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Abstract: An important question for human balance control concerns how the differential
equations for the neural control of balance should be formulated. In this paper, we consider a
discrete-time and a continuous-time delayed proportional-derivative-acceleration controller and
establish the transition between them by means of the semi-discretization. We show that the
critical delay, which limits stabilizability of the system, is about the same for the continuous-time
systems and its semi-discrete counterparts.
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1. INTRODUCTION

Stabilization of unstable equilibria and orbits is a highly
important task in engineering and science. Many engineer-
ing structures are operated around an unstable position or
around an unstable path by means of feedback control. Ex-
amples include the control of airplanes, satellites, missiles,
trains, brake systems, etc. One reason for the thorough
study of balancing tasks is that it is more efficient to
perform sudden quick movements from an unstable po-
sition than from a stable one. Another beneficial feature is
that the energy demand of the control process is relatively
small. For the same reasons, living creatures also often
stand at or move about unstable positions, since the ability
to start quick motions is a vital action in the wildlife.
Swimming of fishes, flying of birds or human gait can be
mentioned as examples.

As recognized in the 1940s with the development of con-
trol theory, time delay typically arises in feedback control
systems due to the finite speed of information transmis-
sion and data processing. These systems can be described
by delay-differential equations (DDEs) and are associated
with an infinite-dimensional state space (Michiels and
Niculescu, 2007). Human balancing is an important im-
plementation of delayed feedback control. Falls are leading
causes of accidental death and morbidity in the elderly.
Thus there is a strong motivation to understand the na-
ture of the mechanisms that maintain human balance,
why these mechanisms fail and how risks for falling can
be minimized. Human balancing processes make typically
use of visual, vestibular and mechanoreceptor feedbacks,
which are often associated with a proportional-derivative-
acceleration (PDA) feedback (Lockhart and Ting, 2007;
Welch and Ting, 2008; Insperger et al., 2013). Specifically,
the role of acceleration feedback in human balance con-
trol have been recently recognized (Peterka et al., 2006;
Nataraj et al., 2012).

A fundamentally important question for human balance
control which up to now has received little attention con-
cerns how the differential equations for the neural control
of balance should be formulated. To illustrate the problem
consider a controlled inverted pendulum subjected to a de-
layed proportional-derivative (PD) controller whose small
movements are described by the DDE

θ̈(t)− ω2
nθ(t) = −f(t) (1)

where θ is the vertical displacement angle, ωn is the natural
angular frequency of small oscillations when the pendulum
hangs downwards and f(t) describes the control action.
Since the left-hand side of (1) describes the motion of
a Newtonian dynamical system, it evolves in continu-
ous time. However, since the right-hand side describes
a neuro-physiological system it has a distinctly digital
quality reflecting, for example, the observation that spa-
tially separated neurons communicate by discrete action
potentials. Traditionally mathematical models for stick
balancing (Foo et al., 2000; Jirsa et al., 2000; Milton et al.,
2009a; Stepan, 2009) have assumed that the feedback is a
continuous and smooth function of time. However, a num-
ber of experimental observations on human balance and
movement suggest that the feedback exhibits a number
of properties expected for digital control including the in-
termittent character of corrective movements (Burdet and
Milner, 1998; Cabrera and Milton, 2002; Cluff and Bala-
subramaniam, 2009; Miall et al., 1993) and the role of cen-
tral refractory times (van de Kamp et al., 2013). Indeed,
for certain balancing tasks, intermittent control works bet-
ter than continuous control (Insperger et al., 2010; Loram
et al., 2011). These observations have prompted many in-
vestigators to develop mathematical models which empha-
size a role for event- and clock-driven intermittent control
strategies (Asai et al., 2009; Cabrera and Milton, 2002;
Gawthrop et al., 2013; Insperger and Milton, 2014; Loram
et al., 2014). Here we consider the possibility that the neu-
ral feedback lies somewhere between these two extremes.
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Fig. 1. Mechanical model for stick balancing at the finger-
tip as a pendulum-cart model.

Namely, we consider a continuous-time and a discrete-
time delayed PDA controller and establish the transition
between them by means of the semi-discretization. We
show that the critical delay, which limits stabilizability
of the system, is about the same for the continuous-time
systems and its semi-discrete counterpart.

