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Abstract

An application of the finite spectrum assignment (FSA) control technique is
presented for unstable systems with feedback delay. The FSA controller predicts
the actual state of the system over the delay period using an internal model of the
real system. If the internal model is perfectly accurate then the feedback delay
can be compensated. However, parameter mismatches of the internal model or
implementation inaccuracies of the control law may result in an unstable control
process. In this paper, stabilizability of an undamped second-order system is ana-
lyzed for different system and delay parameter mismatches. Theoretical stability
and robustness to implementation inaccuracies of the control law are discussed.
It is shown that, for small parameter uncertainties, the FSA controller allows
stabilization for significantly larger feedback delays than conventional delayed
proportional-derivative-acceleration controllers do.

1 Introduction

Control of unstable systems with feedback delay is a challenging task in engineering
and science (Stepan, 1989; Michiels and Niculescu, 2007). Time delay is usually consid-
ered to be a source of unstable behavior, which should be eliminated from the control
system. Car following traffic models (Orosz et al., 2009), crane payload stabilization
(Masoud et al., 2003; Erneux and Kalmar-Nagy, 2007), control of machine tool chatter
(Munoa et al., 2013; Lehotzky and Insperger, 2012; Lehotzky et al., 2014) or digi-
tal position control (Stepan, 2001; Habib et al., 2014) can be mentioned as practical
applications. Stability analysis of time-delayed systems is therefore highly important
in engineering. In the recent years, several numerical techniques were developed to
the stability analysis of delayed systems, such as the semi-discretization method (In-
sperger and Stepan, 2011), the continuous time approximation (Sun, 2009; Zhang and
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Sun, 2014), the pseudospectral collocation method (Breda et al., 2012), the Liapunov-
Floquet transformation (Bobrenkov et al., 2013), the approach of Lambert W functions
(Duan et al., 2012), the cluster treatment method (Olgac and Sipahi, 2002), the method
of harmonic balance (Liu and Kalmar-Nagy, 2010), the subspace iteration technique
(Zatarain and Dombovari, 2013) or the extended multi-frequency solution (Bachrathy
and Stepan, 2013), just to mention a few.

An effective way to compensate the destabilizing effect of feedback delays is the ap-
plication of model predictive controllers such as the celebrated Smith predictor (Smith,
1957) and its modifications (Palmor, 2000), the prediction based on optimal control
(Kleinman, 1969), the finite spectrum assignment (Manitius and Olbrot, 1979; Wang
et al., 1999; Jankovic, 2009), the reduction approach (Arstein, 1982) or the predictive
pole-placement control (Gawthrop and Ronco, 2002). The main idea behind model
predictive controllers is that the feedback delay is eliminated from the control loop
using a prediction of the actual state based on an internal model of the plant. It is
known that optimum prediction for a system with input delay is obtained by solving
the system equations over the delay period (Kleinman, 1969; Manitius and Olbrot,
1979). A detailed overview on time delay compensation in a more general concept is
given in the book by Krstic (2009).

It is a general view that the original Smith predictor is capable to compensate the
feedback delay for stable open-loop systems only. It should be mentioned however that
in case of large mismatch between the internal model and the real system, the Smith
predictor can stabilize unstable open-loop plants, too (Hajdu and Insperger, 2013).

In this paper, we investigate the delay compensation technique called finite spec-
trum assignment (FSA) following (Manitius and Olbrot, 1979). The basic idea of the
FSA controller is that the state variables are predicted over the delay period using an
internal model with the delayed values of the state as initial condition. If the internal
model is perfectly matching the real system, there is no noise in the input information
and the control law is implemented accurately, then the FSA controller can completely
eliminate the delay from the control loop. A drawback of the FSA controller is however
that it is very sensitive to implementation inaccuracies and to parameter uncertainties
(Engelborghs et al., 2001; Mondie et al., 2002; Mondie and Michiels, 2003; Michiels et
al., 2003).

The goal of this paper is to analyze the stabilizability of systems with feedback
delay by the FSA controller in case of internal model mismatches. Note that modeling
inaccuracies can also be interpreted as a multiplicative noise. An unstable undamped
second-order system is considered, which describes the behavior of a pendulum around
its vertically upward position. In addition to being a paradigm in control theory (Sieber
and Krauskopf, 2005; Qin et al., 2014), stabilization of the inverted pendulum with
feedback delay has a high importance in understanding human balancing and human
motor control (Moss and Milton, 2003; Maurer and Peterka, 2005; Milton et al., 2009;
Loram et al., 2011; Suzuki et al., 2012). It is known that a traditional proportional-
derivative (PD) controller cannot stabilize an unstable system if the feedback delay is
larger than a critical value. The critical time delay for an undamped pendulum-like
system can be given as

τcrit,PD =
Tp

π
√
2
, (1)

where Tp is the period of the small oscillations of the same mechanical structure hanging
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at its downward position (Stepan, 2009). For a proportional-derivative-acceleration
(PDA) controller, this critical value can be given as

τcrit,PDA =
Tp

π
, (2)

that is, τcrit,PDA =
√
2 τcrit,PD (Sieber and Krauskopf, 2005; Insperger et al., 2013).

