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Abstract 

 

Winter conditions in aquatic habitats of the temperate zone markedly differ from those 

present in warmer seasons, nevertheless, relatively scarce information is available on 

planktonic microbial composition, as sites are not easily accessible and it was supposed 

traditionally that microbial activity is low during this cold period. Since microorganisms 

could have great impact on the ecosystem even during winter, we explored various sites in 

the Eastern Carpathians regarding the abundance and taxonomic composition of planktonic 

microorganisms. Although many of the studied environments were extreme habitats, 

planktonic microbial communities were abundant and mostly diverse with the presence of 

previously unidentified taxa.  
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Introduction 

 

Information on the composition of winter planktonic microbial communities are relatively 

scarce compared to the literature data dealing with warmer seasons, since sampling sites are 

not easily accessible or this period of the year was supposed traditionally to have low 

microbial activity. However, it has been proven that natural aquatic habitats may harbour 

abundant planktonic communities in the coldest period of the year (Philips and Fawley 2002; 

Somogyi et al. 2014), surprisingly even blooms of planktonic phototrophs could emerge 

(Álvarez et al. 2009; Pálffy et al. 2014; Somogyi et al. 2009; Üveges et al. 2012). Since 

microorganisms of inland waters have a great impact on biogeochemical cycles, may effect 

water quality and interact with other aquatic organisms, describing the taxonomy and ecology 

of microbes present in winter is crucial to understand their role in the ecosystem (Bertilsson 

et al. 2013). 

 Eastern Carpathians (Romania) harbour diverse aquatic habitats having different 

hydrological character and origin. In this region, glacial lakes, meromictic, heliothermal and 

salt lakes or aquatic environments formed due to volcanic or postvolcanic activity, such as 

crater lakes, CO2-rich mineral springs, sulphuric bubbling pools and mudpots, are also found 

(Magyari et al. 2009; Máthé et al. 2014; Szakács 2010; Szakács and Krézsek 2006). Many of 

these habitats has been studied previously focusing on the origin and formation of these 

specific environments (e.g. Begy et al. 2011; Magyari et al. 2009), and some of them has 

been examined in the last years to reveal the structure of planktonic microbial communities 

during the productive season (e.g. Borsodi et al. 2013; Máthé et al. 2014). Furthermore, most 

of them are still unexplored regarding the composition of planktonic microorganisms, and 

therefore our study serves as the first description of these communities. On the other hand, 

most microbial studies of seasonally frozen lakes were focused on eukaryotes and obtaining 
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more data from the prokaryotic communities is essential in the case of these habitats 

(Bertilsson et al. 2013). Therefore, in this study, the composition of planktonic pro- and 

eukaryotic microbial communities in these specific aquatic habitats were studied in detail 

during winter. 

 

 

Materials and methods 

 

 

Study sites and sample collection 

 

Samples were collected on 7
th

 February 2013 from a crater lake, Lake St. Ana, from Mohoş 

peat bog lake and from the sulphuric bubbling pools [Timsós (Apor) Baths] (all located in 

Ciomad Mountains, Harghita County, Romania), and on 9
th

 February 2013 from the saline 

lakes, Lake Ursu, Lake Verde and Lake Roşu (all located in Gurghiu Mountains, Mureş 

County, Romania). Geographic location of sampling sites is given in Supplementary Fig. 1, 

while detailed maps can be found in Magyari et al. (2009) (map of the crater lake and peat 

bog), in Borsodi et al. (2013) and Máthé et al. (2014) (map of the saline lakes) and in 

Supplementary Fig. 2 (map of the sulphuric bubbling pools). A view of sampling sites on the 

date of sampling is presented in Supplementary Fig. 3. General characteristics of sampling 

sites are summarized in Table 1. 

 

 

Physico-chemical analyses 
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Field measurements for the determination of temperature, pH, specific conductance and 

dissolved oxygen content (DO) were carried out by an XRX-420 CTD+ type multi-parameter 

submersible instrument (RBR, Kanata, Ontario, Canada). Additional chemical analyses 

[concentration of NH4
+
-N, NO2

-
-N, NO3

-
-N, TN, PO4

3-
-P, total organic carbon (TOC), total 

inorganic carbon (TIC), HCO3
-
-C, Fe, SO4

2-
-S, H2S-S] were performed in the laboratory 

according to Standard Methods (Eaton et al. 2005) with some special considerations given in 

Borsodi et al. (2013) and Máthé et al. (2014). Salinity values in the g/L range were 

determined by the direct gravimetric method from known amount of water samples that were 

evaporated at 105 °C, while values in the mg/L range were calculated from conductivity data 

according to the equation given in Keresztes et al. (2012). Chromophoric dissolved organic 

matter (CDOM, as water colour in Pt units) was determined according to Cuthbert and del 

Giorgio (1992). Photosynthetically active radiation (PAR) within the water column was 

measured with a LI-COR quantum sensor (2 π). From representative depths, chlorophyll a 

(Chl a) concentration was determined spectrophotometrically after hot methanol extraction 

using the absorption coefficients determined by Wellburn (1994). In Lake Ursu, 

bacteriochlorophyll a (Bchl a) and c (Bchl c) were also determined at different depths 

according to Biel (1986) and Castenholz (1973), respectively. In vivo absorption spectra of 

the phototrophic communities were also recorded according to Castenholz et al. (1973). 

 

 

Microscopic analyses 

 

For total bacterial cell counts determination, sample aliquots were fixed with 

paraformaldehyde solution, stained with DAPI and analysed with epifluorescence microscopy 

according to the method of Porter and Feig (1980) described in detail by Máthé et al. (2014). 
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Abundance of picocyanobacteria and picoeukaryotic algae was determined according to 

MacIsaac and Stockner (1993), while that of larger algae were determined with inverted 

microscopy (Utermöhl 1958). Abundance values were converted to biomass using average 

cell dimensions and considering an average cell density of 1 g cm
-3

. 

