
ar
X

iv
:2

31
0.

05
60

1v
2 

 [
m

at
h.

C
O

] 
 1

1 
M

ar
 2

02
5

On forbidding graphs as traces of hypergraphs

Dániel Gerbner∗

Michael E. Picollelli†

Abstract

We say that a hypergraph H contains a graph H as a trace if there exists some set
S ⊂ V (H) such that H|S= {h ∩ S : h ∈ E(H)} contains a subhypergraph isomorphic
to H. We study the largest number of hyperedges in 3-uniform hypergraphs avoiding
some graph F as trace. In particular, we improve a bound given by Luo and Spiro in
the case F = C4, and obtain exact bounds for large n when F is a book graph.

1 Introduction

A fundamental theorem in extremal Combinatorics is due to Turán [29] and determines the
largest number of edges in n-vertex Kk-free graphs (the case k = 3 was proved earlier by
Mantel [20]). More generally, given a family F of graphs, ex(n,F) denotes the largest number
of edges in n-vertex graphs that do not contain any member of F as a (not necessarily
induced) subgraph, and if there is one forbidden subgraph, we use the simpler notation
ex(n, F ) instead of ex(n, {F}). The Erdős-Stone-Simonovits theorem [7, 9] determines the
asymptotics of ex(n,F) in the case F does not contain any bipartite graphs. The bipartite
case is much less understood and is the subject of extensive research, see [12] for a survey.

There is a natural analogue of this problem for hypergraphs and was already asked by
Turán. Given a family F of hypergraphs, we denote be exr(n,F) the largest number of edges
in an r-uniform hypergraph that does not contain any member of F . This problem is much
more complicated, for example we still do not know the asymptotics in the next obvious
question, when the complete 4-vertex 3-uniform hypergraph is forbidden. A relatively recent
line of research is to consider graph-based hypergraphs. This is an informal common name
of hypergraph classes that are obtained from graphs by enlarging their edges according to
some set of rules. Extremal results concerning such hypergraphs were collected in Section
5.2. in [17].
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The most studied graph-based hypergraphs are the following. The expansion F (r)+ of F
is obtained by adding r − 2 new vertices to each edge such that each new vertex is added
to only one edge, see [21] for a survey on expansions. A Berge copy of F is obtained by
adding r − 2 new vertices to each edge arbitrarily. The new vertices may be already in F
or not, and they may be added to any number of hyperedges. More precisely, we say that
a hypergraph F is a Berge copy of F if there is a bijection f between the edges of F and
the hyperedges of F such that for each edge e we have e ⊂ f(e). Observe that there can be
several non-isomorphic r-uniform Berge copies of F , the expansion being one of them. We
denote by Berge-F the family of Berge copies of F . Each Berge copy of F is defined by a
graph copy of F on a subset of the vertices, we call that the core of the Berge-F . Berge
hypergraphs were defined (generalizing the notion of hypergraph cycles due to Berge [2]) by
Gerbner and Palmer [15].

Here we study a third type of graph based hypergraphs. We denote by Tr(F ) the family
of Berge copies of F where the vertices added to the edges of F are each outside V (F ). In
other words, the trace of these Berge copies is F on V (F ), i.e., f(e) ∩ V (F ) = e for each
edge e of F . These were called induced Berge in [11].

The maximum number of hyperedges in hypergraphs with some forbidden traces have
long been studied. For example, the celebrated Sauer Lemma [25, 26, 30] deals with the case
H does not contain the power set of a t-element set as a trace.

The Turán problem for these graph-based hypergraphs is closely related to the so-called
generalized Turán problems. Given two graphs H and G, we denote by N (H,G) the num-
ber of copies of H contained in G. Given an integer n and graphs H and F , we let
ex(n,H, F ) = max{N (H,G) : G is an n-vertex F -free graph}. After several sporadic re-
sults, the systematic study of this function was initiated by Alon and Shikhelman [1].

It is easy to see that if we take the vertex sets of r-cliques in an F -free graph as hyperedges,
the resulting graph is Berge-F -free. Therefore, we have ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤
exr(n,Tr(F )) ≤ exr(n, F

(r)+), where the second and third inequality follows from F (r)+ ∈
Tr(F ) ⊂ Berge-F . Stronger connection was established for these cases: exr(n,Berge-F ) ≤
ex(n,Kr, F )+ex(n, F ) [16], exr(n,Tr(F )) = Θ(maxs≤k ex(n,Ks, F )) [11] and exr(n, F

(r)+) =
ex(n,Kr, F ) +O(nr−1) [13].