Theoretically, the FSA controller can stabilize any unstable systems for any large feed-
back delay. The limitations are the parameter uncertainties in the internal model, the
noise in the sensory input and the problems of the implementation of the control law.
In this paper, we analyze the effect of the uncertainties in the internal model on the
stabilizability of the system. The structure of the article is as follows. First, the unsta-
ble second-order system subjected to delayed PDA feedback is presented in Section 2.
Then the FSA controller is described with special attention to its robustness to param-
eter mismatches and implementation inaccuracies in Section 3. Section 4 presents the
robust stability analysis of the continuous-time unstable second-order system subjected
to the FSA controller. The corresponding digital control system with sampled output
and zero-order hold is analyzed in Section 5. The effect of parameter uncertainties on
stabilizability are investigated in Section 6. The results are concluded in Section 7.

2 Mathematical model and PDA control

We consider the linear second-order system in the form

φ̈(t)− aφ(t) = −q(t− τ), (3)

where a is the system parameter, q is the control force and τ is the feedback delay.
This equation describes the well-known pendulum cart model, but many stabilization
problems can be reduced to this equation (Stepan, 2009). The state space model of
the system reads

ẋ(t) = Ax(t) +Bu(t− τ), (4)

where

x(t) =

(
φ(t)
φ̇(t)

)
, A =

(
0 1
a 0

)
, B =

(
0
1

)
, u(t) = −q(t). (5)

In case of a PDA controller, the control force reads

q(t) = kpφ(t) + kdφ̇(t) + kaφ̈(t), (6)

where kp, kd and ka are the proportional, derivative and acceleration control gains.
Equation (3) with the controller (6) form a neutral functional differential equation
(NFDE), since the highest derivative (the acceleration term) appears with both actual
and delayed arguments. The characteristic equation of the system reads

D(λ) = λ2 − a+ kpe
−λτ + kdλe

−λτ + kaλ
2e−λτ . (7)

It is known that if |ka| > 1, then the system has infinitely many characteristic roots
with positive real parts (see Lemma 3.9 on page 63 in (Stepan, 1989)). According to
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Figure 1: Stability chart with the number of unstable characteristic exponents (NUE)
for the system (4)-(6) with τ = 1, a = 0.5 and ka = 0.9 (grey: stable region)

the D-subdivision method, the equation D(iω) = 0 gives the D-curves of the system in
the form

kp = a, kd ∈ R, if ω = 0. (8)

kp = (ω2 + a) cos(ωτ) + kaω
2, kd =

ω2 + a

ω sin(ωτ)
, if ω ̸= 0. (9)

Equation (8) corresponds to static loss of stability (a single real characteristic exponent
being equal to zero), while equation (9) is associated with dynamic loss of stability (a
pair of complex characteristic exponents with zero real part). The D-curves and the
stability chart of the system are shown in Figure 1. It is known that for a given system
parameter a, the system cannot be stabilized if the feedback delay is larger than the
critical value τcrit,PDA =

√
(2 + 2ka)/a (Sieber and Krauskopf, 2005; Insperger et al.,

2013). Considering the criteria |ka| < 1, this gives

τcrit,PDA =

√
4

a
. (10)

The case of the PD controller is obtained by setting ka = 0, which gives

τcrit,PD =

√
2

a
. (11)

The same feature can be composed in an opposite way. For a given feedback delay,
the system cannot be stabilized if the system parameter is larger than a critical value
given by

acrit,PDA =
4

τ 2
and acrit,PD =

2

τ 2
. (12)

3 Finite spectrum assignment

FSA is a predictive control method, which is supposed to realize pole placement for
systems with input delay by using a control law that contains a distributed delay
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term. Time delay compensation is achieved by means of prediction and feedback of the
predicted state. In the ideal case, FSA allows the realization of a closed-loop system
that operates with a predefined dynamic behavior.

Consider a system given in the form of equation (4). In the course of prediction,
the controlled system should be described by a model equation, which is called the
internal model of the controller. This equation can be written in the form

ẋ(t) = Ãx(t) + B̃u(t− τ̃), (13)

where Ã, B̃ and τ̃ are the estimated system and input matrices and the estimated
feedback delay used by the internal model. The predictor used by the FSA approach
solves this equation with the initial value x(t− τ̃) and formally shifts the argument of
the solution by τ̃ . This way the predicted state reads

xp(t+ τ̃) = eÃτ̃x(t) +

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ. (14)

The controller uses this predicted state for the feedback. Thus the control signal can
be written in the form

u(t) = KeÃτ̃x(t) +K

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ, (15)

where K is the control matrix, which contains the control parameters. In case of a
second-order system subjected to a PD controller K = ( −kp −kd ). The control law
(13) is a linear Volterra equation of the second kind and it involves a distributed delay
term. Note that the FSA controller is typically applied to linear systems and does not
work for non-linear or non-smooth systems in this form.

