Modeling and Analyzing Copper Dendrite Growth during Electrochemical Migration

Using Monte Carlo Simulation

Ali Gharaibeh, Ali Dayoub, Baldzs Ill¢s, and Balint Medgyes
Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest
University of Technology and Economics, Miiegyetem rkp. 3., H- 1111 Budapest, Hungary
ali.gharaibeh@vik.bme.hu

Abstract—Electrochemical migration (ECM) has recently received increased attention, primarily due
to the escalating risk of short circuits associated with the continuous miniaturization of microelectronic
devices. As the spacing between conductive elements decreases, the likelihood of ECM-induced failures
rises, necessitating a deeper understanding of the underlying mechanisms. This study presents a 2D
computational model designed to simulate the ECM process in Cu. The model deterministically accounts
for the anodic dissolution of Cu and the subsequent ion transport, while the stochastic nature of dendritic
growth is captured through Monte Carlo simulation. To validate the accuracy and reliability of the
proposed model, a series of water-drop (WD) tests were conducted using pure copper electrodes separated
by a 200 um gap distance, subjected to a constant 10 VDC bias, and a droplet from a contaminant-free
electrolyte. The findings emphasize the versatility of Monte Carlo simulation in accurately replicating
ECM behavior in Cu-based systems. By fine-tuning key simulation parameters, the model successfully
predicts the Time-to-Failure (TTF) and effectively captures the characteristic tree-like morphology of Cu
dendrites.

Keywords—electrochemical migration, microelectronics reliability, numerical modeling, Monte Carlo
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I. INTRODUCTION

Electrochemical migration (ECM) is a prevalent reliability concern in modern microelectronics. This
phenomenon, driven by humidity, arises from specific electrochemical corrosion processes. Ultimately, it
leads to short-circuit failures between adjacent electrodes with opposite biases [1]. ECM occurs through
four sequential stages: (i) the formation of an electrolyte layer on the substrate through the absorption or
condensation of water molecules; (i1) the dissolution of metal atoms from conductor layers or solder joints
at the anode, where these atoms oxidize, releasing electrons and forming cations; (iii) the movement of ions
via diffusion, migration, and convection; and (iv) the reduction of metal ions at the cathode, resulting in
dendrite growth through reduction processes [2]. The most used parameter to assess this risk is the Time-

to-Failure (TTF), which indicates the system's susceptibility to ECM [3]. TTF is significantly influenced



by factors such as the type of metal, the applied bias voltage, the spacing between metal surfaces, and the
presence of contaminant ions in the water. ECM 1is receiving growing attention in the microelectronics
industry as ongoing miniaturization trends heighten the likelihood of this failure mechanism occurring.

The ECM phenomenon has been extensively studied through experimental research [1]-[3]. However,
numerical modeling of ECM is essential for predicting failure risks, optimizing designs, and improving the
reliability of microelectronics. This approach allows for the simulation of complex interactions involving
factors such as humidity, voltage, and material properties. Despite this, the literature contains only a limited
number of numerical simulation studies focused on exploring ECM [4]. This may be attributed to the fact
that most developed models focus on simulating electrochemical deposition processes in electrochemistry
rather than specifically addressing ECM. He et al. [5] illustrate the differences between electrochemical
deposition processes and ECM by comparing them to their developed 1D model for ECM of Cu,
demonstrating that existing models have limited accuracy in modeling ECM. They successfully modeled
the ion transport step by numerically solving the Nernst-Planck equation using the finite difference method
(FDM), obtaining an exponential ion concentration profile along the gap distance. However, their model
did not account for dendrite growth.

