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On forbidding graphs as traces of hypergraphs

Daniel Gerbner*

Michael E. Picollellif

Abstract

We say that a hypergraph H contains a graph H as a trace if there exists some set
S C V(H) such that H|s={hNS : h € E(H)} contains a subhypergraph isomorphic
to H. We study the largest number of hyperedges in 3-uniform hypergraphs avoiding
some graph F' as trace. In particular, we improve a bound given by Luo and Spiro in
the case F' = Cy, and obtain exact bounds for large n when F' is a book graph.

1 Introduction

A fundamental theorem in extremal Combinatorics is due to Turan [29] and determines the
largest number of edges in n-vertex Kj-free graphs (the case k = 3 was proved earlier by
Mantel [20]). More generally, given a family F of graphs, ex(n, F) denotes the largest number
of edges in n-vertex graphs that do not contain any member of F as a (not necessarily
induced) subgraph, and if there is one forbidden subgraph, we use the simpler notation
ex(n, F) instead of ex(n,{F'}). The Erdos-Stone-Simonovits theorem [7], [9] determines the
asymptotics of ex(n, F) in the case F does not contain any bipartite graphs. The bipartite
case is much less understood and is the subject of extensive research, see [12] for a survey.

There is a natural analogue of this problem for hypergraphs and was already asked by
Turdn. Given a family F of hypergraphs, we denote be ex,.(n, F) the largest number of edges
in an r-uniform hypergraph that does not contain any member of F. This problem is much
more complicated, for example we still do not know the asymptotics in the next obvious
question, when the complete 4-vertex 3-uniform hypergraph is forbidden. A relatively recent
line of research is to consider graph-based hypergraphs. This is an informal common name
of hypergraph classes that are obtained from graphs by enlarging their edges according to
some set of rules. Extremal results concerning such hypergraphs were collected in Section
5.2. in [17].
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The most studied graph-based hypergraphs are the following. The expansion F™* of F
is obtained by adding r — 2 new vertices to each edge such that each new vertex is added
to only one edge, see [2I] for a survey on expansions. A Berge copy of F' is obtained by
adding r — 2 new vertices to each edge arbitrarily. The new vertices may be already in F
or not, and they may be added to any number of hyperedges. More precisely, we say that
a hypergraph F is a Berge copy of F' if there is a bijection f between the edges of ' and
the hyperedges of F such that for each edge e we have e C f(e). Observe that there can be
several non-isomorphic r-uniform Berge copies of F', the expansion being one of them. We
denote by Berge-F' the family of Berge copies of F'. Each Berge copy of F' is defined by a
graph copy of I’ on a subset of the vertices, we call that the core of the Berge-F'. Berge
hypergraphs were defined (generalizing the notion of hypergraph cycles due to Berge [2]) by
Gerbner and Palmer [15].

Here we study a third type of graph based hypergraphs. We denote by Tr(F') the family
of Berge copies of F' where the vertices added to the edges of F' are each outside V' (F'). In
other words, the trace of these Berge copies is F' on V(F), i.e., f(e) N V(F) = e for each
edge e of F. These were called induced Berge in [11].

The maximum number of hyperedges in hypergraphs with some forbidden traces have
long been studied. For example, the celebrated Sauer Lemma [25], 26] [30] deals with the case
‘H does not contain the power set of a t-element set as a trace.

The Turén problem for these graph-based hypergraphs is closely related to the so-called
generalized Turdn problems. Given two graphs H and G, we denote by N (H,G) the num-
ber of copies of H contained in G. Given an integer n and graphs H and F, we let
ex(n, H, F) = max{N(H,G) : G is an n-vertex F-free graph}. After several sporadic re-
sults, the systematic study of this function was initiated by Alon and Shikhelman [I].

It is easy to see that if we take the vertex sets of r-cliques in an F-free graph as hyperedges,
the resulting graph is Berge-F-free. Therefore, we have ex(n, K., F') < ex,(n, Berge-F) <
ex,(n, Tr(F)) < ex,(n, F*), where the second and third inequality follows from F(+
Tr(F') C Berge-F. Stronger connection was established for these cases: ex,(n, Berge-F')
ex(n, K,, F)+ex(n, F) [16], ex,(n, Tr(F)) = ©(max,<; ex(n, K, F)) [I1] and ex,(n, F"F)
ex(n, K, F) +O(n"") [13].