In the next subsections, the robustness issues of the FSA controller are described
for the continuous-time system (4). First, the robustness to parameter mismatches is
considered, then the robustness to implementation inaccuracies of the control law is
discussed.

3.1 Robustness to parameter mismatches

If the internal model approximates the system parameters with perfect precision (i.e.
if Ã = A, B̃ = B and τ̃ = τ), then equations (4) and (15) can be reduced to the
ordinary differential equation (ODE)

ẋ(t) = Ax(t) +BKx(t). (16)

Thus the feedback delay is eliminated from the control loop, hence the spectrum of the
closed-loop system becomes finite and the poles can be shifted to any desired values
provided that the pair (A,B) is controllable. This way stability can be achieved for
arbitrary system parameters.

If the internal model is not perfectly accurate (i.e. if Ã ̸= A, B̃ ̸= B and τ̃ ̸= τ),
then equations (4) and (15) define a retarded functional differential equation (RFDE).
For the special case B̃ = B, the input u(t) can be eliminated and equations (4) and
(15) imply

ẋ(t) = Ax(t) +BKeÃτ̃x(t− τ) +BK

∫ 0

−τ̃

e−Ãθ(ẋ(t+ θ)−Ax(t+ θ))dθ, (17)
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which can be transformed into the RFDE

ẋ(t) =Ax(t) +BKeÃτ̃x(t− τ) +BKx(t)−BKeÃτ̃x(t− τ̃)

+BK

∫ 0

−τ̃

e−Ãθ(Ã−A)x(t+ θ))dθ. (18)

If B̃ ̸= B, then differentiation of the control law (15) together with equation (4) give
the system of RFDEs

ẋ(t) =Ax(t) +Bu(t− τ), (19)

u̇(t) =KeÃτ̃Ax(t) +KeÃτ̃Bu(t− τ) +KB̃u(t)

−KeÃτ̃B̃u(t− τ̃) +KÃ

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ. (20)

Thus, in case of the slightest mismatch between the internal model and the actual sys-
tem, the governing equation is an RFDE with infinitely many characteristic exponents.
Consequently, finite spectrum assignment in this case is not possible.

If the implementation of the control law (15) is perfectly accurate, then stability
properties are determined purely by equations (4) and (15). We call this case ideal
stability.

3.2 Robustness to implementation inaccuracies of the control
law

In order to implement the control procedure in practice, one must perform the online
calculation of the integral term in control law (15). Let this integral term be denoted
by

z(t) =

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ. (21)

One solution for the realization of z(t) is to create a differential equation by deriving
equation (21). The differential equation reads

ż(t) = B̃u(t)− eÃτ̃B̃u(t− τ̃) + Ãz(t). (22)

It is known that this type of realization involves unstable pole-zero cancellation if
matrix A is not Hurwitz, hence it is not capable of stabilizing an unstable system
(Manitius and Olbrot, 1979; Mondie et al., 2002; Michiels and Niculescu, 2007).

Another way to realize the integral term z(t) is the approximation by a numerical
quadrature. In this case the distributed delay term is substituted by a sum of point
delays. This way no unstable pole-zero cancellation takes place. An approximation of
z(t) by numerical quadrature rule can be given as

z(t) ∼= z1(t) =
r̃∑

j=0

eÃθj,r̃B̃u(t− θj,r̃)hj,r̃, (23)
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where θj,r̃ ∈ [0, τ̃ ], hj,r̃ ∈ R and r̃ is an integer approximation parameter so that
z1(t) → z(t) as r̃ → ∞ (Michiels et al, 2003). For instance, a discrete rectangular
approximation can be given as

z1(t) =
r̃∑

j=0

eÃj∆tB̃u(t− j∆t)∆t, (24)

where ∆t = τ̃ /r̃ is the discrete time step (i.e., in this case θj,r̃ = j∆t and hj,r̃ = ∆t).
The corresponding control law reads

u(t) = KeÃτ̃x(t) +K
r̃∑

j=0

eÃθj,r̃B̃u(t− θj,r̃)hj,r̃. (25)

Although such a realization of the control law is convenient numerically, it presents a
limitation in the stability of the closed-loop system. Actually, equations (4) and (25)
define a system of NFDEs in the form

ẋ(t) =Ax(t) +Bu(t− τ), (26)

u̇(t) =KeÃτ̃Ax(t) +KeÃτ̃Bu(t− τ) +
r̃∑

j=0

KeÃθj,r̃B̃u̇(t− θj,r̃)hj,r̃. (27)