In contrast, Illés et al. [6] developed a 2D model to simulate the growth of Cu dendrites by introducing
a self-developed algorithm based on ion concentration along the gap distance, successfully capturing both
dendrite growth and the entire ECM process. Additionally, Ma et al. [7] used the finite element method
(FEM) to numerically solve the Nernst-Planck equation, explaining the dominance of Sn in dendrites
formed at 3V and Zn in dendrites formed at 5V during ECM of Sn-9Zn in deionized (DI) water.
Furthermore, Hat6 et al. [8] introduced Brownian Dynamics (BD) simulations to model the electrodiffusion
of Sn ions and dendrite growth at a molecular level. Their simulations revealed that higher ion
concentrations and stronger electric fields accelerate dendrite growth, providing insight into why dendrite
growth speeds up as dendrites approach the anode. Moreover, Cao et al. [9] employed a phase-field model
to reproduce the morphology of silver dendrites and identify the critical voltage phenomenon observed in
water drop (WD) experiments. Additionally, Dayoub et al. [10] introduced a unique approach by using
Monte Carlo simulations to model the growth of Cu dendrites, incorporating ion concentration and electric
field values on a 2D grid. Building on previous research, this work aims to provide deeper insights into

modeling TTF and the growth of Cu dendrites by leveraging the flexibility of Monte Carlo simulations.

II. NUMERICAL SIMULATION OF ECM PROCESSES

The steps of the ECM process of Cu are illustrated schematically in Fig. 1.
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Fig. 1. Schematic illustration of the ECM process for Cu (anode is on the left and cathode is on the right).

A. Anodic Dissolution
The ECM process initiates with the dissolution of copper at the anode, leading to the direct formation of
Cu®" ions at the anode [11], as represented by (1). When the applied bias voltage is high enough, oxygen
evolution resulting from water dissociation also occurs at the anode surface [1], as described in (2).
Cu - Cu®* + 2e” (1)
2H,0 - 0, + 4H* + 4e~ ()
The anodic dissolution produces an amount of Cu (can) that can be approximated using a combination
of Faraday's law and Ohm's law [10], as described in (3).
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Here, @an represents the applied DC potential at the anode (10V), oo signifies the electrical conductivity
of DI water (0.055x10° S/m), ¢ stands for the concentration of Cu* ions, and q represents the charge of
Cu®" ions, given by nxe, where n is the chemical valence of Cu" ions (+2), and e is the elementary charge
(1.6x10" C). Additionally, p refers to the mobility of Cu?* ions (5.56x10"® m?/Vs), M indicates the molar
mass of Cu?" ion (63.54 g/mol), At indicates the simulation time step (350 ps), F is the Faraday constant
(96 485.3321 C/mol), and Vdroplet corresponds to the volume of the DI droplet (15 pl).

B. Ion Transport

Within the interior region (i.e., gap distance) where ion transport takes place, the potential distribution
is governed by Poisson's equation for electrostatics. However, due to the electroneutrality condition in the
droplet, the net charge density (p) is effectively zero [7]. This simplifies Poisson's equation to Laplace's
equation. Thus, the potential distribution and the electric field in the gap distance can be determined using
(4) and (5), respectively. Additionally, in the context of ion transport, the impact of electroconvection on

overall transport in ECM is negligible [12]. Consequently, Cu®*" ions generated at the anode mainly
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transport through the electrolyte toward the cathode under the effect of diffusion and migration, as described
by the Nernst-Planck equation (6). In the absence of homogeneous reactions, the transient changes in Cu?*
ion concentration within the electrolyte droplet are governed by the continuity equation, (7), allowing for

the calculation of Cu®* ion concentrations across the computational grid as in (8).
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Here, J represents the mass flux of Cu?" ions, while D denotes the diffusion coefficient of Cu®" ions
(3.67x1071% m?/s).

C. Dendrite Growth

Dendrite growth begins with the electrochemical reduction of transported Cu®* ions at the cathode [13],
as described in (9), followed by successive reductions occurring both at the cathode and on the already-
formed dendrites. Consequently, dendrites act as dynamic cathodes, requiring adjustments to the electric
potential and electric field ((4) and (5)) after each reduction step. In addition to (9), the reduction of water
also takes place [1], as described in (10).