The first to study forbidden graphs as traces were Mubayi and Zhao [22]. They studied
the case F' = K}, (in fact they considered the more general case when complete hypergraphs
are forbidden as traces). They observed that in the case r < k we have ex,(n, Tr(Kj)) =
ex,.(n, F%) for sufficiently large n, and the exact value of that was determined by Pikhurko
[23]. In the case r > k, Mubayi and Zhao conjectured that the extremal construction for
sufficiently large n is the following. We take a Kj-free graph on n — r + k — 1 vertices with
ex(n, Ky_1, Kj) copies of K;_1. Note that this is the so-called Turdn graph by a theorem of
Zykov [31]. Then we take a set U of r — k+ 1 new vertices, and pick as hyperedges the union
of U with the vertex set of any (r — 1)-clique of the Turdn graph. Mubayi and Zhao proved
this conjecture asymptotically if k& = 3, i.e., they showed that ex,(n, Tr(K3)) = n*/4+ o(n?).
They proved this exactly if » = 3. An earlier version of this paper contained a proof of the
k = 3 case of their conjecture for any r, i.e., the proof of ez, (n, Tr(K3)) = | (n —r + 2)?/4],
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if n is sufficiently large. However, this statement follows from an old theorem of Frankl and
Pach [10] for every n, which also implies the extremal examples are constructed by adding a
common set of r — 2 vertices to every edge of maximum complete bipartite graph on n —r+2
vertices.

We extend this result to book graphs in the 3-uniform case. The book graph B; consists
of ¢ triangles sharing an edge, i.e., B; = Kj 1.

Theorem 1.1. For every t, if n is sufficiently large, then we have exs(n, Tr(B;)) = [(n —
1)2/4], with equality only for the 3-uniform hypergraph formed by adding a common vertex
to every edge of a mazximum complete bipartite graph on n — 1 vertices.

We remark that for any non-star F' and any r and n we have ex,(n, Tr(F)) > ex(n —r +
2, F), since if we add the same r — 2 new vertices to each edge of an F-free graph, we obtain
a Tr(F)-free hypergraph.

Other specific graphs F' such that ex,(n, Tr(F')) has been studied include stars [11}, 24] and
Ky, [19, 24]. In particular, Luo and Spiro [19] showed n3/2/2 + o(n®?) < exz(n, Tr(Cy)) <
5n%/2 /6 + o(n®/?). We improve the constant factor in the main term of the upper bound.

Theorem 1.2. exs(n, Tr(Cy)) < (14 v2)n%?/4 4 o(n?/?).

Finally, we show a connection of ex,(Tr(n, F)) and generalized supersaturation. Given
a graph F' and a positive integer m, the supersaturation problem deals with the minimum
number of copies of F' in n-vertex graphs with at least m edges. In the generalized version,
we are also given a graph H and the n-vertex graphs contain at least m copies of H. Such
problems were studied in [3}[14] [I§]. Note that this is equivalent to studying the most number
of copies of H when we are given an upper bound on the number of copies of F'.

Proposition 1.3. There is an n-vertex graph G with O(nlVF)I=YY copies of F' such that
ex,q(n, Tr(F)) < N(K,,G).

Obviously this connection to generalized Turan problems is less useful than the previ-
ously mentioned ones, partly because there are less results on generalized supersaturation
problems. In the non-degenerate case when x(F) > r, a special case of a result of Halfpap
and Palmer [I8] states that N'(F, G) = o(n!VF)) implies N'(K,, G) < (1+0(1))ex(n, K,, F).
Therefore, with Proposition [[.3] we obtain the (already known) asymptotics of ex(n, Tr(F'))
in this case. We could not find any application of Proposition that gives new results,
although it plays a small role in the proof of Theorem [I.I]

2 Proofs

The shadow graph of a hypergraph H has vertex set V(#H) and uv is an edge if and only if
there is a hyperedge in H containing both u and v. If H contains a Tr(F') (or any Berge-
F'), then the core of that is a copy of F' in the shadow graph. The converse is not true,
for example if H is r-uniform, then the shadow graph contains copies of K, even if H is
Berge- K,-free.



