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Reinforced concrete (RC) columns are crucial in construction, yet their design is challenging. Design typi-
cally involves first-order analysis, consideration of imperfections, and calculation of second-order effects,
often done on an isolated column for simplicity, without precise consideration of adjacent elements. Al-
though this approach is generally effective, it can lead to serious errors in certain cases. To investigate this
problem, single columns under axial compression with different support conditions were first evaluated,
followed by two columns connected by a stiff beam with hinged connections. The columns studied were
either loaded at different intensities, had different boundary conditions, or had different cross-sectional
areas. The evaluations included the nominal curvature method; the automatic nominal curvature method in
ConSteel, which is a novel approximation of the second-order bending moments based on buckling shapes,
and the general method. The results showed that if there is a significant difference in stiffness or in loading
intensity between the connected members, the nominal curvature method can underestimate the bending
moments compared to the general method. Therefore, in the case of irregular structures, more precise con-
sideration of adjacent elements during design is essential to ensure safety. It was shown that this can be
done automatically using the automatic nominal curvature method in ConSteel.
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1. INTRODUCTION

In contemporary architectural design, slender columns are
increasingly favoured due to their efficiency in material
use and their ability to enhance spatial utility within
interiors. These slender, compressed structural members are
susceptible to pronounced second-order effects and require
careful evaluation.

The Eurocode 2 standard (EN 1992-1-1, 2004) allows
the application of three methodologies for the computation
of second-order effects. The nominal curvature (NC) and
nominal stiffness (NS) methods are prevalently employed
by designers. These approaches are characterised by their
simplified and deterministic nature.

The third approach is the general nonlinear method (GM),
which is regarded as a more precise design strategy and
considered one of the most accurate methodologies available.
However, this method is rendered impractical due to its
inherent complexity and the challenges it poses in practical
application.

The nominal curvature and nominal stiffness approaches
give significantly different results. The applicability of the
nominal stiffness approach is limited to scenarios where the
design load is considerably lower than the buckling load or
where the column exhibits minimal slenderness (Aratijo,
2017). However, the nominal curvature approach also
provides effective results for slender columns. This method
uses the slenderness ratio. In cases where the column has

effects may be disregarded in that direction. This makes it
easier to deal with different types of columns.

Many software applications have incorporated these two
simplified solutions. Certain applications have implemented
these methods with a high degree of precision, adhering strictly
to the Eurocode standards. In contrast, other applications
have attempted to exploit computational capabilities either
by extending the simplified methods or by using a variant of
the GM method.

As the construction of increasingly large and more complex
structures becomes more prevalent, so does the reliance on
automated software solutions. These solutions must be able to
address imperfections and second-order effects. A significant
advantage of the NS method in this context is its ability to
analyse a column as an integral part of the overall structure,
rather than treating it as a separated element. This ability
can have a significant impact in scenarios where there are
significant irregularities in the structure or loading conditions.

In an attempt to retain the advantages of the NC method
while extending its applicability to the assessment of column
interactions with surrounding structural components,
ConSteel has developed an approach that uses the global
buckling configuration of the structure to determine the
distribution of second-order bending moments more
accurately. This paper attempts to compare three methods: the
Eurocode 2 nominal curvature method (manual calculation),
the ConSteel automatic nominal curvature method (aNC) and
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the GM method implemented within the ATENA software.

The nominal curvature method has faced criticism from
researchers since its introduction in Eurocode 2 (EN 1992-
1-1, 2004). Critics often highlight that the method yields
conservative outcomes due to an overestimation of curvature
in certain scenarios. Therefore, attempts were made to
improve the precision of this method.

Barros (Barros et al., 2010) proposed an improved nominal
curvature method, where the curvature is interpolated between
the steel yield conditions and the maximum allowable
curvature, depending on the axial load. For concrete classes
above C60, the scenario in which both steel yields prevail
is unattainable, resulting in a curvature being lower than the
values prescribed in Eurocode 2.

Kollar, Csuka, and Ther (Kollar et al., 2014) remarked
that concentrically loaded columns are not addressed in a
distinct way. Eurocode introduces a “capacity reduction
factor” for materials such as masonry, timber, and steel to
facilitate calculations for concentrically loaded columns.
Consequently, they have proposed formulae for determining
the load-bearing capacity of such columns, claiming that their
methodology is simpler and more precise than the simplified
methods in Eurocode.