The first to study forbidden graphs as traces were Mubayi and Zhao [22]. They studied
the case F = Kk (in fact they considered the more general case when complete hypergraphs
are forbidden as traces). They observed that in the case r < k we have exr(n,Tr(Kk)) =
exr(n, F

(r)+) for sufficiently large n, and the exact value of that was determined by Pikhurko
[23]. In the case r ≥ k, Mubayi and Zhao conjectured that the extremal construction for
sufficiently large n is the following. We take a Kk-free graph on n− r + k − 1 vertices with
ex(n,Kk−1, Kk) copies of Kk−1. Note that this is the so-called Turán graph by a theorem of
Zykov [31]. Then we take a set U of r−k+1 new vertices, and pick as hyperedges the union
of U with the vertex set of any (r − 1)-clique of the Turán graph. Mubayi and Zhao proved
this conjecture asymptotically if k = 3, i.e., they showed that exr(n,Tr(K3)) = n2/4+ o(n2).
They proved this exactly if r = 3. An earlier version of this paper contained a proof of the
k = 3 case of their conjecture for any r, i.e., the proof of exr(n,Tr(K3)) = ⌊(n− r + 2)2/4⌋,
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if n is sufficiently large. However, this statement follows from an old theorem of Frankl and
Pach [10] for every n, which also implies the extremal examples are constructed by adding a
common set of r−2 vertices to every edge of maximum complete bipartite graph on n−r+2
vertices.

We extend this result to book graphs in the 3-uniform case. The book graph Bt consists
of t triangles sharing an edge, i.e., Bt = K1,1,t.

Theorem 1.1. For every t, if n is sufficiently large, then we have ex3(n,Tr(Bt)) = ⌊(n −
1)2/4⌋, with equality only for the 3-uniform hypergraph formed by adding a common vertex

to every edge of a maximum complete bipartite graph on n− 1 vertices.

We remark that for any non-star F and any r and n we have exr(n,Tr(F )) ≥ ex(n− r+
2, F ), since if we add the same r− 2 new vertices to each edge of an F -free graph, we obtain
a Tr(F )-free hypergraph.

Other specific graphs F such that exr(n,Tr(F )) has been studied include stars [11, 24] and
K2,t [19, 24]. In particular, Luo and Spiro [19] showed n3/2/2 + o(n3/2) ≤ ex3(n,Tr(C4)) ≤
5n3/2/6 + o(n3/2). We improve the constant factor in the main term of the upper bound.

Theorem 1.2. ex3(n,Tr(C4)) ≤ (1 +
√
2)n3/2/4 + o(n3/2).

Finally, we show a connection of exr(Tr(n, F )) and generalized supersaturation. Given
a graph F and a positive integer m, the supersaturation problem deals with the minimum
number of copies of F in n-vertex graphs with at least m edges. In the generalized version,
we are also given a graph H and the n-vertex graphs contain at least m copies of H . Such
problems were studied in [3, 14, 18]. Note that this is equivalent to studying the most number
of copies of H when we are given an upper bound on the number of copies of F .

Proposition 1.3. There is an n-vertex graph G with O(n|V (F )|−1) copies of F such that

exr(n,Tr(F )) ≤ N (Kr, G).

Obviously this connection to generalized Turán problems is less useful than the previ-
ously mentioned ones, partly because there are less results on generalized supersaturation
problems. In the non-degenerate case when χ(F ) > r, a special case of a result of Halfpap
and Palmer [18] states that N (F,G) = o(n|V (F )|) implies N (Kr, G) ≤ (1+ o(1))ex(n,Kr, F ).
Therefore, with Proposition 1.3 we obtain the (already known) asymptotics of ex(n,Tr(F ))
in this case. We could not find any application of Proposition 1.3 that gives new results,
although it plays a small role in the proof of Theorem 1.1.

2 Proofs

The shadow graph of a hypergraph H has vertex set V (H) and uv is an edge if and only if
there is a hyperedge in H containing both u and v. If H contains a Tr(F ) (or any Berge-
F ), then the core of that is a copy of F in the shadow graph. The converse is not true,
for example if H is r-uniform, then the shadow graph contains copies of Kr, even if H is
Berge-Kr-free.
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Note that in the shadow graph of a Tr(F )-free hypergraph, each copy of F has to contain
an edge uv with the property that each hyperedge containing uv contains another vertex
from that copy of F . In multiple proofs below, we will pick such an edge for each copy of F
and call it the special edge of that copy of F .