As was shown by Mondie et al. (2002), a necessary condition for the stability of the
closed-loop system described by equations (4) and (25) is the stability of the associated
delay-difference equation (i.e., the difference part of equations (26) and (27))

x(t) =0, (28)

u(t) =
r̃∑

j=0

KeÃθj,r̃B̃u(t− θj,r̃)hj,r̃. (29)

In case of r̃ → ∞, the roots of equation (29) converges to the roots of the functional
difference equation

u(t) = K

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ, (30)

which is obtained by the substitution of x(t) ≡ 0 into the control law (15). Note that
equation (30) can be written in the form of the RFDE

u̇(t) = KB̃u(t)−KeÃτ̃B̃u(t− τ̃) +KÃ

∫ 0

−τ̃

e−ÃθB̃u(t+ θ)dθ. (31)

A stable control process can only be obtained if the closed-loop system is stable (i.e.,
if the RFDE defined by equations (4) and (15) is stable), and if the associated delay-
difference equation (29) is stable. In case of r̃ → ∞, this latter condition is equivalent
to the stability of the functional difference equation (30). Following Michiels et al.
(2003), we call the stability of equations (4), (15) and (30) theoretical stability. It is
known that theoretical stability does not imply robust stability with respect to small
perturbation of the discretization parameter θj,r̃. As was shown by Michiels et al.
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(2003), small perturbation of θj,r̃ in equation (29) may result in characteristic expo-
nents, whose real parts do not converge to those of equation (30). Consequently, the
stability of equations (4)-(15) and (30) is a necessary condition for robust stability, but
not sufficient. Actually, robust stability requires the strong stability of the associated
delay-difference equation given by equation (29). For the single input case, the nec-
essary and sufficient condition for the strong stability of equation (29) was given by
Michiels et al. (2003) as S < 1, where

S =

∫ τ̃

0

∣∣∣KeÃθB̃
∣∣∣ dθ. (32)

The restriction by the associated delay-difference equation (both on the theoretical
and on the robust stability) can be removed by adding a low-pass filter (Mondie and
Michiels, 2003) or by using piecewise constant input, for instance by applying a digital
controller (Van Assche et al., 2001; Michiels and Niculescu, 2007).

4 Stability diagrams for ideal, theoretical and ro-

bust stability

In this section, domains of ideal, theoretical and robust stability are determined for
system (4) with (5) in the plane (kp, kd). The estimated system and input matrices
used by the internal model are assumed in the form

Ã =

(
0 1
ã 0

)
, B̃ =

(
0
1

)
, (33)

where ã is the estimated system parameter. Ideal stability can be analyzed using
the D-subdivision method and Stepan’s formulae (Stepan, 1989) for the characteristic
equation of the ideal closed loop system given by equations (4) and (15). For theoretical
stability, the stability of the associated functional difference equation (30) should also
be determined. Conditions for robust stability can be obtained by the analysis of Eq.
(32).

4.1 Stability of the ideal closed-loop control system

Based on equations (5) and (15) the input signal provided by the FSA controller can
be given as

u(t) = ( −kp −kd )

(
ch(α̃τ̃) 1

α̃
sh(α̃τ̃)

α̃sh(α̃τ̃) ch(α̃τ̃)

)(
φ(t)
φ̇(t)

)
+ ( −kp −kd )

∫ 0

−τ̃

(
ch(α̃θ̃) − 1

α̃
sh(α̃θ̃)

−α̃sh(α̃θ̃) ch(α̃θ̃)

)(
0
1

)
u(t+ θ)dθ, (34)

where α̃ =
√
ã, ch and sh indicates cosh and sinh. Here, kp and kd are the proportional

and derivative control gains for the predicted state.
The solutions for system (4) and (34) are assumed to be in the form

φ(t) = φ0e
λt, φ̇(t) = ω0e

λt, u(t) = u0e
λt. (35)
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Substitution of expressions (35) into equations (4) and (34) gives the following system
of equations

M(λ)

 φ0

ω0

u0

 = 0, (36)

where

M(λ) =

 λ −1 0
−α2 λ −e−λt

kpch(α̃τ̃) + kdα̃sh(α̃τ̃)
kp
α̃
sh(α̃τ̃) + kdch(α̃τ̃) f(λ)

 , (37)

f(λ) = 1 +
kp
2α̃

(
e−(λ+α̃)τ̃ − 1

λ+ α̃
+

−e−(λ−α̃)τ̃ + 1

λ− α̃

)
+

kd
2

(
−e−(λ+α̃)τ̃ + 1

λ+ α̃
+

−e−(λ−α̃)τ̃ + 1

λ− α̃

)
(38)

with α =
√
a. Hence the characteristic equation of system (4) and (34) reads

D(λ) = det(M(λ)) = 0. (39)

Substitution of λ = iω into equation (39) and decomposition into real and imaginary
parts give a linear system of equations for kp and kd in the form

R(ω) = −(α2 + ω2) + kp
ω

α̃
sin(ωτ)sh(α̃τ̃) + kp cos(ωτ)ch(α̃τ̃)