2. MECHANICAL MODEL FOR STICK BALANCING

One of the most studied experimental paradigms for hu-
man balance control is stick balancing at the fingertip
Cabrera and Milton (2002); Cluff and Balasubramaniam
(2009); Lee et al. (2012); Milton et al. (2009b). The
corresponding mechanical model is shown in Figure 1.
Balance is maintained by the control force F (t), which is
determined by a feedback mechanism through the neural
system. A simple linear model for this balancing task can
be given by (1). If the length and the mass of the pendulum
are L and m and the mass of the cart is negligible then
ωn =

√

6g/L and f(t) = 6F (t)/(mL).

In the context of balance control, PDA feedback arises
because the visual, vestibular and proprioceptive sensory
systems are able to measure position, velocity and accel-
eration (Lockhart and Ting, 2007; Welch and Ting, 2008).
With respect to the timing of the control actions, two types
are analyzed:

• a discrete-time controller without feedback delay; and
• a continuous-time controller with feedback delay.

The transition between these two concepts are established
by means of the semi-discretization method (Insperger and
Stepan, 2011).

2.1 Discrete-time controller without feedback delay

Discrete-time controller updates the control force at dis-
tinct time instants. If the sampling period of the control
system is denoted by ∆t, then the governing equation
reads

θ̈(t)−ω2
nθ(t) = −kpθ(ti)−kdθ̇(ti)−kaθ̈(ti), t ∈ [ti, ti+1),

(2)
where ti = i∆t are the sampling instants. Here, the control
force is kept piecewise constant over each sampling period
[ti, ti+1). This phenomenon is called zero-order hold in
control theory. Equation (2) can also be written as

θ̈(t)−ω2
nθ(t) = −kpθ(t−ρ(t))−kdθ̇(t−ρ(t))−kaθ̈(t−ρ(t)),

(3)
where

ρ(t) = t− Int(t/∆t) (4)

is a time-periodic delay and Int denotes the integer part
function. In other words, for t ∈ [tj , tj+1), θ(tj − r∆t) =
θ(t−ρ(t)). The graph of the time delay variation is shown
in panel a) of Figure 2. Although there is no explicit delay
in the feedback mechanism, the zero-order hold still results
in a piecewise linear, sawtooth-like time-varying delay. The
average delay is

τ̃ =
1

∆t

∫ ∆t

0

ρ(t)dt =
1

2
∆t. (5)

Note that the acceleration is piecewise constant due to the
piecewise constant control force. Two types of acceleration
feedback are possible:

• the feedback of θ̈(t−i ) = limε→0 θ̈(ti − ε), or

• the feedback of θ̈(t+i ) = limε→0 θ̈(ti + ε).

Here, we consider the first case, i.e., from now on we use
the notation θ̈(ti) = θ̈(t−i ).

2.2 Continuous-time controller with feedback delay

The governing equation for the continuous-time delayed
PDA controller reads

θ̈(t)−ω2
nθ(t) = −kpθ(t− τ)− kdθ̇(t− τ)− kaθ̈(t− τ), (6)

where kp, kd, ka are the proportional, derivative and
acceleration control gains, and τ is the feedback delay.
Here, the control force is continuously updated based
on the delayed position, velocity and acceleration. Still,
the control force is typically discontinuous in time, since
initial discontinuities of the acceleration are transmitted
to the control force. (Note that (6) is a neutral functional
differential equation, thus the initial discontinuities do not
decay in time as opposed to retarded functional differential
equation.)

2.3 Semi-discretization of time-delayed feedback

A transition between the continuous-time and the discrete-
time controllers can be established by means of the semi-
discretization method (Insperger and Stepan, 2011). The
semi-discretized equation which corresponds to (6) is

θ̈(t)− ω2
nθ(t) = −kpθ(ti−r)− kdθ̇(ti−r)− kaθ̈(ti−r),

t ∈ [ti, ti+1), (7)

where the r ∈ Z is an integer called discrete delay. The
control force is determined using discrete delayed values
of the angular position, angular velocity and angular
acceleration and is kept piecewise constant over each
sampling period [ti, ti+1). In this model therefore both a
feedback delay of magnitude r∆t and a zero-order hold
appears. This system can also be written in the form of
equation (3), but the time-varying delay now reads