We can show the following generalization of Proposition 1.3.

Proposition 2.1. If H is Tr(F )-free, then the shadow graph G of H contains O(n|V (F )|−1)
copies of F .

Note that hyperedges of H create distinct copies of Kr in G, thus |E(H)|≤ N (Kr, G),
hence the above proposition implies Proposition 1.3.

Proof. Let us fix an edge uv and count the number of copies of F that have uv as special
edge. Let h be a hyperedge containing u and v. Then each copy of F containing uv contains
also at least one of the other r − 2 vertices of h. Therefore, we can count the copies of F
containing uv by picking a non-empty subset of the other vertices of h (O(1) ways), then
picking the rest of the vertices of F (O(n|V (F )|−3) ways) and then picking a copy of F on those
|V (F )| vertices (O(1) ways). As there are O(n2) special edges, the proof is complete. �

Let us continue with the proof of Theorem 1.2. We will use the following lemma due to
Luo and Spiro (Lemma 3.1 in [19]). We say that a subset of a hyperedge is light if exactly
one hyperedge contains it, and heavy otherwise.

Lemma 2.2 (Luo, Spiro [19]). Let H be a Tr(C4)-free 3-uniform hypergraph. Let H2 denote

the subhypergraph of H consisting of the hyperedges that do not contain light edges. Then

every edge of the shadow graph is in at most two hyperedges of H2.

We restate Theorem 1.2 here for convenience.

Theorem. ex3(n,Tr(C4)) ≤ (1 +
√
2)n3/2/4 + o(n3/2).

We denote hyperedges consisting of vertices u, v, w by uvw. Note that there are 4-uniform
hyperedges in the proof below, but we do not use the analogous notation, because we use
that for 4-cycles. We let uvwx denote the 4-cycle with edges uv, vw, wx, xu.

Proof. Let H be a 3-uniform Tr(C4)-free hypergraph, and let G denote its shadow graph.
For vertices u, v of H, we denote by d3(u, v) the number of hyperedges containing both u
and v, and by d2(u, v) the number of common neighbors of u and v in G.

Claim 2.3. d2(u, v) ≤ d3(u, v) + 3.

Proof of Claim. Assume we have four vertices w1, w2, w3, w4 such that for every i, uvwi is
not a hyperedge in H, yet uwi and vwi are in G. Consider the 4-cycle uw1vw2 in G. Since
it is not the core of a Tr(C4) in H, there is a hyperedge inside these four vertices. Since no
hyperedge contains u, v and wi, we have that either uw1w2 or vw1w2 is in H. This holds
for each pair wiwj, which implies that the 4-cycle w1w2w3w4 is the core of a Tr(C4), where
each edge is extended by u or v to a hyperedge. �
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Let us return to the proof of the theorem. Consider now the triangles in G such that the
vertices do not form a hyperedge of H. For each edge of G, there are at most three such
triangles, and each triangle has three edges, thus there are at most |E(G)| such triangles.
This implies that the total number of triangles in G is at most |E(G)|+|E(H)|= O(n3/2).

Consider now two non-adjacent vertices u and v. By Claim 2.3 we have d2(u, v) ≤ 3.
Observe that if w1 and w2 are in the common neighborhood of u and v, then at least one
of uw1w2 and vw1w2 is in H (because of the 4-cycle uw1vw2). In particular, w1 and w2 are
adjacent in G. Assume that d2(u, v) = 3 and let w1, w2, w3 be the common neighbors of u
and v. Then these three vertices form a triangle, which we denote by T (u, v).

Assume that uw1w2, uw1w3 and uw2w3 are each in H. Since uw1vw2 is not a core of a
Tr(C4), one of the edges incident to v, say vw1 is contained only in hyperedges of H inside
this 4-cycle, which must be vw1w2 since uv is not in the shadow graph of H. Consider now
the 4-cycle uw1vw3. By similar reasoning, either vw1 or vw3 is only in hyperedges inside
this 4-cycle, thus vw1w3 ∈ H. This contradicts that vw1 is contained only in vw1w2 in H.
Therefore, uwiwj is not in H for some 1 ≤ i < j ≤ 3.