 

 

Community composition analysis with DGGE coupled with sequencing 

 

Methods used in the analysis of the bacterial community composition are described in detail 

in Borsodi et al. (2013) and Felföldi et al. (2009). Briefly, after the extraction of genomic 

DNA, group-specific PCRs were carried out to amplify partial 16S rRNA gene fragments 

from Archaea, Bacteria and Cyanobacteria (including also the chloroplast of eukaryotic 

algae). DGGE runs were performed with 40-70% of denaturants in a 7% polyacrylamide gel, 

subsequently gel blocks were excised from major bands, which were subjected to DNA 

extraction and sequence analysis (unfortunately some bands resulted in mixed sequences). 

Phylospecies identification was carried out using the EzTaxon-e and GenBank databases 

(Altschul et al. 1997; Kim et al. 2012). The obtained sequences were submitted to GenBank 

under the accession numbers KF515277-KF515318. 

 

 

Results and discussion 

 

Crater lake (Lake St. Ana) 
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The water column of Lake St. Ana was homogenous, slightly acidic (pH 5.2-5.5) and very 

clear at the sampling date (Fig. 1A), transparent to the bottom (6 m) with a Kd value of 1.18 

m
-1

 and a turbidity value of ~0.7 NTU (Table 1 and 2). The lake was covered with a 35 cm 

thick ice and a 20 cm thick snow, which decreased the ambient PAR by 88% on average. 

Low ion (specific conductance ~20 µS cm
-1

), moderate nitrogen (inorganic nitrogen forms 

~0.3 mg L
-1

, TN ~0.7 mg L
-1

), phosphorous (PO4
3-

-P ≤0.01 mg L
-1

) and organic carbon 

content (TOC ~4.5 mg L
-1

) was measured in the lake. Based on the microscopic analysis, the 

phytoplankton was composed of mainly small cryptophytes (Cryptomonas sp., which was 

also detected by DGGE analysis) (Table 3), however, at the surface layers dinophytes 

(Peridinium inconspicum) were also detected in a great number (constituting 66% of the total 

algal biomass). Picocyanobacteria and picoeukaryotic algae were completely absent, 

however, the latter could be a predominant member of phytoplankton in various water types 

during winter (Somogyi et al. 2009; Vörös et al. 2009; Weisse 1993). The total absence of the 

smallest photosynthetic fraction from the plankton of Lake St. Ana is a unique feature of the 

lake and cannot be easily explained. 

 The bacterial community based on the DGGE analysis was rather homogenous, 

however, the archaeal planktonic community at the bottom differed markedly from those of 

the upper water layers, and in the case of the Cyanobacteria- and chloroplast-specific analysis 

the pattern of the upper layer was also dissimilar (Fig. 2). The only archaeal phylotype 

retrieved from this lake belonged to the phylum Thaumarchaeota, while bacterial sequences 

belonged to the genera Prosthecobacter and Gluconobacter (Table 3), and both were present 

in all three studied layers (Fig. 2). Species belonging to Prosthecobacter can grow at very 

low temperature values (down to 1-10 °C), are obligately aerobic and saccharolytic (Krieg et 

al. 2010), and can be found in freshwater environments (Krieg et al. 2010; Takeda et al. 

2008). The recently described species, Prosthecobacter algae, was isolated on an agar 
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medium containing algal metabolites (Lee et al. 2014), therefore, it is possible that the 

phylotype detected in Lake St. Ana could effectively use dissolved organic matter that was 

previously released from planktonic algae (Cryptomonas and Peridinium spp.). The other 

genus detected by DGGE analysis, Gluconobacter, is also an obligately aerobic bacterium, 

and strains belonging to this genus are similarly able to grow on various carbohydrates 

(Brenner et al. 2005). 

 

Humic lake (Mohoş peat bog lake) 

 

The peat bog lake was covered by a 4-15 cm thick ice and had high CDOM concentration 

(599 mg Pt L
-1

), which caused high light attenuation within the water column with a Kd value 

of 8.55 m
-1

. High surface Chl a concentration was measured (81 µg L
-1

) that was coupled 

with the low dissolved oxygen content of the water (0.45, 0.26 and 0.05 mg L
-1

, which were 

equal to a saturation of 3.2, 1.8 and 0.3%, at 0.1, 0.4 and 1.0 m water depth, respectively). 

The low oxygen saturation suggested the absence of the net phytoplankton photosynthesis, 

possibly because of the low light conditions. Nevertheless, several algae were detected by 

microscopic analysis, taxa which are well-known inhabitants of cold waters (e.g. 

Babanazarova et al. 2013; Bertilsson et al. 2013): Euglena proxima, Astasia sp. (both 

Euglenophyta), Chlamydomonas microscopica (Chlorophyta), Rhodomonas sp. 

(Cryptophyta) and others, representing the biomass of 14000, 2800, 26, 5 and 18 µg L
-1

, 

respectively. Euglenoids are characteristic in small lakes with high organic matter content, 

while Chlamydomonas species were reported to maintain high population densities even in 

ice-covered humic lakes; both taxa are frequent in small acidic lakes (Reynolds 2006). The 

detected phytoplankton members are able to grow on different organic carbon sources (Perez-
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Garcia et al. 2011), which could contribute to their survival in such light-limited, but organic 

matter rich habitats. 

 The dominant phototrophic phylotype was related to Parachlorella kessleri (formerly 

known as Chlorella kessleri, Krienitz et al. 2004) based on the sequence analysis of DGGE 

bands (Fig. 2, Table 3). Cells of this coccoid green algal species are 2.5 to 9 µm in diameter 

in the laboratory cultures (Yamamoto et al. 2005; Juárez et al. 2011), and therefore usually 

larger than the pico-size range. The geographical distribution and habitat preference of this 

species is not well-known, however, recently Juárez et al. (2011) isolated a Parachlorella 

kessleri strain from a volcanic mesothermal sulphurous pond (Laguna Verde, Argentina), 

which contains free sulphuric acid and has a characteristic pH between 2.5 and 2.8. 

