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Abstract—Electrochemical migration (ECM) has recently received increased attention, primarily due 

to the escalating risk of short circuits associated with the continuous miniaturization of microelectronic 

devices. As the spacing between conductive elements decreases, the likelihood of ECM-induced failures 

rises, necessitating a deeper understanding of the underlying mechanisms. This study presents a 2D 

computational model designed to simulate the ECM process in Cu. The model deterministically accounts 

for the anodic dissolution of Cu and the subsequent ion transport, while the stochastic nature of dendritic 

growth is captured through Monte Carlo simulation. To validate the accuracy and reliability of the 

proposed model, a series of water-drop (WD) tests were conducted using pure copper electrodes separated 

by a 200 µm gap distance, subjected to a constant 10 VDC bias, and a droplet from a contaminant-free 

electrolyte. The findings emphasize the versatility of Monte Carlo simulation in accurately replicating 

ECM behavior in Cu-based systems. By fine-tuning key simulation parameters, the model successfully 

predicts the Time-to-Failure (TTF) and effectively captures the characteristic tree-like morphology of Cu 

dendrites. 

Keywords—electrochemical migration, microelectronics reliability, numerical modeling, Monte Carlo 

simulation 

 

I. INTRODUCTION 

Electrochemical migration (ECM) is a prevalent reliability concern in modern microelectronics. This 

phenomenon, driven by humidity, arises from specific electrochemical corrosion processes. Ultimately, it 

leads to short-circuit failures between adjacent electrodes with opposite biases [1]. ECM occurs through 

four sequential stages: (i) the formation of an electrolyte layer on the substrate through the absorption or 

condensation of water molecules; (ii) the dissolution of metal atoms from conductor layers or solder joints 

at the anode, where these atoms oxidize, releasing electrons and forming cations; (iii) the movement of ions 

via diffusion, migration, and convection; and (iv) the reduction of metal ions at the cathode, resulting in 

dendrite growth through reduction processes [2]. The most used parameter to assess this risk is the Time-

to-Failure (TTF), which indicates the system's susceptibility to ECM [3]. TTF is significantly influenced 
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by factors such as the type of metal, the applied bias voltage, the spacing between metal surfaces, and the 

presence of contaminant ions in the water. ECM is receiving growing attention in the microelectronics 

industry as ongoing miniaturization trends heighten the likelihood of this failure mechanism occurring. 

The ECM phenomenon has been extensively studied through experimental research [1]–[3]. However, 

numerical modeling of ECM is essential for predicting failure risks, optimizing designs, and improving the 

reliability of microelectronics. This approach allows for the simulation of complex interactions involving 

factors such as humidity, voltage, and material properties. Despite this, the literature contains only a limited 

number of numerical simulation studies focused on exploring ECM [4]. This may be attributed to the fact 

that most developed models focus on simulating electrochemical deposition processes in electrochemistry 

rather than specifically addressing ECM. He et al. [5] illustrate the differences between electrochemical 

deposition processes and ECM by comparing them to their developed 1D model for ECM of Cu, 

demonstrating that existing models have limited accuracy in modeling ECM. They successfully modeled 

the ion transport step by numerically solving the Nernst-Planck equation using the finite difference method 

(FDM), obtaining an exponential ion concentration profile along the gap distance. However, their model 

did not account for dendrite growth.  

In contrast, Illés et al. [6] developed a 2D model to simulate the growth of Cu dendrites by introducing 

a self-developed algorithm based on ion concentration along the gap distance, successfully capturing both 

dendrite growth and the entire ECM process. Additionally, Ma et al. [7] used the finite element method 

(FEM) to numerically solve the Nernst-Planck equation, explaining the dominance of Sn in dendrites 

formed at 3V and Zn in dendrites formed at 5V during ECM of Sn-9Zn in deionized (DI) water. 