We obtained that u (and analogously v) is the common neighbor of the endpoints of an
edge wiwj in G such that the triangle uwiwj does not form a hyperedge in H, and wiwj is in
a triangle in G. For each edge of G, there are at most 3 such vertices, thus for each triangle in
G, there are at most 27 such pairs. Therefore, the number of pairs (u, v) such that uv is not
an edge in G and u and v have three common neighbors is at most 27N (K3, G) = O(n3/2).
Let E ′ denote the set of non-adjacent pairs u, v with d2(u, v) = 3. We have

∑

uv∈E(G) d2(u, v) ≤
∑

uv∈E(G) d3(u, v)+3 = 3|H|+3|E(G)|= O(n3/2),
∑

(u,v)∈E′ d2(u, v) =

3|E ′|= O(n3/2) and
∑

(u,v)6∈E(G)∪E′ d2(u, v) ≤
∑

(u,v)6∈E(G)∪E′ 2 ≤ 2
(

n
2

)

. Therefore,

∑

u,v∈V (G)

d2(u, v) =
∑

uv∈E(G)

d2(u, v) +
∑

(u,v)∈E′

d2(u, v) +
∑

(u,v)6∈E(G)∪E′

d2(u, v) ≤ (2 + o(1))

(

n

2

)

.

This implies that
∑

v∈V (G)

(

d(v)
2

)

≤ (2 + o(1))
(

n
2

)

, and then |E(G)|≤ (1 + o(1))
√
2
2
n3/2

follows by Jensen’s inequality.

Let H1 be the subhypergraph consisting of the hyperedges that contain a light edge. Let
us pick a light edge from each hyperedge of H1 and let G1 denote the resulting graph. Then
G1 is C4-free, thus |E(H1)|= |E(G1)|≤ ex(n, C4) = (1 + o(1))n3/2/2.

Let H2 denote the rest of the hyperedges of H and G2 denote the shadow graph of H2.
Then G2 may contain copies of C4, but each copy uvwx of C4 contains an edge uv such that
each hyperedge in H that contains u and v also contains w or x. We say that uv is a special

edge for this C4. In particular, u and v are contained together in at most two hyperedges of
H, and since uv ∈ E(G2), we have that uvw, uvx ∈ H (with at least one of them in H2).
This also implies that there is a K4 on u, v, w, x in G.

Let us consider a 4-cycle uvwx in G2 with special edge uv, and assume that both uvw
and uvx are in H2. Then the K4 on u, v, w, x is in G2 and the 4-cycle uwvx also has a
special edge, without loss of generality uw. This shows that uwx ∈ H (since uw is in G2).
Then uwx ∈ H2 since each subedge is in G2. Observe that we have found two hyperedges
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in H2 containing ux. Now we have two possibilities. Either there are no further hyperedges
containing ux, or there are some hyperedges containing ux (they must be in H1 because of
Lemma 2.2).

Now we move the hyperedges uvw, uvx and uwx to H1 and the edges uv and uw to G1.
In the first case, if ux is not contained in any hyperedges of H1, we also move ux to G1. We
repeat this as long as we can. We denote the hypergraph we obtain this way from H1 by H′

1

and the graph we obtain from G1 by G′
1.

Claim 2.4. G′
1 is C4-free.

Proof of Claim. First we show that each hyperedge of H contains at most one edge of G′
1,

except for the hyperedges added to H′
1. This holds for G1 since the edges are light and we

picked only one from each hyperedge. The hyperedges of H1 do not contain any of the edges
uv in E(G′

1)\E(G1), since the only hyperedges of H that contain uv and uw (and ux if that
is also added) are uvw, uwx and uvx, and they are in H2.

Observe that the special edge ab of a C4 abcd in G′
1 would be contained in a hyperedge

that contains two edges of G′
1, thus in a hyperedge that was added to H′

1. Since the only
hyperedges containing ab are abc and abd, we have that ab is moved from G2 to G′

1 together
with, say ad (and potentially ac). This implies that abc ∈ H2. Then bc ∈ E(G2), thus bc
was also moved to G′

1. But that movement cannot be at the same time when we moved ab
and ad (and potentially ac) to G′

1, thus cannot be at the same time when we moved abc to
H′

1. But we move each edge together with the two hyperedges of H2 that contain that edge,
thus we have to move ab at the same time when we move abc, a contradiction. �

Let us return to the proof of the theorem. Let f = |E(G′
1) \ E(G1)|. The number

of hyperedges in H′
1 is at most the number of edges in G1 plus 3/2 times the number of

new edges in G′
1, i.e., |E(H′

1)|≤ (1 + o(1))n3/2/2 + f/2. We also have |E(H1)|= |E(G1)|≤
(1 + o(1))n3/2/2− f .

