
Robust Network Coding in Transport Networks
Bence Ladóczki∗, Carolina Fernandez†, Oscar Moya†, Péter Babarczi∗, János Tapolcai∗, Daniel Guija†
∗MTA-BME Future Internet Research Group, Budapest University of Technology and Economics (BME), Hungary

†Distributed Applications and Networks Area (DANA), i2CAT Foundation, Barcelona, Catalonia (Spain)
∗{ladoczki, babarczi, tapolcai}@tmit.bme.hu, †{carolina.fernandez, oscar.moya, dani.guija}@i2cat.net

Abstract—After several years of ignorance in practice, Network
Coding (NC) is gaining more and more attention in wireless
networks. On the other hand, performing complex in-network op-
erations requires extra hardware, which is still a real barrier of a
widespread deployment of network coding in transport networks.
However, recent technological trends, such as Network Function
Virtualization, enable the deployment of network coding capable
middleboxes at network nodes without complicated hardware-
update, while Software-defined Networking (SDN) makes it
possible to steer traffic to these middleboxes. Furthermore, a
practical networking scenario was recently identified – namely
the single link failure resilient case when user data can be split
into two parts – for which simple coding operation at the edge
nodes is sufficient to reach all benefits that network coding can
provide. Built on these results, we demonstrate in the GÉANT
OpenFlow Facility that network coding can be easily deployed in
transport networks and brings real benefits for video streaming
and distributed storage use cases.

Index Terms—network coding, instantaneous recovery, net-
work function virtualization, software defined networks, GÉANT

I. INTRODUCTION

Although the benefits of network coding were already
demonstrated in wireless networks [1], it took a long jour-
ney to manifest its real benefits for transport networks (i.e.,
increased throughput, lower computational complexity, robust-
ness against failures, security). This effort evolved from a
purely information theoretic perspective, through a really effi-
cient algebraic representation, to a combinatorial approach [2].
We demonstrate in the pan-European research and education
network (GÉANT) that NC is a viable approach for providing
instantaneous recovery from link failures, while it can also be
applied for additional security in storage systems.

In transport networks, a survivable routing scheme has three
utmost important features: fast recovery time, simplicity and
capacity efficiency. The 1 + 1 path protection – the most
widespread single link failure resilient protection method –
sends the user data along two disjoint paths (primary and
backup). It is simple to calculate a routing (i.e., disjoint path-
pair) and it provides fast recovery from any single link failure.
On the other hand, it consumes twice as much capacity as the
primary path. In [2] the Resilient Flow Decomposition (RFD)

This demo has been produced with the financial assistance of the European
Union under the FP7 GÉANT project grant agreement number 605243 as part
of the MINERVA Open Call project. P. Babarczi was supported by the János
Bolyai Research Scholarship of the Hungarian Academy of Sciences (MTA).

algorithm, based on network coding, proved able of maintain-
ing simplicity and fast recovery as in 1 + 1, while reducing
its capacity consumption by 20 − 30%. RFD reaches these
merits by showing that each optimal single link failure resilient
routing – including 1+1 – can be decomposed into three end-
to-end directed acyclic graphs (DAGs). Thus, splitting the data
at the source node into two parts A and B, incorporating
redundancy through A ⊕ B (⊕ denotes the exclusive OR
(XOR) binary operator), and sending the three flows through
these DAGs (which are in fact the robust network codes)
ensures single failure resilience for the connections (shown in
Fig. 1(a)). The RFD recovery does not require packet retrans-
mission or flow rerouting (i.e., the time-consuming post-failure
signaling is completely eliminated from the recovery process),
performing instantaneous recovery upon failure.

In this demonstration, we present the benefits of NC in
transport networks through our RFD implementation on the
well known butterfly topology, using the GÉANT OpenFlow
Facility (GOFF) for the video streaming and distributed stor-
age use cases [3].

II. ARCHITECTURE

In RFD, coding and decoding is required only at the source
and destination nodes. At the intermediate nodes the three
DAGs can be routed independently from each other, where
at most splitting and merging have to be performed besides
simple forwarding. In order to identify the DAGs (flows) A, B
and A⊕B we used a stacked MPLS label hierarchy as in [4]:
the outer label identifies the DAG, while the other two contain
the sequence number of A and B, respectively (or 0 if the flow
is not included). Thus, for a successful RFD implementation,
the following Network Functions (NFs) are required [5]:

• Splitter (M0): duplicates incoming packets and forwards
them through two different links (e.g., s and v4 in Fig. 1).

• Sequencer (M1): divides the input stream at the source
node s into flows A and B (e.g., based on parity) and
marks each with its own MPLS label.

• Merger (M2): receives the same flow (i.e., with the same
MPLS label) on two incoming links and forwards one
of them (or the intact one upon link failure) through its
single outgoing link. See nodes v3 and t in Fig. 1.