ρ(t) = r∆t+ t− Int(t/∆t) (8)

instead of (4). The graph of the time delay variation for
r = 1 and for r = 2 is shown in panels b) and c) of Figure 2.
The average delay is

τ̃ =
1

∆t

∫ ∆t

0

ρ(t)dt =

(

r +
1

2

)

∆t. (9)

Let us fix the average delay τ̃ to be equal to the delay
τ in 6). Then transition between equations (2) and (6)
can be established by increasing the discrete delay r and
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Fig. 2. Time-varying delay and sampling effect (a) for (2) (r=0); for (7) with (b) r = 1 and (c) r = 2; and (d) for (6).

decreasing the sampling period ∆t such that the average
delay remains constantly τ̃ = τ . Clearly, if r = 0 then
(7) is identical to (2). In the limit case, when r → ∞
and ∆t → 0 such that (r + 1/2)∆t = τ , the solution of
(7) approaches that of (6). In this sense, the semi-discrete
model (7) provides a transition between discrete-time
and continuous-time representations of feedback control.
Figure 2 shows the transition between the discrete-time
model and the continuous-time model via the semi-discrete
system (7). Note that the similar sawtooth-like delay was
also used in stochastic delay models (Verriest and Michiels,
2009; Qin et al., 2014).

3. STABILIZABILITY CONDITIONS FOR THE
DIFFERENT MODELS

It is known that feedback delay limits stabilizability of
control systems. Here, the critical delay associated with
the continuous-time model, the discrete-time model and
the semi-discrete model is analyzed.

3.1 Discrete-time controller without feedback delay

Equation (2) can be written in the form

ẋ(t) = Ax(t) +B(Kpdx(ti) + kaθ̈(ti)) , t ∈ [ti, ti+1)
(10)

where

x(t) =

(

θ(t)

θ̇(t)

)

, A =

(

0 1
ω2
n 0

)

and B =

(

0
−1

)

(11)

and Kpd = (kp kd). Since the terms x(ti) and θ̈(ti)) are
piecewise constant over the sampling period, the solution
at time instant ti+1 can be given using the variation of
constants formula. This gives

x(ti+1) = Adx(ti) +Bd(Kpdx(ti)− kaθ̈(ti)), (12)

ẋ(ti+1) = AAdx(ti) + (ABd +B)(Kpdx(ti)− kaθ̈(ti)),
(13)

where

Ad = eA∆t, Bd =

∫ ∆t

0

eA(∆t−s)dsB. (14)

Note that θ̈(ti+1) = Cẋ(ti+1), where C = (0 1). Thus, a
three-dimensional discrete map

zi+1 = Φzi (15)

can be constructed, where zi =
(

θ(ti) θ̇(ti) θ̈(ti)
)T

and

Φ =

(

Ad +BdKpd kaBd

C(AAd + (ABd +B)Kpd) kaC(ABd +B)

)

.

(16)
If matrices A, B, C and Kpd are substituted, then one
obtains

Φ =







kp(1−ch)+ω2
nch

ω2
n

kd(1−ch)+ωnsh
ω2

n

ka(ch−1)
ω2

n

(ω2
n−kp)sh
ωn

ωnch−kdsh
ωn

kash
ωn

(ω2
n − kp)ch ωnsh− kdch kach






, (17)

where sh = sinh(ωn∆t) and ch = cosh(ωn∆t). Stability
properties are determined by the eigenvalues of matrix Φ.
If all the eigenvalues are in modulus less than one, then
the system is asymptotically stable.

The D-curves can be analyzed by the substitution of z = 1,
z = −1 and z = eiω (ω ∈ [0, π]) into the characteristic
equation det(Φ−zI) = 0. It can be shown that the system
is asymptotically stable if
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Fig. 3. Stability diagram for (2) with ω2
n = 1, ka = 0.9 for

different average delays τ̃ .

|ka| < 1 (18)

and kp > ω2
n (19)

and kd <
ωn(1− ka)(e

ωn∆t + 1)

(eωn∆t − 1)
(20)

and kd >
(eωn∆t − 1)(1− ka)

(

kp + ω2
nka

)

ωn(eωn∆t + 1)(ka + 1)
. (21)

A sample stability diagram is shown in Figure 3 for
different average delays (note that τ̃ = ∆t/2). It can be
observed that the stable domain shrinks as the delay is
increased. However, the stable region does not disappear
as ∆t → ∞. This means that, in theory, the system can be
stabilized for any large sampling period ∆t (i.e., for any
average delay τ̃).