+ kp
α2 + ω2

α̃2 + ω2

(
1− cos(ωτ̃)ch(α̃τ̃)− ω

α̃
sin(ωτ̃)sh(α̃τ̃)

)
+ kd

α2 + ω2

α̃2 + ω2
(−α̃ cos(ωτ̃)sh(α̃τ̃)− ω sin(ωτ̃)ch(α̃τ̃))

+ kdω sin(ωτ)ch(α̃τ̃) + kdα̃ cos(ωτ)sh(α̃τ̃) = 0, (40)

S(ω) = kp
ω

α̃
cos(ωτ)sh(α̃τ̃)− kp sin(ωτ)ch(α̃τ̃)

+ kp
α2 + ω2

α̃2 + ω2

(
sin(ωτ̃)ch(α̃τ̃)− ω

α̃
cos(ωτ̃)sh(α̃τ̃)

)
+ kd

α2 + ω2

α̃2 + ω2
(ω + α̃ sin(ωτ̃)sh(α̃τ̃)− ω cos(ωτ̃)ch(α̃τ̃))

+ kdω cos(ωτ)ch(α̃τ̃)− kdα̃ sin(ωτ)sh(α̃τ̃) = 0. (41)

Expressing kp and kd from equations (40) and (41) gives the D-curves for the cases
ω = 0 and ω ̸= 0, which can be depicted in the plane (kp, kd) as shown in panel
(a) of Figures 2 and 3. The regions divided by the D-curves are associated with the
same number of unstable characteristic exponents (also called instability degree). This
number can be calculated by Stepan’s formulae (see Theorems 2.15 and 2.16 in (Stepan,
1989)).
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of the ideal closed-loop system (a); stability chart and the NUE of the associated
functional difference equation (b); robust stability boundaries of the associated delay-
difference equation (c); and their superposition (light grey: ideal stability, dark grey:
theoretical stability, black: robust stability with respect to implementation inaccu-
racies) (d) for the system defined by equations (4) and (15) with ã = a = 0.5 and
τ̃ = τ = 1
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functional difference equation (b); robust stability boundaries of the associated delay-
difference equation (c); and their superposition (light grey: ideal stability, dark grey:
theoretical stability, black: robust stability with respect to implementation inaccura-
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4.2 Stability of the associated functional difference equation

Substitution of u(t) = u0e
λt and x(t) ≡ 0 into equation (34) gives the characteristic

equation of the associated functional difference equation in the form

f(λ) = 0, (42)

where f(λ) is given in equation (38). Substitution of λ = iω into equation (42) and
decomposition into real and imaginary parts give

R(ω) =
α̃

α̃2 + ω2

(
kp
α̃

cos(ωτ̃)ch(α̃τ̃) + kd cos(ωτ̃)sh(α̃τ̃) −
kp
α̃

+
kpω

α̃2
sin(ωτ̃)sh(α̃τ̃) +

kdω

α̃
sin(ωτ̃)ch(α̃τ̃)

)
+ 1 = 0, (43)

S(ω) =
ω

α̃2 + ω2

(
−kd +

kp
α̃

cos(ωτ̃)sh(α̃τ̃) + kd cos(ωτ̃)ch(α̃τ̃)

−kp
ω

sin(ωτ̃)ch(α̃τ̃)− kdα̃

ω
sin(ωτ̃)sh(α̃τ̃)

)
= 0. (44)

The D-curves of the associated functional difference equation can be given by solving
these equations for kp and kd. If ω = 0 then equations (43)-(44) give

kd =
1− ch(α̃τ̃)

α̃sh(α̃τ̃)
kp −

α̃

sh(α̃τ̃)
. (45)

If ω ̸= 0 then one gets

kp =
α̃(α̃2 + ω2) (ω − ω cos(ωτ̃)ch(α̃τ̃) + α̃ sin(ωτ̃)sh(α̃τ̃))

2α̃ω − 2α̃ω cos(ωτ̃)ch(α̃τ̃) + (α̃2 − ω2) sin(ωτ̃)sh(α̃τ̃)
, (46)

kd =
(α̃2 + ω2) (α̃ sin(ωτ̃)ch(α̃τ̃)− ω cos(ωτ̃)sh(α̃τ̃))

2α̃ω − 2α̃ω cos(ωτ̃)ch(α̃τ̃) + (α̃2 − ω2) sin(ωτ̃)sh(α̃τ̃)
. (47)

Since the associated functional difference equation (30) can be written as an RFDE
in the form (31), the number of unstable characteristic exponents can be calculated
using Stepan’s formula (Stepan, 1989). Note, however, that if the approximation de-
scribed by equation (23) is used with sufficiently large r̃ to realize the control law,
then the associated functional difference equation is a delay-difference equation given
by equation (29). If the numerical quadrature is equidistant with time step ∆t = τ̃ /r̃
as in equation (24), then the stability of equation (29) is described by r̃ character-
istic multipliers µi, i = 1, 2, . . . r̃, each associated with infinitely many characteristic
exponents of the form