Therefore, the detection of Parachlorella in an acidic peat bog lake (pH 3.95) is not 

surprising, but adds important data on the occurrence of this chlorophyte species in extreme 

environments. Furthermore, picocyanobacterial strains belonging to the Cyanobium gracile 

cluster were isolated recently from humic lakes with pH 4.6 and 4.9 in Poland (Jasser et al. 

2013). Small-sized coccoid algae have ecological advantage in water bodies with high 

turbidity or CDOM content, due to the high surface-to-volume ratio of cells and more 

effective light harvesting machinery compared to larger cells in light-limited environments 

(Raven 1997; Somogyi et al. 2010). However, pico-sized members of the photoautotrophic 

plankton were not observed by epifluorescence microscopy.  

 Furthermore, based on the sequence analysis of excised DGGE bands, one archaeal 

species Methanosaeta harundinacea and one bacterium species, Polynucleobacter 

necessarius were identified (Table 3). The latter species is a chemo-organotrophic bacterium 

with growth temperature down to 5 °C and was reported from a broad variety of freshwater 

habitats (including humic-rich environments) with 20-60% relative abundance of total 

bacteria (Hahn et al. 2009; Pernthaler 2013), and according to the intensity of the DGGE 
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band (Fig. 2), this species was an important component of the bacterioplankton in the studied 

Mohoş peat bog lake. The presence of a strictly anaerobic methanogenic archaeon, 

Methanosaeta (Ma et al. 2006), corresponded well with the low dissolved oxygen content of 

the water, however, bulk methanogenic activity within the lake was most probably located in 

the deeper anoxic zones or in the sediment (Bertilsson et al. 2013; Pernthaler, 2013). 

Methanosaeta could be the dominant methanogenic archaeon in permanently cold 

environments (e.g. Antarctic sediments), and since psychrophilic methanogens were reported 

to have their maximal methane production rates at 6 °C (Fuchs et al. 2013), the contribution 

of winter methanogenesis to the release of methane to the atmosphere (which as a greenhouse 

gas implicates possible climate influence) could be presumed in the study site. However, the 

produced methane is not necessarily released, since it could be oxidized to carbon-dioxide 

within the lake, even in the anaerobic regions (Bertilsson et al. 2013; Pernthaler 2013). 

 

Sulphuric bubbling pools [Timsós (Apor) Baths] 

 

Only one of three investigated sulphuric bubbling pools had ice cover at the time of sampling 

(Apor 2) (Table 1, Supplementary Fig. 3), the ones uncovered had slightly higher temperature 

value (0.3, 2.6 and 2.6 °C in Apor 2, 4 and 6, respectively), probably due to the intensive 

bubbling and the warming effect of the upwelling gas. We hypothesize that this gas had high 

CO or CO2 content that was indicated by the high inorganic carbon content (~400 mg L
-1

) of 

the water (Table 2). On the other hand, moderate amount of oxygen was also detected (3.33, 

8.14, 4.71 mg L
-1

 which were equal to 23.3, 60.5 and 35.1% saturation, respectively in pools 

Apor 2, 4 and 6). All sites had high ion (>2000 µS cm
-1

 specific conductance) and sulphate 

concentration (109-273 mg L
-1

) and acidic pH (2.4-4.8), this latter resulted in the low 

hydrogen carbonate content of the water (Wetzel 2001). These pools also contained moderate 
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or high amount (depending on the pool) of whitish sediment at the bottom (Supplementary 

Fig. 3F), which could be easily stirred up, most probably sulphur compounds or precipitated 

carbonates.  

 Probably the combination of these extremities led to the almost complete lack of 

phototrophic microorganisms in these habitats, phototrophic cells and chlorophyll a were not 

detectable by traditional methods (Table 2). However, by DNA based analysis Navicula 

(Bacillariophyta) and Arthrospira (formerly known as Spirulina, Cyanobacteria) phylotypes 

were retrieved from these environments (Table 3). Many diatoms, such as the members of the 

genus Navicula are well-known for tolerating harsh environmental conditions and could be 

found in many cold and extreme habitats (Seckbach 2007). Although the common view is 

that cyanobacteria are seldom or even absent from acidic environments such as our sampling 

sites (Seckbach 2007), there are some reports on that Spirulina-like filamentous 

cyanobacteria could be present in lakes with pH ~3 (Steinberg et al. 1998). However, the 

most possible explanation for the presence of algal DNA in the sulphuric bubbling pools is an 

allochtonous origin: surrounding habitats, where filamentous blue-green algae or diatoms 

could be found, e.g. tree leaves, barks, lichens; or the stone rim of these pools (Round 1981) 

(Supplementary Fig. 3EF).  

 The single, but dominant archaeal phylotype based on the DGGE analysis (Fig. 2) 

belonged to Ferroplasma acidiphilum (Table 3), which is an aerobic, autotrophic (cf. the high 

inorganic carbon content of these pools, ~400 mg L
-1

) (Table 2), Fe
2+

-oxidizing archaeon 

with a pH optimum of 1.7 (Golyshina et al. 2000). The predominant bacterial phylotype in 

the sites having the lowest pH (Apor 2 and 6) (Table 2, Fig. 2) was Acidithiobacillus 

ferrooxidans (Table 3), an acidophilic and obligately autotrophic species, which could 

oxidize iron and various sulphur compounds with a pH optimum around 2.5 (Brenner et al. 

2005; Hedrich and Johnson 2013). However, Metallibacterium scheffleri was detected in only 
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one site (Apor 2) (Table 2, Fig. 2), which is an acid-tolerant heterotrophic bacterium, capable 

for iron reduction (Ziegler et al. 2013). Therefore, a cycle with iron-oxidizing and iron-

reducing bacteria were detected in this environment, although their activity could be very low 

during winter, since both were reported to be a mesophilic species and does not show growth 

at 4 °C (Brenner et al. 2005; Ziegler et al. 2013). 