Let H′
2 denote the hyperedges of H that are not in H′

1, thus H′
2 is a subhypergraph of

H2. Let G′
2 denote the graph of we obtain from G2 by deleting the edges we moved to G′

1.
We have that |E(G′

2)|= |E(G2)|−f . Recall that by Lemma 2.2, each edge of G2 is in at most
two hyperedges of H2.

Let Y denote the set of edges in G′
2 that are in exactly two hyperedges ofH2 and g := |Y |.

We next provide an upper bound on g in terms of f and edges of G′
2 that are not in Y .

Let uv ∈ Y , then the two corresponding hyperedges uvw and uvz create a C4 with a
chord uv in G2. That C4 has a special edge, say uw, then uwz is also in H (if there are
multiple special edges and one of them was moved to G′

1, we pick that as uw). If uwz 6∈ H2,
then uw ∈ G′

2 and is contained in less than two hyperedges of H2. We say that uw belongs

to uv.

Claim 2.5. Each edge uw not in Y belongs to at most one edge uv.

Proof of Claim. We have that uw is a special edge of a 4-cycle uwvz, and uwz 6∈ H2 implies
that wz must be a light edge. Observe that uw can belong only to an edge in the unique
hyperedge in H2 that contains u, w, thus to uv or wv. If uw belongs to wv as well, then uw
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is the special edge of a 4-cycle of the form uwz′v in G2. We have z′ 6= z since wz is light.
But then uwz′ must be in H because of uwzv′, but cannot be in H because uw is only in
hyperedges inside uvwz. �

Assume now that uwz ∈ H2 and we have not moved uw to G′
1. The only reasons can

be that we have already moved at least one of the edges of the K4 on u, v, w, z to G′
1, or we

have already moved at least one of the three hyperedges we would have moved with it to
H′

1, because of another subedge, another K4. Let x be the fourth vertex of this other K4.
Note that if we have moved one of those edges, we have also moved all hyperedges of H2

containing that edge, in particular we have moved at least one of the hyperedges uwv, uwz
and uvz.

No matter which of the hyperedges uwv, uwz and uvz we have moved earlier, it contains
two subedges containing u. Each such subsedge is contained by two of the hyperedges uwv,
uwz and uvz. Therefore, none of the hyperedges in H2 containing such a subedge contains x.
This implies that at least two 3-sets containing x inside the K4 are not in H2. But we only
move things to H′

1 if at least three hyperedges inside the K4 are in H2, a contradiction. This
implies that we have not moved any of these three hyperedges uwv, uwz and uvz earlier. But
these hyperedges in H2 and whenever we move an edge to G′

1, we also move the hyperedges
that contain that edge from H2 to H′

1, thus each subedges, each edges inside u, v, w, z have
not been moved, therefore, we could move uw to G′

1, a contradiction.
Finally, assume that uwz ∈ H2 and we have moved uw to G′

1. It was because of the K4

on u, v, w, z since the hyperedges containing u, w are uwv and uwz. Then we also moved at
least one adjacent edge to G′

1 at the same time. If we moved three edges to G′
1, then there

are three edges inside the K4 that remain in G′
2. If we moved two edges to G′

1, then there
are four edges inside the K4 that remain in G′

2. This can happen at most f/2 times, thus
there are at most 2f edges in Y where this occurs.

We have obtained for each edge of G′
2 in Y a unique edge not in Y , with at most

2f exceptions. This implies that g = |Y |≤ |E(G′
2)|/2 + f = |E(G2)|/2 + f/2. Then in

G2, we have at most g + f ≤ |E(G2)|/2 + 3f/2 edges that are contained in exactly two
hyperedges of H2. This shows that the total number of edge-hyperedge incidences between
G2 and H2 is at most 3|E(G2)|/2 + 3f/2, hence |E(H2)|≤ |E(G2)|/2 + f/2. Recall that
|E(G1)|+f/2 = |E(G′

1)|−f/2 ≤ (1 + o(1))n3/2/2 − f/2 and |E(G2)|≤ |E(G)|−|E(G1)|≤
(1 + o(1))

√
2
2
n3/2 − |E(G1)|.

Combining the upper bounds we obtained on |E(H1)| and |E(H2)|, we obtain that

|E(H)|= |E(H1)|+|E(H2)|≤ |E(G1)|+|E(G2)|/2 + f/2 ≤ |E(G1)|
2

+ |E(G)|
2

+ f/2 ≤ |E(G1)|
2

+

(1 + o(1))
√
2
4
n3/2 + f/2 = (1 + o(1))n3/2/4 + (1 + o(1))

√
2
4
n3/2. �

We finish the paper by proving Theorem 1.1. Recall that it states ex3(n,Tr(Bt)) =
⌊(n− 1)2/4⌋ for sufficiently large n.