Note that in the shadow graph of a Tr(F')-free hypergraph, each copy of F' has to contain
an edge uv with the property that each hyperedge containing uv contains another vertex
from that copy of F'. In multiple proofs below, we will pick such an edge for each copy of F
and call it the special edge of that copy of F.

We can show the following generalization of Proposition [L.3]

Proposition 2.1. If H is Tr(F)-free, then the shadow graph G of H contains O(n!VF)I=1)
copies of F.

Note that hyperedges of H create distinct copies of K, in G, thus |E(H)|< N(K,,G),
hence the above proposition implies Proposition [L.3l

Proof. Let us fix an edge uv and count the number of copies of F' that have uv as special
edge. Let h be a hyperedge containing u and v. Then each copy of F' containing uv contains
also at least one of the other r — 2 vertices of h. Therefore, we can count the copies of F
containing uv by picking a non-empty subset of the other vertices of h (O(1) ways), then
picking the rest of the vertices of F' (O(n!V#)1=3) ways) and then picking a copy of F' on those
|V (F)| vertices (O(1) ways). As there are O(n?) special edges, the proof is complete. [ |

Let us continue with the proof of Theorem [L2. We will use the following lemma due to
Luo and Spiro (Lemma 3.1 in [19]). We say that a subset of a hyperedge is light if exactly
one hyperedge contains it, and heavy otherwise.

Lemma 2.2 (Luo, Spiro [19]). Let H be a Tr(Cy)-free S-uniform hypergraph. Let Hy denote
the subhypergraph of H consisting of the hyperedges that do not contain light edges. Then
every edge of the shadow graph is in at most two hyperedges of Hs.

We restate Theorem here for convenience.
Theorem. exs(n, Tr(Cy)) < (14 v2)n32/4 + o(n?/?).

We denote hyperedges consisting of vertices u, v, w by uvw. Note that there are 4-uniform
hyperedges in the proof below, but we do not use the analogous notation, because we use
that for 4-cycles. We let uvwzx denote the 4-cycle with edges uv, vw, wx, xu.

Proof. Let H be a 3-uniform T'r(Cy)-free hypergraph, and let G denote its shadow graph.
For vertices u,v of H, we denote by ds(u,v) the number of hyperedges containing both u
and v, and by ds(u,v) the number of common neighbors of v and v in G.

Claim 2.3. dy(u,v) < ds(u,v) + 3.

Proof of Claim. Assume we have four vertices wy, ws, ws, wy such that for every i, uvw; is
not a hyperedge in H, yet uw; and vw; are in G. Consider the 4-cycle uw,vws in G. Since
it is not the core of a T'r(Cy4) in H, there is a hyperedge inside these four vertices. Since no
hyperedge contains u, v and w;, we have that either uwyws or vwyws is in H. This holds
for each pair w;w;, which implies that the 4-cycle wywowswy is the core of a T'r(Cy), where
each edge is extended by u or v to a hyperedge. |
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Let us return to the proof of the theorem. Consider now the triangles in GG such that the
vertices do not form a hyperedge of H. For each edge of GG, there are at most three such
triangles, and each triangle has three edges, thus there are at most |E(G)| such triangles.
This implies that the total number of triangles in G is at most |E(G)|+|E(H)|= O(n*?).

Consider now two non-adjacent vertices u and v. By Claim we have dy(u,v) < 3.
Observe that if w; and wy are in the common neighborhood of u and v, then at least one
of uwiws and vwiws is in H (because of the 4-cycle uwvws). In particular, w; and wy are
adjacent in G. Assume that ds(u,v) = 3 and let wq, ws, w3 be the common neighbors of u
and v. Then these three vertices form a triangle, which we denote by T'(u,v).