 

Saline lakes (Lake Ursu, Lake Verde and Lake Roşu) 

 

In Lake Ursu, a deep chlorophyll maximum was detected at approximately 3.0 m depth. An 

intensive green coloured layer was visible to the naked eye from 2.97 to 3.17 m when a water 

column was taken out with a special transparent tube sampler apparatus (Márialigeti et al. 

2014). The Kd value of the upper 2.5 m water column was 1.26 m
-1

. At the deeper layers, the 

attenuation increased rapidly: between 2.5 and 2.75 m, the Kd was 3.16 m
-1

; between 2.75 and 

3.0 m, it increased to 25.5 m
-1

. As a result, extremely light-limited conditions were present in 

the green coloured layer [at 2.75 m depth, only 2% of the surface PAR was detected (Fig. 3)]. 

 Depth-specific conversion between the two dominant pigments, Chl a and Bchl c, was 

observed in the Lake Ursu water column with in vivo spectrum analysis (Fig. 4) at the 

absorption maximum of the two pigments, at 675-680 and 740 nm, respectively (Castenholz 

1973). Chl a dominated exclusively from the surface to around 2.0 m depth with values 

between 13 and 26 µg L
-1 

(Table 2). The characteristic peak of Bchl c was observable from 

2.5 m, and this latter pigment became the major type at 3.0 m depth, where the 

aforementioned green coloured layer could also be recognized visually. Assuming that at 3.0 

m, the ‘Chl a + Bchl c’ content of the methanolic extract (in this case, curves of the two 

pigment overlap with a maximum at the red region at 663 and 667 nm, respectively; 

Castenholz 1973) was composed of only Bchl c, the Bchl c content was ninety times higher 
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than the Chl a concentration at 2.5 m (47.3 compared to 4233 µg L
-1

). Besides this, moderate 

amount of Bchl a was also detected at 2.75 m and 3.0 m depth (10 and 264 µg L
-1

, 

respectively), which pigment had a slightly visible peak maximum at ~805 nm in the in vivo 

absorption curves (Fig. 4). Based on these results, aerobic photoautotrophic microorganisms 

dominated the upper 2.7 m layer of Lake Ursu, but below that anaerobic phototrophs were 

present in a huge amount. 

 Two distinct Cryptomonas sp. dominated the phytoplankton in the upper zone of Lake 

Ursu, with decreasing total biomass in the function of depth (804, 435, 54 and 35 µg L
-1

 in 

depth 0.5, 1.5, 2.0 and 2,5 m, and were absent at depth 2.75 m and below). Cryptophytes 

were also detected by the sequence analysis of the excised DGGE bands from this zone (Fig. 

2, Table 2), and were reported to be characteristic in lakes during winter, even at low-light 

conditions (Bertilsson et al. 2013). In the deeper aerobic zone, having a peak at 2.75 m, 

another group of photosynthetic microorganisms, the photoautotrophic picophytoplankton 

(picocyanobacteria and picoeukaryotic algae) dominated the planktonic community in Lake 

Ursu (Fig. 3). The abundance of picoeukaryotic algae continuously increased with the depth 

from 0.3×10
5
 cells mL

-1
 (at 0.5 m) to 5.2×10

5
 cells mL

-1
 (at 2.75 m). The same trend was 

observable for phycocyanin-rich picocyanobacteria, but with considerably lower abundance 

values (0.005-1.1×10
5
 cells mL

-1
). Phycoerithrin-rich picocyanobacteria were completely 

absent, as it was reported in the case of other saline eutrophic lakes in the same region 

(Somogyi et al. 2014). In Lake Ursu, the deepest, picoplankton-rich aerobic layer (around 

2.5-2.7 m depth) had higher salinity (11.9-18.9%) compared to the uppermost layer of the 

lake (6.8% at 0.5 m) (Fig. 1B, Table 2). Former studies (Schapira et al. 2010; Somogyi et al. 

2014) reported that eukaryotic algae are the dominant in the picophytoplankton of saline 

environments between salinities 5 and 13%, which corresponded well with our observations. 
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 Surprisingly, in the upper anaerobic part of the water column, picophytoplankton were 

also found in significant number (Fig. 3): the abundance of picoeukaryotes was 4.8×10
5
 cells 

mL
-1

 and 17.3×10
5
 cells mL

-1
 at 3.0 and 3.5 m, while that of picocyanobacteria was 0.92×10

5
 

cells mL
-1

 and 0.66×10
5
 cells mL

-1
 at 3.0 and 3.5 m depths, respectively. The anaerobic 

milieu, high sulphide content and no available light suggest that sinking of cells generated 

these high abundance values. Sinking of particulate organic matter was observed in this lake, 

since partially degraded leaves and other organic debris were visible several times below 3 m 

depth (István Máthé and Károly Márialigeti, unpublished data), most probably due to the 

dramatic increase in salinity-caused density values. Presence of small-sized phototrophic 

cells in the anoxic monimolimnion of other saline lakes in the same region was reported 

recently (Somogyi et al. 2014), and the same sinking mechanism was hypothesized for 

occurrence of a significant picocyanobaterial population in the anoxic, sulphidic water layers 

of the hypersaline Mono Lake, California (Budinoff and Hollibaugh 2007).  

 Unfortunately, in this study we failed to identify members of picophytoplankton 

taxonomically with DGGE, e.g. these phylotypes represented bands from which sequence 

analysis was not successful or due to the low copy number of the ribosomal operon in the 

genomic DNA compared with larger eukaryotic algae (Shi et al. 2011). Samples taken on 

different sampling dates (spring 2009 and 2010) from Lake Ursu contained picocyanobacteria 

belonging to the marine Synechococcus clade (Anikó Mentes and Tamás Felföldi, 

unpublished results), while pico-sized eukaryotic algae were represented by the genus 

Picochlorum (Máthé et al. 2014). The green layer was dominated by the strictly anaerobic 

phototrophic green sulphur bacterium, Prosthecochloris (Fig. 2, Table 3), which could use 

reduced sulphur compounds as electron donor, and has the characteristic pigment Bchl c 

(Imhoff 2003), as it was detected in the in vivo absorption spectrum of water taken from 3.0 

m depth (Fig. 4). 