λi,j =
1

∆t
ln|µi|+ i

1

∆t
(ωi,0 + j2π), j ∈ Z, (48)

where ωi,0 is the phase angle of µi so that ωi,0 ∈ (−π, π]. The delay-difference equation
(29) is asymptotically stable if all the r̃ characteristic multipliers lie within the unit
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disc of the complex plane, which implies that all the infinitely many characteristic ex-
ponents have negative real parts. If there is a characteristic multiplier with magnitude
larger than 1, then it is associated with an infinite sequence of characteristic exponents
whose real parts are positive and whose imaginary parts tend to infinity as j is increas-
ing. Consequently, for sufficiently small ∆t, each unstable characteristic exponent of
equation (30) corresponds to infinitely many characteristic exponents of equation (29).

The D-curves and the number of unstable characteristic exponents of the associated
functional difference equation (30) are shown in panel (b) of Figures 2 and 3 for different
parameters.

4.3 Robustness to implementation inaccuracies

Expansion of equation (32) gives the condition for the robust stability of the associated
delay-difference equation (29) with respect to small perturbation of the discretization
parameter θj,r̃ in the form

S =

∫ τ̃

0

∣∣∣∣− 1

α̃
sh(α̃θ)kp − ch(α̃θ)kd

∣∣∣∣ dθ. (49)

Robust stability is obtained if S < 1 (Michiels et al., 2003). The contour curve defined
by S = 1 gives the boundaries of robust stability in the plane (kp, kd) as shown in panel
(c) of Figures 2 and 3. Since S = 0 for (kp, kd) = (0, 0), the domain of robust stability
of equation (29) is the inside of the contour curve.

4.4 Combined stability diagrams

Panels (a), (b) and (c) in Figure 2 show the stability diagram for the ideal closed-
loop system given by equations (4) and (15), the stability diagram for the associated
functional difference equation (30) and the region of robust stability for the associ-
ated delay-difference equation (29) for the case when the internal model is perfectly
accurate, i.e. when ã = a and τ̃ = τ . Stable domains are indicated by light gray
shading. In panels (a) and (b), the number of unstable characteristic exponents for
the different parameter regions are also given. Note that for panel (b), each unstable
characteristic exponent implies infinitely many characteristic exponents for the actual
control system as explained in Section 4.2. The stability condition for the ideal closed-
loop system (panel (a) in Figure 2) is kp > a and kd > 0, which corresponds to the
stability condition for the delay free system. If the approximation described by (23) is
used with sufficiently large r̃ to realize the control law, then the region of theoretical
stability in the plane (kp, kd) is reduced to the small triangular shaped region given
by the intersection of the stable region of the ideal closed loop system described by
equations (4) and (15) and that of the associated functional difference equation (30).
The region of robust stability of the closed-loop system with respect to perturbations in
the discretization parameter θj,r̃ is given by the intersection of the region of theoretical
stability and that of the robust stability of equation (29). In panel (d) of Figure 2,
light grey, dark grey and black shading denotes different stability properties. Light
grey shading denotes the parameters where the ideal closed-loop system is stable, but
the associated functional difference equation is unstable, thus the actual control sys-
tem is unstable for any large r̃ used in the implementation of the control law. Dark
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grey shading denotes the parameters where both the ideal closed-loop system and the
associated functional difference equation are stable (domain of theoretical stability),
but the closed loop system is not robustly stable with respect to perturbations in the
discretization parameter θj,r̃. Black color denotes the parameters, where the closed
loop system is robustly stable with respect to implementation inaccuracies. It is also
shown in this figure, that a finite spectrum is achieved only for the ideal closed-loop
system in panel (a).

If the internal model is not perfectly accurate, i.e. if ã ̸= a and τ̃ ̸= τ , then the
spectrum becomes infinite and the stable region shrinks as shown in Figure 3.

Figure 4 shows the responses of a robustly stable system with (kp, kd) = (1, 0),
a theoretically stable but not robustly stable system with (kp, kd) = (1, 1) and an
ideally stable but not theoretically stable system with (kp, kd) = (1.4, 2.2). These three
systems correspond to points A, B and C in Figure 3. The simulation was performed
by the semi-discretization method with time step h = 0.0025. The initial conditions
were φ(0) = 0.05, φ̇(0) = 0 and u(θ) = 0, θ ∈ [−τ, 0]. The integral term in the control
law was determined by the discrete rectangular approximation according to equation
(24), but the time step ∆t was varying periodically over every four steps such that
∆t1 = 0.025, ∆t2 = 0.0275, ∆t3 = 0.025, ∆t4 = 0.0225. This variation presents a
special perturbation of the discretization step for the integral in the control law. As
can be seen, the ideally stable but not theoretically stable system (point C) is actually
unstable due to the unstable difference part of the controller. The theoretically stable
but not robustly stable system (point B) is also unstable, since this system is not robust
to perturbation of the discretization step in the integral. At parameter point A, the
robustly stable system converges to zero after a transient vibration.