Cu?t +2e~ - Cu 9)
2H,0 + 2e~ - H, + 20H™ (10)

The reduction of water and oxygen evolution (2, 10) enhances droplet conductivity and creates a pH
gradient for ion transport [14]. However, the ECM model considers only Cu dissolution (1) for anodic
dissolution and Cu reduction (9) for dendrite growth. On one hand, the impact of (2, 10) on the overall
conductivity of the droplet has been reported to be less significant compared to (1) [6]. Additionally,
excluding them would significantly reduce the computational cost of the code.

The numerical model for dendrite growth combines random walk and Monte Carlo simulation to capture
the stochastic nature of the process. Growth begins at the cathode, where metal atoms deposit once a critical
ion concentration accumulates, forming tiny nuclei. These nuclei grow unevenly due to local fluctuations
in ion concentration, electric field variations, and randomness. After initiation, a random starting point near
the cathode is selected, and the object-oriented method move(x, y) displaces the point in the x or y direction
until it encounters an existing dendrite. The method is_contact(dendrites, X, y) checks whether the new site
is adjacent to an existing dendrite, ensuring that growth follows a branching pattern. Once contact is

confirmed, the probability of dendrite growth at that location is determined using the method



growth probability(concentration), which calculates growth likelihood based on the local ion concentration
as outlined in (11). During each dendrite growth attempt (N), a random number between 0 and 1 is generated
to determine whether growth occurs. If this number is less than the growth probability calculated by the
growth_probability function, a new dendrite site forms, allowing the structure to propagate. This approach
effectively captures the stochastic and irregular nature of dendrite evolution observed in electrochemical

systems.

growth_probability (c) = kX (11)

max

Here, k is the constant of the normalized Cu?* ion concentration across the grid, while cmax represents
the maximum Cu?" ion concentration (7.56 x 10~ g/1) achievable at the anode due to dissolution in DI water
at 293 K. This theoretical value, proposed in [6], has been successfully implemented in previous studies
[6], [10] to normalize the concentration across the grid. However, unlike the model proposed in [6], the
current 2D ECM model does not include a thickness parameter in the third direction (z-axis). Instead, the
Monte Carlo method performs multiple N at randomly selected sites during each simulation step. If dendrite
growth occurs at a specific site, the local concentration of Cu?* ions is set to zero, as the ions are consumed
in the formation process. Similarly, the electric field at that point is also set to zero to reflect the metallic
nature of the dendrites. The simulation proceeds iteratively until a dendrite reaches the anode, indicating a
system failure.

D. Grid Specification and Parameters

The 2D computational grid was created by meshing a fixed number of points in both the x and y
directions, with nx = 200 points and ny = 200 points, respectively. The spacing between each point in the
x-direction (Ax) is equal to the spacing in the y-direction (Ay), with both set to Ax = Ay =h =1 um. The
partial differential equations (4, 5, and 8) were numerically converted and discretized using the FDM. The
computational ECM model was then built and executed in the Python programming language.

The selection of At is governed by the Courant—Friedrichs—Lewy (CFL) condition [15]. For diffusion

and migration, the system remains stable when constraints (C1) and (C2) are satisfied:

hZ
Atgirr < — Cl
tairr < 755 (C)
At < h (C2)
e = AuEmax

Here, Emax represents the maximum electric field, given by (@an/d) where d is the gap distance (200 pm).
Consequently, Emax is 50x10® V/m Therefore, setting At = 350 us ensures the numerical stability of the

system.