16 

 

 Our study has highlighted that a complex interaction of various factors (temperature, 

light intensity, oxygen and sulphide concentration, salinity, sinking of cells, etc.) determined 

the actual recorded distribution and abundance of phototrophic microorganisms in the 

stratified, heliothermal, saline and deep Lake Ursu. 

Contrary to Lake Ursu, in the shallow, small Lake Verde and Lake Roşu, 

phytoplankton consisted of two Dunaliella sp. with total biomass values of 1144 and 663 µg 

L
-1

, respectively. This genus is a well-known planktonic alga of various saline aquatic 

environments (Seckbach 2007) and is characteristic in other salt lakes in this region 

(Keresztes et al. 2012; Somogyi et al. 2014), but surprisingly was not present in Lake Ursu, 

although all three lakes are directly connected with small channels (Máthé et al. 2014). 

Characteristic differences were also found between the bacterial communities of the upper 

zone of Lake Ursu and that of Lake Verde and Lake Roşu (Fig. 2), since the latter lakes were 

dominated by Marinobacter psychrophilus (Gammaprotobacteria), while Lake Ursu by 

Albidiferax ferrireducens and Polaromonas glacialis (Betaproteobacteria). Nevertheless, 

Marinobacter psychrophilus and Polaromonas glacialis have similar properties, both are 

psychrophilic (could grow even at 1 °C), aerobic, heterotrophic bacteria, which are able to 

grow in the presence of NaCl (Margesin et al. 2012; Zhang et al. 2008). However, Albidiferax 

ferrireducens is also heterotrophic, but only phychrotolerant (shows significant growth even 

at 4 °C with optimum growth temperature at ~25 °C) and a facultatively anaerobic species, 

which could use nitrate or ferric ion as electron acceptor for anaerobic growth (Finneran et al. 

2003; Ramana and Sasikala 2009). Therefore, all three species could be active members of 

the bacterioplankton even in winter. Former studies of Lake Ursu (Máthé et al. 2014) and 

Lake Roşu (Borsodi et al. 2013) confirmed the importance of other bacteria in these saline 

lakes, members of the genera Halomonas, Psychroflexus and Pseudoalteromonas were 

dominant during spring 2009 in the planktonic microbial communities. None of them were 
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detected in the winter samples analysed in this study, however it is worth to mention that 

some of the excised DGGE bands resulted in mixed sequences, therefore some potentially 

important planktonic bacteria were not identified.  

Most of the retrieved archaeal genotypes were affiliated with the order 

Halobacteriales, which are inhabitants of various saline environments and are aerobic 

heterotrophs, while some of them are capable for anaerobic growth, e.g. with nitrate or 

fumarate as electron acceptor (Oren 2006), as possible in the deeper zones of Lake Ursu (Fig. 

2, Table 3). The detected phylotypes were distantly related to validly described species with a 

common occurrence of the same Halopelagius-related genotype in all three studied saline 

lakes [(Fig. 2, Table 3) and based on former studies (Borsodi et al. 2013; Máthé et al. 2014), 

contributed also significantly to the archaeal communities in Lake Ursu and Lake Roşu in 

spring]. Besides this, the studied environments could be the potential source of other new 

prokaryotic species, since many of the detected genotypes were distantly related to validly 

described species and their closely related sequences were exclusively uncultured (e.g. the 

dominant phylotypes in the deep anaerobic zone of Lake Ursu, B13 and B14) (Fig. 2, Table 

3).   

 

Planktonic microbial communities of the studied aquatic habitats in the winter environment 

 

Compared to the warmer seasons, in general, aquatic habitats of the temperate zone have two 

main distinguishing features: they receive less solar radiation (number of sunshine hours and 

sunlight intensity are lower, ice and snow cover further hinders light transmission) and has 

lower water temperature values. However, concentration of nutrients could be present at 

relatively high level (Table 2), which supports the growth of planktonic organisms. 
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 Ice cover has fundamental impact on the physico-chemical properties of the under-ice 

environment, since it prevents atmospheric input of particulate matter and gas exchange, 

hinders heat loss and wind shear thus lowers circulation and the exchange with the 

surrounding terrestrial habitats; furthermore, the low solar radiation is further decreased, 

especially in the case of the presence of a snow cover (Bertilsson et al. 2013). These 

circumstances create markedly different environment for the phototrophic members of the 

plankton compared to those present in warmer seasons of the year. PAR was lowered by 

almost 90% in the case of Lake St. Ana in our study, where both ice and snow were present at 

the date of sampling. Additionally, in the case of the Mohoş peat bog lake, the high CDOM 

content further lowered the available light for photosynthesis. Therefore, algae may decrease 

their photosynthetic activity or survive this low-light and low-temperature environment in a 

dormant form even in the water column (like dormant cells of Peridinium inconspicum in 

Lake St. Ana) or supply their requirements in a heterotrophic lifestyle (like possibly some of 

the genera detected in Mohoş peat bog lake). Humic substances of peat bog lakes could be 

decomposed by prokaryotes to smaller molecules, e.g. to acetate, which could be a good 

substrate for heterotrophic algal growth (Perez-Garcia et al. 2011) in the aerobic zone, and for 

the methanogenic archaea in the deep anaerobic zones (Ma et al. 2006). However, it should 

be mentioned that, prokaryotic species both could be the competitors of eukaryotic primary 

producers for nutrients and depend on the organic carbon produced by them (Pernthaler 

2013); for the latter, Prosthecobacter detected in Lake St. Ana could be an example. 

Prosthecae on the cells may serve not only for the reduction of sinking but for facilitating 

nutrient uptake in oligotrophic environments through increasing the surface-to-volume ratio 

of cells (Madigan et al. 2012). Furthermore, mixotrophic phytoplankton can account for a 

significant removal of bacterial cells in lakes (Bertilsson et al. 2013). Additionally, motile 

cells (such as Cryptomonas in Lake St. Ana and Lake Ursu) may have selective advantage 
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during winter, since they can compensate sinking and find patches of nutrients (Bertilsson et 

al. 2013). 