5 Application of a digital controller

One technique to overcome the difficulties caused by the sensitivity to implementation
inaccuracies of the control law is the application of piecewise constant input (Van Ass-
che et al., 2001; Michiels and Niculescu, 2007). This type of control law corresponds
to a digital control system with a sampled output data and zero-order hold, which is
widely used in many applications. In this sense, application of digital controller elim-
inates the restrictions caused by both the approximate implementation of the control
law (theoretical stability) and the sensitivity on the discretization rule (robust stabil-
ity). Stability properties however are still affected by parameter mismatches. In the
rest of the paper, therefore, we analyze the stability of the ideal closed loop system
in case of non-infinitesimal parameter mismatches between the internal model and the
actual system and do not count the issues related to theoretical and robust stability.

If a digital controller is applied with sampling period ∆t, then the governing equa-
tions read

ẋ(t) = Ax(t) +Bu(ti−r), t ∈ [ti, ti+1), (50)

u(t) = F̃x(ti) +
r̃∑

j=1

Q̃ju(ti−j), t ∈ [ti, ti+1), (51)

where ti = i∆t (i = 1, 2, . . .), r = ceil(τ/∆t), r̃ = ceil(τ̃ /∆t), F̃ = KeÃτ̃ and Q̃j =

F̃e−Ãτ̃eÃj∆tB̃∆t. Using state augmentation and the notations ui = u(ti) and xi =
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Figure 4: System response in case of a robustly stable system (A), a theoretically stable
but not robustly stable system (B) and an ideally stable but not theoretically stable
system (C)

x(ti), equations (50) and (51) can be written in one of the following forms. If r > r̃
then


xi+1

ui

ui−1
...

ui−r+1

 =


P 0 · · · 0 0 · · · 0 R

F Q̃1 · · · Q̃r̃ 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





xi

ui−1
...

ui−r̃

ui−r̃−1
...

ui−r+1

ui−r


, (52)
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where P = eA∆t, R =
∫ ∆t

0
eA(∆t−θ)Bdθ. If r < r̃ then


xi+1

ui

ui−1
...

ui−r̃+1

 =


P 0 · · · 0 R · · · 0 0

F Q̃1 · · · Q̃r−1 Q̃r · · · Q̃r̃−1 Q̃r̃

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0





xi

ui−1
...

ui−r+1

ui−r
...

ui−r̃+1

ui−r̃


. (53)

These equations are of the form yi+1 = Φyi, thus the stability of the system can
be determined by the analysis of the eigenvalues of the coefficient matrix Φ, which
is actually the monodromy matrix of the discrete-time system. The condition for
asymptotic stability reads

max(|eig(Φ)|) < 1. (54)

In the case of a digital controller, there is no restriction on stability caused by the
implementation of the control law, thus the stability can be determined by equation
(54) only.

In fact, the discrete maps (52) and (53) correspond to the semi-discretization of the
original continuous-time system described by equations (4) and (15) with the discretiza-
tion step being the sampling period ∆t (Insperger and Stepan, 2011). For sufficiently
small ∆t, the stability properties of the discrete maps (52) and (53) provide a good
approximation of the ideal stability of the original continuous-time system.

6 Analysis of the uncertainties in the parameters

It has been shown that the precision of the approximation of the system parameters
used for prediction affects the stability of the system. If ã = a and τ̃ = τ , then the stable
region is a quarter plane in the plane (kp, kd). But in the case when ã ̸= a and τ̃ ̸= τ
the stable region shrinks and becomes bounded. This shows that the control procedure
is sensitive to the accuracy of the parameters used for the prediction. This sensitivity
can be demonstrated on a series of stability charts shown in Figure 5, where different
approximation accuracy is used for the system parameter a and for the feedback delay
τ . The number of unstable characteristic exponents for the different regions divided
by the D-curves are also presented. Remember that here we assume that the control
process is implemented by a digital controller, thus the issues related to the theoretical
and the robust stability (see Section 4) do not arise.