With the constant improvement of computational capacity,
the general method can be seen as a valid alternative to
improve accuracy. However, even if it is considered to be more
accurate, its reliability is questionable. A primary concern is
that stability failure can occur at reduced concrete stress and
deformation (Fig. 1, right). In this context, due to the nonlinear
stress-strain diagram inherent in the GM method, there is a
reduced margin of safety compared to that when failure is
due to concrete crushing. For stability failure, the dominant
partial safety factor exerting influence is y, which reduces
the Young’s modulus of concrete. Alternatively, to more
accurately address this issue, probabilistic analysis methods
can be used, including the estimation method of coefficient of
variation (ECOV), which have been proposed by researchers
such as Wolinski (Wolinski, 2011) and Cervenka (Cervenka,
2013).

Dobry (Dobry et al., 2022) conducted laboratory
experiments and developed numerical models to explore the

probability of unsafe design consequences due to the use of
the GM method. His findings indicated that employing the
GM method absent laboratory test calibration culminates in a
47% disparity between the maximum and minimum buckling
force. This is attributable to uncertainties related to material
properties, dimensions, and nonlinear compressive structural
behaviour. This uncertainty raises questions regarding
the feasibility of using the GM method safely in design
applications, necessitating the incorporation of additional
safety measures in design contexts where GM methods are
applied.

This confirms the premise that simplified methods are
appropriate for practical routine design applications.

2. PROBLEM STATEMENT

The nominal curvature method does not precisely take into
account the interaction of adjacent columns, which places
the responsibility on the designer to correct the calculations
when necessary. ConSteel’s novel method, called the
automatic nominal curvature method, claims to be able to
handle this issue automatically, which can prevent designer
errors. Detailed information on this method can be found in
ConSteel’s knowledge base article (ConSteel, 2023).

The main objective of this paper is to validate the ConSteel
method and to further emphasise the possible errors that can
occur during the design of irregular structural systems. Three
distinct computational approaches were compared: (1) an
analytical calculation in accordance with Eurocode 2, using
the nominal curvature method; (2) finite element modelling
within ConSteel, applying a novel approximation of second-
order bending moments based on buckling shapes, described
in the software as the ‘automatic nominal curvature’ method;
(3) the general method using geometrically nonlinear analysis
performed in the ATENA software. The three methods handle
geometric nonlinearity and imperfections with different levels
of precision. Further aim of this study is to show the effects of
more precise considerations on the load bearing capacity of
reinforced concrete columns.

Fig. 1: Stability failure of slender columns (left), concrete stress-strain diagram with mean and design values (right) (Dobry et al., 2022)
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3. APPROACH

To investigate the problem, single columns under axial
compression with different support conditions were first
evaluated, followed by two columns connected by a stiff
beam with hinged connections. The columns studied were
either loaded at different intensities, had different boundary
conditions, or had different cross-sectional areas.

An imperfection of 1/200 of the height of the columns
was taken into account in all three calculations. In the case
of the NC and aNC methods, this imperfection was taken into
account with a horizontal load, whereas in the GM method the
geometry was defined in an imperfect way. The distribution of
the imperfection followed the buckling shape of the column
(which was dependent on the boundary conditions) where the
maximum intensity was equal to 1/200 of the height of the
columns.

The effect of curvature was taken into account in the NC
case by the second-order bending moment, with a uniform
distribution, while in the aNC case, the distribution of
the second-order bending moment was determined based
on linear buckling analysis (LBA).). The GM method
automatically considered the curvatures by geometrically
nonlinear analysis.

In the NC case, a first-order analysis was sufficient, while
in the aNC case a LBA and also a buckling sensitivity analysis
was necessary. LBA is needed to calculate the distribution of
the curvatures, and buckling sensitivity analysis is essential,
since the software uses the results of this analysis to assign the
correct buckling shapes for each column. In the aNC method,
interaction between structural elements is taken into account
by the LBA, whereas the GM method uses geometrically
nonlinear analysis.

Creep in the NC and aNC methods is considered using the
final value of the creep coefficient , to calculate factor , which
is then used to calculate the curvature. In the GM method
creep is considered in a simplified way, by using the effective
design value of the Young’s modulus of concrete (), where the
final value of the creep coefficient is the same as previously
used for the NC and aNC methods.