 Under the ice, special stratification may evolve during winter, and due to the lack of 

the mixing effect of wind, density is the key factor that determines this process. However, in 

the case of Lake Ursu, salinity determines stratification, including the measured differences 

of temperature values. Such stratification of many physicochemical parameters determines 

the vertical distribution of planktonic microorgansisms, as it was observed for the phototropic 

community within a 1-m-wide zone (Fig. 3), or in general, comparing the whole bacterial and 

archaeal communities of different depths (Fig. 2). 

 A recent study of Baricz et al. (2014) focusing on the prokaryotic communities of the 

saline Lake Ocnei (which is, similarly to Lake Ursu, also a heliothermal lake) showed that 

members of the domains Archaea and Bacteria were present there usually in similar cell 

densities, with abundance values ~10
7
 cells mL

-1
. In March and April 2009, total cell counts 

were ~10
6
–10

7
 cells in Lake Ursu (Máthé et al. 2014), as the values detected for the winter 

plankton in this study (Table 2), which indicated that, at least regarding their abundance, the 

winter planktonic community could be very similar to those of the warmer periods of the 

year. However, in general, pelagic microbial biomass is usually lower in ice-covered than in 

the warmer periods of the year (Bertilsson et al. 2013). It should be noted that Lake Ursu had 

a special thermal regime during winter with maximal temperature ~21-23 °C in the 

hypolimnion, and the layer above this zone may serve as a temperature refugium for the 

spring planktonic community (Table 2). 

 Metabolic activities could be also significantly different among the seasons. As 

temperature decreases during autumn and winter, cells adapted to the warmer period could 

enter to a dormant state (which is not always coupled with obvious morphological changes), 

which allows to become resistant to cold environments and to survive with a minimal 
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metabolic rate (Fuchs et al. 2013). During this study, both potentially actively growing and 

inactive (or dead) microorganisms were detected; Prosthecobacter in Lake St. Ana, 

Marinobacter and Polaromonas in Lake Ursu are examples for the first type, while 

Parachlorella in Mohoş peat bog lake and Peridinium in Lake St. Ana for the second one. In 

general, the turnover of bacterial biomass is reported to be surprisingly high, 4-10 days, in 

seasonally frozen lakes during winter (Bertilsson et al. 2013), which contradicts with 

traditional view that in this time microorganisms could be characterized with a rather low 

metabolic activity.  

 Furthermore, many of the studied sites are extreme environments (e.g. low pH, high 

salinity), which could be characterized with special trophic interactions. Recently Somogyi et 

al. (2014) studied eight lakes of the same Salt Region in Transylvania, where our studied salt 

lakes are also located, and found that heterotrophic nanoflagellates, the main grazers of 

picocyanobacteria and picoeukaryotic algae, were completely absent there contrary to some 

other hypersaline habitats (e.g. Park et al. 2003). On the other hand, brine shrimp (Artemia 

sp.) could be found in high abundance during the warmer periods of the year in these lakes 

(Borsodi et al. 2013; Ionescu et al. 1998; Máthé et al. 2014), however, according to our best 

knowledge, members of winter food web has not been identified previously in these habitats. 

The top down control of planktonic primary production could be slight or even absent in 

some of the studied environments, since multicellular eukaryotes are known to tolerate less 

the extremities compared to microorganisms (Rothschild and Mancinelli 2001). Therefore, 

the special environmental conditions associated with the winter season coupled with the 

unknown effect of grazers provides special circumstances for the planktonic microorganisms 

in these aquatic habitats, which could be an interesting topic for future investigations. Further 

studies may also help to reveal the causes of unusual phenomena observed during this winter 
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survey: complete lack of picophytoplankton in Lake St. Ana and Mohoş peat bog lake, and 

lack of Dunaliella sp. in Lake Ursu. 
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TABLE AND FIGURE LEGENDS 

 

 

Table 1 General and on-site measured characteristics of sampling sites 

 

Table 2 Chemical and biological characteristics of samples 

 

Table 3 Identified sequences retrieved from excised bands of various group-specific DGGEs 

(shown in Fig. 2) from winter water samples from the Eastern Carpathians 

 

Fig. 1 Depth profiles of major physicochemical variables in (a) Lake St. Ana on 7
th

 February 

2013 and (b) in Lake Ursu on 9
th

 February 2013. The reduction fold of original values are 

shown in brackets 

 

Fig. 2 DGGE patterns of winter planktonic microbial communities in the aquatic habitats of 

the Eastern Carpathians examined with different group-specific analyses. Arrowheads mark 

excised bands (results of sequence analysis of the reamplified DNA is shown is Table 3) 

 

Fig. 3 Depth distribution of total microbial cell count, picophytoplankton, photosynthetically 

active radiation (PAR) and chromophoric dissolved organic matter (Pt colour) in the upper 

3.5 m layer of Lake Ursu on 9
th

 February 2013. P-Euk – picoeukaryotic alage; P-Cya – 

picocyanobacteria 

 

Fig. 4 In vivo absorption spectra of Lake Ursu water samples taken from different depths on 

9
th

 February 2013
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TABLES 

 

Table 1 General and on-site measured characteristics of sampling sites. 