Assume that wwiw,, uwiws and uwows are each in H. Since uwivws, is not a core of a
Tr(Cy), one of the edges incident to v, say vw; is contained only in hyperedges of H inside
this 4-cycle, which must be vwws, since uv is not in the shadow graph of H. Consider now
the 4-cycle uwivws. By similar reasoning, either vw; or vws is only in hyperedges inside
this 4-cycle, thus vwyws € H. This contradicts that vw; is contained only in vw;wy in H.
Therefore, uw;w; is not in H for some 1 < ¢ < 5 < 3.

We obtained that u (and analogously v) is the common neighbor of the endpoints of an
edge w;w; in G such that the triangle uw;w; does not form a hyperedge in H, and w;w; is in
a triangle in G. For each edge of GG, there are at most 3 such vertices, thus for each triangle in
G, there are at most 27 such pairs. Therefore, the number of pairs (u, v) such that uv is not
an edge in G and u and v have three common neighbors is at most 27N (K3, G) = O(n?/?).
Let E’ denote the set of non-adjacent pairs u, v with ds(u,v) = 3. We have

ZquE(G) d2(u’ ,U) S ZquE(G) d3(u’ U)+3 = 3|H|+3|E(G)|: O(n3/2)7 Z(u,v)EE’ d2(ua U) =
3|E'|= O(n3?) and Z(um)gE(G)uE’ da(u,v) < Z(u,v)gE(G)UE’ 2 < 2(3) Therefore,

Z do(u,v) = Z da(u,v) + Z da(u,v) + Z dg(u,v)§(2—|—o(1))(g).

u,veV(G) weE(G) (u,v)EE’ (u,0)¢E(G)UE’

This implies that }_ .y (d(;)) < (2+0(1))(5), and then [E(G)|< (1 + 0(1))?713/2
follows by Jensen’s 1nequahty

Let H; be the subhypergraph consisting of the hyperedges that contain a light edge. Let
us pick a light edge from each hyperedge of H; and let G; denote the resulting graph. Then
G is Oy-free, thus |E(H1)|= |E(G1)|< ex(n, Cy) = (1 +0(1))n32/2.

Let Hy denote the rest of the hyperedges of H and G5 denote the shadow graph of Hs.
Then G5 may contain copies of Cy, but each copy uvwx of Cy contains an edge uv such that
each hyperedge in H that contains u and v also contains w or x. We say that uv is a special
edge for this Cy. In particular, v and v are contained together in at most two hyperedges of
H, and since uv € E(Gs), we have that wvw,uvz € H (with at least one of them in Hs).
This also implies that there is a K4 on u, v, w,z in G.

Let us consider a 4-cycle uvwz in G5 with special edge uv, and assume that both uvw
and uvzx are in Hy. Then the K4 on w,v,w,z is in Gy and the 4-cycle uwvx also has a
special edge, without loss of generality ww. This shows that uwz € H (since uw is in Gs).
Then uwx € Hy since each subedge is in G5. Observe that we have found two hyperedges



in Hy containing ux. Now we have two possibilities. Either there are no further hyperedges
containing wux, or there are some hyperedges containing ux (they must be in H; because of
Lemma [2.2]).

Now we move the hyperedges uwvw, uvr and vwz to H; and the edges uv and uw to Gj.
In the first case, if ux is not contained in any hyperedges of H;, we also move ux to G;. We
repeat this as long as we can. We denote the hypergraph we obtain this way from #H; by H}
and the graph we obtain from G; by G/.

Claim 2.4. G is Cy-free.

Proof of Claim. First we show that each hyperedge of H contains at most one edge of G/,
except for the hyperedges added to H}. This holds for G; since the edges are light and we
picked only one from each hyperedge. The hyperedges of H; do not contain any of the edges
wv in E(GY) \ E(Gy), since the only hyperedges of H that contain uv and uw (and uz if that
is also added) are uvw, uwz and uvz, and they are in Hs.