Furthermore, Ható et al. [8] introduced Brownian Dynamics (BD) simulations to model the electrodiffusion 

of Sn ions and dendrite growth at a molecular level. Their simulations revealed that higher ion 

concentrations and stronger electric fields accelerate dendrite growth, providing insight into why dendrite 

growth speeds up as dendrites approach the anode. Moreover, Cao et al. [9] employed a phase-field model 

to reproduce the morphology of silver dendrites and identify the critical voltage phenomenon observed in 

water drop (WD) experiments. Additionally, Dayoub et al. [10] introduced a unique approach by using 

Monte Carlo simulations to model the growth of Cu dendrites, incorporating ion concentration and electric 

field values on a 2D grid. Building on previous research, this work aims to provide deeper insights into 

modeling TTF and the growth of Cu dendrites by leveraging the flexibility of Monte Carlo simulations. 

 

II. NUMERICAL SIMULATION OF ECM PROCESSES 

The steps of the ECM process of Cu are illustrated schematically in Fig. 1. 
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Fig. 1. Schematic illustration of the ECM process for Cu (anode is on the left and cathode is on the right). 

 

A. Anodic Dissolution 

The ECM process initiates with the dissolution of copper at the anode, leading to the direct formation of 

Cu2+ ions at the anode [11], as represented by (1). When the applied bias voltage is high enough, oxygen 

evolution resulting from water dissociation also occurs at the anode surface [1], as described in (2). 

𝐶𝑢 → 𝐶𝑢2+ + 2𝑒− (1) 

2𝐻2𝑂 → 𝑂2 + 4𝐻+ + 4𝑒− (2) 

The anodic dissolution produces an amount of Cu (can) that can be approximated using a combination 

of Faraday's law and Ohm's law [10], as described in (3). 

𝑐𝑎𝑛 =
𝜑𝑎𝑛 × (𝜎0 + 𝑐 × 𝑞 × 𝜇) × 𝑀

𝑛 × 𝐹 × 𝑉𝑑𝑟𝑜𝑝𝑙𝑒𝑡
× ∆𝑡 (3) 

Here, φan represents the applied DC potential at the anode (10V), σ0 signifies the electrical conductivity 

of DI water (0.055×10-6 S/m), c stands for the concentration of Cu²⁺ ions, and q represents the charge of 

Cu2+ ions, given by n×e, where n is the chemical valence of Cu2+ ions (+2), and e is the elementary charge 

(1.6×10-19 C). Additionally, µ refers to the mobility of Cu2+ ions (5.56×10-8 m2/Vs), M indicates the molar 

mass of Cu2+ ion (63.54 g/mol), Δt indicates the simulation time step (350 µs), F is the Faraday constant 

(96 485.3321 C/mol), and Vdroplet corresponds to the volume of the DI droplet (15 µl).  

B. Ion Transport 

Within the interior region (i.e., gap distance) where ion transport takes place, the potential distribution 

is governed by Poisson's equation for electrostatics. However, due to the electroneutrality condition in the 

droplet, the net charge density (ρ) is effectively zero [7]. This simplifies Poisson's equation to Laplace's 

equation. Thus, the potential distribution and the electric field in the gap distance can be determined using 

(4) and (5), respectively. Additionally, in the context of ion transport, the impact of electroconvection on 

overall transport in ECM is negligible [12]. Consequently, Cu2+ ions generated at the anode mainly 
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transport through the electrolyte toward the cathode under the effect of diffusion and migration, as described 

by the Nernst–Planck equation (6). In the absence of homogeneous reactions, the transient changes in Cu2+ 

ion concentration within the electrolyte droplet are governed by the continuity equation, (7), allowing for 

the calculation of Cu2+ ion concentrations across the computational grid as in (8). 