The maximum load bearing capacity of the columns for
each problem was determined using the N-M biaxial bending
interaction diagram for the NC and aNC methods, and by the
maximum point of the load-displacement curve for the GM.

Table 1: Summary of single column calculation cases

4. NUMERICAL MODELS

Initially, single column scenarios were tested. The simplicity
of these cases allowed for the comparison of the three
computational methods and the calibration of the parameters
used. The objective was to obtain comparable results at
failure under conditions of maximum loading and maximum
curvature. The notation for each case and the boundary
conditions are summarised in Table 1.

Having achieved similar results in three types of evaluation
using single-column models, identical models were then used
to construct two column frames. The apices of the columns
were connected by a rigid beam, incorporating hinged
connections, as shown in Fig. 2 (middle). The sole function
of this element is to facilitate the transfer of loads between
the two columns.

A comprehensive analysis was carried out that included
five different cases. First, identical columns with fixed-free
boundary conditions were subjected to equivalent loading
intensities at the top. This approach was intended for validation
purposes, and the expected result reflected the results
obtained when testing single columns under similar boundary
conditions. In the second scenario, the loading conditions
were changed so that only one column was subjected to a
load, while the adjoining column remained unloaded, but
was subjected to lateral forces from the connected column. In
the third scenario, both columns were loaded; however, one
column was subjected to only half the load intensity. In the
fourth scenario, the conditions were the same as in the first
scenario, but the columns were designed with cross-sectional
areas that provided a bending stiffness ratio of one to five
between them. The final and fifth scenarios maintained the
conditions of the first but introduced a variation in the support
conditions: One column had a hinged bottom support, while
the other column retained a fixed support. The notations for
the two-column scenarios are summarised in Table 2.

4.1 Geometry

The columns considered in our calculations were each 6.00
metres high and had a cross-sectional area of 400 by 400
millimetres. The reinforcement specifications included a
concrete cover of 3 centimetres, four longitudinal steel bars
with a diameter of 28 millimetres and stirrups with a diameter
of 10 millimetres, uniformly distributed at 200 millimetre
intervals.

The geometry of the models is shown in Fig. 2. In models
with different bending stiffness between the two columns,
a ratio of 1:5 was achieved by reducing the dimensions of

Single columns
Method Notation Bottom support Top support
NC_cant fix free
Eurocode 2: Nominal Curvature Method NC ss hinged hinged
NC bs fix hinged
) ) aNC_cant fix free
ti?:iiﬁ; (;A:lutomatlc Nominal Curva- aNC _ss hinged hinged
aNC bs fix hinged
GM_cant fix free
Eurocode 2: General Method — ATENA GM_ss hinged hinged
GM_bs fix hinged
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Fig. 2: Geometr of models: sigle cantilever in Conel (left), o-column frame in ConSeel (middle] and sigle cantilever in ATENA (right).

Table 2: Summary of two-column frame calculation cases

Two-column frames
Method Notation | Description
NC PP Identical c:olur'nns3 identical loading.
- For model validation.
NC PO Identical columns, only one is
- loaded.
g}llr\?g;?ﬁm Identical columns, one column is
. NC 2PP loaded twice as much as the other
Curvature - one
Method :
NC EI Bending stiffness ratio between the
- columns is 1:5, identical loading.
Identical columns, identical loading,
NC_SS N
- one column is simply supported.
aNC PP Identical Qolur'nns3 identical loading.
- For model validation.
aNC_PO }de:lltlgal columns, only one is
ConSteel: oaded.
Automatic Identical columns, one column is
Nominal aNC 2PP | loaded twice as much as the other
Curvature one.
Method Bending stiffness ratio between the
aNC_EI . . . :
- columns is 1:5, identical loading.
aNC SS Identical colpmps, identical loading,
- one column is simply supported.
GM PP Identical colur'nns3 identical loading.
- For model validation.
GM PO Identical columns, only one is
- loaded.
g}lgﬁ?‘izl Identical columns; one column is
: GM_2PP | loaded twice as much as the other
Method - - one
ATENA .
GM EI The bending stiffness ratio between
- the columns is 1:5, identical loading.
Identical columns, identical loading;
GM_SS N
- one column is simply supported.