Proof of Theorem 1.1. The lower bound is given by taking a complete bipartite graph on
n− 1 vertices, and adding the same new vertex to each edge.

Let H be a Tr(Bt)-free hypergraph and let H1 be the subhypergraph consisting of the
hyperedges having a light subedge. Let G1 be a graph obtained by taking a light subedge
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for each hyperedge in H1. Let H2 denote the rest of the hyperedges of H and G2 denote the
shadow graph of H2. Let G denote the shadow graph of H.

Claim 2.6. |E(H2)|= o(n2).

Proof of Claim. G2 contains O(nt+1) copies of Bt by Proposition 2.1. Hence by the removal
lemma [6] there is a set A of o(n2) edges in G2 such that each copy of Bt contains an edge
from A.

We claim that each edge of G2 is in at most 3t− 3 hyperedges of H2. We use a lemma of
Luo and Spiro [19], who showed the analogous statement in the case of forbidden Tr(K2,t).
More precisely, they showed that if an edge xy is in at least 3t − 2 hyperedges of H2, then
there is a Tr(K2,t) in H such that x and y are the vertices in the smaller part of the core
K2,t. To find a Tr(Bt) in H, we need to find a hyperedge containing x, y such that the third
vertex of that hyperedge is not in this core K2,t. This is doable if t > 1, since we can pick
any of the 2t − 2 hyperedges containing x, y and avoiding the other t vertices of the core
K2,t.

Now we are ready to count the number of triangles in G2. There are at most (3t−3)|A|=
o(n2) triangles containing an edge in A. The rest of G2 is Bt-free, thus contains o(n2)
triangles by a result of Alon and Shikhelman [1]. As each hyperedge of H2 creates a triangle
in G2, we have |E(H2)|= o(n2), completing the proof. �

Claim 2.7. For any edge uv in G, u and v have at most 3t− 2 common neighbors in G1.

Proof of Claim. Let us assume that w1, . . . , w3t−1 are each adjacent to both u and v in
G1. There is a hyperedge in H containing u, v and a third vertex, which is not among
w1, . . . , w3t−2 without loss of generality. The hyperedge of H1 containing uw1 has a third
vertex w′

1. Then w′
1 is not v, since then we would not pick vw1 as an edge of G1. If w

′
1 = wi,

we can assume without loss of generality that i = 2. Similarly, the third vertex of the
hyperedge containing vw1 is not u and if it is wi, we can assume that i ≤ 3.

Then we consider the third vertices of the hyperedges containing uw3 and vw3, analo-
gously we can assume that none of them are wi with i > 6. We continue this way, the third
vertices of the hyperedges containing uw3j−2 are not wi with i > 3j. Note that those vertices
are not of the form w3k−2 with k < j either, since we have already studied the single hyper-
edge containing uw3k−2 and the single hyperedge containing uw3k−2, and the third vertex is
not w3j−2. Then the Bt with vertices u, v and w1, w4, . . . , w3t−2 is the core of a Tr(Bt), a
contradiction completing the proof. �

Let us return to the proof of the theorem. The above claim implies that G1 is B3t−1-free
(it is easy to see that G1 is actually Bt-free). Observe that |E(H1)|= |E(G1)|, hence we
are done by Claim 2.7 unless |E(G1)|≥ n2/4 − o(n2). Therefore, by the Erdős-Simonovits
stability theorem [4, 5, 28] we can obtain a complete bipartite graph with parts A and B,
by adding and deleting o(n2) edges. We may assume A and B form a maximum cut in G1,
and thus each vertex has no more neighbors in its own part than in the other part.
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Our aim now is to refine the estimates on both |E(H2)| and |E(G1)| sufficient to establish
the theorem. With that in mind, we let ζ, ε be small but fixed positive constants, for which
ζ is chosen to be small relative to ε.

We then partition the vertices of G into the following five sets: let A′ ⊂ A denote the set
of vertices in A that are adjacent in G1 to all but at most ζn vertices of B; we define B′ ⊆ B
analogously. We next let A′′ ⊆ A \ A′ consist of the vertices adjacent to at least n/4 + ζn
vertices of B′ in G1, and B′′ ⊆ B \ B′ consist of the vertices adjacent to at least n/4 + ζn
vertices of A′ in G1. Finally, let X = V (G) \ (A′ ∪ A′′ ∪ B′ ∪ B′′) consist of all remaining
vertices.

