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Abstract 

The influence of the current density applied during the deposition of the magnetic layers on 

the microstructure formation in electrodeposited Co-Cu/Cu multilayers and on their giant 

magnetoresistance (GMR) was investigated using a combination of magnetoresistance 

measurements, wide-angle and small-angle X-ray scattering, high-resolution transmission 

electron microscopy, atomic force microscopy and chemical analysis. The magneto-

resistance measurements revealed that a reduction of the current density stimulates a 

transition from the formation of the magnetic layers with predominantly ferromagnetic 

character to the formation of superparamagnetic regions. As based on electrochemical 

considerations, it was supposed that such a change in the magnetic properties can be 

caused by an increased amount of Cu codeposited with Co at low current densities. It turned 

out from the structural studies that a pronounced segregation of Co and Cu occurs at low 

current densities. In accordance with their very low mutual solubility at room temperature, no 

atomic scale intermixing of Co and Cu could be detected. The segregation of Cu and Co was 

related to the fragmentation of the magnetic layers, to the enhancement of the local lattice 

strains, to the increase of the interface corrugations, to the partial loss of the multilayer 

periodicity and finally to the formation of Co precipitates in the Cu matrix. 
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1. Introduction 

Multilayers with the giant magnetoresistance (GMR) effect [1, 2] became in the last two 

decades a key element in the development of the reading heads of magnetic storage 

devices. Although such magnetoresistive sensors are currently produced mainly by using 

physical methods, the electrodeposition is still considered as a potential cost-effective 

alternative [3]. A recent review on this topic [4] lists almost 150 papers that were published 

on electrodeposited (ED) multilayers with GMR. Despite the large number of papers and the 

occasional correlations found between the parameters of the electrochemical deposition 

process and the GMR properties measured, very little is known about the microstructure of 

these multilayers and about the correlation between the microstructure and the parameters 

of the electrochemical deposition process. A particular problem is still a large interface 

roughness of ED multilayers and the formation of precipitates as already reported in 

References [5 – 7]. 

 In order to protect the ED GMR multilayers against oxidation during the deposition, 

the so-called single-bath electrodeposition method [3, 4] was developed. The electrolyte 

contains both components to be deposited; the salt of the less noble ferromagnetic (FM) 

element (Co) is applied in a fairly high concentration, while the salt of the more noble non-

magnetic (NM) metal (Cu) is used as a minor bath component. The Co and Cu layers are 

deposited by using high-current and low-current pulses, respectively, or alternatively by using 

high-potential and low-potential pulses. In order to achieve a significant GMR effect, the Cu 

layers should be free of Co that can be easily ensured by an appropriate choice of the Cu 

deposition current or potential [4, 8, 9]. Vice versa, the single-bath deposition of Co layers 

that are free of Cu is nearly impossible. The Co layers deposited during the high-current (or 

high-potential) pulse always contain some amount of Cu. The concentration of Cu in the Co 

layers depends strongly on the deposition conditions. 

 Furthermore, the competing electrochemical processes (deposition of Cu, deposition 

and dissolution of Co) can affect the thickness of individual layers if the layer thicknesses are 

controlled through Faraday’s law on a charge-balance basis. The layer thickness estimated 

from Faraday’s law agrees best with the real layer thickness when neither the exchange 

reaction [10] nor the dissolution of the previously deposited magnetic layer [8] can take place 

during the deposition of the NM layers. For electrodeposited FM/NM multilayers, it was 

concluded in Refs. 8 and 9 that these requirements can conveniently be achieved by using a 

combination of the galvanostatic and potentiostatic (G/P) deposition modes. The FM layers 

are deposited in the G mode and the NM layers in the P mode. The potential applied for 

deposition of the NM layers has to be optimized, e.g., with the aid of the analysis of the 

current transients recorded during the NM layer deposition pulse as described in Ref. 9. 
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 In a previous work by Liu et al. [11], a series of ED Co-Cu/Cu multilayers prepared in 

the G/P mode with an optimized Cu deposition potential was investigated. The amount of Cu 

atoms incorporated into the magnetic layers was modified by changing the concentration of 

the Cu2+ ions in the bath; all other parameters of the deposition process were kept constant. 

The decomposition of the dependence of the magnetoresistance (MR) on the magnetic field 

according to Ref. [12] revealed two contributions to the GMR effect, i.e., the regular FM 

component and a superparamagnetic (SPM) component, and helped in their quantification. It 

was found that the SPM component becomes stronger with increasing concentration of Cu2+ 

ions in the bath and thus with increasing Cu content in the Co layers [11]. The SPM 

component was attributed to the formation of SPM regions in the magnetic multilayers. Whilst 

the SPM contribution to the total GMR increased with increasing Cu content in the Co layers, 

a reduction of the size of the SPM regions was concluded. 