CONCRETE STRUCTURES
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one column to 267.5%267.5 mm. Consequently, the inertia
ratio of the columns is 1:5, while their modulus of elasticity
remains constant. In the NC and aNC scenarios, columns
were specified with ideal geometry, and imperfections were
accounted for by horizontal loads (see Chapter 3.3). In the
GM approach, it was necessary to model the structure with
its imperfect geometry to conduct an imperfect analysis.
The imperfect geometry followed the buckling shape of the
column, where the largest displacement value was equal
to 1/200 of the height of the column. In ATENA, solid
elements were utilised for concrete, while so-called 1D
bar elements were used for reinforcement. The centre line
of the reinforcement bars was modelled. Additional plates
were incorporated as volume elements for loading purposes.
Anticipating failure in the cantilever column in the bottom
section, the columns were extended to provide a continuous
mesh at the base. The 6.00 m column was subdivided into
eight sections, each 750 mm in length. Each square-based
prism was offset by 1/8 of the imperfection value to form a
parallelepiped. This was essential to ensure the accuracy of
the model. The use of a curved line would have precluded
the use of hexahedral elements for meshing. In instances
involving two columns, the rigid beam was modelled as a
solid steel beam that employs solid elements. This element
had adequate stiffness and facilitated the definition of the
necessary loads and connections.

4.2 Materials

In the calculations, C25/30 grade concrete and B500B
reinforcement were used. The design for the modulus of
elasticity of the concrete was used as specified:

Ecqd = Ecn/YcE @)
where is the mean value of the modulus of elasticity, and

is the partial safety factor for the modulus of elasticity of
concrete.
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Fig. 4: Compressive hardening/softening and compressive characteristic length. Based on experimental observations by Van Mier (Cervenka et al.,

2020)

In the NC and aNC scenarios, linear isotropic material
models were used. In these cases, the consideration of creep
in the calculations of the second-order bending moments
negated the need for further modifications. The GM method
was used to account for material nonlinearity. The multilinear
stress-strain law was applied to the reinforcement as shown
in Fig. 3 (left). This multilinear approach consists of four
segments and facilitates the modelling of all four stages of
steel behaviour: elastic state, yield plateau, hardening, and
fracture. For BSOOB steel, a modulus of elasticity of 200 GPa
and a design yield strength of 435 MPa were used.

In the study, the ATENA CC3DNonLinCementitous2
material model was used for the concrete analysis. This
model integrates a fracture-plastic framework that combines
constitutive approaches for tensile (fracture) and compressive
(plastic) behaviours. The fracture mechanism is based on an
orthotropic smeared crack formulation paired with a crack
band model. It accommodates both the rotated and fixed
crack models, and our analysis utilises the fixed crack model.
As depicted in Fig. 3 (right), the size of the crack band,
denoted L, is determined by projecting the size element in
the direction of the crack. Fig. 4 illustrates the compressive
behaviour, where the ascending (hardening) phase is
characterised by an elliptical shape, while the descending
(softening) phase follows a linear trajectory. The governing
equation for the ascending branch is strain-based, whereas

the descending branch is displacement-driven to address
issues related to mesh size.

In our models, the interface between the concrete and the
reinforcement is rigidly established, indicating the absence
of slippage. The nodes associated with the one-dimensional
elements are systematically generated to ensure alignment at
the boundaries with the concrete elements.

To consider the effect of creep, the effective modulus of
elasticity of concrete was used in GM models:

Ecm
Yee(1+9(®,t0))

2

Ecqerr =

where is the same value as later used in Consteel calculations
(for curvature).

4.3. Boundary Conditions

In the examination of planar scenarios, all models are
supported in the y direction, while the x-z plane is under
investigation. To establish a fixed column end in the GM
method, support was defined on the lower surface of the 6.00
metre column in the X, y and z directions. To create a hinge
between the solid steel beam and the top loading plate, only
the centreline of the loading surface was connected to the
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Fig. 5: Meshing for: models in ConSteel (left), ATENA models (middle), Mesh sensitivity analysis on cantilever column (right)

steel beam. Vertical loads were applied axially to the top of
the columns, ignoring the self-weight. In both the NC and
aNC cases, horizontal loads were characterised by a 1/200
imperfection (using the height of the column). The magnitude
of the vertical loads increased progressively in all scenarios,
until structural failure occurred, as indicated by the crushing
of the concrete (see Chapter 3.5). In ConSteel, the support
conditions were specified using the point support function.