∇2𝜑 =  
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
= 0 (4) 

𝐸̅  =  −∇𝜑 (5) 

𝐽 ̅  =  −𝐷∇𝑐 − 𝜇𝑐∇𝜑 (6) 

𝜕𝑐

𝜕𝑡
 =  −∇. 𝐽 (7) 

𝜕𝑐

𝜕𝑡
 =  𝐷∇2𝑐 + 𝜇∇𝑐. ∇𝜑 (8) 

Here, J represents the mass flux of Cu2+ ions, while D denotes the diffusion coefficient of Cu2+ ions 

(3.67×10-10 m2/s). 

C. Dendrite Growth 

Dendrite growth begins with the electrochemical reduction of transported Cu2+ ions at the cathode [13], 

as described in (9), followed by successive reductions occurring both at the cathode and on the already-

formed dendrites. Consequently, dendrites act as dynamic cathodes, requiring adjustments to the electric 

potential and electric field ((4) and (5)) after each reduction step. In addition to (9), the reduction of water 

also takes place [1], as described in (10). 

𝐶𝑢2+ + 2𝑒− → 𝐶𝑢 (9) 

2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (10) 

The reduction of water and oxygen evolution (2, 10) enhances droplet conductivity and creates a pH 

gradient for ion transport [14]. However, the ECM model considers only Cu dissolution (1) for anodic 

dissolution and Cu reduction (9) for dendrite growth. On one hand, the impact of (2, 10) on the overall 

conductivity of the droplet has been reported to be less significant compared to (1) [6]. Additionally, 

excluding them would significantly reduce the computational cost of the code. 

The numerical model for dendrite growth combines random walk and Monte Carlo simulation to capture 

the stochastic nature of the process. Growth begins at the cathode, where metal atoms deposit once a critical 

ion concentration accumulates, forming tiny nuclei. These nuclei grow unevenly due to local fluctuations 

in ion concentration, electric field variations, and randomness. After initiation, a random starting point near 

the cathode is selected, and the object-oriented method move(x, y) displaces the point in the x or y direction 

until it encounters an existing dendrite. The method is_contact(dendrites, x, y) checks whether the new site 

is adjacent to an existing dendrite, ensuring that growth follows a branching pattern. Once contact is 

confirmed, the probability of dendrite growth at that location is determined using the method 
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growth_probability(concentration), which calculates growth likelihood based on the local ion concentration 

as outlined in (11). During each dendrite growth attempt (N), a random number between 0 and 1 is generated 

to determine whether growth occurs. If this number is less than the growth probability calculated by the 

growth_probability function, a new dendrite site forms, allowing the structure to propagate. This approach 

effectively captures the stochastic and irregular nature of dendrite evolution observed in electrochemical 

systems. 

𝑔𝑟𝑜𝑤𝑡ℎ_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑐)  =  k×
𝑐

𝑐𝑚𝑎𝑥
 (11) 

Here, k is the constant of the normalized Cu2+ ion concentration across the grid, while cmax represents 

the maximum Cu2+ ion concentration (7.56 × 10-5 g/l) achievable at the anode due to dissolution in DI water 

at 293 K. This theoretical value, proposed in [6], has been successfully implemented in previous studies 

[6], [10] to normalize the concentration across the grid. However, unlike the model proposed in [6], the 

current 2D ECM model does not include a thickness parameter in the third direction (z-axis). Instead, the 

Monte Carlo method performs multiple N at randomly selected sites during each simulation step. If dendrite 

growth occurs at a specific site, the local concentration of Cu2+ ions is set to zero, as the ions are consumed 

in the formation process. Similarly, the electric field at that point is also set to zero to reflect the metallic 

nature of the dendrites. The simulation proceeds iteratively until a dendrite reaches the anode, indicating a 

system failure. 

D. Grid Specification and Parameters 

The 2D computational grid was created by meshing a fixed number of points in both the x and y 

directions, with nx = 200 points and ny = 200 points, respectively. The spacing between each point in the 

x-direction (Δx) is equal to the spacing in the y-direction (Δy), with both set to Δx = Δy = h = 1 µm. The 

partial differential equations (4, 5, and 8) were numerically converted and discretized using the FDM. The 

computational ECM model was then built and executed in the Python programming language. 