 Based on the results of the MR measurements [11], it was assumed that the SPM 

regions arise via fragmentation of the magnetic layers. However, this statement was not 

proven directly by a detailed structural study, but it was mainly justified by a negligible 

miscibility of Cu and Co at room temperature. The present work describes the microstructure 

formation in the ED Co-Cu/Cu multilayers with different amount of Cu in the FM layers and 

attempts to explain the interplay between the microstructure and the magnetoresistance in 

more detail. The Cu concentration in the Co layers was modified through the current density 

jmag, which was applied during the deposition of the magnetic layers. 

 
2. Experimental details 
Three Co-Cu/Cu multilayers with the same number of bilayers and with the same desired 

thickness of the respective layer, [Co(3.3 nm)/Cu(4.0 nm)]91, were electrochemically 

deposited in the mixed G/P mode [8]. The Cu layers were deposited at a constant electrode 

potential of -0.6 V (vs. SCE) that was optimized to avoid both the dissolution of the preceding 

Co layer and the Co codeposition during the Cu deposition pulse [4,9]. This guarantees a 

good agreement between the real layer thickness and the layer thickness determined from 

Faraday’s law. The magnetic layers were deposited in the galvanostatic mode, which allows 

a convenient control of the layer thickness according to Faraday’s law and helps to eliminate 

the uncertainty of the control parameters due to the ohmic drop effect. For the deposition of 

the magnetic layers, the following current densities were applied to modify the amount of Cu 

codeposited with Co: jmag = 84 mA·cm-2 (sample A), jmag = 20.7 mA·cm-2 (sample B) and 

jmag = 9.6 mA·cm-2 (sample C). 

 The electrodeposition was carried out in a columnar cell, in which the sample was 

mounted horizontally at the bottom [8, 13]. The electrolyte contained sulphate salts of the 

metallic species (0.8 mol l-1 CoSO4 and 0.015 mol l-1 CuSO4) and additions of 0.2 mol l-1 boric 
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acid (H3BO3) and 0.2 mol l-1 ammonium sulphate ((NH4)2SO4). The whole deposition process 

was computer-controlled; a combined potentiostat/galvanostat (EF453 from Electroflex, 

Hungary) was used as a source of the current for deposition. The Co-Cu/Cu multilayers were 

deposited on polished (100) oriented Si wafers, which were first covered with a buffer system 

consisting of a 5 nm thick Cr and a 20 nm thick Cu layer in a vacuum evaporation process. 

Atomic force microscopy (AFM) revealed the surface roughness of the evaporated Cu seed 

layer of about 1 nm [14]. Each ED multilayer stack started with a Co layer and ended with a 

Cu layer to protect the multilayer from later oxidation. The deposition parameters are 

summarized in Table 1 together with the mean thickness of the individual layers as 

determined from Faraday’s law. 

 The chemical composition of the ED Co-Cu/Cu multilayers was inspected using the 

energy-dispersive analysis of characteristic X-rays (EDX) in an analytical transmission 

electron microscope (TEM) and verified by EDX analysis performed in a scanning electron 

microscope (SEM). The measurements in TEM were done on cross-sectional specimens, the 

SEM measurements on the surface of the as-deposited multilayers. This combination of the 

complementary techniques was applied to avoid the influence of systematic errors of both 

methods as far as possible. Room-temperature magnetoresistance was measured on 1 to 

2 mm wide strips of the ED multilayers using the four-point-in-line method in the field-in-

plane/current-in-plane geometry. The magnetic field was varied in the range of ± 800 mT. 

Both the longitudinal (current parallel to magnetic field, LMR) and the transversal (current 

perpendicular to magnetic field, TMR) components of the magnetoresistance were 

measured. 

 The microstructure of the multilayers was investigated by using TEM, wide-angle and 

small-angle X-ray scattering (WAXS and SAXS) and AFM. TEM was done on JEM 2010 FEF 

equipped with a field-emission gun that was operated at 200 keV. The cross-sectional 

specimens for TEM were prepared from two pieces of the respective multilayers. The 

counterparts were mounted face to face in a special sample holder that allowed their cutting, 

mechanical pre-thinning (dimpling) and etching by the Ar ion beam. The final step in the 

sample preparation was a plasma cleaning procedure. Symmetrical WAXS experiments were 

carried out on a Seifert/FPM RD7 diffractometer that was equipped with a sealed X-ray tube 

with copper anode ( = 0.15418 nm) and a curved graphite monochromator located in front 

of a scintillation detector. Asymmetrical WAXS and SAXS measurements were performed on 

a D8 diffractometer (Bruker AXS) that was equipped with a sealed X-ray tube with copper 

anode and a parabolic Goebel mirror in the primary beam. The latter produced a sufficiently 

parallel beam with the divergence of approx. 150’’, which allowed the sample to be tilted 

without defocusing of the scattered beam. The asymmetrical WAXS patterns were carried 

out in the glancing-angle X-ray diffraction (GAXRD) geometry, with a constant and small 
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angle of incidence of the primary beam on the sample surface (3°). The SAXS patterns were 

measured in form of the sample scans (rocking curves) at fixed detector angles. For AFM, a 

Topometrix Discoverer TMX-2010 operating in contact mode was employed. Square areas 

with the size of 10  10 µm² were scanned for each sample; the effect of the inclined surface 

was corrected through a diagonal line-scan prior to data acquisition. 