Observe that the special edge ab of a Cy abed in G} would be contained in a hyperedge
that contains two edges of G, thus in a hyperedge that was added to H}. Since the only
hyperedges containing ab are abc and abd, we have that ab is moved from G, to G} together
with, say ad (and potentially ac). This implies that abc € Hy. Then bec € E(Gs), thus be
was also moved to G}. But that movement cannot be at the same time when we moved ab
and ad (and potentially ac) to G, thus cannot be at the same time when we moved abe to
H'. But we move each edge together with the two hyperedges of H, that contain that edge,
thus we have to move ab at the same time when we move abc, a contradiction. |

Let us return to the proof of the theorem. Let f = |E(G}) \ E(Gi)|. The number
of hyperedges in H/ is at most the number of edges in G plus 3/2 times the number of
new edges in G, i.e., |[E(H})|< (14 0(1))n?2/2 + f/2. We also have |E(H,)|= |E(G1)|<
(1+ o(1))n¥/2/2 - f.

Let H), denote the hyperedges of H that are not in H/, thus H), is a subhypergraph of
Hs. Let G denote the graph of we obtain from G, by deleting the edges we moved to G.
We have that |E(GY)|= |E(G2)|—f. Recall that by Lemma[Z2] each edge of Gy is in at most
two hyperedges of Hs.

Let Y denote the set of edges in GY that are in exactly two hyperedges of Hy and g := |Y|.
We next provide an upper bound on ¢ in terms of f and edges of G, that are not in Y.

Let wv € Y, then the two corresponding hyperedges uvw and uvz create a C, with a
chord uv in Go. That Cj has a special edge, say uw, then uwz is also in H (if there are
multiple special edges and one of them was moved to G, we pick that as uw). If vwz & Ha,,
then ww € G, and is contained in less than two hyperedges of Hy. We say that uw belongs
to uw.

Claim 2.5. Fach edge uw not in'Y belongs to at most one edge uv.

Proof of Claim. We have that uw is a special edge of a 4-cycle uwvz, and uwz € Hs implies
that wz must be a light edge. Observe that uw can belong only to an edge in the unique
hyperedge in H, that contains u, w, thus to uv or wv. If uw belongs to wv as well, then uw



is the special edge of a 4-cycle of the form uwz'v in G. We have 2z’ # z since wz is light.
But then uwz" must be in H because of uwzv’, but cannot be in H because uw is only in
hyperedges inside uvwz. [ |

Assume now that uwz € Hs and we have not moved uw to G'. The only reasons can
be that we have already moved at least one of the edges of the K, on u,v,w, z to G, or we
have already moved at least one of the three hyperedges we would have moved with it to

1, because of another subedge, another Kj. Let = be the fourth vertex of this other K.
Note that if we have moved one of those edges, we have also moved all hyperedges of H,
containing that edge, in particular we have moved at least one of the hyperedges uwv, uwz
and uvz.

No matter which of the hyperedges uwv, uwz and uvz we have moved earlier, it contains
two subedges containing u. Each such subsedge is contained by two of the hyperedges uwv,
uwz and uvz. Therefore, none of the hyperedges in H, containing such a subedge contains .
This implies that at least two 3-sets containing x inside the K, are not in H,. But we only
move things to H] if at least three hyperedges inside the K4 are in Hs, a contradiction. This
implies that we have not moved any of these three hyperedges uwv, uwz and uvz earlier. But
these hyperedges in Ho and whenever we move an edge to G}, we also move the hyperedges
that contain that edge from H, to H}, thus each subedges, each edges inside u, v, w, z have
not been moved, therefore, we could move uw to G7, a contradiction.

Finally, assume that uwz € Hy and we have moved uw to G'. It was because of the K4
on u,v,w, z since the hyperedges containing v, w are uwv and uwwz. Then we also moved at
least one adjacent edge to GG} at the same time. If we moved three edges to G, then there
are three edges inside the K, that remain in G). If we moved two edges to G, then there
are four edges inside the K, that remain in GY. This can happen at most f/2 times, thus
there are at most 2f edges in Y where this occurs.

We have obtained for each edge of G in Y a unique edge not in Y, with at most
2f exceptions. This implies that ¢ = |Y|< |E(GS)|/2 + f = |E(G2)|/2 + f/2. Then in
G, we have at most g + f < |E(G2)|/2 + 3f/2 edges that are contained in exactly two
hyperedges of H,. This shows that the total number of edge-hyperedge incidences between
Go and Hs is at most 3|E(Gs)|/2 + 3f/2, hence |E(Hs)|< |E(G2)|/2 4+ f/2. Recall that
E(G+f/2 = |E(G)I—£/2 < (1 + o(1))n¥2/2 — /2 and |E(Ga)|< [E(G)]~|B(Gy)|<
(14 0(1))L2n%? — |E(G))].