E. Initial and Boundary Conditions

Table 1 presents the initial and boundary conditions, while Fig. 2 depicts the simulation workflow for

ECM of Cu.
TABLE L APPLIED CONDITONS USED IN THE MODEL
Applied Concentratio
Electro (0}
Conditio n of Cu?" ions
des [VDC]
ns g/1]
Anode 10 0
Initial Cathod
0 0
€
Anode 10 Can™! + C'an
Boundar
Cathod |
y 0 Ccath—ln_
e

*n denotes the simulation step, whereas Ca, is computed at each n based on (3)



Initialize simulation parameters, grid, and
variables
SET initial conditions for electric potential (phi),
ion concentration (c)
DEFINE move(x, y): RANDOMLY adjust (X, y)
within bounds
DEFINE is_contact(dendrites, x, y): RETURN
True if adjacent to dendrite
DEFINE growth probability(c): RETURN
c/cmax
FOR each time step:

STORE previous values (¢_prev, phi_prev)

FOR each interior grid point: COMPUTE
phi, Ex, Ey

COMPUTE anodic dissolution (Can)

UPDATE anodic concentration s.t Can < cmax

FOR each interior grid point: COMPUTE and
UPDATE ¢

APPLY cathode boundary condition

IF time >= start_time AND not initiated:
INITIATE dendrites

# Monte Carlo dendrite growth

IF dendrites growing:

FOR growth attempts:
SELECT random (x, y), MOVE
until contact
IF random() <
growth probability(c[x, y]): GROW dendrite
IF dendrites reach anode: PRINT failure,

SAVE plot, EXIT

IF time step % 100 == 0: SAVE and
DISPLAY dendrite structure
END simulation

Fig.2. Simulation workflow for modeling ECM of Cu.



III. RESULTS AND DISCUSSION
A. Validation of TTF

Fig. 3 represents experimental TTF data derived from WD tests and computed TTF data generated using
a wide range of N and k combinations. The experimental data exhibit noticeable variability, while the
computed TTF values demonstrate different levels of variability depending on the values of N and k. When
N is small (e.g., 5 or 10), the computed TTF values show high variability, indicating that smaller dendrite
growth attempts contribute to greater uncertainty in the results. In contrast, as N increases (e.g., 50 or 70),
the variability in computed TTF values decreases significantly, indicating that the computation of TTF
values approaches deterministic behavior. This trend is further observed when N is randomized within a
broader range, such as from 1 to 50, where the influence of randomness is restricted by including larger
values. However, when N is randomized within a narrower range (e.g., 1 to 15), the TTF values still exhibit
notable variability, indicating that a limited range of N can contribute to variability in the computed results.
Furthermore, randomizing the value of k did not result in significantly larger variability, suggesting that the
impact of k on TTF variability is less pronounced compared to N. These findings highlight the impact of
dendrite growth attempts on the variability of TTF predictions.

Therefore, it can be concluded that the variability of the computed TTF is mainly governed by
randomizing N, which may also reflect the experimental deviations. However, the greater variability
observed in experimental TTF values may arise from several factors. One significant source of uncertainty
is the contact area between the electrode and the electrolyte drop [3], which cannot be precisely controlled
in each WD test. Variations in contact area directly influence the current density, leading to differences in
TTF values. Additionally, hydrogen gas evolution at the cathode has been reported to contribute to the
suppression of dendrite growth through both physical and chemical mechanisms [16]. Physically, hydrogen
bubbles disrupt ion transport, creating uneven dendrite structures. Chemically, the generation of hydroxide

ions increases the local pH, further influencing dendrite formation.
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Fig. 3. Comparison of TTF data from experimental and computed WD tests (x represents the mean time to

failure).
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Fig.4. Contour plots comparing experimental TTF with computed TTF at 95% and 90% confidence levels
to assess statistical significance for (a) N=5, k=1, (b) N=10, k=1, (c) N=50, k=1, (d) N=rand(1, 50),
k=rand(0.5, 1), (¢) N=rand(1, 15), k=1, and (f) N=rand(1, 15), k=rand(0.5, 1), where beta represents the

shape parameter and eta represents the scale parameter in the Weibull distribution.