The selection of Δt is governed by the Courant–Friedrichs–Lewy (CFL) condition [15]. For diffusion 

and migration, the system remains stable when constraints (C1) and (C2) are satisfied: 

∆𝑡𝑑𝑖𝑓𝑓 ≤
ℎ2

4𝐷
 (C1) 

∆𝑡𝑚𝑖𝑔  ≤  
ℎ

𝜇𝐸𝑚𝑎𝑥
 (C2) 

Here, Emax represents the maximum electric field, given by (φan/d) where d is the gap distance (200 µm). 

Consequently, Emax is 50×103 V/m Therefore, setting Δt = 350 µs ensures the numerical stability of the 

system. 
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E. Initial and Boundary Conditions 

Table 1 presents the initial and boundary conditions, while Fig. 2 depicts the simulation workflow for 

ECM of Cu. 

TABLE I.  APPLIED CONDITONS USED IN THE MODEL 

Applied 

Conditio

ns 

 

Electro

des 

 

φ 

[VDC] 

Concentratio

n of Cu2+ ions 

[g/l] 

Initial 

Anode 10 0 

Cathod

e 
0 0 

Boundar

y 

Anode 10 Can
n-1 + C*

an 

Cathod

e 
0 Ccath-1

n-1 

*n denotes the simulation step, whereas Can is computed at each n based on (3) 
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Initialize simulation parameters, grid, and 

variables 

SET initial conditions for electric potential (phi), 

ion concentration (c) 

DEFINE move(x, y): RANDOMLY adjust (x, y) 

within bounds 

DEFINE is_contact(dendrites, x, y): RETURN 

True if adjacent to dendrite 

DEFINE growth_probability(c): RETURN 

c/cmax 

FOR each time step: 

      STORE previous values (c_prev, phi_prev) 

      FOR each interior grid point: COMPUTE 

phi, Ex, Ey 

      COMPUTE anodic dissolution (can) 

      UPDATE anodic concentration s.t can ≤ cmax 

      FOR each interior grid point: COMPUTE and 

UPDATE c 

     APPLY cathode boundary condition 

      IF time >= start_time AND not initiated: 

INITIATE dendrites 

      # Monte Carlo dendrite growth 

      IF dendrites growing: 

            FOR growth attempts: 

                      SELECT random (x, y), MOVE 

until contact 

                      IF random() < 

growth_probability(c[x, y]): GROW dendrite 

            IF dendrites reach anode: PRINT failure, 

SAVE plot, EXIT 

     IF time step % 100 == 0: SAVE and 

DISPLAY dendrite structure 

END simulation 

Fig. 2. Simulation workflow for modeling ECM of Cu. 
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III. RESULTS AND DISCUSSION 

A. Validation of TTF 

Fig. 3 represents experimental TTF data derived from WD tests and computed TTF data generated using 

a wide range of N and k combinations. The experimental data exhibit noticeable variability, while the 

computed TTF values demonstrate different levels of variability depending on the values of N and k. When 

N is small (e.g., 5 or 10), the computed TTF values show high variability, indicating that smaller dendrite 

growth attempts contribute to greater uncertainty in the results. In contrast, as N increases (e.g., 50 or 70), 

the variability in computed TTF values decreases significantly, indicating that the computation of TTF 

values approaches deterministic behavior. This trend is further observed when N is randomized within a 

broader range, such as from 1 to 50, where the influence of randomness is restricted by including larger 

values. However, when N is randomized within a narrower range (e.g., 1 to 15), the TTF values still exhibit 

notable variability, indicating that a limited range of N can contribute to variability in the computed results. 

Furthermore, randomizing the value of k did not result in significantly larger variability, suggesting that the 

impact of k on TTF variability is less pronounced compared to N. These findings highlight the impact of 

dendrite growth attempts on the variability of TTF predictions. 