Combining the upper bounds we obtained on |E(H;)| and |E(Hs)|, we obtain that
|B(H)|= | E(Ha)|+|E(Hs)|< |E(Gh)|+|E(Ga)|/2 + f/2 < BG4 Ry f/o < B
(14 0(1)) L2032 + f/2 = (1 4+ o(1))n*? /4 + (1 4 o(1)) L2n?/>. |

We finish the paper by proving Theorem [[LTl Recall that it states exs(n,Tr(B;)) =
| (n — 1)?/4] for sufficiently large n.

Proof of Theorem[1.1. The lower bound is given by taking a complete bipartite graph on
n — 1 vertices, and adding the same new vertex to each edge.

Let H be a Tr(By)-free hypergraph and let H; be the subhypergraph consisting of the
hyperedges having a light subedge. Let G; be a graph obtained by taking a light subedge
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for each hyperedge in H;. Let Hy denote the rest of the hyperedges of H and G5 denote the
shadow graph of Hs. Let G denote the shadow graph of H.

Claim 2.6. |E(Hs)|= o(n?).

Proof of Claim. Gy contains O(n'*1) copies of B; by Proposition 2.1l Hence by the removal
lemma [6] there is a set A of o(n?) edges in Gy such that each copy of B; contains an edge
from A.

We claim that each edge of G4 is in at most 3t — 3 hyperedges of H,. We use a lemma of
Luo and Spiro [19], who showed the analogous statement in the case of forbidden Tr(Ks;).
More precisely, they showed that if an edge zy is in at least 3t — 2 hyperedges of Hs,, then
there is a Tr(Ks,;) in H such that z and y are the vertices in the smaller part of the core
Ky;. To find a Tr(B;) in ‘H, we need to find a hyperedge containing x,y such that the third
vertex of that hyperedge is not in this core Ky;. This is doable if £ > 1, since we can pick
any of the 2t — 2 hyperedges containing z,y and avoiding the other ¢ vertices of the core
K27t.

Now we are ready to count the number of triangles in Go. There are at most (3t —3)|A|=
o(n?) triangles containing an edge in A. The rest of Gy is Bs-free, thus contains o(n?)
triangles by a result of Alon and Shikhelman [I]. As each hyperedge of H, creates a triangle
in Gy, we have |E(Hs)|= o(n?), completing the proof. [ |

Claim 2.7. For any edge uv in G, v and v have at most 3t — 2 common neighbors in G.

Proof of Claim. Let us assume that wq,...,ws_; are each adjacent to both v and v in
G4. There is a hyperedge in H containing u, v and a third vertex, which is not among
w1, ..., ws_o without loss of generality. The hyperedge of H; containing uw; has a third

vertex w}. Then w] is not v, since then we would not pick vw; as an edge of Gy. If w] = wj,
we can assume without loss of generality that ¢ = 2. Similarly, the third vertex of the
hyperedge containing vw, is not w and if it is w;, we can assume that ¢ < 3.

Then we consider the third vertices of the hyperedges containing uws and vws, analo-
gously we can assume that none of them are w; with ¢ > 6. We continue this way, the third
vertices of the hyperedges containing uws;_o are not w; with ¢ > 3j. Note that those vertices
are not of the form ws;_o with k < j either, since we have already studied the single hyper-
edge containing uwsi_o and the single hyperedge containing uwsg_o, and the third vertex is
not ws;_o. Then the B; with vertices u, v and wq, wy, ..., ws_2 is the core of a Tr(By), a
contradiction completing the proof. [ |

Let us return to the proof of the theorem. The above claim implies that Gy is Bs;_1-free
(it is easy to see that Gy is actually Bi-free). Observe that |E(#H;)|= |E(G1)|, hence we
are done by Claim 27 unless |E(G1)|> n?/4 — o(n?). Therefore, by the Erdés-Simonovits
stability theorem [4, B, 28] we can obtain a complete bipartite graph with parts A and B,
by adding and deleting o(n?) edges. We may assume A and B form a maximum cut in G,
and thus each vertex has no more neighbors in its own part than in the other part.