3.2 Continuous-time controller with feedback delay

Stability analysis of (6) was performed by Sieber and
Krauskopf (2005) and later by Insperger et al. (2013) in
context of human balancing. It is known that if |ka| > 1,
then (6) is unstable with infinitely many characteristic
roots with positive real parts (see Lemma 3.9 on page 63
in Stepan (1989)), therefore, a necessary criteria for the
stability of (6) is that |ka| < 1. The characteristic equation
reads

(1 + kae
−τs)s2 + kde

−τss− ω2
n + kpe

−τs = 0. (22)

Substitution of s = eiω and decomposition into real and
imaginary parts give the D-curves in the form

if ω = 0 : kp = ω2
n, kd ∈ R, (23)

if ω 6= 0 :

{

kp = (ω2 + ω2
n) cos(ωτ) + kaω

2,

kd =
ω2+ω2

n

ω
sin(ωτ).

(24)

Here, ω ∈ [0,∞) is the frequency parameter. The D-
curves separate the plane (kp, kd) into domains where the
numbers of unstable characteristic exponents are constant.
The stability boundaries are the D-curves bounding the
domains with zero unstable characteristic exponent.

Stability diagram of (6) for different delays is shown in
Figure 4. Stable regions are indicated by gray shading of
different intensity associated with different delays. It can
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k
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τ = 0.5

τ = 1

τ = 1.5

Fig. 4. Stability diagram for (6) with ω2
n = 1, ka = 0.9 for

different delays τ .

be observed that the stable domain shrinks as the delay is
increased. As shown by Sieber and Krauskopf (2005) and
Insperger et al. (2013), the stable domain disappears at a
critical delay value. This happens if the slope of the D-
curves (24) at ω = 0 becomes vertical. The critical delay,
which limits stabilizability, is

τcrit,cont =

√
2ka + 2

ωn
, (25)

which, at the limit case ka = 1 gives

τcrit,cont =
2

ωn
. (26)

If the feedback delay is larger than τcrit,cont, then the
system is unstable for any kp, kd and |ka| < 1.

3.3 Semi-discretization of time-delayed feedback

Equation (7) can be written in the form

ẋ(t) = Ax(t) +B vi−r t ∈ [ti, ti+1) (27)

vi−r = Kpdx(ti−r) + kaθ̈(ti−r), (28)

where x(t), A, B and Kpd are defined in (11). Similarly
to the discrete-time case, the solution at time instant ti+1

can be given as

x(ti+1) = Adx(ti) +Bd vi−r, (29)

ẋ(ti+1) = AAdx(ti) + (ABd +B) vi−r, (30)

where Ad and Bd are given in (14). Note that here
∆t = τ̃/(r + 1/2).

Equations (28), (29) and (30) imply the (r+3)-dimensional
discrete map

zi+1 = Φzi, (31)

where

zi =





















θ(ti)

θ̇(ti)

θ̈(ti)
vi−1

vi−2

...
vi−r





















, Φ =





















Ad 0 0 · · · 0 Bd

CAAd 0 0 · · · 0 Rd

Kpd ka 0 · · · 0 0
0 0 1 · · · 0 0
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0





















(32)
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Fig. 5. Stability diagram for (7) with r = 1, ω2
n = 1,

ka = 0.9 for different average delays τ̃ .

with Rd = C(ABd+B) and C = (0 1). After substitution
of the matrices A, B, C and Kpd one obtains

Φ =























ch sh
ωn

0 0 . . . 0 1−ch
ω2

n

ωnsh ch 0 0 . . . 0 − sh
ωn

ω2
nch ωnsh 0 0 . . . 0 −ch
kp kd ka 0 . . . 0 0
0 0 0 1 . . . 0 0
...

. . .
...

0 0 0 0 . . . 1 0























, (33)

where sh = sinh(ωn∆t) and ch = cosh(ωn∆t). Stability
properties are determined by the eigenvalues of matrix Φ.