Since |E(G1)|≥ n2/4 − o(n2) and since o(n2) edges are missing between A and B or lie
within A or B, we have that |A|−|A′|= o(n), |B|−|B′|= o(n), and both |A′| and |B′| lie
within o(n) of n/2. Consequently, every pair of vertices in A′ ∪A′′ and in B′ ∪B′′ has Ω(n)
common neighbors in G1, hence both are independent sets in G by Claim 2.7. Moreover, we
may also assume that |X ∪ A′′ ∪ B′′|≤ ζn.

Let x = |X|.
Claim 2.8. |E(G1)|≤ n2/4 + x(−n/4 + 3ζn).

Proof of Claim. Let u ∈ X : trivially u has at most ζn neighbors in X ∪ A′′ ∪ B′′. If u has
a neighbor v ∈ A′ then u can be adjacent to the at most ζn non-neighbors of v in B′ along
with at most 3t − 2 common neighbors by Claim 2.7. Similarly, if u has a neighbor in B′

then it has at most ζn+ 3t− 2 neighbors in A′. Consequently, if u has neighbors in both A′

and B′ then it has less than 3ζn such neighbors in total, whereas if it only has neighbors in
one of A′, B′, it has at most n/4 + ζn by definition of X . Combining these estimates gives
u’s degree is at most n/4 + 2ζn.

Since G1 −X is bipartite, it follows that

|E(G1)| ≤
(n− x)2

4
+ x ·

(n

4
+ 2ζn

)

=
n2

4
+ x

(

−n

4
+

x

4
+ 2ζn

)

<
n2

4
+ x

(

−n

4
+ 3ζn

)

�

Claim 2.9. Provided ζ is suitably small compared to ε, |E(H2)|≤ x · 2tεn

Proof. Every edge of H2 has at least one vertex in X : if we choose some u ∈ X and some
v ∈ A′′ ∪B′′ ∪X adjacent to u in G2, then the edge uv is contained in at most 3t− 2 edges
of H2. This gives us a bound of x(3t− 2)ζn on the number of edges of H2 with at least two
vertices in A′′ ∪ B′′ ∪X .

To count the remaining hyperedges of H2, for each u ∈ X let H2(u) denote the family
of edges of H2 containing u, a vertex in A′, and a vertex in B′. We then let A(u) denote
the set of vertices in A′ and B(u) denote the set of vertices in B′ that are in a hyperedge in
H2(u). Finally, let u1, . . . , ux be the vertices of X , and color every edge vw between A′ ∪B′

with the subset of {1, . . . , x} for which vwui ∈ H (either H1 or H2).

9



Now assume that for v ∈ A(ui) there exists w1, w2, . . . , wt+1 ∈ B(ui) such that vwj’s
color is not {i}. We claim that there is a Tr(Bt) with ui and v as vertices in the smaller
part. For the edge uiv we use an arbitrary hyperedge containing ui and v, without loss of
generality the third vertex is not among w1, . . . , wt. For the edge vwj, we use a hyperedge
containing v and wj and a vertex in X other than ui, which exists since vwj’s color includes
an index other than i. Finally, since each edge uiwj lies in an edge of H2 (by definition of
B(ui)), uiwj is heavy and is therefore contained in an edge of H that does not include v,
and the third vertex of that edge cannot be in B′ (thus cannot be wℓ) as B

′ is independent
in G.

By construction, |H2(ui)| is bounded above by the number of heavy edges in the induced
subgraph G[A(ui)∪B(ui)], and the argument in the preceding paragraph and symmetry show
the heavy edges form a subgraph with maximum degree at most t. We now partition X into
sets L and S as follows: let S contain all vertices ui for which max{|A(ui)|, |B(ui)|} < εn,
and let L = X \ S.

If ui ∈ S then G[A(ui) ∪ B(ui)] contains at most t ·min{|A(ui)|, |B(ui)|} ≤ t · εn heavy
edges, yielding that |⋃u∈S H2(u)|≤ |S|·tεn. Similarly, if u ∈ L then G[A(ui)∪B(ui)] contains
at most tn/2 heavy edges, so |⋃u∈L H2(u)|≤ |L|·tn/2. The last step in our argument is to
show that |L|≤ εx: this is trivial if L = ∅ so we assume otherwise.