The efficiency of the computational model's TTF predictions is evaluated using contour plots in Fig. 4,
where the overlap between experimental and computed TTF datasets determines statistical significance
[17], [18]. The absence of overlap at a given confidence level indicates a significant difference. Fig. 4a
shows no overlap at 95% confidence, meaning N=5, k=1 has a significantly higher TTF than experimental
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data. Similarly, Fig. 4b shows overlap at 95% but not at 90%, suggesting N=10, k=1 differs significantly
at 90%. For larger N values (N=50, k=1 and randomized N=rand(1, 50), k=rand(0.5, 1)), Figs. 4c and 4d
show no overlap at 95%, confirming significant differences. However, for smaller randomized ranges
(N=rand(1, 15), k=1 and N=rand(1, 15), k=(0.5, 1), shown in Figs. 4e and 4f), contours overlap at both
95% and 90%, indicating no significant difference. These results suggest that the ECM of Cu is better
modeled with a randomized N rather than a deterministic value.

B. Validation of dendrite morphology

Fig. 5 presents a comparison between the experimental and computed dendrite morphologies for Cu.
The experimental (Figs. 5a and 5b) and computed dendrites (Figs. 5S¢ and 5d) showed good agreement,
regardless of whether N and k were deterministic or randomized.

In both cases, the dendrites exhibit a fractal-like, tree-like morphology, initiating primarily from a single
branch at the cathode and growing toward the anode. As they approach the anode, the dendrites become
denser and display a more pronounced fractal-like structure, further highlighting the similarity between the
experimental and computed results. This similarity in dendrite morphology can be further explained by the
presence of one or two main dendritic branches, which primarily result from the primary branches
consuming the majority of the surrounding Cu?* ions.

C. Exponential Growth of Dendrites

Fig. 6 illustrates the growth of Cu dendrites at selected time intervals, providing insight into their
evolution over time. The fitting of the main branch length, shown in Fig. 6d, demonstrates a strong
exponential trend, suggesting that dendrite growth follows an exponential pattern. This observation aligns
with previous findings reported by [6], despite differences in the underlying growth mechanisms. The
exponential nature of dendrite growth may be attributed to the ionic concentration profile along the gap
distance from the anode to the cathode, which has been shown to decrease exponentially, as reported in [5],

[6], [10]. Consequently, the dendrite growth rate follows a similar exponential pattern.
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Fig.5. Experimental and computed Cu dendrites at 10VDC in a DI water droplet. (a, b) Experimental

dendrites, where A represents the anode and C represents the cathode and (¢, d) Computed dendrites,

where 0 um gap distance represents the anode and 200 um represents the cathode .
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Fig.6. Evolution of the main branch length of computed Cu dendrites in the case of N=5, k=1 at: (a) 25 um,
(b) 100 pm, and (c) 175 pum, and (d) Exponential fitting of the main branch length along the gap distance,

confirming the exponential growth pattern.

Iv. CONCLUSIONS
The ability of Monte Carlo simulation to model the growth of Cu dendrites during ECM was
investigated, focusing on its accuracy in predicting TTF and capturing dendrite morphology as a function
of Cu?" ion concentration. The Monte Carlo simulation accounted for two key parameters: the number of

dendrite growth attempts per simulation step and the constant for the normalized Cu®" concentration. The
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lifetime analysis showed that the ECM of Cu is better modeled using a randomized N within a range rather
than a fixed deterministic value, confirming the stochastic nature of the ECM process.

The ECM computational model results revealed that the dendrite morphology generally features only
one to two dominant dendrites growing within a specific area. This suggests that the primary dendritic
branches consume the majority of the surrounding Cu?* ions, regardless of whether the number of dendrite
growth attempts is deterministic or random and irrespective of the value of the constant for the normalized
Cu?" concentration. Furthermore, the Monte Carlo simulation reveals that as the dendrites approach the
anode, they become denser and exhibit a more pronounced fractal-like structure, consistent with
experimental observations. Additionally, by fitting the length of the main dendritic branch over time, it is
observed that the growth of the computed dendrites follows an exponential pattern. Overall, the proposed
model demonstrates strong performance in predicting both TTF and dendrite morphology. However, future

work will focus on incorporating experimental deviations to enhance the model’s accuracy and reliability.
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