4.4 Mesh

For the aNC models, the automatic mesh size suggested by
ConSteel was utilised, resulting in the formation of elements
measuring 75 cm in length with the software employing 8
meshes. The GM models incorporated hexahedral elements
with an edge length of 5 cm. This dimension was derived
from the mesh sensitivity analysis (Fig. 5 on the right)
conducted on the single cantilever column, where mesh sizes
ranging from 1 to 20 cm were examined. A 5 cm mesh size
was selected because it yielded a discrepancy of less than 1%
compared to the converged failure load.

4.5 Analysis parameters

Several analyses had to be performed in order to handle the
aNC cases. First-order, buckling, and buckling sensitivity
analyses were performed. It was imperative to verify the
corresponding buckling modes assigned to the columns.
Through the employment of the GM methodology, a
Geometrically and Materially Nonlinear Imperfect Analysis
(GMNIA) was intended. Imperfections were incorporated
in the geometric definition as outlined in Chapter 3.1, while
material nonlinearity was addressed as per the explanation
in Chapter 3.2. Nonlinear analysis was conducted using the
Arc-Length method, which was favoured over the Newton-
Raphson method due to its suitability for load-controlled
numerical experiments. This method also facilitated the
investigation of the descending branch of the phenomenon.
The Elastic Predictor was employed to compute between
iterations, whereas the Pardiso solver was used for matrix
solutions. A load increment of 10 kN was applied. Under
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these conditions, satisfactory mathematical convergence was
achieved, with most iterative steps converging in under ten
iterations. However, as the failure load was approached, an
increase in the number of iterations was observed.

5. RESULTS

An evaluation was carried out on three main characteristics.
Initially, the curvature and the second-order bending moments
were examined to acquire a comprehensive understanding of
the behaviour. Subsequently, the failure modes of the columns
were analysed along with the identification of the specific
column that failed. Ultimately, the failure load associated
with the various methodologies and cases was systematically
compared.

5.1 Curvature

A comprehensive visualisation of the curvatures is presented
in the Appendix. A single figure, comprising three sub-
figures for each column, has been developed. The figure on
the left figure shows the numerical curvature data for the
three calculation types: NC, aNC, and GM. The central figure
depicts the second-order bending moment diagram for the
corresponding column, derived from the aNC method. The
configuration of this diagram is determined solely by the
structural buckling shape. The right figure demonstrates the
results of the GM method, which include either the complete
bending moment diagram or the axial stress state within
the column. This diagram is generated by integrating the
stresses of the column member. The analysis of individual
column cases revealed a robust concordance with both
curvature values and shapes. The second-order bending
moment diagram shows a similar configuration using both the
aNC and GM methods, reinforcing the postulation that the
buckling shape provides a valid assumption for the second-
order bending moment distribution.



P-0 and 2P-P cases

The analysis of the two-column frame cases gives interesting
results. In the P-0 scenario, two main phenomena can be
observed. Firstly, the unloaded column exhibits a second-
order bending moment. This is due to the top-level lateral
action exerted by the adjacent column, which results in a
linear second-order bending moment. It could be argued
that the unloaded column provides “support” to the loaded
one. Secondly, the interaction between the columns causes
an upward shift in the maximum value of the second-order
bending moment within the loaded column. This change is
confirmed by both the aNC and GM methods. The disparity
in curvature for the loaded column is attributed to the primary
failure of the unloaded column which occurred in a stress
controlled manner. An analogous effect is observed in the
2P-P scenario. However, the difference is that the second-
order bending moment is nonlinear due to the simultaneous
loading of the other column. The maximum curvature and
second-order bending moment for the P-loaded column
are located at the base, and this effect shifts upward for the
2P-loaded column.

Fix-hinged and EI case

The fixed-hinged scenario is notable for the requirement that
the fixed column must bear the bending moments imparted on
both columns. On the contrary, the hinged column is limited
to accommodating compressive forces. The application of
the aNC method induces a minimal bending moment on this
column, due to its inherent buckling configuration. Although
this is not essential, it does not introduce any inaccuracies.
Similarly, in the EI scenario, the column exhibiting the
higher stiffness will bear a larger portion of the loads. It will
also assume part of the bending moments of the less rigid
column, thereby providing support to this weaker column.
This interaction leads to a pronounced upward shift in the
curvature and second-order bending moment diagram for the
softer column.