Therefore, it can be concluded that the variability of the computed TTF is mainly governed by 

randomizing N, which may also reflect the experimental deviations. However, the greater variability 

observed in experimental TTF values may arise from several factors. One significant source of uncertainty 

is the contact area between the electrode and the electrolyte drop [3], which cannot be precisely controlled 

in each WD test. Variations in contact area directly influence the current density, leading to differences in 

TTF values. Additionally, hydrogen gas evolution at the cathode has been reported to contribute to the 

suppression of dendrite growth through both physical and chemical mechanisms [16]. Physically, hydrogen 

bubbles disrupt ion transport, creating uneven dendrite structures. Chemically, the generation of hydroxide 

ions increases the local pH, further influencing dendrite formation. 

 

 

 

Fig. 3. Comparison of TTF data from experimental and computed WD tests (x represents the mean time to 

failure). 

Experimental N=5, k=1 N=10, k=1 N=50, k=1 N=70, k=0.5 N=(1,50), k=(0.5,1) N=(1,15), k=1 N=(1,15), k=(0.5,1)
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4. Contour plots comparing experimental TTF with computed TTF at 95% and 90% confidence levels 

to assess statistical significance for (a) N=5, k=1, (b) N=10, k=1, (c) N=50, k=1, (d) N=rand(1, 50), 

k=rand(0.5, 1), (e) N=rand(1, 15), k=1, and (f) N=rand(1, 15), k=rand(0.5, 1), where beta represents the 

shape parameter and eta represents the scale parameter in the Weibull distribution.

 

The efficiency of the computational model's TTF predictions is evaluated using contour plots in Fig. 4, 

where the overlap between experimental and computed TTF datasets determines statistical significance 

[17], [18]. The absence of overlap at a given confidence level indicates a significant difference. Fig. 4a 

shows no overlap at 95% confidence, meaning N=5, k=1 has a significantly higher TTF than experimental 
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data. Similarly, Fig. 4b shows overlap at 95% but not at 90%, suggesting N=10, k=1 differs significantly 

at 90%. For larger N values (N=50, k=1 and randomized N=rand(1, 50), k=rand(0.5, 1)), Figs. 4c and 4d 

show no overlap at 95%, confirming significant differences. However, for smaller randomized ranges 

(N=rand(1, 15), k=1 and N=rand(1, 15), k=(0.5, 1), shown in Figs. 4e and 4f), contours overlap at both 

95% and 90%, indicating no significant difference. These results suggest that the ECM of Cu is better 

modeled with a randomized N rather than a deterministic value. 

B. Validation of dendrite morphology 

Fig. 5 presents a comparison between the experimental and computed dendrite morphologies for Cu. 

The experimental (Figs. 5a and 5b) and computed dendrites (Figs. 5c and 5d) showed good agreement, 

regardless of whether N and k were deterministic or randomized.  

In both cases, the dendrites exhibit a fractal-like, tree-like morphology, initiating primarily from a single 

branch at the cathode and growing toward the anode. As they approach the anode, the dendrites become 

denser and display a more pronounced fractal-like structure, further highlighting the similarity between the 

experimental and computed results. This similarity in dendrite morphology can be further explained by the 

presence of one or two main dendritic branches, which primarily result from the primary branches 

consuming the majority of the surrounding Cu2+ ions. 