Let ui ∈ L: each vertex v ∈ A(ui) is adjacent to at least |B(ui)|−t − ζn ≥ εn − t −
ζn > εn/2 vertices of B(ui) with edges of color {i}, as ζ < ε/2. Thus, the subgraph
G[A(ui) ∪ B(ui)] contains at least |A(ui)|·εn/2 ≥ ε2n2/2 edges with color {i}, which all lie
inside G1. Since |E(G1)|≤ n2/4, it follows that |L|≤ (2ε2)−1.

Fix ui ∈ L and uj ∈ X , j 6= i: let vw be a heavy edge in G[A(ui) ∪ B(ui)] whose label
includes j, where we assume v ∈ A′ and w ∈ B′. If vwuj ∈ H2 then vw is an edge in
G[A(uj) ∪ B(uj)]. All such edges must lie in the intersection Gi,j = G[(A(ui) ∩ A(uj) ∪
(B(ui)∩B(uj))]. The earlier arguments show the maximum degree in Gi,j is at most 2t (else
some vertex lies on t + 1 edges with a label other than i or other than j). The definition of
A′ and B′ implies that Gi,j has at most 2t+ ζn vertices in each part, and therefore there are
fewer than (2t+ ζn)(2t) < 4tζn such heavy edges.

If vwuj /∈ H2, then it lies in H1 and one of vuj, wuj lies in G1. But Claim 2.7 implies uj

has less than ζn + 3t − 2 < 2ζn neighbors in A′ and in B′, since it has neighbors in both
parts in G. Since the neighbor in G1 determines the heavy edge, we have at most 4ζn such
heavy edges.

Thus, j occurs in the color of at most 4(t + 1)ζn heavy edges in G[A(ui) ∪ B(uj)], and
therefore there must be at least |A(uj)|/(4(t+ 1)ζn) ≥ ε/(4(t+ 1)ζ) indices j 6= i. In other
words, x− 1 ≥ ε/(4(t+ 1)ζ). Thus, provided ζ ≤ ε4/(2(t+ 1)), we have

|L|≤ 1

2ε2
≤ ε · ε

4(t+ 1)ζ
≤ εx.

Combining the estimates, it follows that

|E(H2)|≤ x(3t− 2)ζn+ |S|tεn+ |L|tn/2 ≤ xεn + xtεn + εxtn/2 ≤ x · 2tεn.
�
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Provided ε and ζ are small enough, Claims 2.8 and 2.9 imply

|E(H)|≤ n2/4 + x(−n/4 + 3ζn+ 2tεn) < (n− 1)2/4− Ω(n)

if x > 2. We suppose now that x = 2 and that |E(H)|≥ (n− 1)2/4− εn and aim to produce
a contradiction. Since (n − 1)2/4 = (n − 2)2/4 + (2n − 3)/4 and ε is small, by Claim 2.9
we may assume that |E(G1)|> (n − 2)2/4 + 3n/8. Since G − X is bipartite, at least 3n/8
edges of G1 are incident with X = {u1, u2}, so without loss of generality we suppose that
dG1

(u2) ≥ 3n/16 and that u2 ∈ A. Since |X ∪ A′′ ∪ B′′|≤ ζn, it follows that u2 has Ω(n)
neighbors in B′ in G1.

But then Claim 2.7 implies u2 has no neighbors in A′ in G. Consequently, every edge of
G1 in A′∪B′ must form a triple in H with u1, implying u1 is adjacent in G to A′∪B′. This,
in turn, implies u1 has fewer than, say, 2ζn neighbors in A′ or in B′ in G1 (by Claim 2.7
again). Thus, dG1

(u1) < 3ζn, so u2 has at least

dG1
(u2)− ζn ≥ 3n

8
− 4ζn >

n

4
+ ζn

neighbors in B′. But then u2 ∈ A′′ by definition rather than X , the desired contradiction.
Therefore, if |E(H)|≥ (n − 1)2/4 − εn then we must have x = 1, implying H = H1 ≤

⌊(n−1)2/4⌋, and that equality only holds when H is formed by adding a new vertex to every
edge of a maximum bipartite graph on n− 1 vertices. �

Funding: Research supported by the National Research, Development and Innovation
Office - NKFIH under the grants FK 132060 and KKP-133819.

References

[1] N. Alon, C. Shikhelman. Many T copies in H-free graphs. Journal of Combinatorial

Theory, Series B, 121, 146–172, 2016.

[2] C. Berge, Hypergraphes: combinatoire des ensembles finis, Gauthier-Villars, 1987.

[3] J. Cutler, J.D. Nir, A.J. Radcliffe, (2022). Supersaturation for subgraph counts. Graphs

and Combinatorics, 38(3), 65.
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