Our aim now is to refine the estimates on both |E(H,)| and |E(G1)| sufficient to establish
the theorem. With that in mind, we let (, e be small but fixed positive constants, for which
( is chosen to be small relative to ¢.

We then partition the vertices of G into the following five sets: let A’ C A denote the set
of vertices in A that are adjacent in GG; to all but at most (n vertices of B; we define B’ C B
analogously. We next let A” C A\ A’ consist of the vertices adjacent to at least n/4 + (n
vertices of B’ in G, and B” C B\ B’ consist of the vertices adjacent to at least n/4 + (n
vertices of A" in G;. Finally, let X = V(G) \ (A’ U A” U B’ U B") consist of all remaining
vertices.

Since |E(G1)|> n?/4 — o(n?) and since o(n?) edges are missing between A and B or lie
within A or B, we have that |A|—|A’'|= o(n), |B|—|B’|= o(n), and both |A’| and |B’| lie
within o(n) of n/2. Consequently, every pair of vertices in A’ U A” and in B’ U B” has Q(n)
common neighbors in (G, hence both are independent sets in GG by Claim 2.7 Moreover, we
may also assume that | X U A” U B"|< (n.

Let x = | X|.
Claim 2.8. |E(G)|< n?/4 + z(—n/4 + 3(n).

Proof of Claim. Let u € X: trivially u has at most ¢(n neighbors in X U A” U B”. If u has
a neighbor v € A’ then u can be adjacent to the at most (n non-neighbors of v in B’ along
with at most 3t — 2 common neighbors by Claim 2.7l Similarly, if u has a neighbor in B’
then it has at most (n + 3t — 2 neighbors in A’. Consequently, if u has neighbors in both A’
and B’ then it has less than 3(n such neighbors in total, whereas if it only has neighbors in
one of A’, B’ it has at most n/4 + (n by definition of X. Combining these estimates gives
u’s degree is at most n/4 + 2¢n.
Since GG7 — X is bipartite, it follows that

|E(GY)| gwjtx- (%—FQ(n) :%2+x<—%+2+2&z> <nz2+x<—%+3§n)

|
Claim 2.9. Provided ( is suitably small compared to e, |FE(H)|< z - 2ten

Proof. Every edge of H,y has at least one vertex in X: if we choose some v € X and some
ve AU B"UX adjacent to u in Gy, then the edge uv is contained in at most 3t — 2 edges
of Hy. This gives us a bound of z(3t — 2)(n on the number of edges of Hsy with at least two
vertices in A” U B” U X.

To count the remaining hyperedges of Hs, for each u € X let Ho(u) denote the family
of edges of Hy containing u, a vertex in A’, and a vertex in B’. We then let A(u) denote
the set of vertices in A" and B(u) denote the set of vertices in B’ that are in a hyperedge in
Ho(u). Finally, let uq, ..., u, be the vertices of X, and color every edge vw between A’ U B’
with the subset of {1,..., z} for which vwu; € H (either H; or Hs).



Now assume that for v € A(u;) there exists wy,ws, ..., w1 € B(u;) such that vw,’s
color is not {i}. We claim that there is a T'r(B;) with u; and v as vertices in the smaller
part. For the edge u;v we use an arbitrary hyperedge containing u; and v, without loss of
generality the third vertex is not among wy, ..., w;. For the edge vw;, we use a hyperedge
containing v and w; and a vertex in X other than u;, which exists since vw;’s color includes
an index other than 4. Finally, since each edge u;w; lies in an edge of Hy (by definition of
B(u;)), u;w; is heavy and is therefore contained in an edge of H that does not include v,
and the third vertex of that edge cannot be in B’ (thus cannot be wy) as B’ is independent
in G.

By construction, |Ha(u;)| is bounded above by the number of heavy edges in the induced
subgraph G[A(u;)UB(u;)], and the argument in the preceding paragraph and symmetry show
the heavy edges form a subgraph with maximum degree at most . We now partition X into
sets L and S as follows: let S contain all vertices w; for which max{|A(w;)|, |B(w;)|} < en,
and let L = X\ S.

