation-induced guest release from cucurbit[7]uril, *Chem. Eur. J.* 26 (2020) 7433–
780 7441, <https://doi.org/10.1002/chem.201905633>.

781 [72] Z. Miskolczy, M. Megyesi, L. Biczók, Kinetics of base-promoted transformation of
782 berberrubine-cucurbit[7]uril inclusion complex: Active role of alkali cations, *J. Mol. Liq.* 385
783 (2023) 122354, <https://doi.org/10.1016/j.molliq.2023.122354>.

784