 

3. Results 

3.1 Magnetoresistance 

Magnetoresistance curves shown in Fig. 1 were determined from the measured resistivity 

R(H) according to 

 
max

max

R
RHRMR 

 ,                                                    (1) 

where Rmax is the maximum resistivity observed in the vicinity of zero magnetic field. The 

magnetoresistance measurements revealed significant changes in the magnetotransport with 

the current density jmag. For sample A deposited at the highest current density (jmag = 84 

mA/cm²), a GMR effect with negative LMR and TMR components was observed. In Fig. 1a, 

rapid saturation of the magnetoresistance in both longitudinal and transversal configurations 

can be seen above about 200 mT that is typical for FM/NM multilayers. The low SPM 

contribution to the total MR (Fig. 1b) indicates a high degree of continuity of the magnetic 

layers in sample A that are well separated from each other by continuous non-magnetic Cu 

layers. A similar behavior was observed for sample B, for which the magnetic layers were 

deposited at the medium current density (jmag = 20.7 mA/cm²). Nevertheless, the reduction of 

jmag from 84 mA/cm² to 20.7 mA/cm² led to a slight enhancement of MR at higher magnetic 

fields (Fig. 1a) that was induced by augmentation of both the FM and SPM components (Fig. 

1b). The difference between LMR and TMR (solid and open symbols in Fig. 1a) measured at 

high magnetic fields is a measure of the anisotropic magnetoresistance (AMR) [15], which 

arises due to the bulk behavior of the FM layers. The AMR magnitude is approximately the 

same for samples A and B, about 0.4 %. The splitting of the MR curves in the vicinity of the 

zero field is caused by the coercivity of the remagnetization process. MR has its maximum at 

10.8 mT and 15.1 mT for samples A and B, respectively (Fig. 1c). These values of the 

magnetic field agree well with the values (approx. 8 mT) reported in [16] for ED Co/Cu 

multilayers with similar layer thicknesses, H(Rmax)  8 mT. 

 Rather different behavior was observed for sample C deposited at jmag = 9.6 mA/cm², 

in which the SPM component dominated the GMR effect and only a very low FM contribution 

was observed. Moreover, the SPM component increased significantly even at magnetic fields 

of ± 800 mT (Fig. 1b). The AMR contribution to the observed magnetoresistance practically 
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vanished; the LMR and TMR were almost the same. This means that sample C does not 

contain extensive ferromagnetic regions. Furthermore, the MR curves of sample C do not 

exhibit hysteresis; the MR peak lies practically at zero magnetic field that confirms the 

assumption of the dominating SPM contribution to the total magnetoresistance. 

 

3.2 Multilayer periodicity and interface corrugations 

A progressive decay of the superlattice satellites in the WAXS patterns (Fig. 2) indicated an 

overall decrease of the multilayer quality with decreasing jmag. In periodic multilayers, the 

reduction of the intensity of the satellites is generally attributed to a large variation of the 

bilayer thickness [17] that can be caused by a loss of the multilayer periodicity and/or by an 

enlargement of the uncorrelated interface corrugations. Accordingly, a good multilayer 

periodicity and a small uncorrelated interface roughness was supposed for sample A 

deposited at jmag = 84 mA/cm². Both features were confirmed by the TEM micrograph (Fig. 3) 

that was taken in a strong overfocus [18] in order to improve the intrinsically low scattering 

contrast of Co and Cu for electrons. Furthermore, TEM revealed huge but highly correlated 

interface corrugations. As the highly correlated interface corrugations do not lead to a 

considerable variation of the bilayer thickness, they usually do not destroy the superlattice 

satellites in the WAXS patterns. 

 Significant decrease of the intensity of the superlattice satellites and their broadening 

was observed in the WAXS pattern of sample B (jmag = 20.7 mA/cm²). Both phenomena 

suggest that the bilayer thickness varies in a certain range. According to Eq. (2) taken from 

Ref. [17], the bilayer thickness () affects directly the positions of the superlattice satellites 

(n): 



n

d
n 1sin2




                                                      (2) 

In Eq. (2),  means the wavelength of the X-rays, n the satellite order and d the mean 

interplanar spacing of the multilayer system: 

CuCoCuCuCoCu

CuCoCuCoCuCu

NNNN
dNdNd












                                  (3) 

In Eq. (3), NX means the average number of atoms in the layers with the interplanar spacing 

dX. Consequently, a variation of the bilayer thickness in a multilayer stack leads to a 

superposition of satellite maxima with different distances from the central peak, which causes 

the broadening of the superlattice satellites in WAXS pattern and the reduction of their 

intensity. 