Name L. St. Ana Mohoş Apor 2 Apor 4 Apor 6 L. Ursu L. Verde L. Roşu 

Type crater lake peat bog lake 
sulphuric 

bubbling pool 

sulphuric 

bubbling pool 

sulphuric 

bubbling pool 

deep, heliothermal, 

meromictic saline lake 
shallow saline lake shallow saline lake 

Altitude (m, a.s.l.)a 950 1050 930 932 934 502 505 505 

GPS coordinates 

(sampling point) 

N 46.12552 

E 25.88744 

N 46.13603 

E 25.90145 

N 46.11465 

E 25.94965 

N 46.11474 

E 025.94968 

N 46.11501 

E 025.94965 

N 46.6035 

E 25.08539 

N 46.3621 

E 25.0558 

N 46.3623 

E 25.0520 

Max. water depth (m) 6.0b 1.2c 0.25b 0.15b 0.67b 17.18b 1.20a 2.10a 

Surface area (m2) 193,000a 212.7a 10.37b 0.18b 4.33b 41,270a 291a 1406a 

Volume (m3) 250,00a 1298a 2.59b 0.015b 2.90b 262470a 159a 1163a 

Ice thickness (cm)b 35  4-15 0-2 0 0 2 0 0 

Snow cover (cm) 20 2-8 0-5 0 0 0-1 0 0 

Secchi depth (cm)b tr 18 tr tr tr 196 n.m. n.m. 

a based on the data given in: Magyari et al. (2009); Alexe (2010); Diaconu and Mailat (2010); Romanescu et al. (2010); Begy et al. (2011); Borsodi et al. (2013); Máthé et al. (2014) 

b measured in this study during sample collection 

c above the underwater decaying Sphagnum layer 

n.m. – not measured; tr – transparent water to the bottom 
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Table 2 Chemical and biological characteristics of samples 

sampling site L. St. Ana Mohoş Apor 2 Apor 4 Apor 6 L. Ursu L. Verde L. Roşu 

sampling depth (m) 0.4 2.5 5.5 0.4 0.1 0.1 0.1 0.1 0.5 1.5 2.7 3.0 3.5 5.0 8.0 0.1 0.1 

temperature (°C) 1.7 4.5 4.1 0.6 0.3 2.6 2.6 1.4 10.7 12.2 17.1 19.4 21.4 23.0 22.3 1.6 1.3 

spec. el. cond. (µS cm-1) 19 23 19 109 2392 2091 2495 46,200 95,000 98,400 154,700 194,300 233,700 239,100 242,600 110,000 156,900 

pH 5.23 5.20 5.53 3.95 2.93 4.77 2.41 8.97 8.58 8.33 7.37 7.10 6.26 6.25 6.22 7.55 7.85 

salinity (mg L-1) 8.1 9.8 8.0 45.5 1,000 870 1,040 4,800 69,700 73,200 147,800 217,800 301,700 314,300 322,600 86,200 151,300 

NH4
+-N (mg L-1) 0.08 <0.01 <0.01 <0.01a 1.50 1.69 1.14 <0.01 0.05 0.02 17.0 n.m. 28.5 32.9 28.4 2.80 2.49 

NO2
--N (mg L-1) <0.01 <0.01 <0.01 0.02a 0.01 0.02 0.01 <0.01 0.03 0.15 <0.01 n.m. <0.01 0.01 <0.01 0.05 0.05 

NO3
--N (mg L-1) 0.25 0.23 0.23 n.m. 1.8 1.7 1.9 n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. 

TN (mg L-1) 0.7 0.6 0.8 3.2 5.5 5.6 3.1 1.9 2.1 2.4 20.9 n.m. 32.8 46.2 28.4 6.9 5.3 

PO4
3--P (mg L-1) 0.01 0.01 <0.01 0.04a 1.9 0.19 0.36 0.13 0.09 0.15 4.5 n.m. 4.3 3.9 3.2 0.04 0.04 

TOC (mg L-1) 4.5 4.5 4.7 73 14.6 14.3 16.5 1.2 7.3 <0.1 45.7 n.m. 20.9 54.4 14.9 21.2 19.3 

DOC (Pt colour, mg L-1) 3.15 n.m. n.m. 599 n.m. n.m. n.m. n.m. 15.7 19.1 61.8 284 72.8 n.m. n.m. n.m. n.m. 

TIC (mg L-1) 0.3 0.6 0.5 <0.1 422 414 384 10 72 58 173 n.m. 240 202 202 29 24 

HCO3
--C (mg L-1) n.m. n.m. n.m. <7 <7 <7 <7 11 84 67 201 n.m. 280 235 235 33 28 

Fe (mg L-1) 0.10 0.12 0.09 0.62a 1.16 0.46 0.50 0.07 0.05 0.05 <0.01 n.m. 0.62 0.45 0.27 0.15 0.16 

SO4
2--S (mg L-1) 1.0 1.3 <0.01 <0.1a 273 172 109 6.7 70 92 270 n.m. 394 406 457 46 47 

H2S-S (mg L-1) n.m. n.m. n.m. n.m. 27 52 0 11 23 n.m. 81 n.m. 247 222 207 132 43 

Chl a (µg L-1) 1.8 1.9 1.1 81.3 <0.5 <0.5 <0.5 n.m. 13.2 24.7 405b 5440b 142.3 n.m. n.m. n.m. n.m. 

total bacterial cell count 

(105 cells mL-1) 
13.9 9.11 8.06 21.9 2.23 3.24 31.8 49.4 278 235 n.m. 538 289 259 163 85.3 77.4 

a intensive water color (i.e. high concentration of dissolved organic material) may alter the results of photometric detection 

b the majority is Bchl c according to the in vivo absorbance spectrum 

n.m. – not measured 
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Table 3 Identified sequences retrieved from excised bands of various group-specific DGGEs (shown in Fig. 2) from winter water samples from 

the Eastern Carpathians 

Code (Acc. No.) Sampling site Closest species
a
 [Major taxonomic group] 

Similarity 

(%) 

Sequence 

length (nt) 

Archaea 

A1 (KF515277) L. St. Ana (Nitrososphaera gargensis) [Thaumarchaeota/Nitrososphaerales] 88.2 408 

A2 (KF515278) Mohoş Methanosaeta harundinacea [Euryarchaeota/Methanosarcinales] 98.9 348 

A3 (KF515279) Mohoş Methanosaeta harundinacea [Euryarchaeota/Methanosarcinales] 99.0 410 