Figure 5 shows that the stability of the control process depends on the accuracy of
the parameters ã and τ̃ used by the internal model, which can be characterized by the
absolute errors εa = |a−ã|/a and ετ = |τ−τ̃ |/τ . For a given feedback delay, the critical
value of the system parameter a, for which stabilization is just still possible in the
presence of given internal model errors εa and ετ is denoted by acrit,FSA. If a < acrit,FSA
then there exist a pair of control gains (kp, kd), which provides a stable control process
for any ã and τ̃ satisfying (1− εa)a ≤ ã ≤ (1 + εa)a and (1− ετ )τ ≤ τ̃ ≤ (1 + ετ )τ . If
a > acrit,FSA then there is no such pair of control gains. Figure 6 presents the critical
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Figure 5: Stability charts and the number of unstable characteristic exponents (NUE)
of the system defined by equations (4) and (15) with a = 0.5 and τ = 1 for different
accuracy of the internal model parameters ã and τ̃ (grey: stable region)

system parameter acrit,FSA for different errors ε = εa = ετ . The diagram was determined
as follows. The absolute errors εa and ετ and the system parameter a were fixed and
the 3 × 3 stability charts (similar to the ones shown in Figure 5) were constructed.
The system parameter a was said to be robustly stable with respect to the internal
model error ε = εa = ετ if there was at least one point in the plane (kp, kd), which was
stable in each of the 3 × 3 stability charts, regardless to the sign of perturbation. If
a system parameter a was found to be robustly stable, then it was increased and the
same procedure was repeated. The resolution for the system parameter a was 0.01,
i.e., a specific value of a = acrit,FSA was said to be critical if it was robustly stable in
the sense described above but the same system for a = acrit,FSA+0.01 was not robustly
stable. The concept of this analysis is similar to the stability radius with respect to
changes of the system parameters (Michiels and Rose, 2003; Michiels and Niculescu,
2007).

The same analysis was performed for the PDA controller described by equations
(4) and (6) for different acceleration gains. The results are shown in Figure 6 for com-
parison. As can be seen, the critical system parameter for the FSA controller decreases
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Figure 6: The critical system parameter values as function of the internal model error
ε = εa = ετ for τ = 1

with increasing internal model error. If the internal model is perfectly accurate (i.e.
if ε = εa = ετ = 0) then the theoretical value of acrit,FSA is infinity, hence the effect
of input delay is totally compensated. Note that if τ = 1 then the same critical pa-
rameter for a PD controller without any parameter uncertainties is acrit,PD = 2 and
for a PDA controller it is acrit,PDA = 4. For the FSA controller with small parameter
mismatches the achievable critical value of acrit,FSA can be essentially larger than 2
or 4. For large modeling errors, however, delayed state feedback becomes superior to
the FSA controller. For instance, for errors ε > 11%, the critical system parameter
for the PDA controller with ka = 0.9 is larger than that of the FSA controller. This
demonstrates that the FSA controller is more sensitive to modeling inaccuracies than
the conventional delayed state feedback.

The above observations can be rephrased to the critical delay, too. For a fixed
system parameter with small modeling inaccuracies, the FSA controller allows larger
feedback delay than the PDA controller. However, for large modeling errors, conven-
tional delayed state feedback becomes superior to the FSA controller.

7 Conclusions

An unstable second-order system was investigated with input delay subjected to a FSA
controller. If the parameters of the internal model used for the prediction are not equal
to the real system parameters, then the system is described by equations (4) and (15),
which define a system of RFDEs involving two types of delays: a point delay τ and a
distributed delay term over a delay period of length τ̃ . For the ideal continuous-time
control system, the stability analysis was performed using the D-subdivision method
and the number of unstable characteristic exponents were determined using Stepan’s
formula. Stability diagrams were constructed, which present the robustness of the
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system to parameter mismatches and to implementation inaccuracies of the control
law. Here, robustness to implementation inaccuracies is meant in an asymptotic sense,
since stability properties are sensitive to arbitrarily small perturbation of the control
law (Michiels et al., 2003). This implementation difficulty can be avoided by applying
piecewise constant input (e.g., a digital controller). However, in this case, stability
properties still depend on the parameter mismatches between the internal model and
the real system, although not in an asymptotic sense.

The effect of finite mismatches between the internal model and the actual system
was analyzed without the effect of the sensitivity to implementation inaccuracies by
assuming a digital control system. The stabilizability of the system was investigated for
different mismatches through a series of stability charts. The critical system parameter
for which stabilization is just still possible in the presence of internal model errors was
determined. It was shown that for internal model errors less than 3%, the critical
system parameter acrit,FSA is larger than 5, which is already larger than the critical
system parameter of a PD or a PDA controller without any parameter uncertainty.
For large modeling errors (ε > 11%), however, delayed state feedback was found to
be superior to the FSA controller. Thus, the FSA controller extends the limits of
stabilization against feedback delay provided that the input signal is available for the
control calculation and the system parameters are available with precision less than
11%.

Although the current analysis was performed for a second-order system, the FSA
controller can be applied to higher-order systems, too. In this case stability properties
can be determined in the same way, however, the different modes of the system may
interfere with the delay resulting in more intricate stability diagrams.

In addition to stabilization, there are other performance measures that a control
system should satisfy, such as settling time and overshoot. These measures can also
be determined and optimized based on the analysis of the eigenvalues of the coefficient
matrix Φ. The settling time is related to the magnitude of the critical eigenvalue,
while the system converges to the set point without overshoot if the eigenvalues of Φ
are positive real numbers with magnitude less than one.
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