 TEM micrograph (Fig. 4) showed highly correlated interface corrugations also in 

sample B. However in contrast to sample A, where the individual layers were corrugated but 

continuous over large lateral distances, the multilayer in sample B apparently grows in form 
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of columnar grains. The bits of the multilayer stack seem to be terminated by the grain 

boundaries. As the micrograph was taken in the focus, the diffraction contrast in Fig. 4 is 

much stronger than the scattering contrast between Cu and Co. The possible sources of the 

diffraction contrast are local strain fields and different crystallographic orientations of the dark 

and bright regions. 

 The fitting of WAXS patterns according to the approach introduced by Fullerton et al 

[17] revealed the mean bilayer thickness, the mean thicknesses of FM and NM layers and 

their variations, and the interplanar spacing of the respective layer. The results of the fitting 

are shown by solid lines in Fig. 2 for samples A and B. The refined values of the above 

microstructure parameters are summarized in Table 2. As shown in Table 1, the bilayer 

thickness determined using Faraday’s law was larger in sample B than in sample A. The 

bilayer thicknesses calculated from the WAXS patterns (Table 2) were opposite, as it 

corresponds to larger distances between the superlattice satellites in the WAXS pattern of 

sample B as compared with sample A (Fig. 2). This particular result is illustrated in Table 3 

on the ratio of the bilayer thicknesses and on the ratio of the individual layer thicknesses, 

which were obtained from Faraday’s law and from fitting of the WAXS patterns. 

 The relative decrease of the bilayer thickness in sample B as compared to sample A 

(Table 3), large fluctuations of the bilayer thickness (Fig. 2), formation of columnar grains 

(Fig. 4) and presence of the bent layers pinned at the grain boundaries (Fig. 4) strongly 

supports the hypothesis that Cu codeposited in sample B with Co segregates predominantly 

near the boundaries of the columnar grains. Consequently, the regions adjacent to the grain 

boundaries contain more Cu and less Co than the parts of the multilayer structure located in 

the centre of the columnar grains. This lateral segregation of Cu and Co codeposited during 

the deposition of the magnetic layers can explain both the large fluctuation of the bilayer 

thickness and the reduction of the bilayer thickness revealed by WAXS. As Cu segregated at 

the grain boundaries is not a part of the periodic motif, it contributes neither to the bilayer 

thickness nor to the thickness of the individual Cu layers. 

 A further reduction of the current density to jmag = 9.6 mA/cm² (sample C) led to a 

disappearance of the superlattice satellites in the WAXS pattern (Fig. 2). In [19], this 

phenomenon was explained by formation of precipitates of one atomic species in the matrix 

of the other atomic species instead of a periodic multilayer structure. In sample C, the 

disappearance of the periodic multilayer structure was confirmed by TEM (Fig. 5). The 

TEM/EDX analysis of the chemical composition of the ED Co-Cu/Cu multilayers helped us to 

understand the enormous degradation of the multilayer structure in sample C, which was 

followed by the rise of the SPM component and by the decay of the FM contribution to the 

total magnetoresistance. Whereas the Co and Cu contents in samples A and B did not 

deviate from their expected values within the expected experimental accuracy of the 
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TEM/EDX analysis, sample C contained much more copper than cobalt. This result of the 

TEM/EDX analysis was confirmed with the EDX analysis in SEM. Based on this result of the 

EDX analyses we can conclude that the matrix consists of Cu, whereas the precipitates 

contain Co as the main components. The difference in the overall chemical composition of 

the ED Co-Cu/Cu multilayers under study is clearly visible from the different intensities of the 

spectral lines CoK/CoK and CuK/CuK in Fig. 6. 

 

3.3 Surface roughness and morphology 

The interface corrugations discussed in the previous section grew through the whole 

multilayer up to the sample surface. This authorizes the surface roughness to be employed 

as an additional indicator of the interface corrugations. For the measurement of the surface 

roughness, SAXS and AFM were applied as two complementary methods because of their 

different sensitivity on different length scales. Whereas SAXS probes the surface roughness 

up to some tens of nanometers, AFM recognizes substantially larger objects. 

 The SAXS patterns were taken in form of the rocking curves (Fig. 7). Due to a low X-

ray scattering contrast between Cu and Co, the main features visible in the rocking curves 

are the specular reflectivity (at  = 0) [20], the Yoneda wings [21] and the diffuse scattering 

around the specular reflectivity maximum [22 – 24]. With respect to the surface roughness, 

the intensity of the Yoneda wings is the most sensitive parameter; it decreases rapidly with 

increasing amplitude of the surface corrugations [22]. Accordingly, sample B has the highest 

surface roughness among the samples under study. The diffuse scattering concentrated at 

the specular reflectivity maximum arises mainly from the X-ray scattering on laterally non-

continuous interfaces [19]. Consequently, the different extent of the diffuse scattering in the 

rocking curves shown in Fig. 7 can be interpreted as a continuous increase of the 

discontinuity of the magnetic layers with decreasing jmag. The increase of the diffuse 

scattering in sample B (as compared to sample A) can be assigned to the formation of 

columnar grains and to the segregation of Cu at the grain boundaries as discussed in 

Section 3.2, a further intensification of the concentrated diffuse scattering in sample C to the 

formation of Co precipitates in Cu matrix. 