5.2 Failure mode

When examining the single-column cases, it is clear that there
is no significant difference between the methods in terms of
failure modes. In the relatively slender cantilever column

Table 3: Summary of failure modes

scenario, a balanced failure mode was observed, that is, when
the concrete reached its ultimate compressive strain, the
tensioned bars simultaneously reached their yielding strain.
As illustrated in Fig. 6 (left), this represents the maximum
bending moment point on the N-M bending interaction
diagram.

Regarding the less slender simply supported and fixed-
hinged columns, a compression-controlled failure mode
was observed, indicating that the tensioned reinforcements
remained elastic during the concrete crushing process. The
failure modes for each calculation are presented systematically
in Table 3. Within NC calculations, due to its focus on isolated
columns, an identical failure mode was consistently identified
across all calculations, invariably resulting in the failure of the
weaker, less stiff, and more heavily loaded column. However,
this does not fully encompass the complexities observed in
real-world scenarios.

Upon examining the interaction between the columns,
certain cases initially yielded unforeseen results. Specifically,
when only one of the columns was subjected to loading, it was
unexpected to observe the failure of the unloaded column. As
the unloaded column was devoid of compression forces, the
occurrence of a second-order moment was not anticipated.
Nevertheless, due to its connection with the loaded column,
second-order moments were indeed present in the unloaded
column, as described in Chapter 4.1.

The unloaded column has a reduced bending moment
capacity compared to the loaded column. Due to the
interaction, second-order bending moments manifest in this
column, resulting in a tension-controlled failure mode (see
Fig. 7 left). A similar phenomenon is observed when one
column bears half the load compared to the other column.
This column has a reduced normal force and reduced bending
moment capacity compared to the more extensively loaded
column. In accordance with the Nominal Curvature method,
the second-order bending moment should also be lower.
However, due to the interaction with the other column, the
second-order bending moment becomes more pronounced
for the column with lesser loading, when juxtaposed with
calculations performed independently, as delineated in
Chapter 4.1. This interaction precipitates a tension-controlled
failure in the lesser loaded column prior to the failure of the
column subjected to double the load.

When one column is fixed and the other is hinged, only

NC aNC GM
Utilization Utilisation
Case Failure mode of the other Failure mode of the other Failure mode
column [%] column [%]
cant Balanced - Balanced - Balanced
ss Compression controlled - Compression controlled - Compression controlled
bs Compression controlled - Compression controlled - Compression-controlled
PP Balanced 100 Balanced 100 Balanced
PO Loaded column - balanced 0 Unloaded column - tension 60 Unloaded column - tension
controlled controlled
PP 2P loaded column - bal- 53 P-loaded column - tension 89 2P column - tension controlled
anced controlled
EI Less stiff column - bal- 2 Stiffer column - tension con- 44 Buckling
anced trolled
S Fix column - balanced 50 Fix column - tension con- 16 Fix colymn - tension controlled
trolled - buckling
8 2024
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Fig. 6: N-M bending interaction diagram: for aNC_cant (left) and for aNC_ss (right)
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Fig. 7: N-M bending interaction diagram: for aNC_PO: unloaded column (left), and for aNC_2PP: P loaded column (right).
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the fixed column will experience bending moments. If
the interaction between the columns is not considered, the
scenario is similar to a single cantilever column. However,
the inclusion of the interaction results in a tension-controlled
failure mode that occurs sooner. This is attributed to the fixed
column having to withstand the horizontal loads applicable
to both columns. As discussed in Chapter 4.1, this results in
significantly increased second-order bending moments for
the fixed column. A similar phenomenon is observed when
the stiffness of one column exceeds that of the other. The
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Fig. 8: N-M bending interaction diagram: for aNC_SS: fixed column (left), and for aNC_El: stiffer column (right)

Nominal Curvature method predicts the failure of the softer
column first. However, with interaction is considered, the
stiffer column provides support to the softer column, thereby
shifting the failure to the stiffer one due to increased second-
order bending moments (see Fig. 8 right).