A4 (KF515280) Apor 4 Ferroplasma acidiphilum [Euryarchaeota/Thermoplasmatales] 100 325 

A5 (KF515281) L. Ursu (Nitrososphaera gargensis) [Thaumarchaeota] 83.3 216 

A6 (KF515282) L. Ursu (Halopelagius longus) [Euryarchaeota/Halobacteriales] 93.7 458 

A7 (KF515283) L. Ursu (Halopelagius longus) [Euryarchaeota/Halobacteriales] 93.8 483 

A8 (KF515284) L. Ursu (Salarchaeum japonicum) [Euryarchaeota/Halobacteriales] 93.5 384 

A9 (KF515285) L. Ursu (Salarchaeum japonicum) [Euryarchaeota/Halobacteriales] 94.1 410 

A10 (KF515286) L. Roşu (Halopelagius longus) [Euryarchaeota/Halobacteriales] 93.8 483 

A11 (KF515287) L. Roşu (Halopelagius longus) [Euryarchaeota/Halobacteriales] 93.2 381 

Bacteria 

B1 (KF515288) L. St. Ana Prosthecobacter (vanneervenii) [Verrucomicrobia/Verrucomicrobiales] 96.8 156 

B2 (KF515289) L. St. Ana Gluconobacter (roseus/oxydans) [Alphaproteobacteria/Rhodospirillales] 95.3 403 

B3 (KF515290) Mohoş Polynucleobacter necessarius [Betaproteobacteria/Burkholderiales] 100 395 

B4 (KF515291) Mohoş (Acidomonas methanolica) [Alphaproteobacteria/Rhodospirillales] 93.2 385 

B5 (KF515292) Apor 2 Metallibacterium scheffleri [Gammaproteobacteria/Xanthomonadales] 100 155 

B6 (KF515293) Apor 6 Acidithiobacillus ferrooxidans [Gammaproteobacteria/Acidithiobacillales] 100 444 
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B7 (KF515294) L. Ursu Albidiferax ferrireducens [Betaproteobacteria/Burkholderiales] 98.4 450 

B8 (KF515295) L. Ursu Polaromonas glacialis [Betaproteobacteria/Burkholderiales] 99.3 153 

B9 (KF515296) L. Ursu Prosthecochloris vibrioformis [Chlorobi/Chlorobiales] 98.3 408 

B10 (KF515297) L. Ursu Prosthecochloris vibrioformis [Chlorobi/Chlorobiales] 97.3 441 

B11 (KF515298) L. Ursu Prosthecochloris vibrioformis [Chlorobi/Chlorobiales] 97.0 437 

B12 (KF515299) L. Ursu Prosthecochloris vibrioformis/aestuarii [Chlorobi/Chlorobiales] 98.0 298 

B13 (KF515300) L. Ursu (Alkaliflexus imshenetskii) [Bacteriodetes/Bacteroidales] 84.3 408 

B14 (KF515301) L. Ursu (Aestuariicola saemankumensis) [Bacteroidetes/Flavobacteriales] 86.5 304 

B15 (KF515302) L. Verde Marinobacter psychrophilus [Gammaproteobacteria/Alteromonadales] 98.7 453 

Cyanobacteria and plastids 

C1 (KF515303) L. St. Ana Cryptomonas ovata NIES274, plastid [Cryptophyta/Cryptomonadales] 97.5 323 

C2 (KF515304) L. St. Ana Cryptomonas ovata NIES274, plastid [Cryptophyta/Cryptomonadales] 97.5 323 

C3 (KF515305) L. St. Ana Cryptomonas ovata NIES274, plastid [Cryptophyta/Cryptomonadales] 97.5 322 

C4 (KF515306) L. St. Ana Cryptomonas ovata NIES274, plastid [Cryptophyta/Cryptomonadales] 97.5 323 

C5 (KF515307) L. St. Ana (Opitutus terrae) [Verrucomicrobia/Opitutales] 92.4 328 

C6 (KF515308) L. St. Ana (Opitutus terrae) [Verrucomicrobia/Opitutales] 92.7 344 

C7 (KF515309) Mohoş Parachlorella kessleri SAG 211-11g, plastid [Chlorophyta/Chlorellales] 99.0 306 

C8 (KF515310) Mohoş Parachlorella kessleri SAG 211-11g, plastid [Chlorophyta/Chlorellales] 98.7 311 

C9 (KF515311) Apor 2 Navicula sp. C21, plastid [Bacillariophyta/Naviculales] 99.4 323 

C10 (KF515312) Apor 2 Navicula sp. C21, plastid [Bacillariophyta/Naviculales] 99.4 323 

C11 (KF515313) Apor 6 Arthrospira (formerly known as Spirulina) fusiformis/platensis/maxima/indica 

[Cyanobacteria/Oscillatoriales] 

99.7 322 

C12 (KF515314) Apor 6 (Carboxydocella thermautotrophica) [Firmicutes/Thermolithobacterales] 83.8 319 
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C13 (KF515315) L. Ursu Guillardia theta, plastid [Cryptophyta/Pyrenomonadales] 99.1 322 

C14 (KF515316) L. Ursu Guillardia theta, plastid [Cryptophyta/Pyrenomonadales] 99.0 298 

C15 (KF515317) L. Ursu Cryptomonas ovata NIES274, plastid [Cryptophyta/Cryptomonadales] 97.5 323 

C16 (KF515318) L. Roşu Synedra/Dickieia/Detonula/Haslea [Bacillariophyta/various] 97.8 323 

a
 in the case of Archaea- and Bacteria-specific DGGE, type strains based on EzTaxon search while for cyanobacteria and eukaryotes, closest species based on 

Blast search (excluding uncultured sequences) are shown (with strain codes, if available); distant relationships are indicated with parentheses: in the case of 

prokaryotes >95% pairwise nucleotide sequence similarity for genus and >97% similarity for species level were assumed as suggested by Tindall et al. 

(2010), in the case of eukaryotes, no such general threshold values were applied 