 The maximum surface roughness in sample B concluded from the disappearance of 

the Yoneda wings was complemented by results of AFM (Fig. 8). The rms surface roughness 

increased from (10.5 ± 2.1) nm in sample A to (21.8 ± 1.2) nm in sample B and decreased to 

(19.5 ± 2.1) nm in sample C. A possible reason for the non-monotonous dependence of the 

surface roughness on jmag that was observed both by SAXS and AFM is the laterally 

inhomogeneous deposition of Co and Cu during the magnetic layer deposition. As discussed 

in Section 3.2, in sample B having the maximum correlated interface roughness, Cu 

codeposited with Co segregates predominantly near the boundaries of the columnar grains 
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and causes large fluctuation of the bilayer thickness. Consequently, the interface roughness 

rises towards the surface of the multilayer and is responsible for the maximum of the surface 

roughness in sample B. The surface roughness in sample C is reduced to some extent 

because Co precipitates are overgrown by Cu matrix. 

 

3.4 Lattice strain and lattice defects in the multilayers 

Another reason for the formation of interfaces with strongly correlated corrugations is the 

presence of local strain fields in samples A and B. In Section 3.2, the local strain fields were 

regarded as a possible source of the diffraction contrast in the TEM micrograph from Fig. 4. 

In this Section, the existence of the local strain fields is proven via analysis of the interplanar 

spacings of Co and Cu that were obtained from the symmetrical WAXS measurements 

(Table 2). As discussed in [7], just one Cu modification but two Co modifications have to be 

considered in ED Co-Cu/Cu multilayers: face-centered cubic (fcc) Cu, fcc Co and hexagonal 

close packed (hcp) Co. Although hcp Co is the stable phase at room temperature, fcc Co can 

be stabilized at Co/Cu interfaces [7]. The intrinsic interplanar spacings next to the measured 

interplanar spacings from Table 2 are 0
111d (fcc Cu) = 0.20871 nm, 0

111d (fcc Co) = 0.20465 nm 

and 0
002d (hcp Co) = 0.20303 nm [25]. Together with the measured interplanar spacings from 

Table 2, the above intrinsic interplanar spacings ( 0
hkld ) were employed to calculate the lattice 

strains in Cu and Co layers given in Table 4 according to: 

     
 Xd

XdXdX
hkl

hklmeas
0

0
                                               (4) 

As these WAXS experiments were performed in the symmetrical mode, the measured 

interplanar spacing and the lattice strain calculated according to Eq. (4) refer to the direction 

perpendicular to the sample surface. In sample A, Cu layers were under a small tensile 

stress. The interplanar spacing measured in Co layers lay between 0
111d (fcc Co) and 

0
002d (hcp Co). Therefore, Co layers were apparently under a tensile stress, if the measured 

interplanar spacing was related to 0
111d (fcc Co), and under a compressive stress, if the 

measured interplanar spacing was related to 0
002d (hcp Co). For an “average” interplanar 

spacing of fcc and hcp Co (d = 0.20384 nm), the deformation of the Co lattice measured in 

the direction perpendicular to the sample surface was positive, which corresponds to a 

compressive stress in Co layers. The magnitude of this lattice deformation in Co was very 

close to the lattice deformation observed in Cu layers. This means that a stress-equilibrium 

state at the Cu/Co interfaces can be reached if the interplanar spacing in Co can very 

between its extreme values 0
111d (fcc Co) and 0

002d (hcp Co). In [7], it was shown that such a 



 - 10 -

variation of the interplanar spacing in Co can be achieved through stacking faults or 

microtwins grown perpendicular to the growth direction of the multilayer stack. 

 In sample B, the lattice deformation  (fcc-Cu) was much higher than in sample A. As 

dmeas(Co) was even higher than 0
111d (fcc Co), the lattice stress was compressive independent 

of the choice of the reference intrinsic interplanar spacing, i.e. 0
111d (fcc Co) or 0

002d (hcp Co). 

The relative lattice deformation in Co layers calculated using d arrived at nearly the same 

magnitude like for Cu layers, which indicates the stress-equilibrium state as discussed for 

sample A. Microtwins, which accompany the change of the interplanar spacing between 
0
111d (fcc Co) and 0

002d (hcp Co), were found by TEM in sample B as well (Fig. 9). Furthermore, 

TEM helped to visualize the strain fields, which were predicted in sample B by WAXS (Table 

4). According to Fig. 10, the strain fields follow the curvature of interfaces, which was 

regarded above as the main component of the interface corrugation. 