C. Exponential Growth of Dendrites 

Fig. 6 illustrates the growth of Cu dendrites at selected time intervals, providing insight into their 

evolution over time. The fitting of the main branch length, shown in Fig. 6d, demonstrates a strong 

exponential trend, suggesting that dendrite growth follows an exponential pattern. This observation aligns 

with previous findings reported by [6], despite differences in the underlying growth mechanisms. The 

exponential nature of dendrite growth may be attributed to the ionic concentration profile along the gap 

distance from the anode to the cathode, which has been shown to decrease exponentially, as reported in [5], 

[6], [10]. Consequently, the dendrite growth rate follows a similar exponential pattern. 
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(a) (b) 

  

(c) (d) 

Fig. 5. Experimental and computed Cu dendrites at 10VDC in a DI water droplet. (a, b) Experimental 

dendrites, where A represents the anode and C represents the cathode and (c, d) Computed dendrites, 

where 0 µm gap distance represents the anode and 200 µm represents the cathode .
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(a) (b) 

 
 

(c) (d) 

Fig. 6. Evolution of the main branch length of computed Cu dendrites in the case of N=5, k=1 at: (a) 25 µm, 

(b) 100 µm, and (c) 175 µm,  and (d) Exponential fitting of the main branch length along the gap distance, 

confirming the exponential growth pattern. 

 

IV. CONCLUSIONS 

The ability of Monte Carlo simulation to model the growth of Cu dendrites during ECM was 

investigated, focusing on its accuracy in predicting TTF and capturing dendrite morphology as a function 

of Cu2+ ion concentration. The Monte Carlo simulation accounted for two key parameters: the number of 

dendrite growth attempts per simulation step and the constant for the normalized Cu2+ concentration. The 
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lifetime analysis showed that the ECM of Cu is better modeled using a randomized N within a range rather 

than a fixed deterministic value, confirming the stochastic nature of the ECM process. 

The ECM computational model results revealed that the dendrite morphology generally features only 

one to two dominant dendrites growing within a specific area. This suggests that the primary dendritic 

branches consume the majority of the surrounding Cu2+ ions, regardless of whether the number of dendrite 

growth attempts is deterministic or random and irrespective of the value of the constant for the normalized 

Cu2+ concentration. Furthermore, the Monte Carlo simulation reveals that as the dendrites approach the 

anode, they become denser and exhibit a more pronounced fractal-like structure, consistent with 

experimental observations. Additionally, by fitting the length of the main dendritic branch over time, it is 

observed that the growth of the computed dendrites follows an exponential pattern. Overall, the proposed 

model demonstrates strong performance in predicting both TTF and dendrite morphology. However, future 

work will focus on incorporating experimental deviations to enhance the model’s accuracy and reliability. 

 

ACKNOWLEDGMENT 

The research discussed in this paper and carried out at BME has been supported by the National 

Research, Development and Innovation (NRDI) Office Fund based on the charter of bolster issued by the 

NRDI Office under the auspices of the Ministry for Innovation and Technology, and by the project FK 

138220 and K 145966 of the NRDI Office. 

 

REFERENCES 

[1] X. Zhong, L. Chen, B. Medgyes, Z. Zhang, S. Gao, and L. Jakab, “Electrochemical migration of Sn 

and Sn solder alloys: A review,” RSC Adv., vol. 7, no. 45, pp. 28186–28206, May 2017. 

[2] E. L. Lee, Y. S. Goh, A. S. M. A. Haseeb, Y. H. Wong, M. F. MOHD SABRI, and B. Y. Low, 

“Review—Electrochemical Migration in Electronic Materials: Factors Affecting the Mechanism and 

Recent Strategies for Inhibition,” J. Electrochem. Soc., vol. 170, no. 2, p. 21505, Feb. 2023. 

[3] X. Zhong, S. Yu, L. Chen, J. Hu, and Z. Zhang, “Test methods for electrochemical migration: a 

review,” J. Mater. Sci. Mater. Electron., vol. 28, no. 2, pp. 2279–2289, Sep. 2017. 

[4] A. Gharaibeh, B. Illes, A. Geczy, and B. Medgyes, “Numerical Models of the Electrochemical 

Migration: A short review,” in 2020 IEEE 26th International Symposium for Design and Technology 

in Electronic Packaging (SIITME), Pitesti, Romania, 2020, pp. 178–183. 