If u; € S then G[A(u;) U B(u;)] contains at most ¢ - min{|A(w;)|, |B(u;)|} < t-en heavy
edges, yielding that |J,cq H2(u)|< |S]-ten. Similarly, if u € L then G[A(u;)UB(u;)] contains
at most tn/2 heavy edges, so |J,c; H2(u)|< |L[-tn/2. The last step in our argument is to
show that |L|< ex: this is trivial if L = & so we assume otherwise.

Let u; € L: each vertex v € A(u;) is adjacent to at least |B(u;)|—t — (n > en —t —
(n > en/2 vertices of B(u;) with edges of color {i}, as ( < ¢/2. Thus, the subgraph
G[A(u;) U B(u;)] contains at least |A(w;)|-en/2 > €?n?/2 edges with color {i}, which all lie
inside G;. Since |E(G1)|< n?/4, it follows that |L|< (22)71.

Fix w; € L and u; € X, j # i: let vw be a heavy edge in G[A(u;) U B(u;)] whose label
includes j, where we assume v € A" and w € B'. If vwu; € Hy then vw is an edge in
G[A(u;j) U B(u;)]. All such edges must lie in the intersection G;; = G[(A(u;) N A(u;) U
(B(u;) N B(u;))]. The earlier arguments show the maximum degree in G; ; is at most 2¢ (else
some vertex lies on ¢ + 1 edges with a label other than ¢ or other than j). The definition of
A" and B’ implies that G, ; has at most 2t + (n vertices in each part, and therefore there are
fewer than (2t + (n)(2t) < 4t(n such heavy edges.

If vwu; ¢ Hs, then it lies in Hy and one of vu;, wu; lies in G. But Claim 2.7 implies u;
has less than (n 4+ 3t — 2 < 2(n neighbors in A’ and in B’, since it has neighbors in both
parts in GG. Since the neighbor in G; determines the heavy edge, we have at most 4¢n such
heavy edges.

Thus, j occurs in the color of at most 4(t + 1)(n heavy edges in G[A(u;) U B(u;)], and
therefore there must be at least |A(u;)|/(4(t + 1){n) > ¢/(4(t + 1)¢) indices j # i. In other
words, z — 1 > ¢/(4(t + 1)¢). Thus, provided ¢ < e*/(2(t + 1)), we have

1
< — <e-— <ex.
2¢? At +1)C

Combining the estimates, it follows that

|E(H2)|< 2(3t — 2)¢n + |S|ten + |L|tn/2 < xen + xten + extn/2 < x - 2ten.
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Provided ¢ and ( are small enough, Claims 2.8 and imply
|E(H)|< n?/4+ 2(—n/4+3(n + 2ten) < (n —1)*/4 — Q(n)

if x > 2. We suppose now that z = 2 and that |E(H)|> (n—1)%?/4 —en and aim to produce
a contradiction. Since (n —1)2/4 = (n — 2)?/4 + (2n — 3)/4 and ¢ is small, by Claim
we may assume that |E(G1)|> (n — 2)?/4 + 3n/8. Since G — X is bipartite, at least 3n/8
edges of GGy are incident with X = {uy,us}, so without loss of generality we suppose that
dg, (u2) > 3n/16 and that uy € A. Since | X U A” U B"|< (n, it follows that uy has Q(n)
neighbors in B’ in Gj.

But then Claim 2.7 implies us has no neighbors in A" in G. Consequently, every edge of
G in A’U B’ must form a triple in H with u;, implying u; is adjacent in G to A’U B’. This,
in turn, implies u; has fewer than, say, 2(n neighbors in A" or in B’ in G; (by Claim 2.7]
again). Thus, dg, (u1) < 3(n, so us has at least

sn
8

neighbors in B’. But then uy € A” by definition rather than X, the desired contradiction.
Therefore, if |E(H)|> (n — 1)?/4 — en then we must have z = 1, implying H = H; <

| (n—1)?/4], and that equality only holds when # is formed by adding a new vertex to every

edge of a maximum bipartite graph on n — 1 vertices. [

dg, (u3) — Cn > ACn > % (n
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