 In sample C, the interplanar spacing of neither Co nor Cu could be calculated from 

WAXS pattern because of missing superlattice satellites (Fig. 2). WAXS recognized 

predominantly the diffraction maximum from the Cu matrix [19]; the contribution of the Co 

precipitates to the WAXS signal was negligible. Still, a shift of the diffraction maximum to 

higher diffraction angles was observed, which corresponds to a decrease of the interplanar 

spacing d111(Cu) with regard to its intrinsic value and consequently to a tensile stress in Cu 

matrix. The corresponding lattice deformation calculated from Eq. (4) for d111(Cu) = (0.20805 

± 0.00003) nm and 0
111d (Cu) = 0.20871 nm was  (fcc-Cu) = -(3.2 ± 0.2)  10-3. Additional 

information on lattice deformation was obtained from the sin² method [26] applied to 

GAXRD data. For fcc Cu, the sin² method revealed the lattice parameter both in the plane 

of the sample and in the sample surface perpendicular direction. The in-plane lattice 

parameter and the corresponding interplanar spacing were a|| = (0.36164 ± 0.00005) nm and 

d|| = (0.20879 ± 0.00005) nm, respectively; the analogous quantities obtained for the sample 

surface perpendicular direction were a = (0.36041 ± 0.00005) nm and d = (0.20808 ± 

0.00005) nm. 

 Within the experimental accuracy, d|| is nearly equal to 0
111d (Cu) but d is smaller, 

which confirms the tensile stress that was concluded already from the symmetrical WAXS 

measurement. Obviously, the interplanar spacing d measured by GAXRD must agree with 

the interplanar spacing measured by symmetrical WAXS. The difference between these 

interplanar spacings is a measure of the experimental error. As noted above, the positive 

difference between d|| and d indicates a tensile stress in Cu in sample C, but the lattice 

strain estimated from this difference according to [27],     30
111|| 107.12 

  ddd , 

was smaller than  (fcc-Cu) = -(3.2 ± 0.2)  10-3 that was obtained from the symmetrical 
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WAXS. The reason for this discrepancy was an “improper” reference interplanar spacing 
0
111d (Cu). The “true” reference interplanar spacing 0

111d (Cu) calculated using the approach 

from [26] for the Poisson ratio of 0.35 and for d|| and d given above was equal to 0.2085(1) 

nm. 

 The combination of symmetrical WAXS and asymmetrical GAXRD measurements 

carried out on sample C has shown that the tensile stress in Cu is, to a certain extent, 

caused by the electrochemical deposition process and not exclusively by the interaction 

between Co and Cu at their interfaces. As discussed above and summarized in Table 4, 

tensile stress in Cu was observed in all ED Co-Cu/Cu multilayers under study. 

 

4. Discussion 

As based on electrochemical considerations, it was assumed that a decrease of current 

density applied during the deposition of magnetic layers (jmag) in ED Co-Cu/Cu multilayers 

enhances the amount of Cu codeposited with Co. Therefore, the central task of this work was 

to clarify, where the codeposited Cu atoms are located in the multilayer structure. Because of 

a negligible miscibility of Co and Cu below 422°C [28], it was supposed that Cu atoms are 

not incorporated in the crystal structure of cobalt in a significant fraction, but segregate and 

build self-contained clusters. However, a direct experimental verification of this hypothesis 

was awkward. Local chemical analysis, even by EDX in scanning TEM, was practically 

impossible because of the small individual layer thickness, high interface corrugations and a 

lot of instrumental factors affecting the accuracy of the chemical analysis in TEM. Sole 

analysis of the interplanar spacings using WAXS could not provide clear results as well, 

because the effect of the chemical composition on the interplanar spacing is overlaid by the 

change of the interplanar spacing through lattice deformation. 

 Nevertheless, detailed microstructure analysis comprising the investigation of the 

multilayer periodicity, interface corrugations, formation of columnar grains and lattice strains 

for different current densities jmag has shown that the codeposition of Cu with Co during the 

magnetic layer deposition does not lead necessarily to an intermixing of the codeposited 

species at the atomic level. Instead, a selective deposition of the elements was concluded 

from the observed formation of pinholes filled with Cu, which substantially contributed to the 

discontinuity of the magnetic layers. At a high degree of the codeposition of Cu with Co, the 

deposition of the elements with a large lateral selectivity led to the growth of Co precipitates 

in the Cu matrix. 

 Lateral segregation of Co and Cu during pulse plating was already discussed in [29]. 

One of the phenomena, which facilitate the lateral segregation of the deposited species, is 

their surface diffusion. As the surface diffusion is enhanced if isolated adatoms can freely 

move along the surface without being hindered by other concurrently deposited adatoms, a 
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high degree of segregation is expected for low current densities (namely, due to the low 

deposition rate), whereas some intermixing of Co and Cu is expected for high current 

densities. On the other hand, the amount of Cu codeposited with Co increases with 

decreasing jmag. This interplay of the codeposition and segregation of the species has the 

following effect on the microstructure and magnetic properties of ED Co-Cu/Cu multilayers. 