[5] X. He, M. H. Azarian, and M. G. Pecht, “Analysis of the kinetics of electrochemical migration on 

printed circuit boards using Nernst-Planck transport equation,” Electrochim. Acta, vol. 142, pp. 1–10, 

Oct. 2014. 

[6] B. Illés, B. Medgyes, K. Dušek, D. Bušek, A. Skwarek, and A. Géczy, “Numerical simulation of 

electrochemical migration of Cu based on the Nernst-Plank equation,” Int. J. Heat Mass Transf., vol. 



 

 

14 

 

184, p. 122268, Mar. 2022. 

[7] H. Ma et al., “Study of electrochemical migration based transport kinetics of metal ions in Sn-9Zn 

alloy,” Microelectron. Reliab., vol. 83, pp. 198–205, Apr. 2018. 

[8] Z. Ható et al., “Electrochemical migration and dendrite growth between two electrodes: Experiments 

and Brownian dynamics simulations,” Int. J. Heat Mass Transf., vol. 234, p. 126108, Dec. 2024. 

[9] C. Cao et al., “A phase-field model of electrochemical migration for silver-based conductive 

adhesives,” Electrochim. Acta, vol. 471, p. 143388, Dec. 2023. 

[10] A. Dayoub, A. Gharaibeh, B. Illés, and B. Medgyes, “Insights into copper electrochemical 

migration through numerical modeling and Monte Carlo simulation,” Results Eng., vol. 25, no. 

December 2024, p. 103820, Mar. 2025. 

[11] B. Medgyes, B. Illés, and G. Harsányi, “Electrochemical migration behaviour of Cu, Sn, Ag and 

Sn63/Pb37,” J. Mater. Sci. Mater. Electron., vol. 23, no. 2, pp. 551–556, Jun. 2012. 

[12] Y. K. Kwok and C. C. K. Wu, “Numerical simulation of electrochemical diffusion-migration 

model with reaction at electrodes,” Comput. Methods Appl. Mech. Eng., vol. 132, no. 3–4, pp. 305–

317, Jun. 1996. 

[13] P. Yi, K. Xiao, K. Ding, C. Dong, and X. Li, “Electrochemical migration behavior of copper-clad 

laminate and electroless nickel/immersion gold printed circuit boards under thin electrolyte layers,” 

Materials (Basel)., vol. 10, no. 2, p. 137, Feb. 2017. 

[14] X. Zhong, G. Zhang, Y. Qiu, Z. Chen, and X. Guo, “Electrochemical migration of tin in thin 

electrolyte layer containing chloride ions,” Corros. Sci., vol. 74, pp. 71–82, Sep. 2013. 

[15] J. Diaz and M. J. Grote, “Multi-level explicit local time-stepping methods for second-order wave 

equations,” Comput. Methods Appl. Mech. Eng., vol. 291, pp. 240–265, Jul. 2015. 

[16] F. Jia, M. Chen, Y. Xi, G. Zhang, and C. Yang, “Dynamic characteristics and mechanism of ions 

migration and dendrites evolution on the printed circuit board surface,” Exp. Therm. Fluid Sci., vol. 

163, no. November 2024, p. 111390, Apr. 2025. 

[17] A. Gharaibeh, D. Rigler, and B. Medgyes, “Effect of TiO2 Nanoparticles Addition on the 

Electrochemical Migration of Low-Silver Lead-Free SAC Alloys,” in 2023 46th International Spring 

Seminar on Electronics Technology (ISSE), Timișoara, Romania, 2023, pp. 1–5. 

[18] A. Gharaibeh, D. Rigler, and B. Medgyes, “Electrochemical Migration: Evaluating the Effect of 

Fe2O3 Nanoparticle Incorporation on the Reliability of SAC Alloys,” in 2024 47th International 

Spring Seminar on Electronics Technology (ISSE), Prague, Czech Republic, 2024, pp. 1–6. 

 