• Coding/Decoding (M3): these NFs are similar, as they
perform fast packet processing using XOR operation and
queues to handle the incoming packets. They are always
placed at s and t.



s t

v6v2

v5

v4v3

v1
A ⊕ B

B

A

M3M1

M0M2

M2 M3M0

(a) The single link failure resilient, robust network coding based solution
of RFD (i.e., three end-to-end DAGs in the butterfly topology).

ZAG

FRAVIE

AMS

LONVM

VMVM

VM VM

M3M1

M0M2

M2 M3 M0

POX

st v6 v2

v5 v4v3

v1

(b) The mapping of the butterfly to the physical GOFF
topology and the corresponding NF placement at the VMs.

Fig. 1. Experimental setup in GÉANT (the OpenFlow switches and corresponding VMs are in London, Zagreb, Vienna, Frankfurt and Amsterdam).

III. USE CASES FOR DEMONSTRATION

In order to prove the usefulness and performance of RFD in
transport networks we envisioned a pair of typical applications:
video streaming and distributed storage. The experiments are
deployed on the GOFF, on top of a 5-node full-mesh topology
(see Fig. 1(b)). An SDN controller identifies or adapts a
resilient topology (e.g., the butterfly in Fig. 1(a)) on top of the
5-node full-mesh and routes the DAGs accordingly between
the nodes. Different NFs are placed on the VMs and connected
to the network devices, thus intercepting and operating on
incoming traffic as needed.

A. Video Streaming

In this scenario, a video is transmitted via UDP from the
source s to the destination t through the end-to-end DAGs
in Fig. 1(a). By placing appropriate NFs in the topology (see
Fig. 1(b)), we are able to ensure instantaneous recovery after
a single link failure occurring anywhere in the network. First,
the video flow in s (Frankfurt VM) is split into flows A and
B using NF M1. A coded variant A⊕B is also generated in
M3. The three flows are then routed along their corresponding
DAGs, i.e., A is sent to the Frankfurt switch (acting as v2),
A⊕B is sent to v1 in London (tunneling through the Frankfurt
switch) and B is sent to both nodes after traversing NF M0. It
is worth noting that Frankfurt and London switches send each
a flow B to the Amsterdam VM (v3), where NF M2 merges
them to avoid forwarding duplicated packets. After the B flow
is split again in Amsterdam VM (v4), the DAGs are routed
to the destination t (Vienna VM) through the Vienna switch
(directly via v6 and tunneling from v5 in Zagreb).

In the no-failure scenario, the video is reconstructed from
A and B flows by removing the MPLS labels and restoring
the corresponding checksums. If either A or B is broken (in
RFD at most one DAG can be disrupted), the video stream
can be instantaneously recovered by matching packets from
two flows: any of the original (A or B) and A⊕B.

B. Distributed Storage
RFD can also provide efficient solutions for bidirectional

transmissions between a client device and multiple servers.
The data is split into A, B and A⊕B; then stored in different
physical locations. Similarly to the video streaming use case,
data can be instantaneously recovered with the application of
RFD even if one of the storages is unavailable or a link failure
occurred during the read or write operations. Furthermore, in
order to enhance security, the three storages may belong to
different clouds as well (e.g., Google Drive, Dropbox, etc.);
thus distributing and minimizing the risk of a potential breach
of the user’s account data.

In this use case, a user attempts to either write or read some
data through a client (e.g., laptop) that interfaces with a data
center, consisting of a number of servers that store specific
portions of the user’s data (i.e., three different VMs in the
GOFF in our demonstration). When the user attempts to write
some information, the client applies a subset of NFs to split
and encode the data. After that, the controller performs the
operations related to network management, such as identifying
three available servers from the underlying topology; and
defines the appropriate rules in the network devices that allow
routing information to each server. When the subsequent read
petition is issued, the client must decode and merge as needed,
taking into account any link or storage node failure.

REFERENCES

[1] M. Hundeboll et al., “Catwoman: Implementation and performance eval-
uation of ieee 802.11 based multi-hop networks using network coding,”
in IEEE Vehicular Technology Conference, Sept 2012, pp. 1–5.

[2] P. Babarczi, J. Tapolcai, L. Rónyai, and M. Médard, “Resilient flow
decomposition of unicast connections with network coding,” in Proc.
IEEE Intl. Symposium on Inf. Theory (ISIT), June 2014, pp. 116–120.

[3] “MINERVA: Implementing network coding in transport networks to
increase availability,” 2013, [Accessed 15-December-2014]. [Online].
Available: http://www.geant.net/opencall/SDN/Pages/MINERVA.aspx

[4] F. Németh et. al, “Towards smartflow: Case studies on enhanced pro-
grammable forwarding in openflow switches,” SIGCOMM Comput. Com-
mun. Rev., vol. 42, no. 4, pp. 85–86, Aug. 2012.

[5] P. Babarczi, A. Pasic, J. Tapolcai, F. Németh, and B. Ladóczki, “Instan-
taneous recovery of unicast connections in transport networks: Routing
versus coding,” accepted to Elsevier Computer Networks, 2015.