 At the highest current density (jmag = 84 mA/cm², sample A), the highly periodic 

multilayer grew with continuous Cu layers and with almost continuous Co layers. The total 

magnetoresistance of this multilayer was about 4.6 % (Fig. 1). The dominant part of MR (93 

%) came from the FM component, the complement from the SPM component. Cu layers 

were under tensile stress (Table 4), which was caused by the nature of the deposition 

process. The lattice misfit at the Co/Cu interfaces led to a higher tensile stress in Co layers in 

comparison with the Cu layers. However, the lattice strain in the Co layers was partly 

compensated by microstructure defects like microtwins and stacking faults that increased the 

interplanar spacing of Co in the direction of the multilayer growth [7]. A consequence of the 

interplay between the local lattice strains and the segregation of the species was a formation 

of highly correlated interface corrugations (Fig. 3) that grew throughout the whole multilayer 

stack. 

 At the medium current density (jmag = 20.7 mA/cm², sample B), Cu codeposited with 

Co segregated at the boundaries of the columnar grains (Fig. 4). The main consequences of 

the Cu segregation were a further increase of the amplitude of the interface corrugations and 

a large variation of the bilayer thickness as compared to sample A. Additionally, the Cu 

segregation increased the local strain fields in FM and NM layers (Table 4 and Fig. 10). The 

increase of the local strain fields and the observed compressive stress in Co layers can be 

explained by a lateral growth of Cu domains alongside the bits of the Co layers during the Cu 

segregation, which again contributed to the deepening of the interface corrugations. 

Nevertheless, the large but still highly correlated interface corrugations had no fatal 

consequences for the FM component of the magnetoresistance in sample B. Total MR 

increased to 5.2 % as driven by the increase of both FM and SPM components (Fig. 1). Still, 

the relative increase of the SPM component was larger than the increase of the FM 

component. The increase of the SPM component can be explained by fragmentation of 

magnetic layers as discussed in [11]. A possible reason for the increase of the FM 

component is the reduction of the density of point defects in FM layers due to the 

segregation of Cu from Co. 

 A further decrease of jmag to 9.6 mA/cm² (sample C) led to a high degree of Cu 

codeposition, which resulted in a considerable change of the overall chemical composition of 

the sample (Fig. 6), in the formation of Co precipitates embedded in Cu matrix (Fig. 2), in the 

decay of the FM component of MR and in the increase of the SPM contribution to the total 
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magnetoresistance (Fig. 1). Consequently, the total MR of 3.0 % arose mainly from the SPM 

component. The loss of a periodic multilayer structure led to a reduction of the lattice strains 

and to a leveling of the surface roughness. The formation of Co precipitates in Cu matrix is in 

fact an extrapolation of the multilayer model discussed for sample B to a much higher 

amount of Cu codeposited with Co. At the lowest current density jmag, which was 

characterized by a preferential deposition of Cu and by a substantial segregation of species, 

the regions containing Cu were widely extended that led to the formation of separate Co 

seeds instead of forming continuous Co layers. 

 

5. Conclusions 

The results of this study have shown that the microstructure formation in Co-Cu/Cu 

multilayers deposited from a single bath is controlled by the competition between the 

codeposition of Cu with Co during the deposition of magnetic layers and the segregation of 

the species. High current density (jmag = 84 mA/cm²) facilitated growth of laterally continuous, 

periodic multilayers with large but highly correlated interface corrugations. A decrease of the 

current density to jmag = 20.7 mA/cm² led to the formation of columnar grains containing bits 

of the multilayer stack. The columnar grains were separated from each other by Cu domains. 

Other consequences of the segregation of the codeposited elements were a partial loss of 

the multilayer periodicity, an enhancement of the interface corrugations and an increase of 

the lattice strain in both non-magnetic and magnetic layers. A further reduction of the current 

density to jmag = 9.6 mA/cm² resulted in a preferential deposition of Cu at the expense of Co, 

which caused the formation of Co precipitates embedded in a Cu matrix. In general, 

decreasing jmag led to the loss of the lateral periodicity of the multilayers and to the 

fragmentation of magnetic layers, which enhanced the superparamagnetic contribution to the 

total magnetoresistance. Consequently, the ferromagnetic contribution to the total 

magnetoresistance declined with increasing discontinuity of the magnetic layers.  
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Tables 

 

Table 1: Overview of deposition parameters (current density applied during the deposition of 

magnetic layers, jmag, and the pulse duration, mag), the individual layer thicknesses t(Co-Cu) 

and t(Cu) determined from Faraday’s law and the corresponding bilayer thickness . 

Sample jmag 
[mA/cm²] 

mag 
[s] 

t(Co-Cu) [nm] t(Cu) [nm]  [nm] 

A 84.0 0.12 (3.3 ± 0.2) (4.0 ± 0.2) (7.3 ± 0.4) 
B 20.7 0.52 (3.5 ± 0.2) (4.2 ± 0.2) (7.7 ± 0.4) 
C 9.6 1.00 (3.1 ± 0.2) (3.8 ± 0.2) (6.9 ± 0.4) 

 

Table 2: Bilayer thickness (), thicknesses of the individual layers [t(Co-Cu) and t(Cu)] and 

interplanar spacings in the sample surface perpendicular direction [d(Co-Cu) and d(Cu)] as 

obtained from the WAXS measurements. 