5.3 Failure load

Table 4 shows the failure loads relevant to the calculations.
As explained in Chapters 4.1 and 4.2, there is no significant
variation in the calculations for a single column. The



Table 4: Summary of Failure Loads

GM NC aNC

Case Failure load [kN] | Failure load [kN] Difference [%] Failure load [kN] | Difference [%]
cant 1200 1158 -3,5 1158 -3,5

ss 2885 2960 2,6 2960 2,6

bs 3350 3250 -3,0 3270 -2,4

PP 1200 1158 -3,5 1158 -3,5

PO 1380 1158 -16,1 1300 -5,8

2PP 1635 1158 -29,2 1410 -13,8

EI 667 292 -56,2 595 -10,8

SS 592 1158 95,6 514 -13,2

NC method consistently evaluates isolated elements;
consequently, so the failure load of the cantilever column is
always 1158 kN. Within the EI model, this load is reduced due
to the reduced cross-sectional area. However, the interaction
between the columns is completely ignored. In the P-0 and
2P-P scenarios, the failure load is increased in the aNC
method and further increased in the GM method, due to the
mutual support among the elements. Specifically, in the P-0
context, the unloaded column underpins the loaded one, thus
improving its resistance. The increase is limited to 1300 kN,
as the unloaded column collapses in a tension-controlled
mode. When the alternate column is subjected to half the load,
its bending capacity increases, culminating in an increase in
the failure load from 1300 kN to 1410 kN in the aNC method
and from 1380 kN to 1635 kN in the GM method. In the EI
scenario, the failure load increases significantly when the
intercolumn interaction is considered, increasing from 292
kN (NC) to 595 kN for the aNC method and to 667 kN for the
GM method. Here, the stiffer member provides support to the
less rigid column. In all scenarios examined, the interaction
resulted in an increased failure load, thereby making the NC
method conservative. In contrast, in the SS scenario, the
failure load is reduced by half because one column has to
support the bending loads of two columns. As the NC method
considers an isolated column, this effect is completely
overlooked. Although this situation is relatively atypical, it
serves as a warning to be more careful when neglecting the
interaction between columns.

6. CONCLUSIONS

The role of connected member on the load bearing capacity
of compressed reinforced concrete columns was investigated
using different calculation methods. Manual calculations
were performed according to the nominal curvature method
of Eurocode 2, and the automatic nominal curvature method
developed in ConSteel was also applied. Furthermore, the
general method according to Eurocode 2 was implemented
in the ATENA software using nonlinear analysis. To find
the differences between the methods, single columns under
axial compression with different support conditions were
first evaluated, followed by two columns connected by a stiff
beam with hinged connections. The columns studied were
either loaded at different intensities, had different boundary
conditions, or had different cross-sectional areas.

The general method was used as a basis for a more precise
consideration of imperfections and geometrical nonlinearity.
Our investigation has shown that the nominal curvature
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method disregards column interaction, which is conservative
in most cases. In particular cases, an increase in load on a
column, due to the necessity to support substantial loads
transferred from other columns, either because one column is
more rigid, or because a column is unable to resist horizontal
loads, results in the inability of the nominal curvature method
to accurately represent the behaviour. This limitation can lead
to underdesign and compromise safety. However, the novel
approach of the ConSteel software, called the automatic
nominal curvature method, which utilises buckling shapes to
calculate the distribution of curvatures, was shown to be able
to automatically consider the interaction between concrete
columns, preventing serious errors from occurring in the case
of irregular structural systems.

The effect of creep in this study was taken into account
in a simplified manner, further research is needed to
better understand its effect on the load bearing capacity
of compressed concrete columns. Also the novel method
developed in ConSteel should be further studied in order to
find more problems where this solution could be applied.

To construct structures that are both safer and more cost-
effective, it is essential to account for the interaction among
structural elements. Various approaches exist to achieve
this, ranging from simplified modelling techniques to the
more advanced general method. Ultimately, it is up to the
designer’s judgement to determine the appropriate solution
for the specific problem.
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APPENDIX: CURVATURES
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Fig. 9: Simply supported column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and bending moment diagram

for GM [MINm] (right)
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Fig. 10: Fix-hinged column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and bending moment diagram for
GM [MNm] (right)
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Fig. 11: Simply supported column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and bending moment diagram
for GM [MNm] (right)
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Fig. 12: P-O case, P loaded column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm]
(right)
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Fig. 13: P-0 case, unloaded column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm]
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Fig. 14: 2P-P case, 2P loaded column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm]

(right)
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Fig. 15: 2P-P case, P loaded column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm]

(right)
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Fig. 16: Fix-hinged, fix column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm] (right)
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Fig. 17: Fix-hinged, hinged column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm]

(right)
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Fig. 18: El, stiffer column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm] (right)
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Fig. 19: El, softer column: curvature diagram (left), second-order bending moment diagram for aNC (middle) and stresses for GM [MNm] (right)
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