Again, the D-curves can be analyzed by the substitution
of z = 1, z = −1 and z = eiω (ω ∈ [0, π]) into the
characteristic equation det(Φ − zI) = 0. For instance, for
the case r = 1, the D-curves read

if z = 1 : kp = ω2
n, kd ∈ R, (34)

if z = −1 : kd = −ωn(ka + 1)(eωn∆t + 1)

eωn∆t − 1
, kp ∈ R,

(35)

if z = eiω, ω ∈ (0, π) :

kp =− ω2
n

(eωn∆t − 1)2

(

4eωn∆t cos2 ω

− 2(e2ωn∆t + eωn∆t + 1 + kae
ωn∆t) cosω

+ e2ωn∆t − 2kae
ωn∆t + 1

)

, (36)

kd =
ωn

e2ωn∆t − 1

(

2 cosω − ka + 1
)

×
(

e2ωn∆t − 2eωn∆t cosω + 1
)

. (37)

The corresponding stability diagram is shown in Figure
5 for different average delays. Similarly to the previous
cases, the stable domain shrinks as the average delay is
increased.

If r = 1 then the stable region disappears when the slope
of the D-curves (36)-(37) at ω = 0 becomes vertical. After
some algebraic manipulation, the critical sampling period
can be obtained as

0 5 10 15 20

1.95

2

2.05

r

τ̃
c
r
it τcrit,cont = 2

Fig. 6. Critical average delay for (7) with ω2
n = 1, ka = 1

for different r.

∆tcrit,1 =
1

ωn
ln

(

3

2
+

1

2
ka +

1

2

√

5 + 6ka + k2a

)

. (38)

If we set ka = 0 then we get the well-known critical sam-
pling period for the discrete-time PD controller (Enikov
and Stepan, 1998). The critical value for the average delay
is

τ̃crit,1 =
3

2ωn
ln

(

3

2
+

1

2
ka +

1

2

√

5 + 6ka + k2a

)

. (39)

For the general case r ≥ 1 (with (r + 1
2 )∆t = τ̃ ), the

critical sampling period associated with a vertical slope of
the D-curve at ω = 0 can be given as

∆tcrit,r =
1

ωn
ln

(

r(r+1)+1+ka+
√

(ka+2r(r+1)+1)(ka+1)

r(r+1)

)

.

(40)
If ka = 0 then this formula gives the critical sampling
period for the semi-discrete PD controller (Insperger and
Stepan, 2007; Insperger and Milton, 2014). The critical
value for the average delay is

τ̃crit,r =
r + 1

2

ωn
ln

(

r(r+1)+1+ka+
√

(ka+2r(r+1)+1)(ka+1)

r(r+1)

)

.

(41)

In order to make the transition between the semi-discrete
system (7) and the continuous-time system (6), the limit
∆t → 0, r → ∞ with ∆t(r + 1

2 ) = τ̃ = τ should be
investigated. Using (41), this limit gives

lim
∆t→0,r→∞

τ̃crit,r =

√
2ka + 2

ωn
, (42)

which is just equal to the critical delay τcrit,cont for the
continuous-time delayed feedback control.

Figure 6 shows the variation of the critical average delay
for different r. The convergence to the critical delay of the
continuous-time delayed feedback control can be clearly
observed. The difference between the critical delay τ̃crit,1
for the semi-discrete system with r = 1 and the critical
delay τcrit,cont for the continuous-time delayed feedback
control is about 1.2%. If r = 2, then the difference is
0.6%. Although there are several differences between the
continuous-time, the discrete-time and the semi-discrete
models, these observation implies that, from the point of
stabilizability, the different models give about the same
critical delay.

4. CONCLUSION

The transition between continuous-time and discrete-time
delayed PDA controllers was established by means of
the semi-discretization method. The critical delay, which
limits stabilizability of the system, was determined for
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each model. It was shown that although the different
models uses fundamentally different timing concept for the
feedback, they all provide about the same critical value for
the average delay.

Note that in this analysis only the slopes of the D-curves
were analyzed, but stabilizability in discrete cases can also
be affected by the D-curve associated with z = −1. This
case, however, show up only in the cases when 1 < r < ∞.
For the cases r = 1 and r → ∞ (continuous-time model),
the sufficient condition for the loss of stabilizability is the
vertical slope of the D-curves at ω = 0 if |ka| < 1.

Note furthermore that adding an integral term to the
controller does not extend the limit of stabilizability, since
in case of the critical delay, the integral control gain is 0
(Lehotzky and Insperger, 2014).
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