Sample  [nm] t(Co-Cu) [nm] t(Cu) [nm] d(Co-Cu) [nm] d(Cu) [nm] 

A (8.1 ± 0.1) (3.68 ± 0.05) (4.38 ± 0.05) 0.2041(1) 0.2083(1) 

B (7.8 ± 0.1) (3.65 ± 0.05) (4.15 ± 0.05) 0.2051(1) 0.2073(1) 

 

Table 3: Comparison of the structural characteristics of the ED Co-Cu/Cu multilayers 

obtained from Faraday’s law and from the fitting of the WAXS patterns. 

Sample WAXS/F [t(Co-Cu)]WAXS/[t(Co-Cu)]F [t(Cu)]WAXS/[t(Cu)]F 

A (1.10 ± 0.05) (1.11 ± 0.05) (1.09 ± 0.05) 

B (1.01 ± 0.05) (1.04 ± 0.05) (0.99 ± 0.05) 

 

Table 4: Lattice strain obtained from the interplanar spacings measured in the sample 

surface perpendicular direction (Table 2) and related to 0
111d (Cu) = 0.20871 nm according to 

Eq. (4). The symbol  (Co) means the average of the lattice strains calculated for face 

centered cubic (fcc) and hexagonal close packed (hcp) cobalt. 

Sample  (fcc-Cu)  (fcc-Co)  (hcp-Co)  (Co) 

A -1.88  10-3 -2.60  10-3 5.37  10-3 1.38  10-3 

B -6.72  10-3 2.23  10-3 10.24  10-3 6.24  10-3 
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 Figure 1: (a) Magnetoresistance curves of the 

ED Co-Cu/Cu multilayers; solid and open 

symbols denote LMR and TMR, respectively. 

(b) Result of the decomposition of the 

longitudinal MR curves into the SPM (solid 

symbols) and FM (open symbols) components. 

(c) Magnified part of the MR curves from figure 

(a) showing the effect of the coercive field. Key 

to symbols: squares, circles and triangles refer 

to data for samples A, B and C, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: WAXS patterns of samples A, B and 

C taken in the vicinity of the diffraction lines 111 

of fcc Cu and fcc Co. For samples A and B, the 

open symbols represent the measured data, the 

lines the fits according to [17]. For sample C, 

only the measured data (without the fit) are 

shown, because no superlattice satellites were 

observed. 
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Figure 3: TEM image of the multilayer stack 

from sample A taken in a strong overfocus 

showing almost continuous layers with highly 

correlated interface corrugations. The dashed 

line marks the direction parallel to the 

substrate surface, the dotted arrow the growth 

direction. 

 

 

 

 

 

 

 

 

Figure 4: TEM image of the multilayer stack 

from sample B taken in diffraction contrast 

showing the formation of columnar grains that 

contain bits of the multilayer structure. The 

grain boundaries discussed in text are 

marked by solid arrows. The dashed line 

indicates the direction parallel to the substrate 

surface, the dotted arrow the growth direction. 

 

 

 

 

 

 

Figure 5: TEM image of sample C taken in 

diffraction contrast. No periodic multilayer 

structure was visible. The direction parallel to 

the substrate surface and the growth direction 

are marked by the dashed line and by the 

dotted arrow, respectively. 
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Figure 6: EDX spectra of samples A, B and C 

taken in TEM. The measured intensities were 

normalized on the intensity of the spectral line 

CuK in order to illustrate the change in the 

Co/Cu ratio in sample C. During the 

measurement, the whole cross-section of the 

respective sample was irradiated by the 

electron beam. 

 

 

 

 

 

 

 

 

Figure 7: Rocking curves of samples A, B 

and C taken in the SAXS mode. The 

detector angles were 2 = 1.33° for sample 

A, 2 = 1.48° for sample B and 2 = 1.49° for 

sample C. The angle  means the inclination 

of the sample from the symmetrical position. 

The Yoneda wings observed in samples with 

a smaller surface roughness are labeled by 

arrows. 
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Figure 8: Surface morphology of the samples under study as seen by AFM. 

 
 

 

Figure 9: Microtwins within individual grains of 

sample B as seen by TEM in diffraction contrast. 

The microtwins are almost parallel to the surface 

of the substrate and almost perpendicular to the 

growth direction; the corresponding directions are 

marked by the dashed line and by the dotted 

arrow, respectively. 

 

 

 

 

 

 

Figure 10: Coexistence of microtwins (grown 

perpendicular to the growth direction) and strain 

fields in Sample B. The latter were recognized by 

TEM carried out in diffraction contrast as dark 

arcs pinned at the grain boundaries. Some 

examples of the strain fields are labeled by solid 

arrows. The growth direction is marked by the 

dotted arrow. 

 


